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Abstract
We compared the effectiveness of environmental variables, and in particular of land-use

indicators, to explain species richness patterns across taxonomic groups and biogeographi-

cal scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted

regression trees that handle non-linear relationships, we compared the relative influence

(as a measure of effectiveness) of environmental variables related to climate, landscape (or

habitat heterogeneity), land-use intensity or energy availability to explain European verte-

brate species richness (birds, amphibians, and mammals) at the continental and ecoregion

scales. We found that dominant land cover and actual evapotranspiration that relate to

energy availability were the main correlates of vertebrate species richness over Europe. At

the ecoregion scale, we identified four distinct groups of ecoregions where species richness

was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration

and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration

and land cover) and (iv) and an even combination of the environmental variables. This typol-

ogy of ecoregions remained valid for total vertebrate richness and the three vertebrate

groups taken separately. Despite the overwhelming influence of land cover and actual

evapotranspiration to explain vertebrate species richness patterns at European scale, the

ranking of the main correlates of species richness varied between regions. Interestingly,

landscape and land-use indicators did not stand out at the continental scale but their influ-

ence greatly increased in southern ecoregions, revealing the long-lasting human footprint

on land-use–land-cover changes. Our study provides one of the first multi-scale descrip-

tions of the variability in the ranking of correlates across several taxa.
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Introduction
Explaining biodiversity patterns remains one of the most challenging issues in ecology and evo-
lution (e.g. [1,2]). Climatic conditions, energy availability and habitat heterogeneity have been
put forward to explain the observed spatial and temporal macro-scale patterns of biodiversity
(e.g. [3, 4, 5, 6, 7, 8]). The growing demand for food, materials, shelter and other ecological ser-
vices from human societies has triggered major changes in landscapes worldwide [9]. Human
activities may affect ecosystems in various ways from changes in climatic conditions or human
use of lands and are thus likely to interact with climate (e.g. GHG emissions, heat-island
effects), habitat heterogeneity (physical modifications of lands, fragmentation of ecosystems),
or alter the availability of trophic energy in ecosystems through land use and through the diver-
sion of trophic energy by and for human use. Land-use change and intensification can also
affect ecosystems indirectly by disrupting the natural disturbance regime (e.g. fire suppression,
alteration of flow regime) that has shaped species diversity [10]. Moreover, land-use change
legacy might have a strong influence on current patterns of species richness, particularly in
regions with a long history of land management [11]. Yet, the potential human impact on spe-
cies richness at broad geographical scales has largely focused on the consequences of human-
induced climate change but rarely on human-induced land-use change (but see [12]). Indeed,
the effects of human-driven changes in land cover are mainly considered as local or regional
issues.

The global latitudinal patterns of species richness are often associated with macroclimatic
patterns but it is less certain that climate is the only determinant of species richness when
focusing on the continental or smaller biogeographic units (e.g. ecoregions). The few studies
that compared the ranking of the determinants of biodiversity patterns demonstrated that their
relative influence may not be extrapolated from one biogeographic region to another [13].
Thus, global determinants of species richness may not be relevant at smaller biogeographic
scales [14] and it is necessary to test their effectiveness to explain biodiversity patterns across
biogeographic regions and across taxa.

Our overarching goal is to consolidate our knowledge on the scale-dependency of the rank-
ing of species richness correlates. To achieve this goal, we compared the relative influence (also
called “relative importance”) of various environmental variables on the explained variance of
patterns of species richness of three vertebrate taxa (mammals, breeding birds, amphibians) at
two biogeographical scales (i.e. continent and ecoregion). Considering its strong climatic gradi-
ent, Europe is a good candidate to determine which variables among climate, energy availabil-
ity, habitat heterogeneity and land-use indicators best correlate with patterns of species
richness. The European continent is not only densely populated but has also a long history of
human land use resulting in highly diversified landscapes. This diversity of European land-
scapes is appropriate to include anthropogenic pressures and to look for land-use legacy on
species richness. Then, climate may be the main determinant of species richness in northern
European countries dominated by boreal forests, but less important in determining species
richness patterns in the urban-rural mosaic of the more densely populated parts of central
Europe. We thus expect that patterns of species richness should be primarily correlated to cli-
matic patterns at the continental scale but that, in contrast, variables depicting energy availabil-
ity and habitat heterogeneity might prevail at the ecoregion scale. Additionally, we hypothesise
that the mechanisms underpinning species richness patterns might vary between taxonomic
groups. In particular, we expect that amphibians, being ectothermic species, should be first cor-
related to patterns of temperature regardless of scale, while patterns of mammals and breeding
birds, being endothermic species, could be correlated to patterns of energy availability or habi-
tat heterogeneity at the ecoregion scales.
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Climatic conditions, energy availability, environmental heterogeneity and land-use-land-
cover characteristics will be represented by a set of environmental variables (e.g. mean temper-
ature, the amount of net primary productivity (NPP), topographic heterogeneity). The poten-
tial influence of human activities on species richness and the potential interactions of human
activities with habitat will be accounted for using various landscape metrics. The diversion of
ecosystem productivity for human use will be taken into account by incorporating the Human
Appropriation of Net Primary Production, a measure of human impacts on the availability of
NPP in ecosystems resulting from land use (HANPP, [15]).

