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Abstract
The "Grain for Green Project" is a country-wide ecological program to converse marginal

cropland to forest, which has been implemented in China since 2002. To quantify influence

of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated

physically-based distributed hydrological model, was applied to simulate runoff responses

to land use change in the Guansihe watershed that is located in the upper reaches of

the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff

responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for

16 scenarios of cropland to forest conversion. The model simulations indicated that the total

runoff generated after conversion to forest was strongly dependent on whether the land was

initially used for dry croplands without standing water in fields or constructed (or walled)

paddy fields. The simulated total runoff generated from the two rainfall events displayed lim-

ited variation for the conversion of dry croplands to forest, while it strongly decreased after

paddy fields were converted to forest. The effect of paddy terraces on runoff generation was

dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions

in the fields. The reduction in simulated runoff generated from intense rainfall events sug-

gested that afforestation and terracing might be effective in managing runoff and had the

potential to mitigate flooding in southwestern China.

Introduction
Afforestation has been strongly encouraged in many countries such as China, South Korea,
India, Nepal, and Bangladesh due to its multiple ecological benefits [1–4], for example reducing
soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitats, and
increasing ecosystem carbon sequestration [5]. The annual planting rate was estimated to
reach 4.5 million hectares globally [4]. In China, the largest plantation development country
[4], six key forestry programs (SKFPs) has been implemented since 1998, targeting 76 million
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hectares of land for afforestation [6]. As a result, the total forest coverage in China has been
increased from 13.9% of its land area in 1995 to 20.4% in 2009 and was expected to increase to
26% by 2050, as reported by the State Forestry Administration of China.

Afforestation, however, could lead to a tradeoff between water yield and biomass accumula-
tion [7–9]. It often brought to substantial reductions in annual water yield, impacting
downstream flows of the catchment [10–15]. The reduction in mean annual runoff after affor-
estation could be as high as 44% in humid regions [16], varying with tree species, age, rooting
characteristics, and leaf area among watersheds [17–19]. It even varied within watershed
depending on the site characteristics such as microclimate, soil, and landform [15]. The influ-
ence of these physical conditions on runoff may be so strong that the impacts of afforestation
are masked [20]. Therefore forests are significant moderators in both the global hydrologic
cycle and in the regulation of runoff at watershed scales [2]. As trees can access and transpire
water from considerable depths in the soil, they are able to regulate surface runoff and ground-
water recharge. Forest plantings in areas that were previously used for farmland generally gen-
erate less runoff because of high rates of growth and transpiration [13, 21, 22]. For example,
the annual runoff reduction due to afforestation was estimated at between 50 to 300 mm/yr
along an annual precipitation gradient from 400 to 3100 mm in China [23]. However, runoff
did not always decline significantly when the trees or woody plants increased, for example in
the Edwards Plateau region (Texas, USA), runoff did not decline and the contribution of base-
flow doubled even though woody cover within the watershed expanded [24].

As one of SKFPs in China, the Grain for Green Project (GGP), also known as the “Conver-
sion of Cropland to Forest Program”, is one of the world’s largest land-conservation programs
[25]. In the past 10 years, some 9 million hectares of cropland has been converted to forests
and 27 million hectares of forest plantations has been established through the GGP [26]. This
kind of large-scale afforestation has many implications for the hydrology of watersheds and
influences on extreme hydrological events such as droughts and floods [13, 22, 27]. In addition,
land and water management practices, for example terraces constructed for sloping croplands,
could also affect runoff and recharge in areas where afforestation was implemented through
the GGP. Recently, it was reported that the GGP had reduced surface runoff and increase base-
stream flow in the dry season in Northwest China, e.g. in the Loess Plateau and Inner Mongo-
lian Plateau of China [28]. However, these studies mainly focused on the effects of vegetation
conversion itself through comparing the water budget components on plots [28]. As a result,
the influence of site condition changes associated with afforestation as part of the GGP (e.g. ter-
racing) was not clear, making it difficult to fully evaluate the implications and impacts of the
GGP.

