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Abstract
Vegetation is an important part of ecosystem and estimation of fractional vegetation cover

is of significant meaning to monitoring of vegetation growth in a certain region. With Landsat

TM images and HJ-1B images as data source, an improved selective endmember linear

spectral mixture model (SELSMM) was put forward in this research to estimate the fraction-

al vegetation cover in Huangfuchuan watershed in China. We compared the result with the

vegetation coverage estimated with linear spectral mixture model (LSMM) and conducted

accuracy test on the two results with field survey data to study the effectiveness of different

models in estimation of vegetation coverage. Results indicated that: (1) the RMSE of the es-

timation result of SELSMM based on TM images is the lowest, which is 0.044. The RMSEs

of the estimation results of LSMM based on TM images, SELSMM based on HJ-1B images

and LSMM based on HJ-1B images are respectively 0.052, 0.077 and 0.082, which are all

higher than that of SELSMM based on TM images; (2) the R2 of SELSMM based on TM im-

ages, LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on

HJ-1B images are respectively 0.668, 0.531, 0.342 and 0.336. Among these models,

SELSMM based on TM images has the highest estimation accuracy and also the highest

correlation with measured vegetation coverage. Of the two methods tested, SELSMM is su-

perior to LSMM in estimation of vegetation coverage and it is also better at unmixing mixed

pixels of TM images than pixels of HJ-1B images. So, the SELSMM based on TM images is

comparatively accurate and reliable in the research of regional fractional vegetation

cover estimation.

Introduction
Vegetation is the comprehensive result of the long-term interaction of landform, hydrology,
soil, climate variability and human activities and its distribution, composition and develop-
ment are closely related with environment condition, especially climate condition [1–3]. As an
important parameter reflecting horizontal coverage degree of vegetation on land surface,

PLOSONE | DOI:10.1371/journal.pone.0124608 April 23, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Li Y, Wang H, Li XB (2015) Fractional
Vegetation Cover Estimation Based on an Improved
Selective Endmember Spectral Mixture Model. PLoS
ONE 10(4): e0124608. doi:10.1371/journal.
pone.0124608

Academic Editor: Ke Lu, University of Chinese
Academy of Sciences, CHINA

Received: September 25, 2014

Accepted: March 3, 2015

Published: April 23, 2015

Copyright: © 2015 Li et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was supported by the National
Natural Science Foundation of China (No.41471350),
the National Key Basic Research Program of China
(2014CB138803), the Funds for Creative Research
Groups of China (41321001) and Sate Key
Laboratory of Earth Surface processes and Resource
Ecology. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0124608&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fractional vegetation cover is the percentage of the vertical projection of vegetation (branch,
stem and leaves) in the statistic area of land surface [4,5]. Vegetation coverage is an important
quantitative information measuring the vegetation coverage status on the ground, which is also
a sensitive indicator of evaluating land degradation and desertification [6] and it is also a con-
trolling factor of universal soil loss equation (USLE) and revised universal soil loss equation
(RUSLE), numerical climate model and hydro-ecological model [7–10]. Deriving regional land
surface fractional vegetation cover and its change information is of significant meaning to dis-
cover the responses of ecosystem and the rules of spatial change, discuss the driving factors of
such response, analyze and evaluate regional eco-environment under the influences of global
change[11,12].

Currently, there are two methods of getting vegetation coverage, field measurement and re-
mote sensing monitoring method. The former is a traditional method of obtaining vegetation
coverage which includes visual estimation method, sampling method and instrument method
according to different measuring modes [13] and plays an major role in survey of land surface
vegetation. It is routinely widely applied because of its high accuracy. However, limited by
time, weather and regional condition, this method is expensive and labor-intensive and can
only provide the information of vegetation changes, composition and distribution in particular
areas, so it is inappropriate to depict vegetation coverage from macro-scale regions [14–16].
With the development of remote sensing technique in monitoring of vegetation coverage, field
measurement is gradually no longer the dominant method, but it is still very important in re-
search and application of estimation of vegetation coverage on surface or near surface. For ex-
ample, in estimation of vegetation coverage with space remote sensing technique, field survey
data are usually used for the sensitivity analysis of the result of remote sensing estimation
model [17–20].