Materials and Methods

Biodiversity distribution data
We used data on 275 mammals, 429 breeding birds and 102 amphibians that were compiled
fromMaiorano and colleagues ([16]) and cover the European sub-continent, including Turkey.
For mammals and amphibians, the primary data were extent of occurrences (EOO) collected
from the IUCN Global Mammal and Amphibian Assessments (http://www.iucnredlist.org/
initiatives/mammals and http://www.iucnredlist.org/initiatives/amphibians, available on the
IUCN website). For bird species, data on EOOs available from Hagemeijer and Blair ([17])
were combined with those available from the BWPi2.0.1 DVD-ROM (Birds of the Western
Palearctic interactive 2006, version 2.0.1). For each taxon, EOOs were refined using species’
habitat preferences (based on both expert knowledge and literature). Habitat preferences of
each species was expressed as a suitability score (0: unsuitable, 1: secondary, 2: primary habitat)
assigned to each GlobCover land-use land-cover class. Following scores, EOOs were filtered
out at a high resolution (i.e. 300m) to remove false presence data (no presence data added).
Then, filtered EOOs were up-scaled to a lower resolution (i.e. 10’), more suitable to bio-
geographical studies. Indeed, the up-scaling step limits the fine-scale signal of land-cover on
biodiversity data and enables further comparisons with outcomes fromMaiorano et al. [16]. A
species was considered present in a 10’ cell as long as it occurred at least in one of the over-
lapped 300m cells. The reliability of filtered EOOs of 37% of the amphibians, 71.4% of the
birds and 33.8% of the mammals from the final species list, were also evaluated against field
data. Refined EOOs evaluated for amphibians and mammals performed very well (see Maior-
ano et al. [16] for further details on the filtering and evaluation processes). All species’ distribu-
tion data followed a regular grid of 10’ resolution (WGS 84). Resulting maps were overlaid and
summed to estimate species richness per pixel for the three groups of species individually and
combined, to estimate the total vertebrate species richness.

Environmental variables
Based on the extensive literature discussing the relevance of various variables to explain
macro-scale species richness patterns (e.g. [5,13,18–20]), we selected a set of environmental
variables related to climate, energy availability and habitat (or environmental) heterogeneity:
annual mean temperature (Bio1), temperature seasonality (Bio4), annual precipitation (Bio12),
and precipitation seasonality (Bio15), net primary productivity left after harvest (NPPeco sensu
[21]), actual evapotranspiration (AET) and terrain ruggedness (TRI). In particular, we included
several landscape structure indices to account for habitat variability: land cover diversity
(GLC_simp), patch size coefficient of variation (patchSize), aggregation index (Aggreg) and
dominant land cover type (GLC_maj). This latter variable will help discriminate which type of
land cover supports a given level of NPPeco and AET. Finally, the human appropriation of net
primary productivity (i.e. HANPP, [15]) was included to account for human impact on land-
scapes. The variables are listed and briefly described in Table 1.
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We analysed whether our variables were strongly correlated to ensure that collinearity was
minimized at the continental and ecoregion scale. The mean Spearman’s correlation coefficient
between pairs of variables was low at the continental scale and at the ecoregion scale (i.e. mean
absolute correlation coefficient of 0.23, with a standard deviation of 0.20), with the strongest
correlation coefficients being between actual evapotranspiration (AET) and annual precipita-
tion (Bio12), HANPP and annual mean temperature (Bio1), or between patch size variability
(patchSize) and land cover diversity (GLC_simp).

