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Abstract
Widely distributed mobile vehicles wherein various sensing devices and wireless communi-

cation interfaces are installed bring vehicular participatory sensing into practice. However,

the heterogeneity of vehicles in terms of sensing capability and mobility, and the partici-

pants’ expectations on the incentives blackmake the collection of comprehensive sensing

data a challenging task. A sensing data quality-oriented optimal heterogeneous participant

recruitment strategy is proposed in this paper for vehicular participatory sensing. In the pro-

posed strategy, the differences between the sensing data requirements and the collected

sensing data are modeled. An optimization formula is established to model the optimal par-

ticipant recruitment problem, and a participant utility analysis scheme is built based on the

sensing and mobility features of vehicles. Besides, a greedy algorithm is then designed

according to the utility of vehicles to recruit the most efficient vehicles with a limited total

incentive budget. Real trace-driven simulations show that the proposed strategy can collect

85.4% of available sensing data with 34% incentive budget.

1 Introduction
Different from the work mode of traditional wireless sensor networks [1, 2], in a participatory
sensing system, ordinary citizens are recruited to collect and share sensing data from their sur-
rounding environments through their mobile devices [3]. Based on the collected sensing data,
participatory sensing systems are able to provide various novel applications to the public [4],
such as real-time air quality report [5] and road traffic monitoring [6, 7]. An increasing num-
ber of vehicles are being installed with various sensing devices and mobile communication
interfaces. Therefore, an increasing number of mobile vehicles are able to collect and share var-
ious kinds of sensing data for urban environments. The extensive distribution of these vehicles
in urban areas brings vehicular participatory sensing into practice.

A vehicle participatory sensing system is composed of sensing vehicles, wireless networks,
and sensing data centers. Sensing data are collected by sensing vehicles and then transmitted to
a sensing data center via wireless networks. The application of vehicular participatory sensing
to transportation can generate many advantages. First, it can lower the cost of collecting
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sensing data because vehicles are equipped with several sensors. Second, compared with the
single-vehicle sensing system, in the vehicular participatory sensing system, sensing data are
collaboratively collected by multiple vehicles. As a result, the vehicular participatory sensing
system can collect a large amount of comprehensive sensing data. Third, owing to the collabo-
ration between vehicles and sensing data sharing, the vehicular participatory sensing system
can provide many novel applications to the field of transportation and other areas.

Collection and transmission of sensing data consume a considerable amount of vehicle
resources. Furthermore, the uploaded sensing data may leak the private information of the par-
ticipants [8]. As a result, vehicle recruitment and the deployment of the vehicular participatory
sensing system are restricted by resource consumption or privacy disclosure. With regard to the
fact that participating in the collection of sensing data may incur real monetary costs on the part
of the participants (e.g., data traffic fee), Ra et al. [9] pointed out that an incentive mechanism is
necessary for a participatory sensing system to motivate more participants to contribute their
sensing data and maintain the sustainability of the system. Reference [10] shows that individuals
are willing to participate in sensing systems when they are paid as little as 25 cents.

Vehicular participatory sensing systems should thus motivate vehicle drivers to participate
in the collection of sensing data by providing the drivers certain rewards. However, in a specific
vehicular participatory sensing system, the total incentive budget is usually limited. Conse-
quently, the number of vehicles that could be recruited to participate in sensing data collection
is also limited. The quality of the sensing data collected by a vehicular participatory sensing sys-
tem is thus constrained by the total incentive budget provided by the system.

The sensing interfaces of vehicles and the types of sensing data that can be collected by vehi-
cles are different [11] because vehicles are manufactured by different companies with no uni-
form hardware/software standards. Vehicles are driven by different people, and the vehicle
trajectories and expectations of people on the incentives also differ. Therefore, the participants
in a vehicular participatory sensing system are heterogeneous.

The purpose of a participatory sensing system is basically to collect comprehensive sensing
data that encompass all the spatial-temporal dimensions of the target sensing area. The incentive
budget of participatory sensing systems is limited, and as a result, the number of participants
that could be recruited is also limited. The heterogeneity of the participants in sensing interfaces,
the trajectories, and the expectations on the incentives render the collection of comprehensive
sensing data challenging in vehicular participatory sensing systems. Therefore, how to recruit
appropriate participants from candidates to collect satisfactory sensing data for a target area
with a limited incentive budget is a crucial issue in vehicular participatory sensing systems.

To address the abovementioned challenges, a heterogeneous participant recruitment strat-
egy is designed in this study to select a set of participants who can collect desirable sensing data
in both temporal and spatial dimensions under a constrained budget. blackThe major contri-
butions of this study include the following.

