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Abstract

In addition to an increase in mean temperature, climate change models predict decreasing
amplitudes of daily temperature fluctuations. In temperate regions, where daily and sea-
sonal fluctuations are prominent, such decreases in daily temperature fluctuations can have
a pronounced effect on the fithess of species and on the outcome of species interactions. In
this study, the effect of a temperature regime with daily fluctuations versus a constant tem-
perature on the fitness and interspecific interactions of three cryptic species of the marine
nematode species complex of Litoditis marina (Pm |, Pm lll and Pm IV) were investigated.
In a lab experiment, different combinations of species (monospecific treatment: Pm | and
Pm IV and Pm Il alone; two-species treatment: Pm | + Pm [V; three-species treatment: Pm |
+ Pm 1V + Pm Ill) were subjected to two different temperature regimes: one constant and
one fluctuating temperature. Our results showed that fluctuating temperature had minor or
no effects on the population fitness of the three species in monocultures. In contrast, inter-
specific interactions clearly influenced the fitness of all three species, both positively and
negatively. Temperature regime did have a substantial effect on the interactions between
the species. In the two-species treatment, temperature regime altered the interaction from a
sort of mutualism to commensalism. In addition, the strength of the interspecific interactions
changed depending on the temperature regime in the three-species treatment. This experi-
ment confirms that interactions between the species can change depending on the abiotic
environment; these results show that it is important to incorporate the effect of fluctuations
on interspecific interactions to predict the effect of climate change on biodiversity.

Introduction

Temperature is one of the most important environmental factors affecting many aspects of the
life cycles of species (e.g. development and growth rates, body size, reproduction, etc.), and is
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considered an important selective agent [1]. Over the past 100 years, global temperature has
increased by approximately 0.6°C.

Climate change models not only predict rising average temperatures, but also an increasing
frequency of episodic temperature extremes [2] and decreasing amplitudes in daily tempera-
ture fluctuations [3]. In temperate regions, where daily and seasonal fluctuations are promi-
nent, such decreases in daily temperature fluctuations can have a pronounced effect on the
fitness of species as well as on the outcome of species interactions. For instance, lower maxi-
mum peak temperatures can have species-specific effects on development rate, survival and
reproduction of individual species. Such effects are difficult to predict, since both increased and
decreased development rates have been observed under a fluctuating compared to a constant
temperature regime [4,5]. In addition, a higher mortality and lower reproduction rate at con-
stant temperature have frequently been found [6,7]. Species-specific responses to daily fluctua-
tions can potentially influence species interactions in three ways: directly, by changing the
competitive abilities of species; indirectly, as a result of changes in population dynamics of one
of the species which indirectly influences other species (e.g. by food depletion); or by a combi-
nation of both direct and indirect processes [8]. Moreover, if species respond differentially to
environmental fluctuations, daily temperature cycles can contribute to a stable coexistence
between species [9]. Closely related species are expected to have high competition [10], and
changes in temperature fluctuations may therefore lead to changes in interspecific interactions
and facilitate the co-occurrence of species.

An intriguing case of coexistence is that of closely related, morphologically highly similar
cryptic species. These cryptic species are morphologically indistinguishable, but genetically dif-
ferent [11]. Coexistence of cryptic species in natural environments has been reported at small
geographical scales in a broad range of taxa [12,13,14,15], and interactions between cryptic spe-
cies have been commonly observed [16,17]. Despite this natural coexistence, some laboratory
studies have shown that permanent coexistence between closely related species is unlikely
under constant environmental conditions [16,18]. Environmental fluctuations may be impor-
tant in maintaining coexistence, and as a consequence, decreasing amplitudes of daily environ-
mental fluctuations may affect the coexistence of cryptic species.