Table 1. Environmental variables characterizing macro-scale hypotheses for biodiversity patterns.

Code Description Unit Relevance Data source

Human Appropriation of
Net Primary Production

HANPP Mean land-use intensity for the year
2000 estimated at 10' from a 5' grid

tC/
yr

HANPP integrates many sources of
anthropogenic pressures (agricultural
intensification, urbanisation, etc.) that
affect the amount of trophic energy
available for wild-living species

[15, 71]

Net Primary Production
left after harvest

NPPeco Mean NPP left for the year 2000
estimated at 10' from a 5' grid

tC/
yr

Represents the amount of energy
converted into vegetal organic matter and
available for free living consumers to turn
into biomass

[15]

Actual
evapotranspiration

AET Quantity of water removed from a
surface due to the processes of
evaporation and transpiration

mm/
yr

AET is directly related to vegetation
productivity and represents the balance
between water and energy

ATEAM

Dominant land cover
type

GLC_maj Calculated as the dominant global land
cover (GLC) category in each 10' pixel of
the reference grid

- Defines which type of habitat is supporting
NPP

Global Land
Cover 2009
map, ESA-JRC

Land cover diversity GLC_simp Calculated as the Simpson's diversity of
all 1km² land cover pixels falling in each
10' pixel of the reference grid

- Is the related to the variability (or
heterogeneity) of habitats and thus the
complexity of the landscape

Global Land
Cover 2009
map, ESA-JRC

Patch size coefficient of
variation

patchSize Variability is estimated as a percentage
of the mean size of patches (here
patches are the 1km² land cover pixels of
GLC) in a given landscape (i.e. 10' pixel
of the reference grid)

- Helps to compare the relative variability of
land cover types among landscapes

Global Land
Cover 2009
map, ESA-JRC

Aggregation index Aggreg Calculated as the mean of aggregation
index value of all land cover types in a
10' pixel

- Depicts the tendency of patch types to be
spatially aggregated that is landscape
texture

Global Land
Cover 2009
map, ESA-JRC

Terrain ruggedness TRI Topographic heterogeneity based on
amount of elevation difference between
adjacent cells

m Is related to the variability of elevation in a
given location (i.e. a 10’ pixel)

[72] using
SRTM30 data

Annual mean
temperature

Bio1 Annual mean temperature for the 1960–
90 period

°C Is related to the amount of solar energy
available in an ecosystem that is assumed
to influence evolutionary rates and the
balance between thermoregulation and
growth or reproduction

WorldClim
Global Climate
Data

Seasonality of
temperature

Bio4 Based on the standard deviation of
temperature for the 1960–90 period

°C Define the climatic stability of a location WorldClim
Global Climate
Data

Annual precipitation Bio12 Annual trends of precipitation for the
1960–90 period

mm Relates to the amount of energy available WorldClim
Global Climate
Data

Seasonality of
precipitation

Bio15 Coefficient of variation of annual
precipitations for the 1960–90 period

- Defines the climatic stability of a location WorldClim
Global Climate
Data

doi:10.1371/journal.pone.0131924.t001
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Geographical extent and reference grid
Following Mücher and collaborators ([22]), we divided the pan-European continent (including
Turkey) into 15 ecoregions (S1 Fig), representing a wide variety of environmental conditions.
These ecoregions were derived from the Environmental Stratification of Europe, based on cli-
mate and geomorphology [23].

Over the area studied, species richness and environmental variables were summarized for a
10' resolution reference grid mapped in the 1984 version of the World Geodetic System (WGS
84), using ArcGIS 10.0 and R.3.0.1. ([24]). For variables mapped at a finer scale than 10’, pixel
values were aggregated at the 10’ resolution using the mean value in the case of HANPP,
NPPeco and Aggreg, or the dominant value in the case of GLC_maj (see Table 1 for further
details).