• A participant utility analysis scheme is established based on the sensing and mobility features
of the participants. Utility is utilized to evaluate the incentive efficiency of the sensing partici-
pants based on the ratio of their expected data contributions to their incentive requirements.

• A heterogeneous participant selection strategy is designed to recruit participants. The strat-
egy is based on a greedy algorithm that evaluates the participants’ efficiencies according to
their utilities.

The remainder of this paper is organized as follows. Related studies on participatory and
vehicle sensing are reviewed in Section 2. Section 3 presents the vehicular participatory sensing
system model and the construction of the system-requested sensing data models. The optimal
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heterogeneous participant recruitment problem is formulated in Section 4. Section 5 presents
the design of the optimal heterogeneous participant recruitment (HPR) strategy, which consid-
ers the balance between constrained budget and effectiveness of sensing data. The performance
of the proposed strategy is evaluated in Section 6 through real trace-driven simulations. Section
7 provides the conclusions.

2 RelatedWork
Participatory sensing [3], also known as mobile crowd sensing [12, 13] and opportunistic sens-
ing [14], is a promising means to collect comprehensive sensing data in urban areas. A large
number of novel applications [4] based on participatory sensing have been developed in recent
years for environmental protection, road traffic management, medical treatment, and so on.

Comprehensive collection of sensing data is the most important criterion of participatory
sensing systems. Sensing data collected by 85 mobile nodes for two months reveal that people
are more willing to collect sensing data from areas that have a small population [15]. Reverse
auction based dynamic price (RADP) [16] introduced incentive mechanisms to participatory
sensing systems. The cheapest sensing data are utilized to increase the total amount of sensing
data collected by the participants; as a result, the accuracy of sensing data is improved. How-
ever, participants are usually clustered by time and space. Consequently, the collected data are
inhomogeneous in time and space. To collect homogeneous sensing data, greedy budgeted
maximum coverage (GBMC) [17] maximized not only the amount of collected sensing data
but also the coverage of sensing data. ISAM [18] minimized the diversity between collected
data and the forecasted model to improve the quality of sensing data. Unlike RADP, GBMC
and ISAM investigated the homogeneous space distribution of sensing data. However, none of
them considered the time distribution of collected data.

In participatory sensing systems, the crowd mobile participants frequently encounter one
another and are thus provided an opportunity to collaborate and provide high-quality sensing
services. Collaborative sensing is one of the essential features of participatory sensing systems.
Context characteristics are generated from the sensing data collected by multiple nearby partic-
ipants through the use of the collaborative learning algorithm [19]. The collaborative learning
method can significantly improve the learning precision. This learning method is based on the
sensing data collected by an individual participant. Mobile Sensor Data Engine (MOSDEN)
[20] is a collaborative mobile sensing framework that can operate on smartphones to capture
and share sensed data among multiple distributed applications and users. Similarly, a cloud-
assisted collaborative sensing method was proposed in [21] to reduce the energy consumption
of mobile phone sensing applications.

Participant recruitment is a major challenge in participatory sensing systems because of the
diversity of the sensing capabilities of mobile devices and the uncontrollable trajectories of
mobile participants. Chien et al. [22] introduced the online task assignment problem in which
heterogeneous tasks are assigned to workers with different, unknown skill sets. Reddy et al.
[23] developed a selection framework to allow organizers to identify well-suited participants
for data collection based on their geographic and temporal availability as well as their habits.
Tuncay et al. [24] exploited the stability of user behavior and selected participants based on the
fitness of the mobility history profiles of the users. However, none of the previous studies con-
sidered both the limited incentive and the heterogeneity of the participants.

The vehicle is a special type of participant in participatory sensing systems. Considering
that vehicles are widely distributed in urban areas and equipped with various types of sensors,
vehicles provide a natural means to mobile sensing. In early vehicle-based environmental sens-
ing applications, only one vehicle is recruited in the system. One of the novel applications is the
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monitoring of locations through a vehicle radar [25]. Air quality can also be monitored by a
CO2 sensor installed in a vehicle [26]. Similarly, rainy weather can be monitored by an on-
board camera [27]. In [28], a laser scanner and an on-board camera were utilized to update a
street view map. However, in these applications, no sensing data are shared among vehicles.
This condition constrains the extensive deployment of vehicle sensing-based applications.