The development of remote sensing technique provides measurement of vegetation cover-
age with a new direction. The characteristics of large scale and periodic detection with remote
sensing data make it possible to obtain vegetation coverage and its dynamic change in a large
area and it has been widely applied [21–22]. In most studies, there are three basic approaches
to estimate fractional vegetation cover from remote sensing data: regression model, vegetation
index method and mixed pixel unmixing model [23, 24]. Pixel unmixing model is mainly spec-
tral mixture model, which extracts vegetation coverage with linear or nonlinear mixture model.
Linear mixture model is based on the assumption that each pixel in an image can be decom-
posed into a linear combination of different components and the photon which reaches sensor
only acts with one component. Because of the simple and practical feature, this model is widely
applied when there are low spectral resolution and spatial resolution in images [25, 26] and it
plays a crucial role in estimation fractional vegetation cover in arid and semi-arid regions
[27–28]. Previous studies illustrate that to some extents, LSMM is superior to other remote
sensing inversion approaches when estimating fractional vegetation cover of mono temporal
data [29]. In the spectral unmixing procedure, all endmembers in an image are used in tradi-
tional LSMM to each pixel, but in fact, for low- or moderate- spatial resolution imageries, most
mixed pixels are just composed of a small part of the whole endmembers set, so application of
related endmembers for unmixing mixed pixel will correspondingly increase the accuracy.
Pixel Pure Index (PPI) endmember extraction algorithm is a more successful and wider appli-
cation method, which is based on the minimum noise transform to extract spectral information
of various types of surface features. Cong Hao et al.[30] first developed a spectral mixture anal-
ysis approach based on selective endmembers. Through calculating the response value to mea-
sure the spectral similarity between the actual pixel and the reference endmembers, a series of
appropriate endmembers can be extracted dynamically. It can be guaranteed an endmembers
with high spectral similarity is selected which has been applied in several studies [31–34].
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However, the response value of traditional SELSMM is defined as the endmember proportion
within each pixel. The sum of the response values between all the endmember spectrums and
pixel spectrum is set to 1. This assumption is lack of enough mathematical or physical basis.

According to the theory that different pixels used different set of endmembers to decompose
spectrum, through calculating the response value between reference endmember spectrum and
actual pixel spectrum, we judged the similarity degree of the two spectra. Taken the response
value of a reference endmember as the spectral contribution value of the reference endmember
to actual pixel so that it can participate in unmixing of mixed pixel, we developed a new selec-
tive endmember linear spectral mixture model (SELSMM). Selecting the Huangfuchuan water-
shed in China as the study site, we estimated the fractional vegetation cover from Landsat TM
image and HJ-1B image. The accuracy of results was assessed through field measured coverage
acquired in the same period. The feasibility of applying the two spectral mixing models to esti-
mate vegetation coverage in study site based on different images was also discussed.

Data and Methods

Study area
In this study, Huangfuchuan watershed in northern China was selected as the study site
(Fig 1). As a main branch of the middle reach of the Yellow River, Huangfuchuan River origi-
nates from the district in Aobaoliang of southern Dalad Banner and Dianpangou of northwest-
ern Jungar Banner in Inner Mongolia. It flows into the Yellow River in Batuping of Fugu

Fig 1. Location of study site.

doi:10.1371/journal.pone.0124608.g001
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County in Shannxi Province. Huangfuchuan watershed covers the zones between longitude
110.3°E and 111.2°E and latitude 39.2°N and 39.9°N with total area of 3342km2 throughout
Ordos Plateau and Loess Plateau. It has a semi-arid continental monsoon climate with average
annual temperature of 6.2°C and average annual rainfall of 368.7mm. Rainfall is main concen-
trated in summer, more than 80% of which happens between June and September. The average
potential evaporation is about 2040mm per year. Strong and frequent wind occurs in winter
and spring with average annual wind speed ranging from 2 m�s-1 to 3 m�s-1 and 10 to 30
windy days.