The Guansihe River watershed in SW China, a first tributary of the Yangtze River, is a good
example of evaluating the effect of GGP, as the area of cropland in the watershed was decreased
by 11%, while forest area increased by 17% [29]. An ecological observation station, which
includes 14 runoff plots and 8 permanent plots for vegetation studies, was established in this
watershed in 1990 [30]. The hydrological effects of forests, such as soil physical characteristics
[30], canopy interception [31], litter fall interception [32, 33], trunk stemflow [34], infiltration
[35] and flow [36], were the subject of small scale (plot) case studies in this watershed since the
implementation of the GGP. To assess the broader hydrological scale effects at the watershed
scale, a physically-based distributed hydrological model, the Guansihe Hydrological Model
(GSH model), was developed [37].

In this paper, we evaluate the hypothesis that the effect of afforestation on runoff response
to rainfall is dependent on the site characteristics (paddy field or dry cropland), rainfall inten-
sity and the placement of physical barriers on slopes (with or without terracing). The effects of
land use change on watershed runoff were simulated by the GSH model based on 16 land use
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/land cover change scenarios for two rainfall events. These events were typical rainfall events
that occur in this watershed, the first event, is defined as a high frequency medium intensity
rainfall, the second event, a low frequency high intensity rainfall [37]. The aim of this case
study was to quantitatively understand the hydrological effects of crop type and field terracing
on runoff following conversion of degraded cropland to forest. This will assess the effectiveness
of the GGP in mitigating the occurrence of flooding and provide data to develop an assessment
framework for planned land use change at local and regional scales in mountainous areas of
SW China.

Data and Methods

Study area
All field observations were permitted to conduct at the 21.1 km2 Guansihe watershed (104°
46’─104° 49’ E and 31° 32’─31° 37’ N) by Youxian District Government of Mianyang City,
Sichuan Province, China (Fig 1). The watershed lies in the upper reaches of the Yangtze River
basin with landforms dominated by water-eroded hills. The elevations are between 480─630 m
above sea level (a.s.l.) (Fig 2). Haplic acrisol, chromic cambisol and eutric regosol are the typical
soils of this region of SW China and are the major soil types within the Guansihe watershed.
The climate is classified as northern subtropical humid monsoonal, with a mean annual tem-
perature of 16.1°C, mean annual relative humidity of 79% and mean annual precipitation of
921 mm occurring mainly in summer and autumn [34].

The agriculture and forest ecosystems of this watershed are representative of the region. The
existing forests cover 16.7% of the watershed and are comprised of secondary forests and artifi-
cial plantations that are mainly consisted of the following species: Cupressus funebris, Pinus
massoniana, Alnus cremastogyne, Quercus acutissima and Quercus variabilis (Fig 1). The com-
munity structure is simple, with prominent layers of trees, shrubs and herbs. The most com-
mon shrub species found in the watershed are Vitex negundo,Myrsine africana, Pyracantha
fortuneana and Elaeagnus pungens. The herbs species are dominated by Eleusine indica and
Imperata cylindrica var.major.

In this watershed, all the croplands, which accounts for 72.2% of the watershed area, were
terraced. As small pieces of flat land, these terraced fields were constructed along contour lines
on the hill slopes and enclosed by about 20-cm-high walls (Fig 3). In this watershed, 81.7% of
the terraced fields are used as paddy fields that are flooded, with only the terraced fields on the
upper slopes being used as dry cropping systems for growing maize, beans and other crops.

Structure of the GSHmodel
As a physically-based distributed hydrological model, the GSH model was developed to
account for the spatial heterogeneity of physio-geographical elements in this watershed
through simulating the hydrological processes that occur before, during and after a rainfall
event [37]. For each simulation, the watershed was divided into homogeneous cells with unique
environmental settings. The size of the cell indicates the spatial resolution, i.e. a smaller cell has
higher resolution and describes the processes or watershed functions in more detail.

Each cell has a system of vegetation and soil, and has layered hydrological functionality that
includes interception, evaporation, transpiration, and infiltration. The vegetation complexes
were divided into four layers (trees, shrubs, herbs, and litter) and the soils divided into two lay-
ers (root zone and ground layer).

