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Contribution of urbanization to warming in China
Ying Sun1,2, Xuebin Zhang3*, Guoyu Ren1,2, Francis W. Zwiers4 and Ting Hu1

China has warmed rapidly over the past half century1 and
has experienced widespread concomitant impacts on water
availability, agricultureandecosystems2.Althoughurbanareas
occupy less than 1% of China’s land mass, the majority of
China’s observing stations are situated in proximity to urban
areas, and thus some of the recorded warming is undoubtedly
theconsequenceof rapidurbandevelopment, particularly since
the late 1970s3–5. Here, we quantify the separate contributions
of urbanization and other external forcings to the observed
warming. We estimate that China’s temperature increased by
1.44 ◦C (90% confidence interval 1.22–1.66 ◦C) over the period
1961–2013 and that urban warming influences account for
about a third of this observedwarming, 0.49 ◦C (0.12–0.86 ◦C).
Anthropogenic and natural external forcings combined explain
most of the rest of the observed warming, contributing
0.93 ◦C (0.61–1.24 ◦C). This is close to the warming of 1.09 ◦C
(0.86–1.31 ◦C) observed in global mean land temperatures
over the period 1951–2010, which, in contrast to China’s
recorded temperature change, is onlyweakly a�ected by urban
warming influences6. Clearly the e�ects of urbanization have
considerably exacerbated the warming experienced by the
large majority of the Chinese population in comparison with
the warming that they would have experienced as a result of
external forcing alone.

The recorded warming in China since the early 1960s is almost
twice as large as the global mean, and about one-third larger than
the global land average temperature trend. Warming has resulted
in impacts on both natural and human systems1,2. There have
been increased and more widespread heat waves in recent years7.
Mountain glaciers have been in rapid retreat, resulting in changes in
hydrological regimes. Permafrost has degraded,with increases in the
depth and soil moisture of the active layer. Terrestrial plant species
have shifted northwards. An increase in potential evaporation
associated with warming has also exacerbated water deficits in arid
and semi-arid regions.

Several studies have attributed the recorded warming to the
combined effect of greenhouse gases and other anthropogenic
influences7–11. One study also links the warming to large-scale
climate variability, including variability in tropical Indian Ocean
sea surface temperature12, which may itself be a response to
anthropogenic forcing. In addition, many studies have pointed to
rapid urbanization since the late 1970s as an important factor4,13–16,
especially at local scales, where these development influences may
have contributed more than 40% of the observed warming in
some cases13,15.

Overestimation of the warming of the Chinese landmass owing
to the proximity of the majority of observing stations to developing
urban areas complicates the quantification of warming to different
causes and the assessment of the resulting impacts. The widespread
impacts described above are associated with less warming overall

than recorded in the urban-region-dominated observing system.
Previous estimates of the urbanization effect rely heavily on
differences in urban and rural temperature trends. However, there
are increasingly fewer stations in China that are completely free
of urban influences5,17, probably resulting in underestimation of
the urban warming influence. On the other hand, urban centres
house more than half of the Chinese population3,5, which means
that for the majority of Chinese citizens, urban warming further
increases the impacts of climate change that they experience, and
requires additional adaptation measures. For example, the average
daily minimum temperature in the central urban area of Beijing was
2.9 ◦C higher than in the suburbs during the 2–6 July 2010 heat-
wave episode18.

The urbanization effect has not generally been considered in
formal detection and attribution analyses because its contribution
to observed warming is small on global scales6 and because of
difficulties in removing it from observational data. Furthermore,
previous studies7–11 have not quantified the effects of individual
groups of large-scale external forcing agents on China. Here we
quantify, the separate contributions of multiple important external
forcing factors—including urbanization (URB), greenhouse gases
(GHGs), other anthropogenic forcing (OANT, predominately
aerosols), and natural forcing (NAT, solar and volcanic combined)—
to the warming recorded in China’s temperature records, using an
optimal fingerprinting technique19–21.

We use monthly mean temperatures from more than 2400
observing stations (Supplementary Fig. 1) for the period 1961–2013,
when themonitoring network became sufficiently dense and reliable
(Supplementary Fig. 2). The station data were homogenized using
the method described in ref. 22.

