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Abstract

There is an increasing interest in unveiling the dynamics of parasite infection. Understand-
ing the interaction patterns, and determinants of host-parasite association contributes to fill-
ing knowledge gaps in both community and disease ecology. Despite being targeted as a
relevant group for conservation efforts, determinants of the association of amphibians and
their parasites in broad scales are poorly understood. Here we describe parasite biodiver-
sity in South American amphibians, testing the influence of host body size and geographic
range in helminth parasites species richness (PSR). We also test whether parasite diversity
is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most
common anuran parasites. Host-parasite network has a nested pattern, with specialist hel-
minth taxa generally associated with hosts that harbour the richest parasite faunas. Host
size is positively correlated with helminth fauna richness, but we found no support for the
association of host geographic range and PSR. These results remained consistent after
correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no
association between host and parasite diversity, indicating that more diversified anuran
clades not necessarily support higher parasite diversity. Overall, considering both the struc-
ture and the determinants of PRS in anurans, we conclude that specialist parasites are
more likely to be associated with large anurans, which are the ones harbouring higher PSR,
and that the lack of association of PSR with hosts’ clade diversification suggests it is
strongly influenced by ecological and contemporary constrains.

Introduction

What determines the number of different species in a given habitat? The search for general
laws remains a core issue in community ecology [1]. Parasite ecology is no exception, and
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parasitologists have dedicated great effort to unveil the laws structuring parasite assemblage
[2-5]. By observing how some host species are associated with many parasites while others are
not, to assume parasite species richness as a host trait seems a sensible pathway in this pursuit.

One of the main theoretical basis for the study of parasite species richness is the theory of
island biogeography. Because parasite communities are formed by colonization and extinc-
tion process just like other communities, and because of the insular nature of hosts as habi-
tats, the theory has become popular and influential in parasite community ecology. In this
scenario, the rates of parasite colonization and extinction would vary according to features of
the hosts [6].

In particular, the body size of the host species is a good potential predictor of parasite spe-
cies richness (PSR). Large-bodied hosts may provide more space and other resources, and pos-
sibly a broader diversity of niches for parasites. Larger hosts live longer, representing less
ephemeral habitats than small-bodied species. Thus, larger hosts also have longer exposure to
parasites [3]. Similarly, a wider geographical range of the host may result in encounter with
and colonization by a greater number of parasite species. Host species ranging over vast areas
will overlap with the geographical distribution of several other host species, creating numerous
opportunities for host switching [5]. However, the validity of host body size and geographic
range as determinants of PSR has been frequently questioned. Unlike islands, hosts can inherit
parasites from their ancestors, making it crucial to consider the effect of autocorrelation in
comparative analysis across host species [6]. When such corrections are made, the effect of
host size and range might lose strength or statistical significance [3, 7].

More recently, with the advance of phylogenetic comparative methods, to consider the evo-
lutionary history of host species as a potential driver of parasite diversity has become increas-
ingly important [8]. Host species vary in their evolutionary time of exposure for acquiring and
sharing parasites, and therefore undergo varying co-evolutionary constrains. Furthermore, it
has been suggested that not only the richness of parasite species is related to the species rich-
ness in host clades, but also that parasites could be potential drivers of host clades diversifica-
tion through strong selection pressure [9].

A broad view, including ecological and evolutionary mechanisms is needed to understand
parasite biodiversity, which can be studied at several scales. As defined by Poulin and Morand
[6], “the parasite fauna represent the highest hierarchical level of parasite assemblages; it is
composed by all parasite species reported for a given host. The parasite faunas are artificial
rather than biological entities, but might be the most relevant scale for macroecological stud-
ies”. Here, we investigate the influence of host features relevant to helminth parasite fauna rich-
ness in South American amphibians.