Hydrological processes that are the water movements through different layers of the same
cell as well as transfers between the neighboring cells within the same layer were tracked con-
tinuously by the GSH model. Its systemic frame was shown in Fig 4. The GSH model calculates
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interception, transpiration and evaporation using the Shuttleworth–Wallace equation, an
improved Penman–Monteith approach.

The soil-water characteristics are defined using the approach by Brooks and Corey [38].
Surface runoff is calculated using Philip’s infiltration equation [39, 40], kinematic wave equa-
tion and Manning’s formula [41]. The water movement through the soil is simulated with the
Darcy-Richards equation [38].

Fig 1. Location of the Guansihe watershed and its land cover.

doi:10.1371/journal.pone.0132395.g001
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Fig 2. DEM of the Guansihe watershed.

doi:10.1371/journal.pone.0132395.g002

Runoff Changes by Cropland to Forest Conversion

PLOS ONE | DOI:10.1371/journal.pone.0132395 July 20, 2015 5 / 16



The GSH model runs at a minute time-steps. Its input is rainfall and output is runoff [37].

Data preparation
Topographic maps of Guansihe watershed with a scale of 1:10000 were selected as an appropri-
ate scale to capture physio-geographical characteristics. The maps were scanned and digitized
to construct a digital elevation model (DEM) (Fig 2). Each grid in the DEM was defined as a
cell in this study. The Guansihe watershed was divided into 7,378 cells of size 50 m × 50 m. The
vertical resolution was 0.25 m.

A land use map (scale 1: 10,000) and a forest map (scale 1:10,000) were scanned, digitized
and transformed from vector form to raster form at 50 m × 50 m resolutions. The maps were
georeferenced with the DEM. Spatial vegetation data layer was applied to this data. The vegeta-
tion type of each cell and the forest management sub-compartments was then derived. Further-
more, the characteristics of cells, e.g. biomass, leaf area index (LAI), soil type and its depth was
attributed to each cell using available forest survey data obtained by local forestry department.
The parameters, such as interception storage capacity, water-holding capacity of litter, and soil
porosity (Table 1) were assigned to each cell based on vegetation type and data obtained from
instrumented plot trials [30].

Fig 3. The distribution of terraced fields and its profile.

doi:10.1371/journal.pone.0132395.g003
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Model calibration and validation
At Mianyang meteorological station (about 15 km downstream the Guansihe watershed), the
rain days with precipitation> 10 mm was recorded and averaged as 217 days per year between
1970─2010. A maximum daily precipitation of 215 mm was recorded during this period.

Fig 4. The systemic frame of the GSHmodel.

doi:10.1371/journal.pone.0132395.g004

Table 1. The soil characteristics under different vegetation types.

Vegetation types Bulk density (g
cm-3)

Field capacity
(%)

Capillary capacity
(%)

Saturated water content
(%)

Pinus massoniana-forest 1.46 22.3 25.8 27

Cupressus funebris-forest 1.24 29.5 34.3 39.6

Cupressus funebris-Quercus acutissima-forest 1.46 21.2 24.7 28.4

Pinus massoniana-Quercus acutissima-forest 1.5 20.3 24.2 25.5

Alnus cremastogyne-Cupressus funebris-mixed forest 1.29 29.2 33.8 37.5

Alnus cremastogyne-Quercus acutissima–mixed forest 1.46 21.2 24.7 28.4

Pinus massoniana- Quercus acutissima–mixed forest 1.47 20 23.5 24.3

Pinus massoniana- Cupressus funebris- Quercus
acutissima–mixed forest

1.47 20 23.5 24.3

Cupressus funebris- Quercus variabilis–mixed forest 1.46 21.2 24.7 28.4

Pinus elliottii-forest 1.43 18 23.5 24.8

Dry croplands 1.39 24.4 29.4 31.2

Paddy fields 1.39 24.4 29.4 31.2

doi:10.1371/journal.pone.0132395.t001
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Surface flow is usually generated when the rainfall is greater than 10 mm at plot scale [36].
Thus, in order to calibrate and validate the GSH model, the rainfall-runoff response to four
rainfall events with precipitation totals ranging from 16.9 mm to 206 mm with variable rainfall
intensities were used (Table 2 & Fig 4). The recorded runoff data and the GSH model simula-
tions were then compared.

