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Abstract
In this research, an agent-based model (ABM) was developed to generate human move-

ment routes between homes and water resources in a rural setting, given commonly avail-

able geospatial datasets on population distribution, land cover and landscape resources.

ABMs are an object-oriented computational approach to modelling a system, focusing on

the interactions of autonomous agents, and aiming to assess the impact of these agents

and their interactions on the system as a whole. An A* pathfinding algorithm was imple-

mented to produce walking routes, given data on the terrain in the area. A* is an extension

of Dijkstra’s algorithm with an enhanced time performance through the use of heuristics. In

this example, it was possible to impute daily activity movement patterns to the water

resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia,

and the simulated human movements were statistically similar to empirical observations on

travel times to the water resource (Chi-squared, 95% confidence interval). This indicates

that it is possible to produce realistic data regarding human movements without costly mea-

surement as is commonly achieved, for example, through GPS, or retrospective or real-time

diaries. The approach is transferable between different geographical locations, and the

product can be useful in providing an insight into human movement patterns, and therefore

has use in many human exposure-related applications, specifically epidemiological
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research in rural areas, where spatial heterogeneity in the disease landscape, and space-

time proximity of individuals, can play a crucial role in disease spread.

Introduction

Risk, exposure and human movements
Humans are exposed to a variety of hazards as part of their everyday routines which, in turn,
carry associated risks [1].

Whether the hazard is physical degradation [2], disease-bearing flies [3], or chemical toxins
[4], a high degree of exposure can result in considerable risk to human health and wellbeing
[5]. Unfortunately, a degree of exposure to such hazards is often unavoidable in order to obtain
the resources upon which humans depend. Indeed, examples range from the financial
resources obtained from attending work which potentially exposes people to influenza, to col-
lecting basic water resources from a river surrounded by mosquito- or tsetse fly-infested bush.
Given that exposure is at the heart of this problem, the study of human movements can provide
important information on how exposure to such hazards varies through time and space, with
potential implications in policy making and risk mitigation [6].

Gaining an insight into the dynamics of a disease can be crucial in developing forms of con-
trol and mitigation, whether this is reducing the impact of nodes or hubs which exhibit high
infection rates, or disconnecting areas to limit infection pathways. One means of gaining this
understanding of disease dynamics is the investigation of human movements relative to patho-
gen prevalence and host abundance, whether these are migratory flows over large geographical
areas [7, 8], or daily movement routines of individuals within or between local settlements [9].
Although the measurement of human movements is primary, and can be captured through the
use of, for example, mobile phone data [10], GPS, and individual diaries, these data are not
always readily available or accessible, due to a lack of human or financial resources, or possible
privacy concerns. Furthermore, the lack of available literature which considers individual
human movement patterns has been highlighted [9].

Modelling human movement patterns is an alternative approach to direct measurement,
and literature exists which considers ‘activity spaces’, including patterns concerning time allo-
cations at different locations and frequency of these trips from a home site [11, 12]. Although
this helps gain an understanding of people’s routines and, therefore, of periods when people
might be exposed to hazards due to their location, often the journey itself is not modelled in
detail. For urban settings, indoor or in-vehicle activity spaces are primary. However, where the
hazard occurs outdoors, and given the degree of spatial heterogeneity in some rural environ-
ments combined with often long journeys by foot, exposure along a route is primary. As a
result, this paper utilises a novel approach to model human movements in a rural setting in
Africa, using a pathfinding algorithm which calculates a path between home and resource
based on information about the surroundings.

Agent-based models provide a useful tool for the exploration of fine scale human move-
ments as they, by definition, simulate the behaviour of individuals. Furthermore, the ability to
incorporate spatial heterogeneity at a similarly fine scale through the incorporation of land-
cover data means that the influence of an individual’s surroundings can be considered for even
very short journeys. We argue that, through the implementation of an agent-based model, it is
possible to estimate human movement patterns in rural settings and, thus, exposure to a given
hazard, based on knowledge only of the spatial distributions of the (i) human population, (ii)
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resources upon which humans depend, (iii) landscape through which humans must travel in
order to reach the necessary resources, and (iv) the hazard.

Agent-based models
Agent-based models are a class of computational models for exploring a system through the
simulation of the interactions between individuals using simple rules, with often quite complex,
emergent behaviour [13], and have been considered a “third-way” of conducting scientific
research through the incorporation of both deductive and inductive approaches [14].

The use of agent-based models (ABMs) as a unique means of capturing human systems is
well documented [15]. Examples range from spatially abstract environments such as Sugars-
cape [16], to applications which require greater detail regarding space representation and
human movement, such as carnival crowd control [17] and evacuation planning [18].

ABMs focus on interactions (agent-agent, agent-environment) in ways that other modelling
techniques find difficult to capture [19]. This leads to notable success for ABMs in domains
like traffic and pedestrian flow where the interaction between vehicles or people can be mod-
elled [20].

Calibrating ABMs
For ABMs to be predictively useful, the basic assumptions about movement rates and move-
ment strategies must be well founded (e.g. cars move at the right speed, people fighting to get
out of a burning plane move plausibly, etc.). As a result, there exists a strong motivation for
developing methods for calibrating an agent’s movement strategies against data. As researchers
must often accept data in the form that they are provided (e.g. census, surveys, mobile phone
records, etc.) there is a need for flexible methods for comparing a process model (an initial the-
ory of what people do, applied to a set of agents) to data from the real world in any arbitrary
form. The detail captured in ABMs is particularly useful here because it makes possible the
simulation of arbitrary data collection methods in the model, to match those in the real world,
thus, allowing a direct comparison for calibration purposes.