The study site is located in temperate semi-arid grassland kastanozem zone and the soil is
mainly composed of kastanozem with feldspathic sandstone as soil parent material, aeolian
sandy soil, the loessal soil and loess with loess as soil parent material. The native vegetation is
typical steppe, such as Stipabungean steppe. Now, the main macrophanerophytes are artificial
Pinus tabulaeformis forest, artificial Poplar forest and some surviving natural coniferous wood-
lands, such as Platyclaclus, Juniperus communis, Juniperus formosana and Pinus tabulaeformis.
Shrubbery is characterized by Salix cheilophila, Fructus Hippophae, Caraganaintermediakuan-
get H. D. Fn, etc. The native Stipabungean steppe has been replaced by natural vegetation such
as Thymusserpyllum steppe. The herbaceous community is dominated by Thymusserpyllum,
Stipabungean,Heteropappusaltaicu, Cleistogenessquarros, etc.

Data and preprocessing
Field survey data. Field survey data were used as the training data to calibrate statistical

models describing relationship between remote sensing parameters and vegetation cover. We
positioned the sample plots with GPS and designed sample plots referring to topographic map
and vegetation chart. The size of samples plots matched with the spatial resolution of remote
sensing images perfectly, which was 30×30m2. We collected 24 shrub sample plots and 6 grass-
land sample plots with 3 quadrats at each sample plot, including 90 quadrats in total. Specific
permission was not required for all the sample plots and for the sampling activities. The field
study activities did not involve any endangered or protected species.

In grassland sample plots, we selected a 1×1m2 quadrat randomly and took photos vertically
with a digital camera. After geometric correction, enhancement processing, color space trans-
formation and classification, the grassland fractional cover of each photo was extracted. For
each plot, we calculated the arithmetic mean of vegetation cover from all quadrats to acquire
the fractional cover. Coverage data in quadrats were then transformed to data in sample plots
on surface. In shrub sample plots, we utilized line-intercept method, which involved two objec-
tives:①put three survey lines with 30m long at each sample plot, pulled the measure tape tight
along the survey lines, calculated the fractional cover by dividing the length of tape that was in-
tercepted by plants by the total tape length;②selected three grassland quadrats of 1×1m2, col-
lected grassland coverage using the same protocol as used in grassland sample plots. Sum of
the two was the vegetation coverage in shrub sample plots.

Remote Sensing Data Acquisition and Pre-processing. A Landsat-5 TM image and a
HJ-1B image were acquired in this study. We acquired cloud-free TM image with a relatively
high spatial resolution (30m) was on August 7, 2011. The image provided by the small satellites
constellation of environment and disaster monitoring and forecasting in China was obtained
on July 30, 2011 with the CCD camera fixed on HJ-1B satellite and its spatial resolution was
30m.

The images were Level 1T products with primary precision and terrain correction. Geomet-
ric correction was necessary for TM image and HJ-1B image by different radiometric correc-
tion models according to the topographic map of study site.

Fractional Vegetation Cover Estimation
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(1) For TM image, we converted the DN (digital number) value to radiance using Eq (1) to
eliminate the sunshine difference in multispectral images.

L ¼ Lmax � Lmin

255
� DN þ Lmin ð1Þ

where Lmax and Lmin are the spectrum radiance values when the DN values a 255 and 1 respec-
tively, which can be obtained from Internet (http://landsat.usgs.gov/science_L5_cpf.php).

We input the parameters obtained from atmospheric correction which was conducted with
6S model into atmospheric correction Eq (2) and got the atmospheric correction results image.

acri ¼
xai � Li � xbi

1þ xci � ðxai � Li � xbiÞ
ð2Þ

where i = 1,2,3,4,5,7, which represents the wave band of TM images; L is the radiance after ra-
diometric calibration; xa, xb and xc are atmospheric correction parameters in 6S model.