The absolute error (A) and relative error (B) were used to validate the model simulations
using (Eq (1) and (2)),

A ¼
Xn
i¼1

jMWi � SWij
 !,

n ð1Þ

B ¼
Xn
i¼1

ðjMWi � SWij=MWiÞ
 !,

n ð2Þ

whereMWi is measured runoff (m3/s) at the outlet of the watershed, SWi is the runoff (m
3/s)

calculated by the GSH model, and n is the number of measurements.
The non-dimensional efficiency criterion of Nash and Sutcliffe (E) (Eq (3)) [40] were also

used to evaluate the quality of model simulation

E ¼ 1�
X

ðMWi � SWiÞ2X
ðMWi �MWavÞ2

ð3Þ

where the variableMWav describes the mean observation value during the simulation period. E
can vary from minus infinity to 1, the latter corresponding to a perfect fit.

Scenario design
In mountainous regions such as the Guansihe watershed, croplands are commonly located on
relatively steep slopes due to the limited availability of flat land. Areas with steeper slopes are
more likely to be chosen for afforestation, since steeper slopes are more prone to soil erosion.
In this case study, four afforestation scenarios using mixed forest Pinus massoniana-Cupressus
funebris plantations are defined, based on the slope angle. Scenarios I-IV are categorized as
land with slope angles of>15°, 10─15°, 5─10° and<5°, respectively (Table 3). A further four
options are defined within these scenarios to identify changes in runoff from terraced or un-
terraced slopes with different cropping systems, for example rice paddy or dry (rainfed)
cropland (Table 3). These options create a four by four matrix providing a set of 16 scenarios
associated with cropping systems, terraces, afforestation and slope categories. In these

Table 2. Details of the four rainfall events selected for testing of the GSHModel.

Precipitation
(mm)

Duration
(h)

Max. rainfall intensity in
five minutes (mm/hr)

Average Recurrence Interval (ARI) of
the precipitation in 24 hr (a)

Precipitation of last
rainfall event (mm)

Extreme
rainfall

206 42.5 115.8 30 24.1

Medium
rainfall

90 35.6 40.2 1 65.0

Small
rainfall

20.3 37.9 30.0 1 26.2

Small
rainfall

16.9 32.2 3.0 1 1.6

doi:10.1371/journal.pone.0132395.t002
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scenarios, all croplands in the corresponding cropping systems in each slope angle class were
converted to forests.

For each scenario simulation, the cells converted from cropland to Pinus massoniana-
Cupressus funebrismixed forest; the vegetation parameters are modified to reflect the changed
vegetation cover, but the soil parameters remained unchanged, given the fact that soil physical
characters change slowly after afforestation [30].

Two rainfall events observed by weather station (Fig 1) in Guansihe watershed, which were
with precipitation totals of 90 mm (medium rainfall) and 206 mm (extreme rainfall) were cho-
sen to simulate the effect of afforestation on runoff response (Table 2).

Assessing the hydrological effects of changed land use
Afforestation only occurred in part of the watershed, rather than over the whole one [29]. In
this study, the simulated rainfall-runoff responses generated from areas based on 16 land use
change scenarios are analyzed. The simulated values of watershed runoff were compared with
the runoff records for events in the Guansihe watershed with the existing vegetation. The simu-
lated responses were then compared for the same rainfall events with 10% of watershed area
converted to forest using 16 scenarios and the effect on response was assessed.

Results

Model calibration and validation
The hydrograph simulated by the GSH model was compared to the observed data as shown in
Fig (5A–5D). Under low intensity rainfall (i.e., 16.9 mm and 20.3 mm rainfall events), no peak
in discharged is observed for either the measured or GSH-simulated hydrographs (Fig 5D).
Small discharge peaks observed in Fig 1C were not simulated by the GSH model owing to the
very low discharges (<0.02 m3s-1). These could be viewed as the base flow of the original

Table 3. Description of model scenarios.