A platform was designed in [29] for large-scale vehicle collaborative sensing. However, the
algorithm was designed to plan the trajectories of a robot team to collect sensing data within
the shortest time. In [30], multiple probe vehicles were utilized to estimate large-scale traffic in
an urban environment. Vehicle sensing can also be utilized for safe driving. RWIS [31]
recruited probe vehicles equipped with GPS, an anti-lock braking system, and acceleration sen-
sors to quickly detect the conditions of road surfaces according to the side slip force of the vehi-
cles in certain road segments.

3 SystemModel

3.1 System Architecture
A vehicular participatory sensing system is composed of sensing data servers, wireless net-
works, and vehicles (i.e., participants), as shown in Fig 1. Sensing tasks and their detailed infor-
mation are established in the sensing data server by the system users. The detailed information
of a sensing task includes the target sensing area, the sensing time period, and the resolution of
the sensing data. The sensing data server recruits participants according to the requirements of
the tasks. When a vehicle is recruited as a participant, the sensors embedded in it are turned on
to sample the sensing data periodically. All the collected sensing data in combination with the
corresponding information of the GPS coordinates are uploaded and stored in the sensing data
server via wireless networks. Users of the sensing system can then make a query on sensing
data of interest from the sensing data server.

Different participant recruitment strategies could result in different effects on fitting the
sensing task data requirements. An example of a participant recruitment scenario with multi-
ple sensing tasks is shown in Fig 2. The right part of the figure shows the sensing data

Fig 1. Architecture of vehicular participatory sensing systems.

doi:10.1371/journal.pone.0138898.g001

Participant Recruitment for Comprehensive Vehicle Sensing

PLOS ONE | DOI:10.1371/journal.pone.0138898 September 25, 2015 4 / 19



requirements in all subareas, and the left part of the figure shows the sensing capabilities of
the vehicles and the future mobility traces of all available participants. In this sensing sce-
nario, {a, c} are obviously more appropriate than {a, b} to be selected as participants to meet
the task requirements. However, in real-world scenarios with a significantly larger number of
sensing tasks and available heterogeneous participants, the recruitment of appropriate partic-
ipants becomes an arduous task.

This paper presents a participant recruitment strategy that can collect the most comprehen-
sive sensing data for all sensing tasks in both temporal and spatial dimensions under limited
incentives. The first step in the proposed approach is to formalize the sensing data requirements
of the sensing tasks and the sensing data collection expectation of the participating vehicles.

3.2 Sensing Data Model
The data required by users and the sensing data that can be collected by the participants are
both represented by 2D data matrixes (i.e., temporal and spatial dimensions).

The target sensing area is divided into lattice cells based on the geographical location (Fig
2), and each lattice cell is called a subarea. A subarea is a unit area of the sensing system; the
assumption is that sensing data sampled at any point in the subarea can indicate the sensing
value of the subarea.

Given that sensing data are usually sensitive to time (e.g., air temperature data collected an
hour ago are no longer accurate), sensing data should be sampled periodically in each unit
sensing area. The requested sensing data sampling amount indicates how many times of data
sampling are necessary in a sensing period in a unit subarea.

The entire sensing area is divided into l subareas in the form of grids based on the geograph-
ical coordinates (Fig 2). We let L = {1,2,� � �, l} denote the set of subareas. i(i 2 L,1 ⩽ i ⩽ l)

Fig 2. Data collection by different participants for multiple sensing tasks.

doi:10.1371/journal.pone.0138898.g002
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denotes one of the subareas. The sensing system runs the participant recruitment algorithm
periodically. We suppose that the duty cycle of the system is T =m, which means that the
length of duty cycle T ism unit times, and let k(1 ⩽ k ⩽m) denote the kth unit time of the sys-
tem duty cycle. We also suppose that sensing task set J = {1,2,� � �, n} exists in the sensing area
within one system duty cycle and let j 2 J,1 ⩽ j ⩽ n denote one of the tasks in J.

We letM = {M1,M2,� � �,MN} denote the set of all available vehicles, and N is the amount of
available participants. Ctotal is the total incentive budget provided by the system for one duty
cycle, and Cα denotes the incentive required by participant α 2M if α is recruited as a sensing
participant during one system duty cycle T. We also suppose that set X contains the partici-
pants recruited from all available participantsM. We let ϕ(X) denote the total incentive within
a unit time period required by all the recruited participants in X. ϕ(X) can be calculated as

�ðXÞ ¼
X
a2X

Ca ð1Þ

Therefore, the recruitment of X would be subjected to X�M and ϕ(X) ⩽ Ctotal.