Amphibians are very interesting models to study parasite diversity, they comprise a diverse
group in terms of taxonomy and life history strategies. Moreover, South America is one of the
world's hotspots of amphibian biodiversity and harbours around 2,599 species [10]. Nonethe-
less, when we think about quantitative measures or ecological approaches to understand para-
site biodiversity, amphibians are the least studied vertebrate group [11, 12]. Here, we use a
dataset of published reports of helminth parasites of South American amphibians to: (i)
describe parasite biodiversity across hosts linages; (ii) access the nestedness of host-parasite
interaction; (iii) test the influence of host body size and geographic range on PSR, correcting
the effect of uneven sampling effort and phylogenetic correlation among the hosts; (iv) estimate
the amount of sampling effort required to describe amphibian PSR, and how PSR is expected
to change with host body size; (v) test if helminth PSR is related to the time of diversification
and evolutionary distinctness (contribution of each species to phylogenetic diversity) of South
American anurans.
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Materials and Methods

We compiled data on host-parasite interactions from a recent list of helminth parasites of
South American amphibians [13]. Two different types of studies constitute this list, the ones
focusing on the parasite species (where the known hosts are reported for each parasite), and
the ones that focus on particular hosts (all parasites of these hosts are reported). We considered
the number of published parasite reports per host our measure of study effort. Only reports
that identified host and helminth to species were considered. Because of the shortage in data
on other amphibian orders, analyses were carried only with anuran hosts. Data on anurans
body size (mean snout vent length) was obtained from papers, field guides and museum assess-
ments. Information on anurans geographic range was compiled from Global Amphibian
Assessment database (GAA) [14].

We searched for patterns in species association by evaluating the degree of nestedness in the
interaction anurans and their parasites. We adopted the NODF metric [15], and assessed the
randomness of matrix nestedness by the analysis of the row-column null model Ce [16]. The
calculation of the NODF metric and the simulation of the null model (1000 randomizations)
were calculated using the program ANINHADO [16]. All the subsequent analyses were carried
outin R 2.14.1 [17]. Host-parasite network is represented with a graph constructed with the
package “igraph” [18].

We used the Pearson’s correlation test to access associations among the variables in ques-
tion (study effort, host body size and host geographic rage). To test our main hypothesis, we
constructed a non-linear model assuming host size and geographic range as determinants of
amphibian PSR. We removed the anuran Leptodactylus latrans from analysis because it has
been a complex of several cryptic species [10, 19, 20]. It is recognized that the effort dedicated
in sampling hosts will determine how well we know parasite diversity. Very frequently, the
measure of how intensely hosts have been studied is the best predictor of PSR, making the role
of ecological variables, very difficult to detect [6]. Therefore we also considered study effort a
determinant of PSR. Nonlinear least squares models relax the requirement of linearity. Then,
we first considered an exponential relationship between study effort and PRS, calculated as a
Holling type III function [21]. This S-shaped curve is quadratic near the origin, but different
from a linear model, it will eventually reach an asymptote. The Holling type III function was
calculated as:

ax?

f(x) i (1)

where f{x) is the number of parasites per host, x is the number of studies per host, a and b are
the constants. Here, a represents the greatest PRS a host can have—the asymptote, and b is the
number of studies needed to reach it [21]. However, we also expect the PSR to have an expo-
nential relationship with host’s body size and geographic range (as in a Possion regression).
Thus, we have:

a= ec+dy+ez (2)
where c is the intercept, y is host body size, z is host geographic range, and d and e are the
respective coefficients. Combining Eqs (1) and (2) we have:

ec+dy+ez xQ

f&) =F

We adjusted this model using the Gauss-Newton algorithm in the “als” function in R.
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Another important assumption when making a comparative test is that any values for
related species are not truly independent, and treating them as such may lead to pseudoreplica-
tion and increased chance of Type I error [2]. Because we consider PSR a host trait, it is neces-
sary to consider that such trait could be inherited from a common ancestor. Therefore, we
tested our main hypothesis with an alternative model, a comparative analysis using phyloge-
netic generalized least squares (PGLS) [22]. The phylogenetic correlation matrix, expects vari-
ances and covariances of a continuous trait assuming it evolved under a Brownian model. In
the PGLS we first excluded the effect of study effort by calculating a nls with study effort as the
predictor variable and PSR as the response variable (Eq 1). We then used the residuals of this
nls model as the response variable in the PGLS, and assumed it is determined, additively, by
anurans’ body size and geographic range. The correlation among hosts was calculated accord-
ing to the phylogeny of Amphibia proposed by Pyron and Wiens [23]. We removed all
branches of the species that were not in our database of host-parasite interaction. Thus, for the
PGLS analysis we only used host-parasite interactions for 118 anuran species, which are
included in amphibian’s phylogeny [23]. This analysis were conduced with “ape” package [24].