In statistical model fitting, as practiced in much of empirical science, there are well estab-
lished techniques (e.g., method of maximum likelihood) for deciding which of a suite of possi-
ble statistical models gives the best fit to data. However, while conceptual frameworks for
spatially explicit ABMs in epidemiology have been formulated [21] and explored [22], at pres-
ent, little information is available in the literature concerning how real world data can be used
to calibrate simulated human movements in an epidemiological ABM. Thus, a challenge to the
wider acceptance of ABMs is the lack of universally agreed methods for calibrating them
against data. Given the additional issue that calibration data are not always available for ABM
studies due to the issues of cost and accessibility discussed previously, ABM construction can
be hindered, and this could be one of the reasons why there are relatively few studies presenting
epidemiological ABMs in the literature. As a result of these factors, many ABMs are not cali-
brated to data at all and are left as suggestive, approximate theoretical exercises.

Recent developments in the study of spatial epidemiology have seen ABMs applied to sys-
tems involving multiple classes of agents (e.g., human, livestock, fly) to investigate disease
transmission [23]. As with the examples of social systems provided above, the resolution at
which movements through space and time need to be represented varies in the field of epidemi-
ology. When considering the average flows of people at a national or continental scale over a
long period of time (when investigating, e.g., the large area prevalence of a disease such as
malaria) modelling the daily frequency and direction of individual’s movements may not be
that useful. However, when investigating a vector-borne disease in a sparsely populated
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environment at a local scale, the spatial locations of hosts and vectors are likely to be of funda-
mental importance to disease dynamics [24]. Indeed, capturing the spatial heterogeneity of a
study area in landscape epidemiology can be an integral component of a realistic disease simu-
lation [25].

As part of an existing interest in modelling the epidemiology of Human African Trypanoso-
miasis (HAT, or more commonly, sleeping sickness) and Animal African Trypanosomiasis
(AAT, also referred to as Nagana), we previously constructed a simplified ABM of humans,
cattle and tsetse flies [26]. As sleeping sickness is a neglected tropical disease, the prospect for
development of new, more effective treatments in the near future is limited, with out-of-date,
difficult to administer, and partially validated treatments currently in use [27–29]. Unfortu-
nately, where tools are available, HAT is rarely prioritised due to competing public health inter-
ests [30]. As a result, public health policy is critical, and appropriate control methods will
require a greater understanding of disease dynamics [31]. ABMs used wisely can potentially
lead to better informed public health policy. However, an accurately calibrated model is
required to make any simulated predictions of disease prevalence sufficiently representative
and, thus, potentially useful as a decision-support tool.

This paper demonstrates the potential use of ABMs as tools for generating human move-
ment patterns, which could subsequently be used for a range of potential applications including
assessment of individual exposure to biting insects such as mosquitoes and tsetse flies, contact
probabilities and, thus, transmission pathways and potential. The approach depends only on
an initial distribution of agents, resource locations, and a given landscape (capturing the diffi-
culty of traversing elements in the landscape), and fairly well accepted assumptions about peo-
ple’s daily resource requirements. In this study area, these include frequent trips to water and
for the collection of firewood, children’s trips to school in the morning or afternoon, less fre-
quent trips to market, and work in the fields. Thus, this paper proposes for the first time the
use of ABMs to simulate human movements based only on widely available geospatial datasets,
as an alternative to expensivemeasurement of human movements, for use in epidemiological
studies. The implication is that plausible movement patterns can be generated for any similar
location, with limited need for human movement data. Using extensive household survey data
from the Luangwa Valley, Zambia, a method for calibrating human agent movements against
real world data in epidemiological ABMs was explored, demonstrating that the ABMmethod
proposed here is able to predict human movements accurately.

Methods
The resources and techniques used to construct the ABM for human movement are shown in
the form of a flowchart in Fig 1. The open source software Quantum GIS and Python 2.7 were
used for image processing and model construction, respectively.

Land Cover Classification and Cost Surface
When a person moves from A to B, their chosen route is often influenced by the terrain ahead
of them. To incorporate this decision process into the ABMmodel, a cost surface of the study
area was generated. Specifically, a Landsat image of the study area with a spatial resolution of
30 m was used to produce a land cover classification, dividing the region into areas of bush
(high cost), farmland and cleared land (low cost). These classes allow different speeds of
human movement (4 or 5 or 6 km hr-1) based on modifications of the movement speeds used
in [32] and, therefore, need to be considered as potential facilitators or inhibitors when deter-
mining human routes to resources. Subsequently, where agent routes traverse different classes
of land cover, these data can be used to define the speed at which people move through them.
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Fig 1. Flow chart of all methods used to produce the agent paths andmovement times to calibrate to
real world data.

doi:10.1371/journal.pone.0139505.g001
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The incorporation of this technique may be important as exposure to different risks can be
reduced or heightened depending on the precise route of human movement, but also by how
long it takes for an individual to cross through one of these zones. Although it is acknowledged
that variations in elevation can play a role in varying path choice and movement speed, the set-
tled area under investigation is relatively flat with only a gentle south-to-north slope, and thus
elevation was not considered in this iteration of the model as a result.

A* Pathfinding Algorithm
Many different methods can be used to simulate human movements in an ABM. At two
extremes, one could simulate linear movement by programming the agent to move along a
Euclidean path between start and goal, or use an implementation of Dijkstra’s flood fill algo-
rithm to ensure the least cost route is taken from cell to cell or pixel to pixel, regardless of how
direct it is. In real world terms, the first approach simulates a person who wants to get from
point A to point B as fast as possible, assuming that there are no obstacles in the way, and that
the terrain underfoot is uniform, whereas the second approach simulates a person who will get
from A to B eventually, at minimal cost to them (e.g. avoiding unfavourable land cover etc.).

Something more complicated than either of the above options is likely to be a better match
to reality, and this requires finding a balance between the two. Indeed, while it is often impor-
tant to move as directly as possible to a goal, certain areas along this direct route may be
impassable or at a higher cost than the individual is willing to allow.

Although numerous pathfinding algorithms have been used in the literature, A� [33] was
used in this research as it was considered to be the technique which most accurately replicates
the process by which a human would devise a route to goal, while having the added advantage
of being computationally economical.