For a special task j, let Rj
ik be the data requirement in the subarea i during the kth unit sens-

ing time of the system duty cycle. Then, the data requirement matrix of task j can be denoted
as,

For specific task j, we let Rj
ik be the data requirement in subarea i during the kth unit sensing

time of the system duty cycle. Then, the data requirement matrix of task j can be denoted as Rj

in Eq (2).

Rj ¼

Rj
11 Rj

12 ::: Rj
1m

Rj
21 Rj

22

::: :::

Rj
l1 Rj

lm

2
66666664

3
77777775

ð2Þ

In the sensing server, when a sensing data sample of task j at time k in location i is reported

by a participant, the collected data amount Dj
ik Xð Þ would increase by 1. The total data amount

of task j collected by the participants in X could be denoted by the following matrix.

DjðXÞ ¼

Dj
11ðXÞ Dj

12ðXÞ ::: Dj
1mðXÞ

Dj
21ðXÞ Dj

22ðXÞ

::: :::

Dj
l1ðXÞ Dj

lmðXÞ

2
66666664

3
77777775

ð3Þ

Table 1 presents the list of notations employed in this paper.

4 Optimal Heterogeneous Participant Recruit Mechanism
According to the model defined in Section 3, the problem of collecting the most comprehensive
sensing data for all tasks in both temporal and spatial dimensions within incentive constraints
is transferred to find set X that can minimize the difference between the required and collected
data matrixes for all tasks. Given that the Frobenius norm is utilized to measure the spatial
length of a matrix, the minimization of the difference between the two matrixes for all tasks

Participant Recruitment for Comprehensive Vehicle Sensing

PLOS ONE | DOI:10.1371/journal.pone.0138898 September 25, 2015 6 / 19



can be described by the following multi-objective optimum model.

MinðjjR1 �D1ðXÞjjFÞ
MinðjjR2 �D2ðXÞjjFÞ
..
.

MinðjjRn �DnðXÞjjFÞ
s:t: : X � M;

�ðXÞ⩽Ctotal

ð4Þ

where

k Rj �Dj kF ¼
Xl

i¼1

Xm
k¼1

Rj
ik � Dj

ikðXÞ
� �2 ð5Þ

The Frobenius norm of the difference between the matrixes increases in two situations.

When the obtained data amount Dj
ik Xð Þ is less than the requested data amount Rj

ik, the Frobe-

nius norm decreases with the increase in the collected data amount Dj
ik Xð Þ. When the collected

data amount Dj
ik Xð Þ is more than the requested data amount Rj

ik, the Frobenius norm decreases
with the over-collection of sensing data; this condition increases the energy consumption and
bandwidth occupation of the participants.

Considering that the multiple-objective optimization problem is difficult to solve, the prob-
lem is first converted into a simple objective optimization one through a weighting method.
We let λ1, λ2,� � �, λn denote the weighting coefficients of different sensing tasks and λj be the the

Table 1. List of notations.

Notation Description

J Sensing tasks

L Subareas

T System duty cycle

Cα the incentive required by α in one system duty cycle

Ctotal Total incentives for each system duty cycle

Rj Data requirements matrix for task j

Rj
ik

Data requirements for task j in location i during time k

M All available participants

Sj
a Sensing ability of a participant α to task j

ε The sensing data sampling interval

c1; c2; . . . ; cMNtotal
Incentives demanded by participants for one sampling

X A set of recruited participants

ϕ(X) Total incentives required by participants in X during one system duty cycle

Dj(X) Collected data matrix for task j by X

Dj
ikðXÞ Collected data amount by X of task j in location i during time k

λ1,λ2,. . .,λn Weighting coefficient of tasks

Θj(α) The expected data collection by α for task j in the following system duty cycle

ψj temporary data requirements of task j

pt
i;j Probability that a node transfers from Li to Lj in t

Uα the sensing utility of α

doi:10.1371/journal.pone.0138898.t001
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significance factor of sensing task j. The optimization objective function of Eq (4) can then be
transformed into

f ðXÞ ¼
Xn
j¼1

lj � k Rj �DjðXÞ kF

¼
Xn
j¼1

lj �
Xl

i¼1

Xm
k¼1

Rj
ik � Dj

ikðXÞ
� �2 ! ð6Þ

To minimize the weighted differences between the sensing data collected by the participants
and the data requirements, a set of participants that can minimize the value of f(X) in Eq (6) is
determined as follows:

Min : f ðXÞ
s:t: : X � M;

�ðXÞ⩽Ctotal

ð7Þ

5 Participant Recruitment Algorithm
In this section, the utility of the participants is designed based on their expected contributions
to the sensing data. A greedy participant recruitment algorithm is proposed to solve the optimi-
zation problem of participant selection.