The pattern of urbanization-induced warming (URB) that
is specified in our optimal fingerprinting analysis is based
on observed urban–rural station differences. Rural stations are
identified using a procedure that accounts for station history,
population, the size of the built-up area and other factors (ref. 5,
Supplementary Fig. 1 for the distribution of stations). Temperature
differences between stations classified as urban and rural are used
to estimate the spatiotemporal pattern of urbanization-induced
warming (see Supplementary Information for details). This pattern
shows differences between Eastern andWestern China that coincide
with differences in the rate and extent of urban development23,
with Eastern China experiencing earlier and stronger warming
than Western China, and that plateaus sooner than Western China
(Fig. 1). This is an expected effect as urban heat islands expand to
include increasing numbers of station locations4,17,24. The red lines
in Fig. 1 indicate the urban warming signal pattern (URB) used in
the optimal fingerprinting analysis. The area-weighted average of
the signal patterns for Eastern andWestern China has a linear trend
of approximately 0.27 ◦Cover the period 1961–2013, consistent with
previous estimates of urbanization-inducedwarming in the Chinese
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Figure 1 | Estimate of urbanization e�ects on temperature change.
a,b, Di�erences (red crosses) between regionally averaged annual mean
temperatures for urban and rural stations for Eastern China (a) and
Western China (b). The red lines show the logistic curves fitted to the data
that represent the urbanization e�ect signal patterns used in the detection
and attribution analyses (see Supplementary Information for details).

temperature record14–16,25. However, as it is difficult to fully segregate
rural and non-rural stations, we have more confidence in the URB
warming pattern than in this direct estimate of the magnitude of
the URB effect. We therefore use optimal fingerprinting analysis to
adjust the estimated magnitude.

Adjustments to the magnitude of the URB signal must be
made in the context of other factors that have also influenced
China’s temperatures26. The spatiotemporal patterns of temperature
change that are expected from the large-scale external forcings
are estimated from simulations by global climate models
participating in the Coupled Model Intercomparison Project
phase 5 (CMIP5, ref. 27) using different combinations of external
forcings (Supplementary Information).

China’s recorded annualmean temperatures increased by 1.44 ◦C
over the period 1961–2013. The observed warming is consistent
with the range of multi-model-simulated climate responses to
ALL forcing, but is inconsistent with the simulated responses to
NAT forcing (Fig. 2). Contrary to global mean temperature28, the
warming in the multi-model mean response to ALL forcing for
China is smaller than observed. Themodel response to NAT forcing
is dominated by the episodic influence of large volcanic eruptions,
which is clearly seen in both the NAT and ALL simulations, and
corresponds well with observed changes (Fig. 2).

The fingerprint method scales the expected climate response
patterns to best fit the observations. Figure 3 shows the scaling
factors and their 90% confidence intervals for annual mean temper-
ature when the observed temperature is regressed simultaneously
onto two signals (including ALL and URB) and four signals (in-
cluding GHG, OANT, NAT and URB), respectively. It should be
noted that the approach to constructing the URB fingerprint, using
an empirical approach constrained by observations and physical
reasoning, is structurally different from the construction of the other
fingerprints, which use an end-to-end approach in which physical
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Figure 2 | Observed and simulated mean temperature change in China.
Annual mean temperature anomalies relative to the 1961–1990 average.
Black, red and blue lines show observations and multi-model responses to
ALL and NAT forcings, respectively. The shading indicates the 5–95%
ranges of the ALL (pink) and NAT (light blue) responses in individual
simulations, with the overlap in the range shown as dark mauve. The ALL
forcing responses for 2006–2012 are extended using RCP4.5 simulations.
Supplementary Table 1 lists the climate models and number of simulations
used in the study.

principles as embodied in climate models are used to directly es-
timate climate response from forcing. A caveat, therefore, is that
URB fingerprint uncertainty is not as well understood as that of
the other fingerprints. In both cases, a residual consistency test21
indicates a good fit of the regressionmodels. ALL and URB are both
detected in the two-signal analysis and have scaling factor estimates
consistent with the value one, indicating that their influences on the
observations can be separated from each other. The best estimate of
the ALL scaling factor is less than 1, suggesting a possible overes-
timation of the ALL response by the models. The best estimate of
the URB scaling factor is larger than 1 at 1.8, suggesting that the
observed temperature difference between urban and rural stations
substantially underestimates the urbanization effect, consistent with
an increasing urbanization influence on nominally rural stations,
and previous suggestions that the current estimates of urbanization
effects may be conservative owing to the difficulties in identifying
rural stations that are free of urban influences13. Results are similar
when the individual components of the external forcing (GHG,
OANTandNAT) are included in the regression analysis. The scaling
factors for GHG,OANT,NAT andURB are all greater than zero, and
consistent with one, indicating that the influence of these individual
factors can be separately identified in the observed temperature
changes. The estimated URB scaling factor is again larger than one,
providing a consistent assessment that the estimated URB signal
may have underestimated the magnitude of the urbanization effect.
This identification of URB signal in both the two-signal and the
four-signal analyses is also robust against sampling uncertainty in
the URB signal pattern (see Supplementary Information), which
increases our confidence in the detection results.