Analysing species richness patterns
We used boosted regression trees (BRTs) [25] to explain the variability of species richness
across Europe and to quantify the relative influence (“relative importance” in [26]) of the pre-
dictors, a.k.a the environmental variables. BRTs belong to the family of non-parametric,
machine learning models, which make no assumptions as to the distribution of target or
explanatory variables. Machine learning methods have several advantages over statistical mod-
els such as their robustness in the face of missing and collinear data, their ability to handle
non-linear relationships and to address variable interactions [26–28]. BRTs are built upon
regression trees, which explain the variance of a target variable by fitting simple models on par-
titions of the entire data space. These recursive partitions are derived by splitting up the data
space into groups that are as homogeneous as possible in terms of response and that minimise
prediction errors. Afterwards, BRTs combine many simple decision trees in an ensemble (i.e.
boosting) by adding trees in a forward and stage-wise fashion to minimise the loss function of
the model [26]. We built BRT models with the whole set of explanatory variables to explain
patterns of total species richness and individual taxa species richness in (1) a global, pan-Euro-
pean, approach and (2) stratified by ecoregions. The calibration of BRTs requires four parame-
ters to be specified. First, the number of trees (nt), which defines the maximum amount of
single decision trees on which the BRT model is built. Second, the tree complexity (tc), which
defines the model complexity in terms of allowed interactions between predictors. Third, the
learning rate (lr), which is a shrinkage parameter determining the contribution of each single
decision tree within the entire BRT model. And fourth, the bag fraction, which defines the per-
centage of input data that is withheld while fitting the model to be used for testing [26–27].
After testing for parameter sensitivity, we set tree complexity to 2, learning rate to 0.01, bag
fraction to 0.5 and used a Gaussian error distribution. The final number of trees kept in each
BRT model was determined using a stepwise procedure as implemented in the gbm.step routine
provided by the dismo package [29] in R [24]. The performance of the model was assessed
using the percent of explained deviance [26]. The explained deviance of the BRT model was
calculated as: 1 - (residual deviance/total deviance).

To interpret the results, we assessed the relative influence of each explanatory variable based
on the number of times a given variable was selected for splitting a single tree, weighted by the
squared improvements of error risk, and then averaged over all trees [30]. Each relative impor-
tance was finally standardized such that the sum adds up to 100. The contribution of variables
to model fit was expressed as percentages and ranked to identify the most influential variables,
i.e. the predictor(s) explaining the highest amount of species richness variability.

Subsequently, we generated partial dependency plots to interrogate the relationship between
species richness and each explanatory variable [31–32]. The partial dependency plots show
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how a given explanatory variable influences the target variable (i.e. species richness) along its
data range while controlling for the average effects of all other explanatory variables [33]. For
better interpretability, we smoothed the response curves with a spline interpolation.

Results
Over pan-Europe, the variability of the richness of each taxon, and total species richness
revealed to be best predicted by actual evapotranspiration (AET). However, the performance of
the models describing patterns of total (36.3% of deviance explained by the model) and avian
(31.6% of explained deviance) species richness, were significantly lower than the performance
of the models relating to mammals (91.3% of explained deviance) and amphibians (91% of
explained deviance) (Fig 1).

AET and the dominant type of land-use-land-cover, i.e. GLC_maj, explained the highest
part of the spatial variability of the total species richness (i.e. 75% and 24.1% respectively,
Fig 1). A sigmoid, yet positive, curve related AET to total species richness (see Fig 2A as an
illustration). Total species richness strongly increased between 20 and 40 mm/yr of AET so
that high levels of AET sustain higher species richness. The other environmental variables
showed only a marginal influence on vertebrate species patterns (Fig 1).

Similarly, species richness patterns of amphibians and, especially, birds were better
explained by AET (explaining 36.5% and 64.2% of the variability in amphibian and avian spe-
cies richness patterns) and, to a lesser extent, GLC_maj (16.1% and 17.9% respectively). In the
particular case of amphibians, the amount of energy appropriated by humans (HANPP) was
also an important predictor of species richness (16.2%). Partial dependency plots showing
avian species richness and AET revealed a sigmoid curve similar to the relationship between
total species richness and AET (Fig 2A and 2B). Comparatively, the relationship between
amphibian species richness and AET formed a hump-shaped curve with a maximum of

Fig 1. Relative contribution of environmental variables to explained variance of the Boosted
Regression Treesmodels of patterns of species richness of each vertebrate group at the pan-
European scale. Environmental variables are detailed in Table 1. Values in brackets are the performance of
BRT model for each taxon and expressed as a percent of deviance explained (%).

doi:10.1371/journal.pone.0131924.g001
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predicted species richness at approximately 50 mm/yr of AET. Higher AET values relate to
higher amphibian species richness, however, beyond approximately 60 mm/yr of AET pre-
dicted species richness abruptly decreases (Fig 2C).