5.1 Utility of the Participants
A participant utility evaluation methodology is established according to the different features
of the participant nodes to recruit appropriate participants in the collection of sensing data.
The utility of the participants should reflect the amount of the required sensing data a partici-
pant can collect in one system duty cycle.

We letΘj(α) denote the amount of sensing data that participant α can collect in one system
duty cycle for task j, andΘj(α) is a matrix as shown in Eq (8).

ΘjðaÞ ¼

yj
11ðaÞ yj12ðaÞ � � � yj

1mðaÞ

yj
21ðaÞ yj22ðaÞ

..

. � � �

yjl1ðaÞ yj
lmðaÞ

2
666666664

3
777777775

ð8Þ

where yj
ik að Þ denotes the expected sensing data amount that participant α can collect from sub-

area i at time k for sensing task j.
The probability-based method [32] employs historical trace data to calculate the probability

of moving from one location to another after a certain period of time. We let ptab að Þ denote the
probability that participant α transfers from subarea a to subarea b after time duration t. With
the trajectory prediction method proposed in [32], for a certain tuple {t, i, j}, the value of ptab að Þ
can be derived from the history traces of participant α as follow.

ptab ¼ Nb;aðtÞ=Na ð9Þ

Where, N( b, a)(t) is the number of times the vehicle has transferred from subarea a to subarea
b after time duration t. Na is the number of times the vehicle has traveled in subarea a.
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The sampling cycle of all participants is set to ε (ε< 1). Therefore, the number of data sam-
ples of a specific task contributed by a participant in a unit sensing time period can be calcu-

lated as d1/εe. We suppose that the initial location of participant α is a. Then, yj
ik að Þ can be

calculated as

yj
ikðaÞ ¼

Xd1=εe
d¼0
ðpkai � SjaÞ ð10Þ

where the value of Sja is determined by whether participant α can collect sensing data for sens-
ing task j, as shown in Eq (11).

Sja ¼
0 a is not able to collect data for task j

1 a is able to collect data for task j
ð11Þ

(

Thus, if α is recruited to participate in sensing data collection, the expected contribution of
α to the quality of sensing data in the sensing system can be expressed as follows:

gðaÞ ¼
Xn
j¼1

lj � k Rj �ΘjðaÞ kF

¼
Xn
j¼1

lj �
Xl

i¼1

Xm
k¼1

Rj
ik � yjikðaÞ

� �2 ! ð12Þ

However, the difference between the sensing capabilities of two participants is indetermi-
nate. Therefore, recruiting participants at the same time based on the value of g(α) in Eq (12) is
unreasonable.

For example, we suppose that the sensing capability of participants α and β are similar.
Then, according to Eq (12), the value of g(α) equals that of g(β). If the participant recruitment
algorithm recruits participants simply according to the value of g(�), both nodes α and β would
be recruited as participants to collect sensing data at the same time. However, after α is
recruited, the necessity of recruiting β would decrease sharply because of the homogeneity of
the sensing capabilities of participants α and β.

To solve the abovementioned problem, the matrixes of temporary data requirementsCj are
defined as follows:

Ψj ¼

Cj
11 Cj

12 � � � Cj
1m

Cj
21 Cj

22

..

. . .
.

Cj
l1 Cj

lm

2
666666664

3
777777775

ð13Þ

whereCj
ik denotes the temporary data requirements of task j at location i during time k. At the

initial time, we letCj
ik ¼ Rj

ik. After α is recruited,Cj
ik ¼ Cj

ik � yjik að Þ, and Rj in Eq (12) is
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replaced byCj. Then,

gðaÞ ¼
Xn
j¼1

lj � k Ψj �ΘjðaÞ kF

¼
Xn
j¼1

lj �
Xl

i¼1

Xm
k¼1

Cj
ik � yjikðaÞ

� �2 ! ð14Þ

The expectations on incentives by different participants during one system duty cycle are
also not similar. We let Cα denote the incentive requirements of α during one system duty
cycle. The utility of α can be designed as follows:

Ua ¼
gðaÞ
Ca

ð15Þ

where Uα denotes the sensing data amount that participant α is able to collect under unit
incentive.

5.2 Optimal Heterogeneous Participant Recruitment Algorithm
Given that participants exhibit random mobility, the differences between the predicted and
real trajectories result in differences between the data expectations and data collection results.
Therefore, an optimal heterogeneous participant recruitment (HPR) strategy was developed to
eliminate the discrepancies between data expectations and data results.