(2) For HJ-1B image, satellite image was calibrated with the radiometric calibration equa-
tion which could transform the DN image of HJ-1B satellite acquired from China Centre for
Resources Satellite Data and Application.

L ¼ DN=aþ L0 ð3Þ

where L is radiance value, 1/a is the gain of absolute calibration coefficient, L0 is offset. The
unit of transformed radiance value isW�m-2�sr-1�um-1

Conducted by radiative transfer model codes of MODTRAN4+(Moderate Resolution At-
mospheric Transmission),we used the FLAASH atmospheric correction module in ENVI to
compensate for the effects of atmosphere, sunlight, etc. on surface features reflection, so as to
restore the surface reflectance of surface features from images and then obtained the atmo-
spheric corrected image.

Methods
Processing steps of the study. Based on TM image and HJ-1B image, we estimated the

fractional vegetation cover in study site with LSMM and improved SELSMM respectively. The
major processing is shown in Fig 2. The study incorporated three sections: 1) select endmem-
bers from images which have been processed with PPI method to ensure that the pixels partici-
pating in spectral unmixing are purer; 2) extract vegetation coverage information in study site
from TM image and HJ-1B image with improved SELSMM and compare it with the estimation
result of LSMM; and 3) quantify the accuracy of the results estimated with different models
based on the two kinds of images using field measured coverage in the same period.

Spectral Unmixing. Selection of Endmembers: In the procedure of spectral unmixing, it
must be sure that the selected endmembers can represent the spectral information of all land
cover components truly and objectively, so that the result will have a high accuracy. The num-
ber of endmembers is constrained by the dimensionality of satellite imagery. More endmem-
bers can interpret more spectral heterogeneity and then improve applicability of the model.
However, too many endmembers will make model more sensitive to endmember selection and
then the universality of model will be reduced. So, it is critical to determine the balance between
number of endmembers and the overall optimization of the model. In this study, we selected
endmembers by calculating PP). First, we minimum noise fraction (MNF) transformed the im-
ages to reduce the spectral dimensionality so that the major information and noise could be ab-
stracted and the redundancy of data and correlation among wave bands could be reduced. On
such basis, we could determine the candidate endmembers through analyzing PPI. We connect
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MNF transformation with PPI using the n-Dimensional Visualization tool to apply n-
dimensional visualization analysis and extract the spectral information of all components [34].
In this study, we just need fractional vegetation cover, so it is unnecessary to classify non-
vegetation features. V-I-S model (Vegetation-Impervious Surface-Soil model) was adopted to
identify the surface components and spectral reflectivity curve of endmembers for spectral
unmixing [34].

Linear Spectral Mixture: Model. Each pixel in a remote sensing image can be composed of a
finite number of dominant components which have relatively contribution to the spectral in-
formation collected by remote sensing sensor. The remote sensing information of every pixel
can be unmixed into several components and those components constitute the remote sensing
information of the pixel through a linear combination. Therefore, linear unmixing can be con-
ducted on remote sensing information to build a pixel mixture model for estimation of vegeta-
tion coverage. LSMM is the most common model for unmixing of mixed pixel, which is
defined as that the reflectance of a pixel on a certain spectral band (brightness value) is the line-
ar combination of reflectance of the basic components (Endmember) with their proportions in
total area of the pixel as the weight coefficients [35]. The model (Eq (4)) and its constraint con-
ditions (Eq (5) and Eq (6)) are shown below:

RLi ¼
Xn

j¼1

CLjaij þ εLi ð4Þ

Xn

j¼1

aij ¼ 1 ð5Þ

0 � aij � 1 ð6Þ

where RLi is the spectral reflectance of pixel i on wave band L; αij is the proportional value of
the basic component j of pixel I; CLj is the spectral reflectivity of basic component j on wave

Fig 2. Major processing steps in study.

doi:10.1371/journal.pone.0124608.g002
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band L; n is the number of basic components of pixel i; εLi is the residual not explained by the
linear model.

