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Regional estimates of the transient climate
response to cumulative CO2 emissions
Martin Leduc1,2*, H. DamonMatthews1* and Ramón de Elía2

The Transient Climate Response to cumulative carbon
Emissions (TCRE) measures the response of global temper-
atures to cumulative CO2 emissions1–4. Although the TCRE
is a global quantity, climate impacts manifest predominantly
in response to local climate changes. Here we quantify
the link between CO2 emissions and regional temperature
change, showing that regional temperatures also respond
approximately linearly to cumulative CO2 emissions. Using
an ensemble of twelve Earth system models, we present a
novel application of pattern scaling5,6 to define the regional
pattern of temperature change per emission of CO2. Ensemble
mean regional TCRE values range from less than 1 ◦C per
TtC for some ocean regions, to more than 5 ◦C per TtC in
the Arctic, with a pattern of higher values over land and at
high northern latitudes. We find also that high-latitude ocean
regions deviate more strongly from linearity as compared to
land and lower-latitude oceans. This suggests that ice-albedo
and ocean circulation feedbacks are important contributors
to the overall negative deviation from linearity of the global
temperature response to high levels of cumulative emissions.
The strong linearity of the regional climate response over
most land regions provides a robust way to quantitatively link
anthropogenic CO2 emissions to local-scale climate impacts.

The TCRE is defined as the ratio of global surface air
temperature change to cumulative CO2 emissions, accounting for
both physical climate processes, as well as the dynamics of land
and ocean carbon sinks1,3,4. The TCRE has been shown to be
approximately constant in time and independent of the emission
pathway, reflecting a near-linear relationship between cumulative
CO2 emissions and global temperature change7–9 (Supplementary
Fig. 1a). Furthermore, the spatial pattern of temperature change per
degree of global warming (Supplementary Fig. 1b) has also been
shown to remain approximately constant with increasing global
mean temperature increases5,6,10,11. Therefore, there is considerable
potential and utility in assessing the regional temperature response
to cumulative CO2 emissions, combining the widely used pattern-
scaling approach with the methodology used to calculate the
global TCRE.

Here, we quantify the spatial pattern of temperature change
per emission of CO2 (Fig. 1a; see Methods). The spatial pattern
of regional TCRE (hereafter referred to as RTCRE) values is
characterized by high contrasts between land and ocean, with
values generally smaller than 1.5 ◦C per TtC over low- and mid-
latitude ocean regions, and values over land ranging from 1.5 to
4 ◦C per TtC. The highest RTCRE values occur over the Arctic
region (>4.5 ◦C per TtC), with a maximum value near the Barents
and Kara seas (>5.5 ◦C per TtC). Average land (Fig. 1b) and
ocean (Fig. 1c) temperatures both show a near-linear response

to cumulative CO2 emissions; we estimate a land-only TCRE of
2.2±0.5 ◦C per TtC, compared to 1.4± 0.3 ◦C for the ocean-only
TCRE. For this ensemble of 12 CMIP5 models, the global TCRE is
1.7±0.4 ◦C per TtC (see Methods and Supplementary Fig. 1a).

The near-linearity seen in Fig. 1b,c also holds for smaller
regions. Figure 2 shows the time series of the regional temperature
response to cumulative CO2 emissions over the 21 Giorgi land
regions12 (see Supplementary Fig. 2 for the location of these regions).
These regional responses are generally highly linear, and most also
show a relatively small inter-model range compared to the mean
response. The clearest examples are the regions of Central America
(1.8±0.4 ◦C per TtC; panel d), Eastern Africa (1.9±0.4 ◦C per TtC;
panel m) and Southeast Asia (1.5± 0.3 ◦C per TtC; panel p). A
few regions, however, show a relatively large spread across model
responses, notably Alaska (3.6±1.4 ◦Cper TtC; panel h), Greenland
(3.1±0.9 ◦C per TtC; panel i) and North Asia (3.1±0.9 ◦C per TtC;
panel u).

The spatial pattern of the inter-model spread (IMS) of RTCRE
values (shown in Fig. 3a as one standard deviation of the ensemble)
shows generally higher uncertainty at high latitudes, compared
to mid- and low-latitude regions. The largest uncertainty in the
RTCRE pattern occurs over the Arctic Ocean (>±1.8 ◦C per TtC).
The uncertainty is also large over Hudson Bay, Alaska, Greenland
Sea, the Sea of Okhotsk (>±1.4 ◦C per TtC) and the Southern
Ocean (>±0.8 ◦C per TtC). Most land areas andmid-latitude ocean
regions are therefore associatedwith a small inter-model spread, and
also carry an RTCRE estimate that is greater than three times the
uncertainty range (see Supplementary Fig. 3).