Scenario set
No.

Slope Scenario
No.

The type of cropland converted to
forest

Total area of Cropland converted to
forest *

Terrace
retained?

I >15° 1 Dry cropland 4.5% Yes

2 Paddy field 8.9% Yes

3 Dry cropland 4.5% No

4 Paddy field 8.9% No

II 10-
15°

5 Dry cropland 4.1% Yes

6 Paddy field 16.1% Yes

7 Dry cropland 4.1% No

8 Paddy field 16.1% No

III 5-10° 9 Dry cropland 2.8% Yes

10 Paddy field 18.6% Yes

11 Dry cropland 2.8% No

12 Paddy field 18.6% No

IV <5° 13 Dry cropland 1.9% Yes

14 Paddy field 15.3% Yes

15 Dry cropland 1.9% No

16 Paddy field 15.3% No

*Total area means the percentage of the corresponding type in the whole watershed area.

doi:10.1371/journal.pone.0132395.t003
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hydrograph. Note that the relative errors of the simulated total runoff are less than 10%
(Table 4). Under more intense rainfall (90 mm, with an average recurrence interval (ARI) of 1
year), the relative errors in simulated peak discharge and total runoff are 8.5% and 0.9%,
respectively. Under extreme rainfall (206 mm, with an ARI of 30 years), the simulated hydro-
graph displays a relative error of 3.8% in peak discharge and 13.6% in total runoff (Table 4).
The non-dimensional efficiency criterion of Nash and Sutcliffe (E) was 0.88 for rainfall of 90
mm and 0.92 for rainfall of 206 mm. These results demonstrate that the calibration and valida-
tion of the GSH model was representative of watershed response.

Effect of cropland afforestation on runoff
The conversion of dry cropland to forest did not greatly impact on watershed runoff genera-
tion. For example, when dry cropland is converted to Pinus massoniana-Cupressus funebris
mixed forest, the variation in runoff observed for the simulations ranged from -0.2% to +1.0%
(Fig 6). The variability illustrated in this simulation is close to the relative error inherent in the
GSH model (see Table 4). For the simulation using the 206 mm rainfall event, runoff response

Fig 5. The comparison of hydrographsmeasured and simulated by the GSHmodel under four simulated rainfall events. The total precipitation of
rainfall event in a, b, c, and d were 206 mm, 90 mm, 20.3 mm and 16.9 mm, respectively; RI is rain intensity.

doi:10.1371/journal.pone.0132395.g005

Table 4. Comparison betweenmeasured runoff and that simulated by the GSHModel.

Errors in simulated runoff per rainfall event Calibration Validation

Rainfall of 20.3 mm Rainfall of 16.9 mm Rainfall of 90 mm Rainfall of 206 mm

Relative error of peak discharge (%) No clear peak No clear peak +8.5 +3.8

Relative error of total runoff (%) -1.1 +8.0 +0.9 +13.6

doi:10.1371/journal.pone.0132395.t004
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decreased by 1.0% when cropland on slopes with slope angle greater than 15° was converted to
Pinus massoniana-Cupressus funebrismixed forest (Table 5).

By contrast, the afforestation of paddy fields was found to greatly reduce watershed runoff
under medium (90 mm) rainfall event, with reductions of between 9.8% and 18.6% depending on
the slope angle (Fig 6). The greatest reduction occurred on slopes with slope angle greater than
15o. The watershed runoff under the extreme rainfall event (206 mm) decreased by 7.2% when
paddy fields on slopes with slope angle greater than 15° were converted to Pinus massoniana-
Cupressus funebrismixed forest, with peak flow declining by 11.4% (Table 5). These indicated that
the conversion from paddy fields to forests would cause a great reduction of watershed runoff.