Partial dependency plots showing the relationship between mammal richness and the main
predictor, i.e. GLC_maj, showed that the number of mammal species was higher in pixels dom-
inated by croplands (classes 11, 14 and 20), closed forests (classes 50 and 70), mosaic of grass-
lands, forests and shrublands (class 120) and closed to open shrublands (class 130) (see Fig
2D). Mammal species richness was lower in open habitats (classes 90, 110, 140), sparse (class
150) or regularly flooded (class 180) vegetation, water bodies (class 210) and snow (220) (see
S1 Table for the description of classes).

At the ecoregion level, BRT models yielded a high explanatory power as well (on average
63.1% with a standard deviation of 16.4%) but the relative contribution of the predictors
strongly varied across ecoregions (Fig 3). AET was by far the best predictor of total species rich-
ness in Arctic, Boreal, Continental and Steppic ecoregions. Similarly, total species richness pat-
terns in Northern Alpine, Nemoral, Central and Northern Atlantic ecoregions were strongly
related to temperature seasonality patterns (Bio4, Fig 3). The amount of the deviance of species
richness in the other ecoregions was more evenly distributed among environmental variables.
Based on these results, we clustered ecoregions into four groups: (i) Arctic, Boreal, Continental,
and Steppic ecoregions where AET explained 59.4% to 96.9% of species richness variability; (ii)
Northern Alpine, Northern Atlantic, Nemoral, and Central Atlantic ecoregions where Bio4
explained 46.3% to 98.5% of the variability of total species richness; (iii) Southern Alpine, Pan-
nonian, Anatolian, Lusitanian, and Southern Mediterranean regions which have in common
that the most contributing predictor is related to climate (i.e. Bio4, Bio12 or Bio15) but had a
more even contribution of all the other predictors; and (iv) Mediterranean Mountains and
Northern Mediterranean ecoregions that have in common that variables related to energy
availability (AET), land cover (GLC_maj) and seasonality (Bio15 and Bio4 respectively) are

Fig 2. Partial dependency plot representing the relationships between the predicted species richness
of all vertebrates (A), of birds (B), of amphibians (C) and of mammals (D) and the main contributors
identified by BRTmodels, namely AET for A-C and GLC_maj for D, at the continental scale.

doi:10.1371/journal.pone.0131924.g002
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among the best predictors of species richness (Fig 4). Except for the first group, the ranking of
predictors of total species richness by ecoregions significantly differed from the ranking of pre-
dictors at the continental scale. The results of the analyses performed by ecoregion and taxon,
were comparable to the trends observed for total species richness. In order to remain concise,
these results will not be described.

Finally, our analyses showed that the shape of the relationships between species richness
and predictors depended on the ecoregion and the variable considered. Partial dependency
plots revealed a sigmoid relationship with a sharp increase of predicted species richness at an

Fig 3. Relative influence of environmental variables on explained variance of patterns of terrestrial
vertebrate species richness at the pan-European scale and by ecoregionsmodelled using Boosted
Regression Trees. “Arc”: Arctic; “AlpN”: Northern Alpine; “Bor”: Boreal; “AtlN”: Northern Atlantic; “Cont”:
Continental; “Nem”: Nemoral; “AtlC”: Central Atlantic; “Step”: Steppic; “AlpS”: Southern Alpine; “Pan”:
Pannonian; “Lus”: Lusitanian; “MedM”: Mediterranean Mountains; “MedN”: Northern Mediterranean; “MedS”:
Southern Mediterranean; “Ana”: Anatolian. Environmental variables are detailed in Table 1. Values in
brackets are the performance of BRT model for each taxon and expressed as a percent of deviance
explained (%).

doi:10.1371/journal.pone.0131924.g003

Fig 4. Clustering of ecoregions according to the best predictors of species richness patterns. The
ecoregions are coloured according to the best explanatory environmental indicator: ecoregions where
species richness patterns are best explained by AET are in green, by Bio4 in blue while green dots and dash
blue lines represent ecoregions where best predictor is related to energy availability and climate respectively,
but other predictors from the other hypotheses are almost as good predictors.

doi:10.1371/journal.pone.0131924.g004
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AET of 30 to 40 mm/yr approximately (illustrated in Fig 5A) for all ecoregions but the Conti-
nental and Mediterranean Mountains, which showed a decelerating or accelerating unimodal
trend, respectively (Fig 5B and 5E). In Northern Alpine, Northern Atlantic, Nemoral and Cen-
tral Atlantic regions, total species richness increased with temperature seasonality (Bio4) (Fig
5C and 5D). In the case of Lusitanian, Mediterranean mountains, and Southern Mountains,
vertebrate richness showed a similar decreasing trend with precipitation seasonality (Bio15)
(Fig 5F). Finally, in the case of Southern Alpine, Pannonian, Northern Mediterranean, and
Anatolian ecoregions, the profiles of relative contributions of the different environmental vari-
ables were too diversified to find similarities among regions.