In general, the inter-model uncertainty values shown here
include a contribution fromnatural variability, aswell as frommodel
differences in climate and carbon cycle sensitivities to emissions.
With the exception of a few high-latitude regions with higher
natural variability13, the natural variability generally explains a small
fraction of the inter-model spread (Fig. 3b; seeMethods). Therefore,
the primary contributor to the RTCRE spread shown here comes
from model differences in climate and carbon cycle sensitivities.
However, it is also interesting to consider whether these model
differences manifest as a result of differences in the global TCRE
value among models, or model differences in the regional patterns
of temperature change associated with a given global TCRE value
(see Methods). As shown in Fig. 3c, the pattern-based uncertainty
among models dominates at high latitudes and over most land
regions, whereas the RTCRE uncertainty overmid- and low-latitude
oceans is almost entirely explained by model differences in the
global temperature response to cumulative emissions.

As in the case of the global TCRE, the regional temperature
changes shown here are apparently linearly related to cumulative
CO2 emissions. At the global scale, this linearity has been argued
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Figure 1 | The pattern of temperature change per CO2 emission. a, Regional TCRE (RTCRE) ensemble mean values calculated at the time of CO2 doubling
using 20-year average windows. b,c, Overall land (b) and ocean temperature (c) responses to cumulative CO2 emissions for each model and for the
ensemble mean (dashed line). For this ensemble of 12 CMIP5 models, the mean responses are 2.2 ◦C per TtC over land and 1.4 ◦C per TtC for the ocean,
with a uncertainty ranges given as 1 standard deviation.

to occur as a result of the compensation of ocean carbon and heat
uptake14, as well as the balance over time of opposing nonlinear
changes in the strength of carbon sinks and the radiative forcing
from CO2 (ref. 1). Previous analyses of the global TCRE have also
identified a departure from linearity at high levels of cumulative
emissions1,3,4,9, and have argued that this can be explained by
the diminishing effectiveness of CO2 radiative forcing becoming
more prominent than the effect of weakening carbon sinks (and
hence increasing airborne fraction of CO2 emissions) at higher
atmospheric CO2 levels1,9,14. However, close examination of Fig. 2
suggests that there are also differences in the robustness of this linear
assumption among regions. This suggests in turn that regionally
specific climate feedbacks affect the linearity of the RTCRE, and
may also be important contributors to the negative deviation from
linearity evident in the global TCRE.

To quantify the relative linearity of regional temperature
responses to cumulative emissions, we calculated the sumof squared
errors (SSE) for linear and quadratic fits to the temperature-
cumulative emissions relationship (see Methods). The ratio of these
two SSE values (defined here as Q=SSElinear/SSEquadratic) represents
the amount of variability that is unexplained by the linear relative to
the quadratic fit, and therefore represents a measure of the quality
of the linearity assumption for each time series (where a ratio
close to unity indicates that the quadratic model does not improve

the fit to the data, and we should therefore accept the simpler
linear fit). However, it is also the case that the amount of natural
variability in a given time series affects our ability to detect a weak
deviation from linearity. We therefore also calculated the signal-
to-noise ratio (S; see Methods) to represent the effect of natural
variability on the linearity of the regional temperature responses to
cumulative emissions.

The spatial distributions of Q (Fig. 4a) and S (Fig. 4b) values
are therefore together able to identify those regions that deviate the
most from a linear temperature response to emissions. Maximum
Q values (Q= 1.3) occur in the Arctic region (extending over
the Barents and Kara seas), indicating a region of relatively weak
linearity. Ocean regions surrounding Southeast Asia generally show
intermediate Q values (Q= 1.15), and strongly linear regions (Q
near 1) occur over land regions in general, as well as over a large
portions of the oceans. By comparing the patterns in Fig. 4a,b, it is
evident that there is a strong correlation betweenQ and S values over
most of the map, with the notable exceptions of high-latitude ocean
points in the North Atlantic, the Arctic—and to a lesser extent also
in the Southern Ocean. These regions of highQ and low S values are
therefore the regions where the temperature response to emissions
most clearly deviates from a linear relationship.