Cryptic diversity has been frequently observed in coastal nematodes [19]. In the morphos-
pecies Litoditis marina [20]; henceforth referred to as L. marina, formerly known as Rhabditis
marina or Pellioditis marina, at least 10 cryptic species have been found [21]. Species of the L.
marina species complex are typical colonizers of decaying algae and show explosive population
growth and rapid colonization/extinction dynamics [22]. These species show concordant
molecular divergences at nuclear and mitochondrial loci (COI, ITS, D2D3), but lack single dis-
tinctive morphological differences [13,21,23]. Four of them (Pm I, Pm II, Pm IIT and Pm IV)
frequently occur in the littoral zone of the south-western coast and estuaries of The Nether-
lands [21,24], in which pronounced daily temperature fluctuations are common. Pm I and Pm
IV are the most closely related species but cross-breeding between them does not occur [23].
Sympatric occurrence of two or more of these species on decomposing algae is rule rather than
exception [21,24]. This coexistence is intriguing since competition between the species exists
[16]: Pm I and Pm III proved to be competitively superior to Pm II and Pm IV, but the precise
nature of this competition is still unknown, and it may shift from contest to scramble competi-
tion depending, among other things, on the abiotic environment. Moreover, facilitation has
been demonstrated between these four cryptic species of Litoditis marina in experiments using
closed microcosms [16]. Dispersal may be one of the mechanisms enabling temporary coexis-
tence [25]. Nevertheless, niche differentiation may also be important, but information about
this is still lacking. Differential population responses to salinity [26] and partial differences in
their gut bacterial communities (Derycke et al. unpublished) suggest at least some degree of
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niche differentiation. Moreover, species-specific responses to temperature in a range of 15 to
25°C exist [26]. Salinity can influence these interspecific interactions [16], but the effect of tem-
perature on these interspecific interactions has not been investigated.

In this study, the effect of a temperature regime with daily fluctuations versus a constant
temperature on (a) the fitness (here estimated from population size, both for juveniles and
adults, [27]) and (b) interspecific interactions of three cryptic species of the L. marina species
complex (Pm I, Pm IIT and Pm IV) were investigated. Based on previous research [16,21,26],
we expected that (a) species which benefit from higher temperatures may have a higher fitness
at fluctuating temperature, due to the higher maximal temperature in this regime. Pm III
showed a geographical distribution in warmer regions compared with the other species [21]
and had a shorter generation time at higher temperature [26], which suggests that Pm III may
have a higher fitness at fluctuating temperature. This can also affect species interactions (b),
with a dominance of the species with a higher fitness. We can thus expect that Pm III will be
dominant over Pm I and Pm IV. However, differences in competitive abilities between the dif-
ferent species can also affect these interactions and temperature fluctuations can have indirect
species-specific effects on them. Pm I was found to be competitively superior to Pm IV [16], so
we expected Pm IV to have very low abundances or even to go extinct. This study can help us
to better understand the coexistence of these closely related species on small spatial scales in
natural environments.

Materials & Methods
Nematode cultures

Nematodes for the experiments were harvested from monospecific stock cultures in exponen-
tial growth phase. Monospecific cultures of three different cryptic species (Pm I, Pm III and
Pm IV) were each raised from one single gravid female, obtained from the field (for PmI and
Pm III Paulina marsh, Westerschelde, The Netherlands; for Pm IV Lake Grevelingen, The
Netherlands) in September 2009, and maintained on sloppy (1%) nutrient:bacto agar media
(temperature of 20°C; salinity of 25) with unidentified bacteria from their habitat as food [28].
The temperature of the stock cultures is comparable with the average temperature in the field
during summer, while a salinity of 25 approximates the mean salinity in their natural
environment.

Temperature experiments

The experiment comprised three monospecific treatments (respectively M1, M3 and M4 for
Pm I, Pm IIT and Pm IV), one two-species treatment with the two most closely related species:
Pm I and Pm IV (D), and one treatment with all three species (T). These treatments (M, D or
T) were called the ‘interspecific interaction’ treatment. Three females and two males per cryptic
species were incubated in all treatments using an additive design [29]. Hence, total number of
nematodes and species varied depending on the treatment (5 nematodes for M, 10 for D and
15 for T). Because intraspecific competition is known to be prominent in these nematodes

[25], numbers per species were kept constant in order to be able to elucidate the effect of inter-
specific competition in all treatments. By adjusting the size of the petri dish, the amount of
agar medium and the amount of food (see further), the available space and resources per inocu-
lated nematode in every treatment were kept constant. Monospecific treatments (M1, M3 and
M4) were incubated in small petri dishes (inner diameter of 5.4 cm) with 4 mL of 1% bacto
agar and 50 pL of a suspension of frozen-and-thawed Escherichia coli (strain K12, density of
3x10" cells mL™* [30]). The D treatment was incubated on petri dishes with the same inner
diameter of 5.4 cm, but with 8 mL of 1% bacto agar medium and 100 uL of the same E. coli
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suspension used for the monospecific treatments. Finally, treatment T contained the three spe-
cies together on petri dishes with an inner diameter of 8.4 cm, 12 mL of 1% bacto agar and