The optimization formula in Eq (7) belongs to the knapsack problem. Therefore, a greedy
algorithm denoted as Algorithm 1 was designed to find solution X in Eq (7). The goal of Algo-
rithm 1 is to recruit a set of participants from candidates to collect as much sensing data as pos-
sible for all the sensing tasks with limited incentives.

Algorithm 1: Optimal heterogeneous participant recruitment algorithm
Input: Position transition matrix P; Subareas L; Sensing tasks J; Task

incentives Ctotal; System duty cycle T; Data requirements R; Data obtained D;
All candidate participants M; Data Sampling interval ε.

Output: Selected participants set X
1 X = �;
2 for (j = 1, j� n, j++) do
3 Ψj Rj;
4 end
5 while M 6¼ � and Ctotal > 0 do
6 α arg maxβ 2 M {Uβ};
7 Ctotal Ctotal − Cα;
8 if Ctotal ⩾ 0 then
9 put α into X;
10 remove α from M;
11 for (j = 1, j ⩽ n, j++) do
12 Ψj Ψj − Θj(α);
13 end
14 end
15 else
16 remove α from M;
17 Ctotal Ctotal + Cα;
18 end
19 end
20 return X;

Participant Recruitment for Comprehensive Vehicle Sensing

PLOS ONE | DOI:10.1371/journal.pone.0138898 September 25, 2015 10 / 19



The algorithm recruits participants in loops. The participant with the highest utility is
selected and paid with incentives he or she expected within one loop until all incentives are
depleted or all candidates are evaluated. Algorithm 1 runs at the beginning of each system duty
cycle. All the selected participants in the algorithm participate in sensing data collection in the
following system duty cycle. The set of X selected by HPR is proven to be a feasible solution to
the optimization problem in Eq (4).

The participant selection strategy runs on the server side. The time complexity of the algo-
rithm is O(n2). The time consumption of the strategy is still within milliseconds even if the
total number of all available participants reaches 2000. The computation complexity of HPR is
not a restriction in the sensing task assignment phase.

6 Evaluation
Real vehicle GPS traces from the T-drive trajectory [33, 34] were utilized to simulate and evalu-
ate the proposed optimal HPR strategy. The T-Drive trajectory data set contains one-week tra-
jectories of 10,357 taxis. The total number of GPS points in this data set is approximately 15
million, and the total distance of the trajectories is 9 million kilometers. The time frequency of
data sampling was set to 5 s. Taxi drivers can usually find an optimal rout to the destination
based on their experience. Therefore, the T-Drive project was trying to improve the efficiency
of the navigation software according to the experience from taxi drivers. On the other hand,
the traces of the taxis can reflect the characters of the passengers. Since the mobility of the pas-
sengers are not completely random, the mobility of the taxies are also predictable. For example,
Huang et al. [35] designed a vehicle mobility model based on the regular patterns derived from
the traces of 4000 taxies in Shanghai.

In our simulation, a rectangular region around the Second Ring Road of Beijing was utilized
as the target sensing area (Fig 3). Traces in the rectangular area were considered in the

Fig 3. Sensing area.

doi:10.1371/journal.pone.0138898.g003
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simulation. The 53 longest traces in the rectangular region were utilized as available vehicles,
and 568 shorter traces were utilized to calculate the transition probability between subareas.

The default parameters of the experiments were set as follows. The number of sensing
tasks in the rectangular region is three, and the total time of the experiment is 8 h. The rect-
angular region was divided into 18 subareas. The unit sensing time period was set to 60 s.
The system duty cycle was set to 30 min. The data requirement of each task in each subarea
in each unit sensing time period was set to 30 samplings. Three types of sensors were
employed to collect data for the three tasks, and each participant has 50% possibility to be
equipped with each sensor.

The incentive requests for one sampling of all available participants were random values
between 0 and 2, and the average value of incentive requests was 1. Given that the sampling
frequency was set to 5 s per sampling, 12 samplings could be completed by one participant in
a unit sensing period. The default sensing incentive costs provided by each task were 60(=
5 × 12) for a unit sensing time period or 5 for one sampling. The total incentives for one sam-
pling were 15; this condition means that the three tasks could afford an average of 15 partici-
pants for each time of sampling. The simulation parameters and their default values are
shown in Table 2.