The effect of this larger negative deviation from linearity over
high-latitude ocean regions can been seen clearly in Fig. 4c, which
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Figure 2 | RTCRE estimates and time series of the regional temperature response to cumulative emissions calculated over 21 land regions. Region
definitions are taken from ref. 12 as shown in Supplementary Fig. 2: Australia (AUS), Amazon Basin (AMZ), Southern South America (SSA), Central
America (CAM), Western North America (WNA), Central North America (CNA), Eastern North America (ENA), Alaska (ALA), Greenland (GRL),
Mediterranean Basin (MED), Northern Europe (NEU), Western Africa (WAF), Eastern Africa (EAF), Southern Africa (SAF), Sahara (SAH), Southeast Asia
(SEA), East Asia (EAS), South Asia (SAS), Central Asia (CAS), Tibet (TIB) and North Asia (NAS).

plots the Q and S values for each grid point (coloured by latitude
from the North (red) to South (blue) poles). From this plot, we
can see first that the vast majority of locations are highly linear,
with Q values less than 1.1 over 86% of all grid points and over
97% of land grid points (characterized by the ‘January ITCZ’ point
marked on the plot). Second, we can see that there is also a general
pattern of increasing Q with increasing S, as represented by the
cloud of points sloping upwards towards the ‘Indonesia’ point;

this relationship therefore reflects a globally consistent negative
deviation from linearity, which becomes easier to detect (increasing
Q) with increasing S values. Third, there is a distinct cloud of mostly
high-latitude locations (including the highlighted ‘Barents Sea’
point) which deviates from the global pattern by exhibiting relatively
high Q values despite their small S values. These grid points are
primarily ocean cells (see Supplementary Fig. 4, as well as Q and
S values calculated for each individual model in Supplementary
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Figure 3 | Characterization of the inter-model spread of RTCRE values.
a, Intermodel spread of RTCRE values (calculated as one standard
deviation), showing considerably higher uncertainty in the high-latitude
climate response to emissions. b, Plot indicating that the contribution of
natural variability to this spread is generally small. c, Plot indicating the
contribution of uncertainty from model di�erences in the pattern of
temperature change (for a given global TCRE value) is large at high
latitudes and over many land areas (suggesting a dominant contribution
from pattern-scaling uncertainty in these locations), and is small over
tropical/mid-latitude oceans (suggesting a dominant contribution from
variation in the global TCRE response among models).

Figs 6–10) that are affected strongly by local nonlinear climate
feedbacks such that the local warming per unit CO2 emission
decreases with time and increasing cumulative emissions.

As can be seen from the spatially averaged land, ocean and
global Q and S values marked on Fig. 4, these areas of locally
decreased linearity are sufficient to decrease the linearity of both
the ocean and global TCRE, relative to the land-only average.
This regional analysis therefore provides some new insight as to
why the global TCRE deviates from linearity at high levels of
cumulative emissions. First, the global correlation between Q and S
is consistent with the effect of the radiative saturation of CO2 forcing
at high CO2 concentrations, which has been evoked previously
to explain the curvature in the global TCRE relationship1,3,4.
However, our analysis demonstrates that regional processes and
feedbacks make an additional contribution to this global trend.
Given the high-latitude location of the regions characterized by
weaker linearity, there are two possible mechanistic explanations
for this negative deviation from linearity. First, a weakening
of ice-albedo feedbacks, as snow and ice cover decreases with
increasing temperature change, would lead to less local warming
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Figure 4 | Characterization of the relative linearity of regional temperature
responses to cumulative emissions. a, The ratio of sum of squared errors
(SSE) for the linear fit (SSElinear) over the quadratic (SSEquadratic) fits (Q) as
a measure of the quality of the linear assumption at each grid point, where
values closer to unity reflect stronger linearity. b, Signal-to-noise ratio (S), a
factor a�ecting how well Q is able to detect deviations from linearity.
c, Combination of Q and S values at each grid point shows which locations
deviate most strongly from the linearity assumption. Here, each circle
represents one grid point, coloured by latitude. Three representative grid
points are denoted with stars, and the spatially averaged land, ocean and
global Q/S values are labelled as4, O and F.

with increasing cumulative emissions. Second, a weakening of
the ocean’s meridional overturning circulation over time would
also slow the rate of warming in this region. Recent research has
highlighted the important role of these high-latitude feedbacks as
drivers of regional climate changes15–18. Our results further suggest
that the changing strength of these regional feedbacks over time
also contribute to the negative deviation of the global TCRE from
linearity at high cumulative emissions.