Next, with the same set of data used in the PGLS, we tested the effect of hosts’ evolutionary
history in parasite diversity. We first calculated the time of divergence of each species with the
function “sp.ages” provided by M. Pie (pers. com.). We also calculated the evolutionary dis-
tinctness (contribution of each species to phylogenetic diversity) with the function “ed.calc” of
the “caper” package [25] in R. We then tested for the relationship of these two metrics and PSR
using the residuals of the nls model as the response variable in a simple linear model.

Results

Parasite diversity in anurans

We compiled data of 283 helminth parasites in 180 anuran species, but only 225 helminths and
156 anurans remained after excluding non-specific reports. Nineteen host families are included.
Bufonidae, Hylidae and Leptodactylidae are the most representative and account together with
almost 60% of the anuran species studied for helminth parasites in South America. Moreover,
these are the only host families associated with all helminth major groups (Fig 1).

We found helminths of the phyla Acanthocephala (two families), Platyhelminthes (two
families of Cestoda, one family of Monogenea and of 19 families of Trematoda) and Nematoda
(24 families). The most common helminths are nematodes, which occur in practically all host
families. Parasites within this group were able to colonize all hosts lineages. Gastrointestinal
roundworms of the families Cosmocercidae, Kathlaniidae, Molineidae, Physalopteridae, and
lungworms of Rhabdiasidae are the most reported helminths. Trematodes are the second most
diverse parasite group and occur in most anuran families, but are more linked to clades of
aquatic anurans, such as Lithobates and Pseudis species (Fig 2). Acanthocephalans, cestodes
and monogeneans are less common and more restricted to few anuran species (Fig 2). It is also
interesting to note that parasites in groups with fewer species, such as acanthocephalans, ces-
todes and monogeneans, generally occurred within hosts also parasitized by nematodes and
trematodes (Figs 1 and 2). We then tested and found a nested pattern in host-parasite network
(NODF = 4.46, P > 0.01), indicating that specialist parasites are more commonly found in
hosts with high PSR.

On average, helminth host range was 3.2 (4.7, min: 1, max: 34). Out of the 225 helminth
species, 113 were restricted to a single host, but the degree of host specificity (host range here)
seemed to be not random among helminth taxa. Indeed, all monogeneans are specialists, and
57% of the parasites with a host range of 10 or more are nematodes belonging to the same
superfamily (Cosmocercoidea) (Fig 2).
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Fig 1. Interacting network of South American anuran species and helminth families. Anuran phylogeny is adapted from [23].

doi:10.1371/journal.pone.0140577.9001

Determinants of parasite richness

The predictor variables we considered as determinants of helminth PSR in anurans—host size,
geographic range and study effort are related: large anurans are, in general, both more studied
(r=0.44, p > 0.01) and widely distributed (r = 0.17, p = 0.03). Hosts with wider geographic dis-
tribution are also more studied (r = 0.22, p > 0.01) (Fig 3). The nonlinear least square model
showed that, as expected, study effort is strongly related to PSR (Table 1). The nls model
showed that an average of four studies is needed to reveal 50% of the PSR expected for an
anuran host (Table 1). Although, it is important to remember that our dataset, and therefore
our predictions, are based in all kinds of studies, including parasite taxonomic reports. Even so,
host size is too a good predictor of PSR, and the larger the anuran the richer its parasite fauna
is expected to be (Fig 4). Host range, on the other hand, was not significantly related to PSR
(Table 1), indicating that larger geographic range of the host does not imply in richer parasite
fauna in anurans.
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Fig 2. Barplot of helminth parasite species reported to different anuran families. White bars show the number of anuran species surveyed, color bars

show the amount (log transformed) of helminth parasites reported for each host family.

doi:10.1371/journal.pone.0140577.9002

Considering the largest geographic range (once it is irrelevant), we can estimate how hel-
minth PSR can increase in response to stronger study efforts (Fig 4). Similarly, we can assume
the greatest study effort (26 studies) and estimate mean parasite richness expected for anurans
of different body lengths from our dataset (Table 2).