Effect of terraced fields on runoff
The influence of terraced fields on runoff generation varied with the rainfall intensity. For the
medium rainfall event, the variation in total runoff was less than 1.5% after dry cropland to for-
est conversion (Fig 6). However, for the extreme rainfall event, both the total runoff and peak
flow declined strongly for the terraced relative to un-terraced scenarios (Table 5). For example,
when dry cropland on slope angles more than 15° were converted to Pinus massoniana-Cupres-
sus funebrismixed forest, the peak flow in the scenario with terraces was 6.4% lower than that
without terraces, while total runoff displayed a 5.4% decline (Table 5). After paddy field to for-
est conversion, the runoff from terraced land was 2.3% less than land without terraces for the
90 mm rainfall event (Fig 6). The runoff from terraced land was 0.8% less than that from un-

Fig 6. Runoff change for the 90 mm rainfall event when cropland in 10% of watershed area was forested. The runoff changes were expressed as the
percentage of watershed runoff under the current land cover (a: dry cropland converted to forest; b: paddy field converted to forest).

doi:10.1371/journal.pone.0132395.g006

Table 5. Percentage change in runoff and peak flow for the 206mm rainfall event when cropland in 10% of watershed area with slope angle > 15°
was forested. The runoff changes were expressed as the percentage of watershed runoff under the current land cover. Additionally, all the values were
scaled as the runoff change when the cropland in 10% of watershed area was forested. "+" and "-" show increase and decrease, respectively.

Hydrographical parameters Dry cropland converted to forest Paddy field converted to forest

Terrace retained Terrace removed Terrace retained Terrace removed

Runoff -1.0 5.4 -7.2 -6.4

Peak flow -1.0 4.4 -11.4 -9.6

doi:10.1371/journal.pone.0132395.t005
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terraced land, and the peak flow with terraces was 1.8% lower than that without terraces for the
simulation of runoff generated by the 206 mm rainfall event (Table 5).

The inclusion of terraces in the simulation resulted in an average 15.1% decrease in total
runoff generated from the 90 mm rainfall event (Fig 6) and an 11.4% decrease for the 206 mm
event (Table 5). This decline in total runoff was observed in the simulation of the conversion of
paddy fields to forest within the watershed. Although the total runoff reduction in percentage
for the 206 mm rainfall event was less than the 90 mm event, its decrease in volume was 2.2
times greater than the 90 mm event. This represents a significant reduction in the total runoff
generated within the watershed during an extreme event, and is likely to impact on the severity
and extent of flooding within the lower valley.

Discussion
Our study showed that the effect of cropland to forest conversion on watershed runoff was
very sensitive to original land use, i.e. paddy field or dry cropland. The big difference between
dry cropland and paddy fields was their soil moisture. In paddy fields, the soil is always satu-
rated and there may even be stored with surface water during the growing season, which coin-
cides with the rainy season. On the contrary, in dry cropland, soil moisture is commonly lower
than the field capacity and there is normally no surface water. Forest effect on runoff depends
mostly on soil depth, structure and degree of previous saturation of soil before rainfall events
[2, 42]. In our study area, runoff yield was determined by the level of antecedent soil moisture
and soil storage capacity, which is not generated until the soil is saturated by rainfall, particu-
larly for the dry cropland areas [43]. This effect of antecedent soil moisture on runoff was also
observed in the field at both the plot and small watershed scale [44]. Accordingly, we conclude
that this substantial decrease in runoff after cropland to forest conversion is likely due to the
significant soil moisture differences experienced between paddy fields and forested environ-
ments. Conversion of the dry cropland to forest would not result in a significant change in the
soil saturation capacity, but would increase vegetative storage capacity (of ~5 mm) of intercep-
tion [33]. Consequently, the watershed runoff after vegetation conversion from dry cropland to
forest is largely unchanged for the simulated rainfall events (Fig 6 &Table 3).

Therefore, the influence of afforestation should be evaluated according to the variation from
the original land use type (e.g. dry cropland or paddy field). When dry cropland is forested, its
effect on flooding is very limited, whereas when paddy fields are forested, the watershed runoff
volumes and peak flows are strongly reduced. Paddy fields are the most common land use type
in the study area, accounting for 81.7% of cropped area in the Guansihe watershed. Our simu-
lation results suggested that these areas should been preferentially designated as the priority
land use change for GGP in mountainous regions such as those in SW China. However, these
paddy fields in South China supply more food for China's huge population and it was worried
that the widespread conversion from croplands would threaten future food security of China.
Further studies are required on where and how much of paddy fields should be afforested.