There was no participant recruit algorithm proposed for heterogeneous vehicle sensing
before HPR. As a result, we compared the HPR algorithm with the random recruit (RR)
method, as shown in the following evaluations. The RR method selects participants randomly
at the beginning of each system duty cycle until the total incentive budget of the system duty
cycle runs out. Three experiments were performed to evaluate the two participant recruitment
strategies under different conditions.

6.1 Impact of the incentive budget
This subsection evaluates the impact of total incentive budget on data coverage ratio in tempo-
ral and spacial dimensions. The relative data coverage ratio is calculated by the ratio between
the amount of collected data and the amount of all the data could be collected in the target
sensing area. The total incentive budget is the biggest impact factor to the data coverage ratio
since it determines the number of the recruited participants, which further determines the
amount of sensing data can be collected. Given the following total incentives for one system
duty cycle, {3,6,9,12,15,18,30,45,53}, the sensing data coverage ratio results are given in Fig 4.
The collected data could not match all the data requirements, even when 53 available vehicles
were all selected. The reason is that the traces are not uniformly distributed in spatial and tem-
poral spaces.

Fig 4. shows the impact of the total incentive budget on the collected sensing data coverage
ratio. The experiment was executed 10 times, and the results in Fig 4, are the average values

Table 2. Simulation parameters.

Parameter Default Value

Simulation time 8 hours

Unit time 60 seconds

System duty cycle 30 minutes

Total incentives 5300

Participant number 53

Average incentive for one sampling 1

Sampling frequency 0.2 times per second

doi:10.1371/journal.pone.0138898.t002
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from the 10 executions. Fig 4. shows that the sensing data coverage ratios of the two strategies
increase with the increase in total incentive budget. If the total budget is small, the coverage
ratio of HPR increases faster than that of RR. When the total budget is small, the number of
participant vehicles that could be recruited is constrained. However, the HPR strategy selects
participants with high sensing utilities. Therefore, the HPR strategy can achieve a high sensing
data coverage ratio. Nevertheless, the total amount of participants that could be recruited is
limited (i.e., 53). The data coverage ratios of the two strategies are close when all participating
vehicles could be recruited to the system.

The relation between the incentive budget and data coverage ratio of RR is approximately
linear. However, the data ratio gained by HPR increases rapidly before the total incentive bud-
get reaches 35. In the experiment, the coverage ratio of the collected sensing data is 31.5%
when all the 53 participants are recruited to participate, while the coverage ratio is 26.9% when
only 18 participants could be recruited under limited budget. In other words, HPR collects
most (0.315/0.269 = 85.4%) of the available sensing data with 18/53 = 34% incentive cost. The
data coverage ratio of HPR increases gradually at a later period but remains larger than that of
RR. Thus, with a limited incentive budget, HPR can maximize the collected sensing data cover-
age ratio by preferentially recruiting the most efficient participants.

6.2 Impact of the required data volumes
Different participatory sensing scenarios request different volumes of data in the target sensing
area. This experiment is designed to test the sensing data coverage ratio under different vol-
umes of requested sensing data. The total incentive budget is 18. We change the volumes of the
required sensing data. for each volume, the experiment is repeated for 10 times and the average
collected sensing data ratios are recorded. The experiment result is shown in Fig 5. When the

Fig 4. Data coverage ratio under different incentive budgets.

doi:10.1371/journal.pone.0138898.g004
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requested data volume is small, both RR and HPR achieve high data coverage ratios. Through-
out all the requested volumes, HPR behaves better than RR.

Different participatory sensing scenarios require different volumes of data in the target sens-
ing area. An experiment was designed to test the sensing data coverage ratio under different
volumes of required sensing data. The total incentive budget is 18. We changed the volumes of
the required sensing data. For each volume, the experiment was repeated 10 times, and the
average collected sensing data ratios were recorded. The experiment result is shown in Fig 5.
When the required data volume is small, both RR and HPR achieve high data coverage ratios.
HPR performs better than RR in all the required volumes.

6.3 Fluctuations of the sensing results
Due to the mobility of the vehicles and the recruitment of the vehicles are random, the coverage
ratio of the selected data fluctuate over time. The sensing data coverage ratios of 8 simulation
hours are evaluated in this experiment. The total incentive budget is set to 30. Each simulation
is executed for 10 times, and the errors of the results are investigated.

The coverage ratio of the selected data fluctuates over time because of the mobility of vehi-
cles and the random recruitment process of vehicles. The sensing data coverage ratios of 8 h of
simulation were evaluated in this experiment. The total incentive budget was set to 30. Each
simulation was executed 10 times, and the errors of the results were investigated.