The PGLS led us to the same conclusions as the nls. Host size remains significant and host
geographic range statistically irrelevant, indicating that the results are consistent after correct-
ing for phylogenetic correlation among hosts (Table 3). Last, we found no association between
helminth PSR and host diversification time (F = 0.5582, p = 0.457) or host evolutionary dis-

tinctness (F = 0.3896, p = 0.5339).
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Table 1. Results from the nls model for the relationship between study effort, host size and geographic range and parasite species richness in

anurans from South America.

Variable Estimate Standard Error t Pr (> |t])
Intercept 1.1319159 0.8338761 12.809 0.177
Study effort 4.5727182 0.3569919 12.809 < 0.0001
Body size 0.0087551 0.0006565 13.337 < 0.0001
Geographic range 0.1147532 0.0855097 1.342 0.182
doi:10.1371/journal.pone.0140577.t1001
7/12
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Discussion

Parasite species account for a great proportion of the planet’s biodiversity, and unveiling this
“hidden” diversity is important to a better understand of ecosystem functioning [26]. Among
all parasite species, 50.2% are restricted to a single host. Nonetheless, most studies with
amphibian helminth assemblages agree about the lack of host specificity often found among
these parasites [11, 12, 27, 28]. Data on South American anuran parasites indicate that the low
host specificity is quite common, but seems to be restricted to some helminth taxa (Fig 2).
Moreover, our description of the diversity of helminth parasites of South American anurans
suggests that the distribution of major parasite taxonomic groups among host clades are not
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Table 2. Estimates of helminth species richness to South American anurans of different body sizes.

Anuran body length (mm) Expected helminth parasite species richness
30 12.3
50 14.6
70 17.4
90 20.8
110 248
130 29.5
150 35.2
170 49.9
190 59.4
210 50.1

doi:10.1371/journal.pone.0140577.t002

random, but largely influenced by host ecology. Further analyses might reveal strong associa-
tions between hosts’ life history (i.e. diet and habit) and parasite transmission mode (i.e tro-
phic, direct in aquatic habitat, direct in terrestrial habitat).

A good amount of information (23%) on host-parasite interaction was lost after excluding
non-specific reports. The lack of taxonomic accuracy is very common when studying inverte-
brates [29], including the parasitic ones [30]. More specifically, anurans are hosts to a great
diversity of larval helminths [13]. This is probably because of the position such vertebrates
occupy in ecosystem foodwebs [31, 32]. Because amphibians are prey to several reptile, bird
and mammal species, they can act as intermediate or paratenic hosts in the life cycle of several
parasite taxa. The precise identification of helminths in such cases is, generally, only possible
through molecular biology, which has just recently become used more widely by parasitologists
[31, 33]. Therefore, despite the study of parasite diversity having come to a point where there is
an amount of data allowing analysis to uncover general patterns, an appealing request for taxo-
nomic studies remains, especially in the tropics [26, 31, 34].

The distribution of specialist parasites amongst hosts was not random, exhibiting a nested
pattern. In nested networks, specialist species are more likely to occur in communities with
greater species richness [35, 36]. Such structural pattern may decrease competition and
increase species coexistence, and contribute to network robustness [37]. The low specificity
observed in a representative fraction of the sample may have contributed to the nested pattern
of interaction, once low specificity is usually associated with high levels of nestedness and low
levels of modularity [38-40].