By combining a Euclidean distance heuristic (i.e. the straight line route from start to goal),
with the previously described cost surface, a search which resembles a ‘directed flood fill’ is pro-
duced. In this sense, while the cost surface between different pixels from start to goal remains
constant, the most efficient straight line route is preferred. However, when a higher cost region
is encountered along the path, the algorithm will decide whether the optimal route is to travel
around the high cost area, or through it, in order to continue moving towards the goal.

Questionnaire Data
Information regarding the time people take to collect domestic water was collected as part of a
wider human movement questionnaire in the Luangwa Valley, Zambia, in June 2013 (S1
Appendix). The valley is an extension of the Great Rift Valley in East Africa, and lies across the
Eastern and Northern Provinces of Zambia Fig 2. The survey was administered to a sample of
94 individual households. Individual-level information such as sex, age and relationship to
household head was collected, along with their village role, and the amount of time an individ-
ual thought it took them to make a single journey to the water source of their choice. Informa-
tion was also recorded on the frequency of these collections, including number of collections
per day, and whether these occur in the morning, afternoon or evening. While the sample’s
household locations were identified using GPS, along with the locations of a number of bore-
holes, as the data collectors could not accompany each individual on a trip to water, the exact
location of different riverine water sources was not recorded.

Multi-Layer Input Map
The GPS coordinates obtained for household location were overlain on fine spatial resolution
Bing aerial imagery, accessed through the open layers plug-in in QGIS. The previously
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mentioned 30 m spatial resolution land cover classification was then overlain on this finer spa-
tial resolution imagery, before cross-referencing and editing through the digitizing of river and
road detail which was too detailed to be captured at the coarser spatial resolution. The product
was a multi-layer input map for the model, comprising spatial information on household,
river, road and borehole locations, along with pixels allocated to the classes of bare ground, for-
est and crop growing fields, at a spatial resolution of 11 m. Fig 3 shows a sample section of the
land cover classification layer for the model.

Fig 2. Sample village sites (red circles) and observed boreholes (blue circles) in the study area,
Luangwa Valley, Zambia (Produced using Landsat 7 imagery from USGS).

doi:10.1371/journal.pone.0139505.g002
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Program Description
Two separate computer programs were used to produce the observed results. Firstly, a program
was written to implement multiple heuristics in the A� algorithm, producing different paths
from the 94 households to different riverine and borehole water sources. This was implemented
using the Iridis 3 supercomputer at the University of Southampton. Secondly, an ABM was
constructed to test how long it takes agents to travel along each of these paths, given the imped-
ance resulting from the cost surface. These programs are described in greater detail in the
methodology.

Study Area
The study area spans a sparsely populated region of the rural Eastern Province of Zambia. Vil-
lages are small (between 5 and 20 households) and inhabitants are predominantly subsistence
farmers. Based on direct observations in the field, and questionnaire responses, the prominent
mode of transport in the area is walking, with walkways varying from a few more established
roads, to small dirt tracks or ‘desire paths’ which cannot be seen on satellite sensor imagery.
The data collection area consists of a 75 km transect which starts close to Mfuwe airport in the
north, and runs southwards along the Lupande River and its distributaries. Data were collected
in the form of questionnaires (as described above) in Zambia from June to August in 2013 as a
part of the NERC ESPA-funded Dynamic Drivers of Disease in Africa Consortium (DDDAC)
research programme.

The study area is a site of interest in Trypanosomiasis research as the Luangwa valley region
suffered a sleeping sickness outbreak in the 1970s. During this outbreak 241 cases were
reported in a small section of the Luangwa fly belt around Isoka over a period of three years
[34]. Attributed to an encroachment of the tsetse fly belt, this was a drastic increase in the num-
ber of cases, given that only 15 cases were reported in the previous three years in a larger sec-
tion of the fly belt (Mpika) [35], and cases continue to be reported. In addition to such
outbreaks, the ability of the low level of transmission to maintain itself for long periods is con-
sidered to be an enigma in the epidemiological field [36] and, with the Rhodesian form of the

Fig 3. Sample section of the land classification map, with forest (green), crop (off-white), and bare land (magenta) areas highlighted. Road and river
are represented by gold and blue lines respectively.

doi:10.1371/journal.pone.0139505.g003
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disease being a zoonosis, the significant game reservoir adds complexity to the system, with
migration of hosts into the valley [37]. In the scope of this study, important environmental
resources are distributed throughout the region (e.g. water) and, thus, a degree of human expo-
sure to the hazard posed by the tsetse fly is regarded as necessary. Therefore, accurate predic-
tion of human movement patterns may highlight areas to target with mitigation strategies in
the future.

The field study gained ethical approval from ERES Converge, a Zambian private research
ethics board.

Methodology

A* Algorithm
The land cover map introduced above was used to produce a grid of cells with values associated
to their cost in terms of human movement speed. For example, road was allocated the least
cost, followed by crop and bare land, with bush allocated the highest cost. While river levels are
highly seasonally dependent, river cells were considered impassable in this study, reflecting
river levels in the rainy season, where human exposure is likely to be higher due to more
favourable conditions for the tsetse fly. Whilst beyond the scope of this study, it would be pos-
sible to adjust this assumption, varying the weight applied to river cells in order to reflect sea-
sonal changes in how ‘passable’ the river is. Land cells that neighbour the river were collated
and a random sample of 1000 of these was used as a set of potential riverine watering sites.
Agents were allowed to choose randomly between the three sites closest to their village as their
resource goal.

In each iteration of the model, the algorithm assessed the cost of moving to each of its eight
neighbouring cells based on the summation of two factors; g and h:

fðchildÞ ¼ gðchildÞ þ hðchildÞ ð1Þ

gðchildÞ ¼ fðparentÞ þ Ca ð2Þ

The g score represents the cost of movement between the start and the current cell, which is
known and includes accurate land surface costs thus far, while the h score is the remaining lin-
ear distance to the goal. C represents the cost of moving from the current cell to the next
(potential) cell, which varies depending on the land cover. α represents the weighting of the
movement cost, with a higher value of α resulting in the algorithm favouring low cost cells
such as road, over the most direct route.