As shown in Fig 6. with the same total incentive budget, the sensing data coverage ratio of
HPR is higher than that of RR. The coverage ratios of the two recruitment strategies fluctuate
in a limited range. Given that HPR predicts the mobility traces of the recruited vehicles, the
amplitude of the fluctuations of HPR is smaller than that in RR. Therefore, the stability of the
quality of the sensing data collected by HPR is higher than that collected by RR.

Fig 5. Impact of required data volumes.

doi:10.1371/journal.pone.0138898.g005
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6.4 Distribution of sensing interfaces
The relationship between the sensing data coverage ratio and the incentive budget were evalu-
ated with different sensing interface distributions. The distribution of the three sensing inter-
faces of the vehicles was set to homogeneous (50%,50%,50%) and heterogeneous
(20%,50%,80%). As shown in Fig 7. the evolution trends of the vehicle recruitment strategies
are similar. However, the coverage ratio obtained by the heterogeneous sensing vehicles is 15%
lower than obtained by the homogeneous vehicles. The reason is that sensing data with a rare
sensing interface distribution are difficult to collect, whereas sensing data with widely distrib-
uted sensing interfaces are usually superfluous. HPR is less affected by the distribution of the
sensing interfaces than RR because HPR selects more efficient vehicles and can compensate for
the heterogeneous distribution of sensing interfaces.

6.5 Impact of different incentives provided by tasks
The goal of this experiment is to determine the impact of different incentives provided by
tasks. The previous experiments assumed that all three tasks are equally important and have
the same incentives. However, the importance of different tasks can differ, as shown by the dif-
ferences in task incentives.

In this experiment, the total incentive of all three tasks was the same (15 per sampling),
whereas the incentives of each task were changed from (5,5,5) to (13,1,1) gradually. The data
coverage ratios of each task were recorded, and the results are shown in Fig 8. When the incen-
tives change between tasks, the data coverage ratios of RR remain constant, whereas the data
coverage ratios of HPR change significantly. This experiment shows that tasks with higher
incentives can obtain more data through the proposed dynamic participant selection method.

Fig 6. Fluctuations in the sensing results.

doi:10.1371/journal.pone.0138898.g006
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Fig 7. Impact of sensing interface distribution on sensing data coverage.

doi:10.1371/journal.pone.0138898.g007

Fig 8. Impact of different task incentives in RR and HPR.

doi:10.1371/journal.pone.0138898.g008
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6.6 Impact of different task significance
This experiment evaluates the impact of different distributions of the task significance coeffi-
cient factor. In the previous experiments, {λ1, λ2, λ3} are set to the same value {0.33,0.33,0.33},
and all the sensing tasks have the same significance. However, in some scenarios, sensing tasks
may have different significance. The significance property of the sensing tasks in HPR is indi-
cated by λ, whose distribution will affect the value of the utility of each sensing node.

In this experiment, {λ1, λ2, λ3} are set to {0.33,0.33,0.33}, {0.5,0.25,0.25}, {0.7,0.15,0.15},
{0.9,0.05,0.05}, respectively. As shown in Fig 9, the coverage ratio of the sensing task is low,
when the corresponding significance coefficient is small. Especially, when the coefficient of
task 2 and task 3 are set to 0.05, the coverage ratio of the both reduced to the level near that of
the RR. It means that the HPR will degrade into RR, if the coefficient λ is set to 0. On the other
hand, if the sensing task is significant, the coefficient of the task could be set to a big value, and
as a result, the coverage ratio of the sensing task would be high.

7 Conclusion
Owing to the limitation of the total incentive and the heterogeneity of vehicular participants in
terms of sensing capabilities, trajectories, and incentive expectations, a group of vehicles should
be recruited to participate in sensing data collection to collect comprehensive and fresh sensing
data for the sensing system. Therefore, an optimal heterogeneous participant recruitment strat-
egy was developed. The models of the requirements of sensing data, the collected sensing data,
and the expected sensing data were first defined. blackA optimization formula was established
to model the participant recruitment problem. A participant utility analysis scheme was built
based on the sensing and mobility features of the participants. Utility was employed to evaluate
the incentive efficiency of the sensing participants based on the ratio of their expected data con-
tributions to their incentive requirements. A dynamic participant selection strategy was then
designed. The participants were selected through a greedy algorithm that evaluates the efficien-
cies of the participants based on their utility. The real trace-driven simulations show that the
proposed strategy can collect 85.4% of available sensing data with 34% incentive budget.

Fig 9. Impact of different task significance in HPR.

doi:10.1371/journal.pone.0138898.g009
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