When calculating the proportions of basic components of image pixels, fully constrained
linear spectral mixture model (FCLSMM) was chosen to make the fractional vegetation cover
estimation with LSMMmore accurate and reliable, that was to calculate αij with the constraints
of minimum εLi, nonnegative αij and a sum of 1 for αij.

Improved Selective Endmember Linear Spectral Mixture Model: We built the SELSMM based
on the theory that different pixels used different set of endmembers to decompose spectrum.
The key of model was how to determine the endmembers comprised in each pixel. Through
calculating the response value between reference endmember spectrum and actual pixel spec-
trum, we can judge the similarity degree of the two spectra. Taken the response value of a refer-
ence endmember as the spectral contribution value of the reference endmember to actual pixel
so that it can participate in unmixing of mixed pixel, a SELSMM can be built 33]. The higher
the response value between reference endmember spectrum and pixel spectrum is, the more
similar the two spectras are and the more proportion the component which corresponds to the
reference endmember has in the pixel. Therefore, an improved algorithm for selective end-
member is developed. Normalization processing was conducted on the response value xi be-
tween the endmember spectrum for comparing and spectrum of a certain pixel firstly. These
response values will be mapped to the range from 0 to 1 through the proportional relationship
of xiPm

i¼1

xi

(xi is response value between the endmember spectrum for comparing and spectrum of

a certain pixel;m is the number of response values which participate in similarity degree com-
parison). Finally the proportion was proposed as the contribution value of endmember i to
the pixel.

With the new calculating mean of contribution value, linear spectral unmixing can be con-
ducted on selective endmember and then the estimation accuracy of the model can
be enhanced.

(1)Through calculating the response value between the actual pixel spectrum and reference
endmember spectrum, the spectral similarity between the two spectra can be derived, so it can
be guaranteed that the reference endmember spectrum which is highly similar to the actual
pixel spectrum will be selected. Response coefficient is obtained by dividing the covariance of
the two spectra by the product of their variances. The spectrum response coefficient of a pixel
can be represented as:

rij ¼
m
Xm
L¼1

CLjRLi �
Xm
L¼1

CLj

Xm
L¼1

RLiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Xm
L¼1

C2
Lj � ðm

Xm
L¼1

CLjÞ2
" #

m
Xm
L¼1

R2
Li � ðm

Xm
L¼1

RLiÞ2
" #vuut

ð7Þ

where CLj is the spectrum of reference endmember j on wave band L; RLi is the spectrum of
pixel i on wave band L;m is the number of spectral wave bands.

(2) Calculating and comparing the response values between different referential endmem-
bers spectra and actual pixels spectra with Eq (8), the maximum response value (denoted rmax)
and corresponding endmember spectrum vector (denoted Amax) can be obtained. As the refer-
ence endmember spectrum which is most similar to the pixel, Amax can be taken as the
preferred endmember.

Setting a parameter Xj as the contribution value of a reference endmember Aj to mixed pixel
Ri, the contribution of reference endmember Amax to mixed pixel Rmax can be represented as

Fractional Vegetation Cover Estimation
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Xmax and the contribution of residual endmember (denoted RRe) to Ri can be represented as:

RRe ¼ Ri � Xmax �Rmax ð8Þ

Combining the response value rj of reference endmember to mixed pixel, Xj can be repre-
sented as:

Xj ¼
rjXn

j¼1

rj

ð9Þ

Xn

j¼1

Xj ¼ 1 ð10Þ

Then, the contribution of reference endmember Amax to mixed pixel Rmax should be:

Xmax ¼
rmaxXn

j¼1

rj

ð11Þ

Replacing the Xmax in Eq (8) with Eq (11), residual endmember RRe can be represented as:

RRe ¼ Ri �
rmaxXn

j¼1

rj

�Rmax ð12Þ

A series of experiments indicated that as the selected endmember spectrum vectors are non-
orthogonal, the identifying procedure may encounter end when RRe meet the terminal condi-
tions even after one iteration. So, we added an adjustment coefficient η and adjusted Eq (12)
into the following pattern:

RRe ¼ Ri � Z� rmaxXn

j¼1

rj

�Rmax ð13Þ

where η ranges from 0 to 1 and to some extent it influences the number of endmembers n with-
in each pixel: when η is too large, the identifying procedure may encounter with just a few
times of iteration of a pixel, while if η is too small, all endmembers will participate in the calcu-
lation and calculation of spectrum response value will become meaningless. According to
many experiments, we demonstrated that 0.35 and 0.65 would be the appropriate values of
η for Landsat TM images and HJ-1B images respectively.