At each iteration the optimal cell is selected from the eight neighbours, which represents the
best path to take (lowest f(n)), and made into the ‘child’ of the current cell before it itself
becomes the ‘current cell’ in the next iteration. This means that the algorithm creates a trail of
cells that results in the path so far, which is linked by parent-child connections. By taking this
approach, this also means that there could be multiple potential paths during the process.
When one of these potential paths reaches the goal, the parent-child connections from goal to
start are declared the best possible route, and the algorithm ends by creating a list of these cells,
along with the corresponding cell land cover classes.

As the construction of these paths is a variable under investigation, how much of an impact
the land cover has on the chosen path (i.e. how far will an agent travel off the Euclidean route
to walk on, e.g., road instead of crop) was varied for multiple runs.

In the real world, when a person chooses a route of travel, there is often a conflict between
the most direct path, and the ‘easiest’ path to the destination, often resulting in a compromise.
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This paper seeks to identify the appropriate balance of these two factors in this investigation by
varying α. α was varied from 0–45, providing a sufficient range of weightings to identify the
optimum choice. The cost (C in the above equation) was multiplied by α before adding to the g
score in different runs to give a greater weighting to certain land covers. Therefore, as the value
of α increases, the algorithm will increasingly favour low cost routes at the expense of direct
travel. An α = 0 run was included as a control as this represents the Euclidean distance. h was
multiplied by 10 in each run for computational efficiency, removing the decimal number asso-
ciated with diagonal moves. Future references to the different variations of the algorithm, and
the results they produce, will be by their respective h and g values in the form: H10Gα. Fig 4
shows an example path produced using the algorithm in the study area of this investigation.

Fig 4. Example path produced using the A* and land classification between arbitrary points. Arbitrary
points were used to emphasise how the algorithm diverts the path around a prominent obstacle; in this case,
the river itself (Produced using Bing aerial imagery).

doi:10.1371/journal.pone.0139505.g004
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Agent-Based Model
Initially, the 11 m spatial resolution aerial imagery was made into a graphical interface to
observe the subsequent simulation running using the Tkinter package in Python 2.7. The cost
surface land cover information, along with the coordinates of villages, boreholes and potential
watering sites were incorporated as arrays. Populations were then initialised, placing 5000
agents randomly across the villages in the simulation. A large number such as this was used so
that each village would be populated and therefore a comparative simulated distribution of
walk times could be produced. Iterations of the simulation were used to represent clock time
(18 seconds per iteration), where an agent would move between their home village, and a
watering site (either borehole, or one of the three closest riverine sites) along the previously cal-
culated A� paths. 18 second iterations, or 4800 iteration days, were used so that the temporal
resolution of the model was fine enough to include the shortest trips of agents to water, which
can be less than 5 minutes. Movement speed between cells was dictated by the land cover of the
cell which the agent was about to move to, so that the agent moves faster through preferable
terrain such as road, and slower through the other types of land cover. The number of steps an
agent takes per iteration was governed by the maximum distance an agent could travel in this
period, which was defined by the land cover of the cells across this distance. The number of
cells moved in one time step would be at a maximum if an agent encountered only road cells
(resulting in an approximate speed of 6 km-1). Conversely, an agent would cover fewer cells per
time step should some of these cells be, for example, bush, reducing their speed. The fewest
cells covered or lowest speed would be associated with an agent encountering only forest cells.
Certain combinations of cells within a particular time step may not meet the distance threshold
exactly. Should the distance travelled be less than the threshold, and the difference less than a
step size, a random draw was used to decide whether another step was taken in this iteration.
The time taken for the agent to travel a single journey from village to the water resource goal
was recorded in minutes. Return trip times were not considered in this investigation due to the
form of the questionnaire data, but also due to the difficulty in quantifying the reduction in
walk speed which could result from carrying a heavy load of water.

The results were divided into bins to allow a Chi-squared analysis, comparing the distribu-
tions of the simulation results and the questionnaire data. The simulation was run again for a
single agent per village to allow analysis of the individual error between the simulation and real
world data.

Results
The model was run multiple times to investigate the impact of two independent variables on
the trip times of agents from home to water. The first independent variable is the seven differ-
ent sets of paths produced by varying the g score in the A� pathfinding algorithm, which are
now represented in the form H10G05—H10G45. The second independent variable is a bore-
hole threshold. The borehole threshold is defined as the distance that an agent is willing to
travel to a borehole in order to collect water from this superior source, and ignore closer river-
ine water sources. These borehole thresholds are taken from the set 0.5, 1, 2, 3, 4, 5 km and the
simulation results are compared to the observed data. A matrix of Chi-squared results for the
goodness-of-fit between simulated results and the questionnaire data for these different heuris-
tics is shown in Table 1. The results vary greatly (min = 6.54, max = 65.19), with all relation-
ships where the Chi-square statistic is not significantly elevated (Chi-squared< 9.488, 95%
conf.) being found with borehole thresholds of 2 km and below. Similarly, six of the seven sce-
narios where we do not observe a significant deviation between the simulation and the data
were found to use a heuristic with a larger g weighting, where the land cover classification had
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a greater influence on path construction. As H10G25 has the most scenarios without significant
deviation, the ABM for these paths was run for 100 repeats per borehole threshold. The results
and standard deviations for these additional simulations are shown in Fig 5.

The model of best fit was further analysed by plotting the difference between actual walking
time and the simulated walk time to water for the corresponding individual households (repre-
sented by one agent per village), allowing for more in-depth comparison through the produc-
tion of an error distribution (Fig 6).

The plot has a right-skewed distribution, with 75% of the simulated walk times being within
14 minutes of the corresponding questionnaire data. The long tail of the distribution and large
maximum error of 59 minutes accounts for the elevated mean individual error of 11.71
minutes.