The regional patterns of RTCRE values that we have presented
here demonstrate that pattern-scaling approaches6,10 can be usefully
extended to calculate regional temperature changes as a function of
cumulative CO2 emissions. Furthermore, we have shown that most
locations show a highly linear temperature response to emissions,
and that this linear assumption is particularly robust over land
regions. Although we have excluded non-CO2 gases from our
analysis, the similarity that had been found previously between
patterns of greenhouse gas and aerosol-induced temperature
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changes19 suggests the potential to apply pattern scaling to calculate
the regional climate response to a broader range of emissions. There
may also be potential to apply this approach to precipitation, given
that annual mean precipitation patterns have been shown to scale
well with global temperature6,20, and that there is also some evidence
of a proportional relationship between global average precipitation
and cumulative CO2 emissions8.

In the most recent IPCC Assessment report, the global TCRE
was defined to be well approximated by a constant value (likely
to be within the range of 0.8–2.5 ◦C per TtC) under conditions
of increasing global temperatures, and up to total emissions of
2000 GtC (ref. 4). On the basis of our analysis here, it seems that
the regional temperature responses to cumulative emissions can
also be well approximated by a set of near-constant RTCRE values.
Our findings therefore represent a clear quantitative link between
CO2 emissions and local climate warming, which provides a novel
mechanismbywhich to attribute local-scale climate impacts directly
to global CO2 emissions.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data and pre-processing. In this study, we used the 1pctCO2 simulations from
twelve CMIP5 Earth system models included in the CMIP5 model archive. This
ensemble includes only the Earth system models (which include a dynamic carbon
cycle) that participated in the CMIP5 1pctCO2 experiment3. In each of these runs,
the atmospheric CO2 concentration was increased at a rate of 1% per year from
pre-industrial levels and simulations were integrated for 140 years up to a
quadrupling of the initial CO2 concentration. The models included in the current
ensemble are BNU-ESM, CanESM2, CESM1-BGC, HadGEM2-ES, INMCM4,
IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-ESM, MPI-ESM-LR,
MPI-ESM-MR and NorESM1-ME. For each of these models, only a single
realization is available in the 1pctCO2 experiment. This ensemble is very similar to
that used by Gillett et al.3, although we did not include three of the 15 models used
in their analysis. The CO2 levels used for the two GFDL-ESMmodel versions (2G
and 2M) were stabilized at 2×CO2 rather than continuing until 4×CO2, which did
not allow the calculation of a 20-year average temperature change centred on
year 70. We also excluded BCC-CSM1-1 because one variable (NBP) needed to
diagnose the cumulative CO2 emissions was not available from the ESGF website.
For the analysis presented here, we interpolated all model results onto a common
grid for analysis purposes (the CanESM2 grid with a resolution of 2.8◦).

From global to regional TCRE. By definition4, the TCRE is the change in surface
air temperature per cumulative CO2 emissions. Here, we define1T (m,x, t) as the
temperature change simulated by themth model in the ensemble, for the spatial
domain x, and calculated over time t . We can then write the global TCRE as:

TCRE(m, t)=
〈1T (m,x, t)〉

E(m, t)
(1)

where the E is the diagnosed value of the model’s cumulative CO2 emissions
(calculated as the sum of the annual changes in the atmospheric CO2 concentration
and the CO2 uptake by ocean and land carbon sinks), and 〈.〉 denotes the global
spatial average. Similarly, the local to global ratio of temperature change (LGRTC),
also known as ‘simple pattern scaling’6, can be written as:

LGRTC(m,x, t)=
1T (m,x, t)
〈1T (m,x, t)〉

(2)

Because TCRE and LGRTC have both been shown to be relatively constant in
time and across emission scenarios, their product should also be characterized by a
similar such constancy. We thus define the regional TCRE (RTCRE) as:

RTCRE(m,x, t)=TCRE(m, t)×LGRTC(m,x, t)=
1T (m,x, t)
E(m, t)

(3)

We calculated all values as the difference between two 20-year average windows
lagged by 70 years. This approach is consistent with previous studies1,3 that
recommended a standard calculation of the TCRE at the time when the
atmospheric CO2 has doubled its initial concentration in a scenario with a 1% CO2

increase per year. We applied these calculations to the spatial temperature fields
from each CMIP5 model, and then calculated the ensemble statistics for the range
of twelve models included in the ensemble. We took the ensemble mean as the best
estimate of the regional TCRE values, and represented the uncertainty range using
one standard deviation of the models’ responses.