(3) Replacing the Ri in Eq (8) with RRe and conducting iteration on Eq (7) to Eq (13), the it-
eration will stop when a component of RRe becomes negative or there is only a small variation
of ΔR (Eq (14)) and then the number of endmembers (n) in the pixel and corresponding end-
member spectrum can be determined.

DR ¼ Rkþ1
Re �Rk

Re ð14Þ

whereRkþ1
Re andRk

Re are respectively the residual pixel spectrum after iterations of k+1 times
and k times.

Fractional Vegetation Cover Estimation
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With above method, the number of endmembers in each pixel and corresponding endmem-
ber spectrum vectors can be determined. Together with FCLSMM, the content of every compo-
nent of each pixel in an image can be obtained.

Fractional vegetation cover estimation. We unmixed the mixed pixels of TM image and
HJ-1B image respectively with LSMM and SELSMM and obtained the fractional vegetation
cover in study site. To compare the estimated results based on different models and images fa-
cilitate, the fractional vegetation cover is classified into six categories, namely 0.0~0.2, 0.2~0.4,
0.4~0.6, 0.6~0.8, 0.8~1.0 and non-vegetation (Fig 3). We calculated the area of each category
and obtained their percentages of the total area in study area (Table 1). Fig 3 shows that in
study site, the region with fractional vegetation cover ranging from 0.0 to 0.2 is mostly in loess
covered terrain with high altitude while the region with fractional vegetation cover ranging
from 0.2 to 0.4 is the widest, which matches with the actual vegetation coverage situation in the
study site. The region with fractional vegetation cover ranging from 0.4 to 0.6 distributed in the
plain area along the river is mostly covered by farmland vegetation and artificial shrub, where

Fig 3. Estimation results of fractional vegetation cover. ((a) fractional vegetation cover estimated with LSMM based on TM image; (b) fractional
vegetation cover estimated with SELSMM based on TM image; (c) fractional vegetation cover with LSMM based on HJ-1B image; (4) fractional vegetation
cover SELSMM based on HJ-1B image.)

doi:10.1371/journal.pone.0124608.g003
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the fractional vegetation cover is high. There is little region with fractional vegetation cover
larger than 0.8. Region of non-vegetation is mainly water area such as rivers, lakes, reservoirs,
etc. and area with impervious surface such as mines, cities, etc.

The accuracy of fractional vegetation cover estimated by models was assessed through the
field survey data. The size of random samples for collection of field measured coverage data is
30×30m2 to match the spatial scale of field survey data to the spatial resolution of images. We
extracted the estimated coverage corresponding to the spatial position of field survey data to
conducted linear regression analysis with measured coverage data. The result shows that all op-
timal regression equations pass t-test of 0.05, which meet the statistical demand (p<0.05) with
a significant correlation between estimated and field coverage data (Table 2). The samples do
not show clear segregation by vegetation and converge to the 1:1 straight line (Fig 4). There-
fore, fractional vegetation cover in study site can be extracted with LSMM and SELSMM based
on TM image and HJ-1B image. For the unmixing results of a certain model, the overall accura-
cy of pixel unmixing based on TM image is higher than the results based on HJ-1B image. The
RMSEs of the former are smaller than the latter; In the linear regression models which are built
between the fractional vegetation cover estimated with a certain remote sensing model and
field measured coverage, the R2 of the estimation result based on TM image is larger than that
based on HJ-1B image.