To identify a possible cause for the elongated tail in (Fig 6), the spatial distribution of the
error was plotted by household coordinate on an xy grid (Fig 7). Green circles indicate house-
holds with very low errors in individual walk times, red circles indicate those with larger errors,
and red crosses represent the locations of known boreholes. For this figure, the square root of
the error was plotted. The most obvious cluster of large errors is in the area furthest north with
the households that lie close to the airport; these are located furthest from known boreholes
and river sites. Households around the areas where boreholes are known to be located have
smaller errors in general.

Discussion
The optimal parameter set (the H10G25 pathfinding heuristic and a 1 km BT) appears to rep-
resent reasonable values as both parameter values lie between the fastest possible scenarios (i.e.
straight line movement to the nearest water source) and the least cost to the individual with the
best quality resource (i.e. movement across the most forgiving terrain to the nearest borehole
water source). This reflects expectations, given our understanding of human decision-making
processes and physical capabilities, and the fact that these trips to water make up only a part of
an individual’s daily responsibilities. For example, the optimum pathfinding heuristic, which
lies somewhere between the absolute least cost path and Euclidean movement, represents the
decisions made by humans every day. Imagine a scenario where an individual walks along a
country path which detours around a wooded area and continues at a similar point on the
other side. Based on the time pressure of the trip, length of the detour, the quality of the path,
the size of the obstacle, and the penetrability of the wooded area, an individual will likely make

Table 1. Matrix of Chi-squared results for varying cost weighting and borehole distance threshold;
bold indicates statistically significant (95% conf.).

Chi-Squared Borehole Threshold (km)

A* Input 0.5 1 2 3 4 5

H10G00 (Euc) 15.94 11.2 13.14 28.45 35.56 37.78

H10G05 9.77 11.2 7.71 23.29 31.29 34.11

H10G15 18.32 20.13 16.32 30.12 38.21 32.92

H10G15 15.7 14.1 14.91 35.4 43.94 47.69

H10G25 6.54 7.89 8.73 26.22 41.5 44.8

H10G35 10.35 8.95 17.31 36.4 49 65.19

H10G45 6.64 6.7 13.1 26.39 40.44 39.43

doi:10.1371/journal.pone.0139505.t001
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a decision on whether to take a short-cut through the wooded area or not. With the inclusion
of the cost surface and a proportion of the A� heuristic preferring direct movement, the model
simulates this sort of decision-making process. The result is a very believable set of scenarios
where agents will avoid obstacles or high cost surfaces up to a point where the accumulated
pixel-based cost is such that it is no longer beneficial to veer away from the direct route to goal.

Similarly, in an ideal world, all people would be able to collect their water from the preferred
borehole sources. However, the Chi-squared results for low borehole thresholds suggest that
this is not realistic. Again it is easy to see that, with other daily responsibilities, people are
unlikely to ignore nearby riverine water sources in favour of a long (e.g., 10 km) round trip to a
borehole source. The simulation instead suggests that round trips of 1 km or 2 km are the limit
to how far people are willing to travel to a borehole source, potentially ignoring much closer
riverine sources. This is likely to reflect not only the time pressure on the task, but also the
physical limitations of carrying large vessels of water over a long distance.

Fig 5. Chi-squared values and standard deviations for ten repeat runs of each borehole threshold for heuristic model H10G25. The red line shows
95% significance.

doi:10.1371/journal.pone.0139505.g005
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Observed travel times do not significantly differ from predictions from the model using the
optimal heuristic (H10G25) for 0.5 km and 1 km. The square root of individual errors suggests
that the model predicts walking times accurately in the majority of villages, especially where
boreholes have been identified, except for a few anomalies. However, clusters of errors form in
the north and south of the transect. The uniformity of these errors in close proximity to each
other suggests that a borehole or reservoir water source has been missed, particularly as these
sites lie further from the river than most households in the central region. In particular, the
close proximity of the red households in the north towards the airport, a notable area of infra-
structure in the region, suggests that these overestimates of up to 59 minutes can be accounted
for by water sources which have not been recorded. It is worth noting that the ability to visual-
ise the errors spatially facilitates this type of diagnosis, and can be extremely helpful in support-
ing further model development.

Fig 6. Distribution of the individual errors (difference between simulation and questionnaire results) for the H10G25 simulation, with a 1 km
borehole threshold.

doi:10.1371/journal.pone.0139505.g006
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An important methodological point which has arisen from this investigation is that the
method used allows one to challenge or notice discrepancies between the theoretical picture
suggested via the ABM, and the collected survey data. While the value of quantitative informa-
tion is appreciated, an advantage of this method is that where lack of coherence between model
and data arises, the data can be questioned, and possible gaps identified. Although a more accu-
rate measurement approach would arguably be through GPS tracking of individuals through-
out their daily routine, such methods come with their own potential issues, such as a lack of
understanding of the technology, technical faults, misuse and financial cost. The method pre-
sented relies primarily on remotely collected data, calibrated to a short sample questionnaire
which can be affordably attached to larger fieldwork studies. As a result, the method and asso-
ciated model are sufficiently general to be applied to different resources, sought by different
populations, in different poor, sparsely populated rural areas, given the correct satellite sensor
imagery, and a small sample of real world movement times. Furthermore, possible applications
of the resultant route data are varied, including the calculation of catchment areas for
resources, and the production of ABMs of disease transmission.

Fig 7. Individual errors for the single agent per village simulation using the H10G25 heuristic and 1 km
borehole threshold. The square root of the errors is shown, for ease of interpretation (Produced using
Landsat 7 imagery from USGS.)

doi:10.1371/journal.pone.0139505.g007
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With A� being a novel approach for such an investigation, direct comparisons would be dif-
ficult. However, through the creation of multiple versions of the algorithm, it has been
highlighted that the use of A� is justified as it outperforms the null H10G00 (Euclidean equiva-
lent). Furthermore, the additional information acquired using this approach compared with
the Euclidean metric, such as fine scale deviations from the direct route and time spent on spe-
cific land classes, provide important information for epidemiological study where exposure can
vary with spatial heterogeneity and, critically, where transmission depends on proximity.
While this paper has presented an example of the A� algorithm which simulates human move-
ment behaviour accurately in this case study, it should be noted that the method has been
developed, and is appropriate, for sparsely populated rural areas, such as the one described,
and may not be extended to urban settings without significant additional research and modifi-
cation. The main concern here is the characterisation of realistic human movement patterns
for use in modelling neglected tropical disease transmission systems, which impact primarily
on the poorest rural populations of the developing world.