We further estimated the warming attributable to the
urbanization effect, ALL forcing, and the OANT, GHG and
NAT components of ALL forcing, by computing trends in the ALL,
OANT, GHG and URB signals and then multiplying them by the
respective estimates of scaling factors (Fig. 4). The linear trend in
the observed annual mean temperature is 1.44 ◦C (90% confidence
interval 1.22–1.66 ◦C), of which 0.93 ◦C (0.61–1.24 ◦C) and 0.49 ◦C
(0.12–0.86 ◦C) can be attributed to ALL and URB, respectively.
The warming in China’s temperature record that is attributable
to urbanization is substantially larger than that for the global
land surface average, which is unlikely to be more than 10% of
the measured trend over the twentieth century6, and substantially
larger than the estimate obtained by comparing nominally rural
stations with non-rural stations. Both the magnitude and time
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Figure 3 | Scaling factors for temperature change. Best estimates of the
scaling factors that scale ALL and URB signal patterns in the two-signal
analysis and URB, GHG, OANT and NAT signal patterns in the four-signal
analysis to match the observed temperature anomalies and their 5–95%
uncertainty ranges for annual mean temperature.

evolution of urban warming we estimated are, however, consistent
with a previous observational estimate4 obtained by comparing
changes in Chinese land area temperature with changes in adjacent
sea surface temperatures. Of the three individual components of
ALL, we estimate that GHG would have warmed China by 1.24 ◦C
(0.75–1.76 ◦C) if it had acted on its own. The best estimate of the
offsetting cooling due to OANT, which is dominated by aerosols29,
is 0.43 ◦C (0.24–0.63 ◦C). That is, about 35% of GHG-induced
warming is offset by the OANT cooling effect, which is in-line with
the estimate for global mean temperature30 for 1951–2010. The
influence of NAT on temperature, which is mainly due to volcanic
activity, is detectable. NAT forcing may have also contributed a
small warming of 0.21 ◦C (0.10–0.31 ◦C), due mostly to reduced
volcanic activity towards the end of the time period, although
CMIP5 simulations may not have fully accounted for the cooling
effect of volcanic forcing over the most recent 15 years31.

To assess the robustness of the above findings, we repeated the
calculation on the basis of five-year-mean series rather than three-
year-mean series (seeMethods). Results for theALL andURBeffects
in the two-signal analysis are essentially the same as for the analysis
of the three-year-mean series, although scaling factors differ slightly.
In the four-signal analysis, the influence of OANT and URB are
not separately detected. We also conducted two-signal and four-
signal analyses for Eastern and Western China. The results are less
robust, which is consistent with increased difficulty in detection and
attribution for smaller regions and sub-annual averages owing to the
lower signal-to-noise ratios, because less natural internal variability
is filtered out when averaging over smaller areas and periods, and
because there is more uncertainty in signal estimates, including the
URB signal.

Multiple external factors have clearly contributed to the warming
that is evident in China’s temperature records. The most important
factor is undoubtedly the increase in atmospheric greenhouse gases,
resulting in warming comparable to the observed temperature
trend. About a third of this warming is offset by the cooling effect of
other anthropogenic forcing agents (OANT), which is dominated
by aerosols at the global scale29. Natural forcing may have also
resulted in a small warming. Urbanization is the second most
important contributor, accounting for about a third of the observed
warming in China, and essentially eliminating the offsetting effect
of OANT. This is substantially larger than the assessed impact of
urbanization on global land area mean surface air temperatures6.
The warming that China has experienced becomes consistent with
that seen in the global land areamean surface air temperatures when
considering only the influence of the large-scale forcing factors.
Clearly, urbanization has exacerbated anthropogenically induced
warming for urban populations in China.
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Figure 4 | Attributable warming from di�erent contributors. Best estimate
of the observed annual mean temperature trends and attributable warming
due to ALL and URB from the two-signal analysis, and due to GHG, OANT
and NAT from the four-signal analysis, along with their 5–95%
uncertainty range.