To compare the difference between the estimated coverage and measured coverage, we se-
lected root mean square error (RMSE) criterion and coefficient of determination (R2) to evalu-
ate estimation accuracy and the results are shown in Table 2. RMSE is used to assess the overall
accuracy of mixture models and the coefficient of determination reflects the fitting degree

Table 1. Proportions of the area of different fractional vegetation cover categories which is estimated based on different models and different
images.

Category Proportion (P, %)

LSMMTM SELSMMTM LSMMHJ-1B SELSMMHJ-1B

0.0–0.2 49.21 30.71 15.05 9.29

0.2–0.4 49.10 62.78 71.54 76.46

0.4–0.6 1.55 3.35 12.23 13.14

0.6–0.8 0.13 0.22 0.81 0.79

0.8–1.0 0.01 0.01 0.08 0.15

non-vegetation 0.00 2.94 0.29 0.15

The proportions listed in the table are the proportions of the area of different fractional vegetation cover categories in the total area of the study area.

LSMMTM, SELSMMTM, LSMMHJ-1B and SELSMMHJ-1B respectively indicate LSMM based on TM image, SELSMM based on TM image, LSMM based on

HJ-1B image and SELSMM based on HJ-1B image.

doi:10.1371/journal.pone.0124608.t001

Table 2. Accuracy of the fractional vegetation cover estimated with different models based on differ-
ent images.

Images Models Accuracy

RMSE R2 P

TM image LSMM 0.052 0.531 0.000

SELSMM 0.044 0.668 0.000

HJ-1B image LSMM 0.082 0.336 0.001

SELSMM 0.077 0.342 0.001

doi:10.1371/journal.pone.0124608.t002
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between estimated and field survey data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðf 0i � fiÞ2
s

ð15Þ

R2 ¼

XN
i¼1

ðf 0i � �f Þ
XN
i¼1

ðfi � �f Þ2
ð16Þ

where f 0i is the fractional vegetation cover estimated with models and fi is the corresponding

measured coverage; �f is the average value of estimated fractional vegetation cover; N is the
number of samples for accuracy assessment.

Fig 4. Relationship between estimated fractional vegetation cover with models and field survey data. ((a) result of linear regression analysis between
vegetation coverage which is estimated with LSMM based on TM image and measured coverage; (b) result of linear regression analysis between vegetation
coverage which is estimated with SELSMM based on TM image and measured coverage; (c) result of linear regression analysis between vegetation
coverage which is estimated with LSMM based on HJ-1B image and measured coverage; (d) result of linear regression analysis between vegetation
coverage which is estimated with SELSMM based on HJ-1B image and measured coverage.)

doi:10.1371/journal.pone.0124608.g004
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Discussion

Comparison of Fractional Vegetation Cover Estimated with LSMM and
SELSMM
Based on the fractional vegetation cover estimated with the two models and TM image and HJ-
1B image, we get the area proportions of different fractional vegetation cover categories
(Table 1). For TM image and HJ-1B image, the regions with the estimated vegetation coverage
from 0.2 to 0.4 occupies the largest area proportion (except for the coverage estimated with
LSMM based on TM image), which matches to the result of field survey. For the same kind of
images: (1) the area proportion of the regions with fractional vegetation cover ranging from 0.0
to 0.2 estimated with LSMM is larger than that estimated with SELSMM; (2) however, opposite
result is achieved for the area proportions of the regions with vegetation coverage in the ranges
of 0.2~0.4, 0.4~0.6 and 0.8~1.0, that is to say the fractional vegetation cover estimated with
SELSMM enjoys a larger proportion of area in above ranges. LSMM for all pixels with the same
ingredients endmember performs spectral decomposition, while SELSMM for each pixel using
different components of endmember, namely endmember composition changes with compo-
nents of pixel and a corresponding change in the number of endmember thus effectively im-
prove the estimation accuracy.