Conclusion
This research has demonstrated that it is possible to generate movement patterns using ABMs
which, in the example, are a very close match in comparison to empirical observations of travel
times to the water resource. Using the ABM and commonly available geospatial datasets on
population distribution, land cover and landscape resources, it was possible to impute daily
activity movement patterns to the water resource for all surveyed villages in the 75 km long
study transect without costly measurement as is commonly achieved, for example, through
GPS, or retrospective or real-time diaries. This opens up the possibility of using the movement
patterns to assess exposure to environmental hazards such as, in the present case, disease carry-
ing biting insects. Importantly, since the ABM is process-based, it is possible to generalize the
approach to other areas where geospatial data are available.

While there can be no substitute for direct and intensive measurement where the quality of
information is key, the approach generated here holds promise for multiple applications,
including rapid assessment where measurement is impossible, and simulation in areas that are
inaccessible. Moreover, there is no gold-standard method of measuring movement patterns,
and all methods are known to be at risk of large uncertainties and blunders (e.g., GPSs being
loaned to siblings, being removed from the person for periods of time, etc.). Whilst the simu-
lated walk times show a large correlation with real-world data, further cases should be explored.
Nevertheless, the novel modelling approach presented here holds promise as a data fusion
engine, capable of integrating measurements from multiple sources, and additional sites could
be explored using the same remotely acquired data sources used in this investigation. Further-
more, as the model is process-based and not data-driven, questions concerning the data and its
completeness can be identified and addressed readily.

Future research will use this study as a basis to investigate sleeping sickness transmission,
using the calibrated movement model produced here to identify exposure of agents to high
density fly zones, simulating contacts and infection.

Supporting Information
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water resource.
(DOCX)

Simulating Human Movement Patterns for Use in Epidemiological Systems

PLOSONE | DOI:10.1371/journal.pone.0139505 September 30, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139505.s001


Author Contributions
Conceived and designed the experiments: SA PA JN. Performed the experiments: SA KS. Ana-
lyzed the data: SA PA. Wrote the paper: SA PA JN SW.

References
1. Wisner B, Luce HR. Disaster vulnerability: scale, power and daily life. GeoJournal. 1993; 30(2):127–

140. doi: 10.1007/BF00808129

2. Cummins SK, Jackson RJ. The built environment and children’s health. Pediatric Clinics of North Amer-
ica. 2001 Oct; 48(5):1241–1252. Available from: http://www.sciencedirect.com/science/article/pii/
S0031395505703722 doi: 10.1016/S0031-3955(05)70372-2 PMID: 11579672

3. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of
malaria: past, present, and future. The Lancet Infectious diseases. 2004 Jun; 4(6):327–36. Available
from: http://www.sciencedirect.com/science/article/pii/S1473309904010436 doi: 10.1016/S1473-3099
(04)01043-6 PMID: 15172341

4. Rodricks JV. Calculated Risks: Understanding the toxicity and human health risks of chemicals in our
environment. Cambridge University Press; 1994.

5. Vaughan E. Chronic exposure to an environmental hazard: risk perceptions and self-protective behav-
ior. Health psychology: official journal of the Division of Health Psychology, American Psychological
Association. 1993 Jan; 12(1):74–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8462503 doi:
10.1037/0278-6133.12.1.74

6. Prothero RM. Disease and mobility: a neglected factor in epidemiology. International journal of epidemi-
ology. 1977 Sep; 6(3):259–67. doi: 10.1093/ije/6.3.259 PMID: 591173

7. Grenfell BT, Bjø rnstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics.
Nature. 2001 Dec; 414(6865):716–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11742391
doi: 10.1038/414716a PMID: 11742391

8. Brockmann D, Helbing D. The hidden geometry of complex, network-driven contagion phenomena. Sci-
ence (New York, NY). 2013 Dec; 342(6164):1337–42. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/24337289 doi: 10.1126/science.1245200

9. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ, Kitron U, et al. The role
of humanmovement in the transmission of vector-borne pathogens. PLoS neglected tropical diseases.
2009 Jan; 3(7):e481. doi: 10.1371/journal.pntd.0000481 PMID: 19621090

10. Tatem AJ, Qiu Y, Smith DL, Sabot O, Ali AS, Moonen B. The use of mobile phone data for the estima-
tion of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents.
Malaria journal. 2009 Jan; 8(1):287. doi: 10.1186/1475-2875-8-287 PMID: 20003266

11. Yang Y, Atkinson P, Ettema D. Individual space-time activity-based modelling of infectious disease
transmission within a city. Journal of the Royal Society, Interface. 2008 Jul; 5(24):759–72. Available
from: http://rsif.royalsocietypublishing.org/content/5/24/759.short doi: 10.1098/rsif.2007.1218 PMID:
17999949

12. Perkins TA, Garcia AJ, Paz-Soldán VA, Stoddard ST, Reiner RC, Vazquez-Prokopec G, et al. Theory
and data for simulating fine-scale human movement in an urban environment. Journal of the Royal
Society, Interface. 2014 Oct; 11(99):20140642. Available from: http://rsif.royalsocietypublishing.org/
content/11/99/20140642 doi: 10.1098/rsif.2014.0642 PMID: 25142528

13. Farmer JD, Foley D. The economy needs agent-based modelling. Nature. 2009; 460(7256):685–686.
doi: 10.1038/460685a PMID: 19661896

14. Axelrod R. The complexity of cooperation: Agent-based models of competition and collaboration.
Princeton University Press; 1997.

15. Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. Pro-
ceedings of the National Academy of Sciences of the United States of America. 2002 May; 99 Suppl
3:7280–7. Available from: http://europepmc.org/articles/PMC128598 doi: 10.1073/pnas.082080899
PMID: 12011407

16. Epstein JM, Axtell RL. Growing Artificial Societies: Social Science from the Bottom Up. MIT Press;
1996.

17. Batty M, Desyllas J, Duxbury E. The discrete dynamics of small-scale spatial events: agent-basedmod-
els of mobility in carnivals and street parades. International Journal of Geographical Information Sci-
ence. 2003 Oct; 17(7):673–697. Available from: http://dx.doi.org/10.1080/1365881031000135474 doi:
10.1080/1365881031000135474

18. Chen X, Zhan FB. Agent-basedmodelling and simulation of urban evacuation: relative effectiveness of
simultaneous and staged evacuation strategies. Journal of the Operational Research Society. 2006

Simulating Human Movement Patterns for Use in Epidemiological Systems

PLOSONE | DOI:10.1371/journal.pone.0139505 September 30, 2015 17 / 18

http://dx.doi.org/10.1007/BF00808129
http://www.sciencedirect.com/science/article/pii/S0031395505703722
http://www.sciencedirect.com/science/article/pii/S0031395505703722
http://dx.doi.org/10.1016/S0031-3955(05)70372-2
http://www.ncbi.nlm.nih.gov/pubmed/11579672
http://www.sciencedirect.com/science/article/pii/S1473309904010436
http://dx.doi.org/10.1016/S1473-3099(04)01043-6
http://dx.doi.org/10.1016/S1473-3099(04)01043-6
http://www.ncbi.nlm.nih.gov/pubmed/15172341
http://www.ncbi.nlm.nih.gov/pubmed/8462503
http://dx.doi.org/10.1037/0278-6133.12.1.74
http://dx.doi.org/10.1093/ije/6.3.259
http://www.ncbi.nlm.nih.gov/pubmed/591173
http://www.ncbi.nlm.nih.gov/pubmed/11742391
http://dx.doi.org/10.1038/414716a
http://www.ncbi.nlm.nih.gov/pubmed/11742391
http://www.ncbi.nlm.nih.gov/pubmed/24337289
http://www.ncbi.nlm.nih.gov/pubmed/24337289
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1371/journal.pntd.0000481
http://www.ncbi.nlm.nih.gov/pubmed/19621090
http://dx.doi.org/10.1186/1475-2875-8-287
http://www.ncbi.nlm.nih.gov/pubmed/20003266
http://rsif.royalsocietypublishing.org/content/5/24/759.short
http://dx.doi.org/10.1098/rsif.2007.1218
http://www.ncbi.nlm.nih.gov/pubmed/17999949
http://rsif.royalsocietypublishing.org/content/11/99/20140642
http://rsif.royalsocietypublishing.org/content/11/99/20140642
http://dx.doi.org/10.1098/rsif.2014.0642
http://www.ncbi.nlm.nih.gov/pubmed/25142528
http://dx.doi.org/10.1038/460685a
http://www.ncbi.nlm.nih.gov/pubmed/19661896
http://europepmc.org/articles/PMC128598
http://dx.doi.org/10.1073/pnas.082080899
http://www.ncbi.nlm.nih.gov/pubmed/12011407
http://dx.doi.org/10.1080/1365881031000135474
http://dx.doi.org/10.1080/1365881031000135474


Oct; 59(1):25–33. Available from: http://www.palgrave-journals.com/jors/journal/v59/n1/abs/2602321a.
html doi: 10.1057/palgrave.jors.2602321

19. Auchincloss AH, Diez Roux AV. A new tool for epidemiology: the usefulness of dynamic-agent models
in understanding place effects on health. American journal of epidemiology. 2008 Jul; 168(1):1–8.
Available from: http://aje.oxfordjournals.org/content/168/1/1.abstract doi: 10.1093/aje/kwn118 PMID:
18480064

20. Raney B. An agent-basedmicrosimulation model of Swiss travel : first results. Networks and Spatial
Economics. 2003; 3(1). Available from: http://trid.trb.org/view.aspx?id=984739 doi: 10.1023/
A:1022096916806

21. Bian L. A conceptual framework for an individual-based spatially explicit epidemiological model. Envi-
ronment and Planning B: Planning and Design. 2004; 31(3):381–395. Available from: http://
econpapers.repec.org/RePEc:pio:envirb:v:31:y:2004:i:3:p:381-395 doi: 10.1068/b2833

22. Dunham JB. An Agent-Based Spatially Explicit Epidemiological Model in MASON. Journal of Artificial
Societies and Social Simulation. 2005 Jan; 9(1). Available from: http://econpapers.repec.org/RePEc:
jas:jasssj:2005-4-3

23. Muller G, Grébaut P, Gouteux JP. An agent-based model of sleeping sickness: simulation trials of a for-
est focus in southern Cameroon. Comptes Rendus Biologies. 2004 Jan; 327(1):1–11. Available from:
http://dx.doi.org/10.1016/j.crvi.2003.12.002 doi: 10.1016/j.crvi.2003.12.002 PMID: 15015750

24. Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline.
Trends in ecology & evolution. 2005 Jun; 20(6):328–36. Available from: http://www.sciencedirect.com/
science/article/pii/S0169534705000716 doi: 10.1016/j.tree.2005.03.009

25. Arifin SMN, Davis GJ, Zhou Y. A Spatial Agent-Based Model of Malaria. International Journal of Agent
Technologies and Systems. 2011; 3(3):17–34. doi: 10.4018/jats.2011070102

26. Alderton S, Noble J, Atkinson P. Simulating Sleeping Sickness: a two host agent-based model. In:
Advances in Artificial Life, ECAL 2013. vol. 12. MIT Press; 2013. p. 27–34.

27. Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, et al. Treatment of human Afri-
can trypanosomiasis–present situation and needs for research and development. The Lancet infectious
diseases. 2002 Jul; 2(7):437–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12127356 doi:
10.1016/S1473-3099(02)00321-3 PMID: 12127356

28. Pépin J, Milord F. The treatment of human African trypanosomiasis. Advances in parasitology. 1994
Jan; 33:1–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8122565 doi: 10.1016/S0065-308X
(08)60410-8 PMID: 8122565

29. Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected dis-
eases: a deficient market and a public-health policy failure. Lancet. 2002 Jun; 359(9324):2188–94.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/12090998 doi: 10.1016/S0140-6736(02)09096-7
PMID: 12090998

30. Welburn SC, Coleman PG, Maudlin I, Fèvre EM, Odiit M, Eisler MC. Crisis, what crisis? Control of Rho-
desian sleeping sickness. Trends in parasitology. 2006 Mar; 22(3):123–8. Available from: http://www.
sciencedirect.com/science/article/pii/S1471492206000274 doi: 10.1016/j.pt.2006.01.011 PMID:
16458071

31. Welburn SC, Picozzi K, Fèvre E, Coleman P, Odiit M, Carrington M, et al. Identification of human-infec-
tive trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-
associated (SRA) gene. The Lancet. 2001 Dec; 358(9298):2017–2019. Available from: http://www.
sciencedirect.com/science/article/pii/S0140673601070969 doi: 10.1016/S0140-6736(01)07096-9

32. Noor AM, Amin AA, Gething PW, Atkinson PM, Hay SI, Snow RW. Modelling distances travelled to gov-
ernment health services in Kenya. Tropical medicine & international health: TM & IH. 2006 Feb; 11
(2):188–96. doi: 10.1111/j.1365-3156.2005.01555.x

33. Cui X, Shi H. A*-based Pathfinding in Modern Computer Games. International Journal of Computer Sci-
ence and Network Security. 2011 Jul; 11(1):125–130. Available from: http://vuir.vu.edu.au/8868/

34. Buyst H. The epidemiology, clinical features, treatment and history of sleeping sickness on the northern
edge of the Luangwa fly belt. Medical Journal of Zambia. 1974; 4:2–12.

35. Buyst H. Sleeping sickness in the Northern Province of Zambia. Medical Journal of Zambia. 1970;
4:181–187.

36. Gouteux JP, Jarry M, Artzrouni M. An epidemic on equations [Tsetse fly transmitted sleeping sickness
always in historical pockets of the disease] (translated). La Recherche. 2000; 335:34–38.

37. Anderson NE, Mubanga J, Fevre EM, Picozzi K, Eisler MC, Thomas R, et al. Characterisation of the
wildlife reservoir community for human and animal trypanosomiasis in the Luangwa Valley, Zambia.
PLoS neglected tropical diseases. 2011 Jun; 5(6):e1211. Available from: http://dx.plos.org/10.1371/
journal.pntd.0001211 doi: 10.1371/journal.pntd.0001211 PMID: 21713019

Simulating Human Movement Patterns for Use in Epidemiological Systems

PLOSONE | DOI:10.1371/journal.pone.0139505 September 30, 2015 18 / 18

http://www.palgrave-journals.com/jors/journal/v59/n1/abs/2602321a.html
http://www.palgrave-journals.com/jors/journal/v59/n1/abs/2602321a.html
http://dx.doi.org/10.1057/palgrave.jors.2602321
http://aje.oxfordjournals.org/content/168/1/1.abstract
http://dx.doi.org/10.1093/aje/kwn118
http://www.ncbi.nlm.nih.gov/pubmed/18480064
http://trid.trb.org/view.aspx?id=984739
http://dx.doi.org/10.1023/A:1022096916806
http://dx.doi.org/10.1023/A:1022096916806
http://econpapers.repec.org/RePEc:pio:envirb:v:31:y:2004:i:3:p:381-395
http://econpapers.repec.org/RePEc:pio:envirb:v:31:y:2004:i:3:p:381-395
http://dx.doi.org/10.1068/b2833
http://econpapers.repec.org/RePEc:jas:jasssj:2005-4-3
http://econpapers.repec.org/RePEc:jas:jasssj:2005-4-3
http://dx.doi.org/10.1016/j.crvi.2003.12.002
http://dx.doi.org/10.1016/j.crvi.2003.12.002
http://www.ncbi.nlm.nih.gov/pubmed/15015750
http://www.sciencedirect.com/science/article/pii/S0169534705000716
http://www.sciencedirect.com/science/article/pii/S0169534705000716
http://dx.doi.org/10.1016/j.tree.2005.03.009
http://dx.doi.org/10.4018/jats.2011070102
http://www.ncbi.nlm.nih.gov/pubmed/12127356
http://dx.doi.org/10.1016/S1473-3099(02)00321-3
http://www.ncbi.nlm.nih.gov/pubmed/12127356
http://www.ncbi.nlm.nih.gov/pubmed/8122565
http://dx.doi.org/10.1016/S0065-308X(08)60410-8
http://dx.doi.org/10.1016/S0065-308X(08)60410-8
http://www.ncbi.nlm.nih.gov/pubmed/8122565
http://www.ncbi.nlm.nih.gov/pubmed/12090998
http://dx.doi.org/10.1016/S0140-6736(02)09096-7
http://www.ncbi.nlm.nih.gov/pubmed/12090998
http://www.sciencedirect.com/science/article/pii/S1471492206000274
http://www.sciencedirect.com/science/article/pii/S1471492206000274
http://dx.doi.org/10.1016/j.pt.2006.01.011
http://www.ncbi.nlm.nih.gov/pubmed/16458071
http://www.sciencedirect.com/science/article/pii/S0140673601070969
http://www.sciencedirect.com/science/article/pii/S0140673601070969
http://dx.doi.org/10.1016/S0140-6736(01)07096-9
http://dx.doi.org/10.1111/j.1365-3156.2005.01555.x
http://vuir.vu.edu.au/8868/
http://dx.plos.org/10.1371/journal.pntd.0001211
http://dx.plos.org/10.1371/journal.pntd.0001211
http://dx.doi.org/10.1371/journal.pntd.0001211
http://www.ncbi.nlm.nih.gov/pubmed/21713019