Examining the determinants of parasite species richness, our results confirmed the strong
influence of study effort. The most studied hosts (toads, tree-frogs, and frogs of Bufonidae,
Hylidae and Leptodactylidae, respectively) had by far the richest parasite faunas. Some anuran

Table 3. Results from the phylogenetic generalized least squares (PGLS) for the relationship between study effort, host size, geographic range
and parasite species richness in anurans from South America. Model fit parameters are described in the footnote.

Variable Estimate Standart Error t Pr (> |t])
Intercept 8.9501 11.390 0.7857 0.4339
Body size 0.0543 0.0187 2.8926 0.0047
Geographic range -0.9743 0.8875 -1.0977 0.2750
AIC = 667.9203, BIC = 678.3007, logLik = -329.9601.
doi:10.1371/journal.pone.0140577.t003
PLOS ONE | DOI:10.1371/journal.pone.0140577 October 16,2015 9/12
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families that seem to have depauperate parasite faunas are, actually, poorly studied. We esti-
mated that an average of four studies is needed to describe 50% of the parasite fauna richness
in anurans. Only 22% of South American anurans reached this. However, our dataset includes
complete surveys of helminth communities in host populations as well as punctual descriptions
and taxonomic reports of helminth species. Therefore, hosts may reach higher PSR with less
study effort if they are more targeted of complete parasite surveys. Nonetheless, data on South
American anurans (Fig 4) indicate that PSR is still underestimated for most host species.

We found a positive correlation of parasite species richness and host body size for a large
dataset of anuran hosts. This result remained consistent after correcting for confounding
effects of uneven study effort and hosts phylogenetic correlation. Poulin and Morand [6] and
Bush et al. [5] state that host body size play a substantial role in the diversification of some par-
asite fauna, but agreed this importance was far from being universal. Kamiya et al. [41] later
assume, based on a large interspecific dataset, that the relationship between host body size and
PSR is in fact universal across host and parasite taxa, and across levels or scales of study. The
underlying mechanism could be that large-bodied hosts may be easier to colonize because of
the greater amounts of food they ingest, their large surface area, greater vagility and niche avail-
ability [4]. Bush et al. [5], Poulin and Morand [6], and Kamiya et al. [41] all sum a good
amount of evidence of the positive correlation between PSR and body size for a variety of host
taxa, but none of them report data on amphibian hosts. Here we add another piece of evidence,
for a poorly studied group of hosts, of the role of host size in structuring parasite assemblages.

Different from expected, anurans that are widely distributed geographically do not have, neces-
sarily, richer parasite faunas. Besides promoting geographic overlap with more host species, host
range often correlates positively to species abundance and niche breadth [42]. All that could
potentially provide more opportunities for colonization of parasites trophically and/or directly
transmitted. Indeed, host geographic range is positively related to PSR for fishes, birds and mam-
mals (see the review by Poulin and Morand [6]), and has also been pointed as a universal predictor
of PSR [41]. However, we found no effect of host geographic range in determining PSR of South
American anurans, whatever the analysis corrected or not for the influence of host’s phylogeny.

Parasite diversity did not correlate to the diversification of hosts’ clades. Nunn et al. [9]
observed that more rapidly diversifying primate clades had greater parasite diversity, and sug-
gested that parasite diversity may drive hosts’ diversification. Our results do not indicate that
long evolutionary time of exposure imply in greater parasite diversity, and also that helminth
parasites might not exert strong selective pressure to drive divergence among anuran popula-
tions. Furthermore, there are other biogeographical and contemporary constrains that are
influential to parasite diversity. For instance, host species occurring close to the equatorial
region might have greater parasite diversity [8]. Additionally, overall free-living diversity,
which includes greater availability of potential intermediate host species, has been proven driv-
ers of parasite diversity [43-45].

Opverall, we found that nematodes are the most common anuran parasites, and specialist
helminth taxa are generally associated with larger hosts that harbour the richest parasite fau-
nas. Anurans body size determines PSR, the larger the anuran the richer the parasite fauna.
Considering both the structure and the determinants of PRS in anurans, specialist parasites are
more likely to be associated with large hosts.
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