Comparison of the estimation accuracy of the two models shows that the RMSE of the esti-
mation result of LSMM is larger than that of SELSMM, both of which are smaller than 0.100.
Concerning unmixing result of a certain kind of images, the overall accuracy of LSMM in mixed
pixel unmixing is smaller than that of SELSMM, with RMSE-values of 0.052(LSMM/TM), 0.044
(SELSMM/TM), 0.082(LSMM/HJ-1B), 0.077(SELSMM/HJ-1B). For R2—values of the two
kinds of images, the estimation result of LSMM has a smaller R2 (0.531 for LSMM based on TM
image, 0.668 for SELSMM based on TM image, 0.336 for LSMM based on HJ-1B image, 0.342
for SELSMM based on HJ-1B image), which indicates that comparing with the estimation result
of LSMM, there is a higher correlation between the fractional vegetation cover estimated with
SELSMM and field measured coverage. On the whole, in the study site, the fractional vegetation
cover estimated with SELSMM is superior to the result estimated with LSMM.

Comparison of Fractional Vegetation Coverage Estimated Based on TM
Image and HJ-1B Image
From Table 1, we derive the area proportions of different fractional vegetation cover categories
based on TM image and HJ-1B image. For the fractional vegetation cover estimated with the
same model: (1) the area proportion of regions with fractional vegetation cover between 0.0
and 0.2 which is estimated based on TM image is smaller than that estimated based on HJ-1B
image; (2) An opposite result is achieved for the area proportion of regions with fractional veg-
etation cover larger than 0.2, that is to say the fractional vegetation cover estimated based on
HJ-1B image occupies a larger proportion of area in above ranges.

Comparison of the estimation accuracy of the two kinds of images shows that (Table 2):
There is a higher correlation between the vegetation coverage obtained from spectral unmixing
models based on TM image and field measured coverage comparing to what obtained based on
HJ-1B image. Therefore, in the study site, the fractional vegetation cover obtained by spectral
unmixing models based on TM image is more accurate.

Conclusions
Moderate resolution remote sensing images, such as Landsat TM and HJ-1B, represent an at-
tractive source of information for estimating the fractional vegetation cover in arid and semi-
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arid regions. LSMM is widely used in various studies. In this study, a new SELSMM has been
put forward, which uses reference endmembers of each pixel in an image to enhance the
unmixing accuracy. With Landsat TM image and HJ-1B image as data sources, we unmixed
the mixed pixels respectively with LSMM and SELSMM and obtained the fractional vegetation
cover within area of Huangfuchuan watershed. In addition, we verified the estimation accuracy
of the two models with field measured data of the same period and conducted comparative
analysis. The results indicate that the estimation result of SELSMM based on TM image enjoys
the highest accuracy while the estimation result of LSMM based on HJ-1B image enjoys the
lowest accuracy. Generally, the estimation results of SELSMM are more accurate than that of
LSMM. Additionally, TM image is more suitable for mixed pixel unmixing. As there is compar-
atively less spectral information in HJ-1B image, it is difficult to unmix pixel with models
based on such images very accurately with the same spatial resolution.

For comparison of LSMM and SELSMM, choosing a universal set of reference endmembers
that will be required for spectral mixture analysis, is often not feasible. The algorithm of selec-
tive endmember can dynamically define the actual number of endmembers for spectral unmix-
ing according to the spectra information in each pixel. This method possibly eliminated the
adverse impacts by excluding irrelated endmembers, consequently, estimation of fractional
vegetation cover in study site will be more accurate. In this study, processing is conducted on
the response value between reference endmembers spectrum and actual pixel spectrum and
then the normalized response value is taken as the contribution value of reference endmembers
to the pixel. In addition, in order to determine the number of endmembers and endmember
spectrum for unmixing mixed pixels, an adjustment coefficient is introduced. The accuracy of
linear spectral unmixing can be enhanced to some extents by this method. Nonetheless, there
are still some problems to be resolved. For example, whether it is reasonable to conduct spectral
unmixing with the same set of average endmember spectrum in the whole area and whether
the identification of endmembers which are actually comprised in each mixed pixel will be
influenced in this method.
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