Discussion
In the growing literature addressing biogeographical patterns of biodiversity, the strength of
our study lies in the cross-analysis of the scale-dependency of species-richness correlates for
three taxa while explicitly accounting for human appropriation of natural resources. We com-
pared the ranking of environmental variables depicting the influence of climate, energy avail-
ability, habitat heterogeneity and land-use characteristics on patterns of species richness of
terrestrial vertebrates across spatial scales (i.e. continent and ecoregions) and across taxa. Our
finding that AET (an indicator of productive energy) was recurrently the best or one of the best

Fig 5. Examples of partial dependency plot representing the relationships between the predicted
species richness of all vertebrates in Boreal (A), Continental (B), Northern Alpine (C), Northern
Atlantic ecoregions (D) and Mediterraneanmountains (E and F) and the main contributors identified
by BRTmodels, namely AET for A, B and E, Bio4 for C-D and Bio15 for E.

doi:10.1371/journal.pone.0131924.g005
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predictors is in line with previous findings pinpointing that the “species-energy relationship”
hypothesis dominated continental patterns of species richness at broad scales [34–37]. The
energy hypothesis states that a positive species-energy relationship is frequently explained by
the ability to support larger population sizes [38] through two alternative energy pathways, i.e.
ambient (thermal) and productive (chemical) (see [39]). For instance, an increase in productive
energy may result in more available resources (either in the diversity of resources or their
amount), potentially more rare resources and, thus, facilitate co-existence of a larger number of
specialist species (already proposed by [38]), a lower extinction risk, and longer food chains
[18]. A recent meta-analysis [6] provides strong support for positive species-productivity rela-
tionships across diverse animal taxa. The overall pattern of species richness was also correlated
to the dominant type of habitat (GLC_maj), mean annual temperature (Bio1, a climatic vari-
able related to ambient energy) in the case of mammals, and HANPP in the case of amphibians.
In contrast, the ranking of the predictors explaining variations in species richness at smaller
scales differs according to the ecoregion considered supporting either the “species-energy rela-
tionship” (frequently represented by AET but also NPP) or the “climatic suitability” (com-
monly represented by temperature, precipitation and seasonality variables) hypotheses. The
“climate suitability” hypothesis postulates that climate may drive biodiversity patterns through
solar radiation that defines macroclimatic conditions of temperature and rainfall. Climate is
also involved in the phylogenetic history of a biogeographic region [7] and is notably influenc-
ing species speciation, extinction, and dispersal [40–41] by increasing carrying capacities or
because of species’ particular physiological requirements [42].

Our results support the statement by Cusens and colleagues ([6]) that the relationship
between species richness and productivity is positive rather than “hump-shaped”. Indeed, the
shape and the slope of the relationship between species richness and the best predictor differ
between ecoregions. For instance, total species richness usually increases with AET but is
clearly hump-shaped in the Continental region. Likewise, total species richness increases with
mean annual temperature in most ecoregions but tends to decrease in Pannonian and Lusita-
nian regions or reveals a hump-shaped (or unimodal) form in Southern Alpine and Anatolian
regions. Such hump-shaped curves are often attributed to the “intermediate disturbance
hypothesis” which states that species richness is maximized by intermediate frequency and
magnitude of disturbances [43] but in our case they indicate a nonlinear response of species
richness to evapotranspiration and/or temperature. A strong competition at higher productiv-
ity levels can explain such decelerating curves, too. It is generally considered that biotic interac-
tions act at a small scale and cannot be detected at the macro-scale but several works suggest
the opposite [44–46].