The contamination of temperature records by rapid urbanization
effects may be a more widespread problem than has been reported;
it may influence recorded regional warming in other parts of the
developing world, where very rapid urban development is also
taking place. Our approach offers a means to more completely
characterize the urbanization influence in regional temperature
records that can be replicated elsewhere. This is important not only
for the understanding the causes of past climate change; it also has
large implications for climate change adaptation. Urban populations
represent 54%of theworld population, and are projected to continue
to grow, with faster rates in Africa and Asia, to 66% by 205032. As the
urban heat-island effect cannot be easily reversed once established,
urban populations will be impacted by the combined effect of
greenhouse gas- and urbanization-induced warming. Adaptation
measures appropriate to urban environments, such as green roofs,
urban forests and passive cooling of buildings33, may provide a cost-
effective means for limiting the additional impacts of the urban
warming influence.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
We use a total least squares optimal fingerprinting approach19,20 for detection and
attribution, which uses a generalized linear regression model to represent observed
changes as a linear combination of signals. To assess the relative contributions of
external forcing and the regional urbanization effect to the observed temperature
changes, we first regress the observed temperatures onto the patterns of climate
responses to all external historical forcings combined (ALL) and our estimate of the
urbanization effect (URB) in a two-signal setting such that

TOBS=βALL(TALL−νALL)+βURB(TURB−νURB)+ε

where TOBS is a vector of observed temperature anomalies, TALL and TURB are signal
patterns for ALL and URB, νALL and νURB are noise from internal variability in the
ALL and URB signal patterns, βALL and βURB are scaling factors and ε is the
regression residual.

We then quantify contributions to temperature change from individual factors
by simultaneously regressing the observed temperature changes onto the GHG,
OANT, NAT and URB signal patterns in a four-signal setting such that

TOBS = βGHG (TGHG−νGHG)+βOANT(TOANT−νOANT)

+ βNAT(TNAT−νNAT)+βURB(TURB−νURB)+ε

where TGHG,TOANT and TNAT are signal patterns for GHG, OANT and NAT,
νGHG,νOANT and νNAT are noise in the corresponding signal patterns, and βGHG,
βOANT and βNAT are the corresponding scaling factors. The URB scaling factor
obtained in the two-signal analysis might be different from that obtained in the
four-signal analysis. If this is the case, we use the scaling factor from the two-signal
analysis when computing warming attributable to URB, as scaling factors estimated
from the latter should in general have smaller uncertainty.

The observational vector, TOBS, which describes the spacetime evolution of
temperatures, is comprised of non-overlapping three-year-mean temperatures over

two spatial dimensions representing Eastern and Western China. The use of
three-year averages is a compromise between suppressing natural variability,
particularly at inter-annual timescales, and the desire to be able to detect the effects
of natural forcing, including the relatively short-lived responses to volcanic activity.
The 52-year record (1961–2012) produces 17 non-overlapping three-year averages
plus one additional year, providing 18 values. The east–west partitioning divides
the country into two regions, such that the eastern domain has a much higher
concentration of urban development than the western domain23. This produces a
36-dimensional observational vector that accommodates a spatial contrast in the
URB pattern to help distinguish the urban warming signal from other signals.
Climate model segments from forced and control simulations are processed
identically into 36-dimensional vectors.

The scaling factors are estimated using the total least squares method19,20 so as
to account for sampling uncertainties in the signal patterns. For the
model-simulated signals, sampling uncertainty is inversely proportional to the
number of model runs, or equivalent model runs when addition or subtraction of
signals is used. The sampling uncertainty of the URB pattern is different from that
of model-simulated signals. In this case, we effectively use the ordinary least
squares approach to estimate the URB signal scaling factor by specifying very
low URB signal sampling uncertainty (0.01% of model-simulated internal
variability). We then assess the robustness of the detection results using a
bootstrapping procedure that accounts for URB signal sampling uncertainty (see
Supplementary Information).

A given signal is detected in the observations if the corresponding scaling factor
is significantly greater than zero. If the signal is detected, we go on to determine
whether the estimated scaling factor is consistent with one, which is information
that helps establish confidence in quantifying the contribution of that signal to the
observed change (that is, attribution). The goodness of fit of the regression is
further evaluated with a residual consistency test, which determines whether the
magnitude of the estimated residuals ε is consistent with internal variability as
simulated by unforced climate models. Further details on the data and methods are
given in the Supplementary Information.
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