Analysis of RTCRE uncertainty. The RTCRE pattern (equation (3)) is affected by
two sources of uncertainty: natural climate variability and structural differences
between models. The ensemble inter-model spread (IMS) of the TCRE pattern
(σ 2

IMS) can thus be written as a sum of variances:

σ 2
IMS=σ

2
mod+σ

2
IV (4)

where σ 2
mod is the model-uncertainty component of the inter-model spread and σ 2

IV
the ensemble mean (denoted by (.)) internal variability (IV).

The availability of a only single realization per model in the 1pctCO2
experiment complicates the calculation of the internal variability component. To
estimate the internal variability, we therefore began by calculating the natural
climate variability (σ 2

1 ) of the detrended annual time series (using a fourth-order
polynomial fit, as done in Hawkins et al.21). We then ‘scaled’ this variance for
20-year average time periods (σ 2

20) using the law of standard error:

σ 2
20=

σ 2
1

N
1+φ
1−φ

(5)

where N represents the number of years for an averaging period and
(1+φ)/(1−φ) is a variance inflation factor that accounts for the effect of lag-1
temporal autocorrelation (φ). Each term in (5) depends implicitly on the spatial
coordinates and the model (m). Assuming that the internal variability of diagnosed
global emissions is sufficiently small to be neglected, the internal variability
affecting the TCRE pattern over a N -year period and for a given model can be
written as:

σ 2
IV=

2σ 2
1

NE2

1+φ
1−φ

where 2σ 2
1 represents the temperature change variance, and E2 allows us to convert

the temperature variability into the units of temperature change per CO2 emission.

Contribution of pattern scaling versus global TCRE uncertainty. The
inter-model spread of the RTCRE pattern (σ 2

IMS) can also be decomposed into the
following variance components: uncertainty arising from variation in the global
TCRE among models and the pattern of warming for a given global TCRE value.
This can be done by writing the spatial pattern of temperature responses for the
mth model as: Xm(x)=Gm+Pm(x), where Gm is the global response and Pm(x) the
pattern deviation response around Gm. The sum of variances is therefore:

σ 2
IMS=σ

2
global+σ

2
pattern (6)

where σ 2
global is the variance of the global TCRE and σ 2

pattern is the variance
contribution from the pattern of temperature changes only. The contribution of
pattern deviations to the IMS can be written as the following ratio:√

σ 2
pattern

σ 2
IMS

(7)

Quantifying deviations from linearity. To characterize the relative linearity of
global and regional temperature responses to cumulative CO2 emissions, we used a
commonly used measure to quantify the error of a fit: the sum of squared errors
(SSE). Given a time series of temperature change (1Ti, for i=1 . . .N ), a linear fit
1T̂=aE+b (where E is the value of cumulative emissions and a and b are the
estimated regression coefficients) has an associated SSE defined as:

SSElinear=

N∑
i

(1Ti−1T̂ (Ei))
2 (8)

Similarly, this equation can be generalized to estimate SSE for a higher-degree
polynomial fit. The ratio (Q) between the ensemble mean SSE for linear and
quadratic fits (SSElinear/SSEquadratic) thus represents the quality of the linear versus
quadratic fit, and can be written also in terms of the coefficient of determination
R2 as:

Q=
SSElinear

SSEquadratic
=

1−R2
linear

1−R2
quadratic

(9)

We interpret Q as the ratio of ‘unexplained variability’ by the linear regression
compared to a higher-degree (quadratic) polynomial. Q therefore represents the
relative quadraticity of a time series. However, the signal-to-noise ratio (S) is also
an important aspect to consider to better discriminate the degree of deviation from
linearity, given that the ability to detect deviations from linearity (using calculated
Q values) increases with decreasing variability in the time series. We thus
define S as

S=
1T√
σ 2
1

(10)

where1T is evaluated at the time of CO2 doubling. The combination of Q and
S values can therefore be used to assess the strength of the global TCRE deviation
from linearity, which is evident from the overall pattern of higher Q values in areas
with less variability (higher S values), and identify regions of stronger deviation
from linearity, which are characterized by high Q values that can be detected
despite relatively high variability (low S values).
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