Compared to Northern ecoregions clearly influenced by variables related to the “species-
energy relationship” (i.e. AET) or the “climate suitability” (i.e. Bio4 and Bio1) hypotheses, the
ranking of total species richness determinants is much more variable among southern ecore-
gions of Europe. Precipitations (i.e. Bio12 and Bio15) replace temperature seasonality (Bio4) as
first correlates of species richness in Southern Alpine, Lusitanian, Southern Mediterranean and
Anatolian ecoregions and are also influential in Mediterranean Mountains. More importantly,
HANPP, NPP not harvested, the dominant land cover, and variables related to the habitat
heterogeneity (i.e. GLC_simp and patchSize) have higher contributions in the Anatolian and
Mediterranean ecoregions, than in the other parts of Europe. The “habitat heterogeneity”
hypothesis assumes that complex habitats are susceptible to provide more diverse niches and
ways of consuming resources resulting in a higher number of co-existing species [47–49].
Indeed, these ecoregions represent a wide range of habitats from mountainous landscapes in
the Southern Alpine to steppe-like relief of the Pannonian ecoregion, and climates from the
humid Mediterranean-like climate of the Lusitanian ecoregion to the dry Continental climate
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of the Pannonian ecoregion. However, habitat heterogeneity resulting from topographic vari-
ability may influence the distribution and accessibility of resources. As a consequence, species
richness may increase with heterogeneity but then decrease as heterogeneity is too strong and
disrupts accessibility to resources. The increasing contribution of HANPP or the “habitat het-
erogeneity” variables may originate from several phenomena. In mountainous ecoregions
(Southern Alpine and Mediterranean mountains for instance), the amount of productive
energy available for species, NPPeco, may be heterogeneously distributed due to elevation and
topographic variability. The prevalence of habitat heterogeneity variables in the Mediterranean
ecoregions, where energy availability may not be a limiting factor, could result from the com-
plex mosaic of land uses and natural habitats shaped by the long-lasting impact of human
activities [50]. Likewise the long history of diversified agricultural practices in Pannonian,
Northern and Southern Mediterranean or Anatolian ecoregions, may explain the significant
contribution of HANPP, NPPeco and GLC_simp (i.e. variability of habitats) to spatial species
richness patterns. The work by Falcucci and colleagues ([51]), showing that agricultural inten-
sification resulted in a strong decline in farmland biodiversity and that urban footprint
increased considerably in densely populated Italian regions, supports such results.

Among the three vertebrate taxa investigated, amphibians are most sensitive to their habitat
characteristics and the subsequent loss of potential preys. The significant contribution of
HANPP, compared to the other habitat indicators, suggests that patterns of amphibians are
more sensitive to changes in primary production than habitat fragmentation at broader scales.
However, the relationship between amphibians and HANPP is clearly positive at the continen-
tal scale, in the Northern and Southern Alpine, Pannonian and Southern Mediterranean ecore-
gions (S2 Fig). This strong relationship might result from the combination of productivity and
water availability in many lowlands, which supports human activities as well as many species,
including amphibians. Species richness patterns of birds were best explained by the productive
energy and, in particular, AET which is an indicator of water-energy balance (i.e. the balance
between solar energy and water availability necessary for plant productivity, [34]). The strong
spatial overlap between birds and water-energy balance predominates in the Arctic and Steppic
regions (S3 Fig), characterized by sparse tree-less vegetation and harsh climatic conditions
(hard frost in Arctic, alternation of frost and drought in Steppic). The model performance was
lower in the case of birds, the most species-rich taxon of the three, than for other taxa or total
species richness, which may result from a lower spatial variability of avian richness.

Even if all taxa and total species richness are primarily correlated to the “species-energy rela-
tionship” variables, the variables ranking is not entirely similar. Our results show that birds are
mainly affected by productive energy (AET). So are amphibians but they are also responding to
HANPP and the dominant land cover. On the other hand, spatial patterns of mammals are
first correlated to land cover. Clearly, the three taxa respond the macro-scale hypothesis in a
different way and ecological conclusions on spatial patterns of species richness may not be gen-
eralized to individual taxon or to other spatial scales as argued by Belmaker & Jetz ([14]).