Factors other than land uses, such as terrace and slope angle, can also mitigate changes in
runoff magnitudes following cropland to forest conversion. For example, the presence of ter-
races in dry cropland did not change the runoff response for the 90 mm rainfall event. The con-
trasting terrace effect between dry cropland and paddy field indicated that terraces did not
affect runoff until the localized soil and terrace water storages were at capacity (or saturated) at
the ground surface, such as in the paddy fields. Compared with the effect of terracing on the
Loess Plateau where is the most popular area to control soil and water erosions in China [45],
the terrace effect in our study region had a lower impact. In the Loess Plateau, runoff reduction
from terraced cropland was measured from 46.9% in dry year to 100% in wet year [46, 47]. The
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influence of terraces on runoff from paddy fields accounted for approximately 20% of the
impact of afforestation in our study, which was suggested to be related to the processes generat-
ing runoff, and the rainfall characteristics. In the Loess Plateau where is located mainly in the
semiarid region, the runoff is generated due to infiltration-excess runoff [48]. However, this
runoff generated from the Guansihe slopes occur when a thin layer of saturation occurs at the
surface rather than saturation of the whole soil profile [49]. In the Loess Plateau, the rainfall is
generally captured earlier and stored until the terrace’s water holding capacity is reached and
runoff is generated. In these conditions the runoff was generated from areas that were not satu-
rated but occurs when infiltration and storage capacity had been exceeded due to the rainfall
intensity and duration experienced during large events. The terrace effect should therefore be
evaluated according to regional factors such as climate rather than just those characteristics of
the terracing itself. The slope angle was used as key factor of surface runoff and soil erosion
control by most related studies [50]. It also has been employed in forestry plans as a key factor
in determining areas to undertake forestation, e.g., in the GGP [6]. It was found that surface
flow will increase following slope angle increasing on plot scale [50]. But in our study, the
watershed runoff did not keep increasing when steeper slopes were forested. It appeared a com-
plex of effects of several factors such as original vegetation, terracing, and rainfall existed.

Our study implied that the conversion of cropland to forest can potentially contribute to
flood management. The suggested link between afforestation and flooding is thought to be weak
and has been highlighted in some reports [8, 21]. For example, it was summarized by the Food
and Agriculture Organization of the United Nations (FAO) that forests have only a limited influ-
ence on major downstream flooding, especially for large-scale events [42]. On a local scale, for-
ests and forest soils are capable of reducing runoff only for small-scale rainfall events, which are
not responsible for severe flooding in downstream areas [42]. Although there was no direct
evidence on the effects of the GGP on flooding in China, the GGP was suggested to strongly
reduce soil erosion, for example, soil erosion was reduced by 320 million tons in sum from 1999
to 2009 in Sichuan Province, China [29]. Decreases in soil erosion would also likely benefit flood
mitigation through increasing the effective capacity of the river channel. This effect will probably
be particularly enhanced in regions where steep slopes exist, such as the Guansihe watershed.
Therefore, the quantitative estimations should be partitioned to determine the explicit contribu-
tions to flood alleviation from the direct effects, for example interception reduction and transpi-
ration increase, of cropland to forest conversion, and the effects from decreased soil erosion.

Conclusions
Our study tested the hypothesis that the level of influence of afforestation on runoff depends
on site factors, for example antecedent soil conditions, land use, and physical barriers on slopes
(e.g., terraces). Analysis of the hydrological and land-use data from the Guansihe watershed
indicate that this influence on runoff differs strongly between land use types such as dry crop-
land and paddy fields. The influence of paddy field to forest conversion was stronger than that
on dry cropland, due to more soil moisture in paddy fields. The terracing of cropland could
enhance this effect on runoff reduction. But these effects reduced under extreme strong rainfall.
The simulated runoff reduction implied that the conversion of paddy fields to forests could
potentially mitigate flooding.
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