The “species-energy relationship”, “climate suitability” and “habitat heterogeneity” hypoth-
eses are difficult to disentangle because they are not mutually exclusive. In that sense, our work
highlights the synergy of macro-ecological mechanisms which have been little described in pre-
vious biogeographical studies (but see [20,52]). For instance, species’ physiological tolerance to
climatic conditions increases with solar energy [53]. Temperature, a climatic parameter, esti-
mates ambient (solar) energy that influences species range through physiological or metabolic
constraints. Likewise, AET is suggested as a proxy of productive energy but relies on both solar
(so ambient) energy and water-energy balance. This duality is particularly relevant for amphib-
ians that are very sensitive to the combination of ambient energy (i.e. temperature) and mois-
ture (related to precipitations) ([36,54]). Climatic conditions also influence vegetation patterns
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and, to a certain extent, the dominant type of land cover, which, in return, may have conse-
quences on vertebrate patterns through energy availability and habitat characteristics [55–56].
For instance, the species-energy relationship is interrelated to climate to drive the geographical
distribution of energy. The stability in climatic conditions partly determines primary producers
and water-energy balance (commonly estimated by evapotranspiration), and through them,
ecosystem productivity and animal species richness as well [34–35,57]. In return, habitat het-
erogeneity might play a role in the maintenance of primary producers and water-energy bal-
ance. All these mechanisms are related and may operate at different scales of observation
[4,20,58].

Non-experimental approaches rarely establish unambiguously cause-and-effect relation-
ships and we cannot exclude that our conclusions on the ecological processes driving species
richness patterns are too simplistic. Besides the conclusions drawn here depend on how poten-
tial predictors (or correlates) of vertebrate species richness are imputed to one of these hypoth-
eses. Annual mean temperature (Bio1) has been alternatively classified as a climatic factor or
energy availability indicator. Annual precipitation (Bio12) could be considered as a factor for
water-energy balance (energy availability). Precipitation seasonality (Bio15) may well be con-
sidered has a climatic factor or an environmental heterogeneity variable. The little contribution
of spatial heterogeneity proxies may be explained by a scale discrepancy between our study and
the relevant scale for habitat heterogeneity to shape species richness patterns. Another explana-
tion to this lies in the high difficulty to delineate habitat heterogeneity that varies across scales:
from the mosaic of small patches to topographic heterogeneity [49] but also from physical (e.g.
topography, vegetation structure) to climatic variability (seasonality) that is usually associated
to species-climate stability, another species richness theory. Another explanation is given by
Fløjgaard et al. ([59]) who found that heterogeneity may principally influence endemic or
widespread European mammal species but not the total species richness, the latter being
mainly determined by macroclimatic conditions. In our case, the sites with the highest number
of species locally co-occuring (i.e. within a 10’ pixel) identified by Maiorano and colleagues
([16]; see Fig 5 in their article) overlap well with mountainous landscapes (i.e. Mediterranean
mountains, Lusitanian and Southern Alpine regions). The rapid changes in topography and
land cover in such landscapes occur over very short distances fostering endemicity and specia-
tion rate, often leading to a species richness peak at intermediate elevation ([60–61] and refer-
ences therein).

It is worth noting that current biodiversity patterns are also influenced by past changes that
may have occurred as long ago as the beginning of the past century [62–63]. This has been
demonstrated for several taxa (e.g. plants, [64–65]; several trophic levels, [66]; birds, [67]). The
accelerating rate of conversion of natural land cover to agricultural fields, urban areas or other
types of exploitation, deeply altered habitat characteristics (e.g. energy availability, biotic corri-
dors) and sustainably imprinted current and future biodiversity [63]. As for many species, pro-
ductivity, resources availability and climatic conditions beneficial for human life, determine
human use of land. Consequently, facing climate change and a growing human population, the
response of biodiversity to changes may also vary, in space and time, according to future cli-
mate- and human-driven transitions of land use. While it is expected that the number of spe-
cies will decrease at the global scale [68], species richness may increase in cooler regions
experiencing warming, or arid regions experiencing more moisture availability. If determinants
of biodiversity patterns are susceptible to change from one ecoregion to another and across
taxa, a better understanding of the spatial repartition of forces driving species richness is
required to draw relevant policies about biodiversity conservation. Preserving the water-energy
balance at the continental scale may not be the most relevant strategy to protect mammals at
the continental scale or limit the loss of overall vertebrates in the Northern Alpine ecoregion,
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where total species richness is first influenced by temperature seasonality. In other words,
policies designed at a continental scale should probably be adapted at ecoregion scales and
according to the taxon targeted. The relevance and operationalization of continental-wide bio-
diversity policy at smaller scale is crucial to halt biodiversity loss and should be a starting point
for future research. In particular, in a context of growing urbanization, increasing knowledge
on relationships between urban and non-urban biodiversity will certainly become a corner-
stone to promote regional and continental biodiversity [69–70].
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