150 uL of E. coli suspension. Food was added at the start of the experiment and again after 14
days. Each treatment was replicated nine times (3 replicas at 3 time moments) at two different
temperature regimes: a constant air temperature (C) of 20°C and a fluctuating air temperature
(F) with 12h of 15°C followed by 12h of 25°C (the change in temperature took approximately
half an hour to establish and stabilise). A temperature of 20°C represents average summer tem-
perature, whereas 15°C and 25°C represent fairly common daytime minimum and maximum
temperatures during summer [31]. The average temperature was equal in both treatments. All
plates were sealed with Parafilm, which prevents evaporation of the agar but still allows oxygen
diffusion into the plates. Salinity of the agar medium was 25. The pH of the agar medium was
buffered at 7.5-8 with TRIS-HCl in a final concentration of 5mM, which increases the initial
salinity by ca. 1.2 units. Cholesterol (100 uL L'') was added as a source of sterols, because nem-
atodes on a purely bacterial diet appear incapable of de novo synthesis of specific sterols [32].
After 7, 14 and 21 days, three replicates of every treatment (temperature regime x ‘interspecific
interaction’ treatment) were frozen (- 20°C) for later counts and analysis of the assemblage
structure and abundance. For the counts of adults and juveniles we used a stereomicroscope
for all treatments. Relative quantification of each species in the D and T treatments was based
on DNA extraction and qPCR analysis [33] following the same method as in a previous paper
[25]. Absolute numbers per species were calculated by multiplying the relative abundances
with the total numbers of the plate.

Statistical analyses

a) Effect of temperature on the fitness of the species. Within each species, 3-way ANO-
VAs were conducted on the numbers of adults and juveniles separately to test the effect of
temperature (C or F), interspecific interactions (in case of Pm I and Pm IV: M1/M4, D and T
and in case of Pm III: M3 and T) and time. No overall ANOV A with species as factor could
be conducted as the data of the different species are not independent from each other within
the D and T treatment. ANOVAs were conducted in the statistical software package R [34].

A Tukey’s honestly significant differences test was performed on the significant factors. To
achieve normality of the data, a log transformation was performed for data of adults and juve-
niles of Pm I and for juveniles of Pm IV. For Pm III adults, a PERMANOVA [35] (on the basis
of Euclidean distance with 999 permutations) was conducted because the assumptions for nor-
mality were not met, even after transformation. A pairwise PERMANOVA was conducted on
the significant factors.

b) Effect of fluctuating temperature on the interactions between the species. PERMA-
NOVA was also used to investigate the effect of the different temperature regimes, interspecific
interactions and time on juvenile and adult assemblage dynamics. This was done by comparing
adult and juvenile assemblage compositions in fictitious and real assemblages. Fictitious assem-
blages were made by summing the abundances of the monospecific treatments (respectively
M1 + M4 (= FiD) and M1 + M3 + M4 (= FiT)). These fictitious assemblages are assemblages
without interspecific interactions and were compared with the assemblage compositions in
which more than one species was present and interspecific interactions were possible (FiD vs.
D and FiT vs. T). The relative contribution of each species was the dependent variable, and the
independent fixed factors were time (day 7, 14 and 21), temperature regime (C or F) and inter-
specific interactions (for Pm I and Pm IV: FiD (no interspecific interactions) compared with D
(with interspecific interactions), for Pm I, Pm III and Pm IV: FiT (no interspecific interactions)
compared with T (with interspecific interactions). Significant terms and interactions were
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investigated using posterior pair wise comparisons within PERMANOVA. PERMDISP was
performed to test the homogeneity of multivariate dispersions (centroid around the mean). A
log transformation on the adults was used for the treatment with two species and a fourth root
transformation on the juveniles was performed in the treatment with three species to achieve
this homogeneity. A SIMPER analysis was used to identify which species primarily accounted
for the observed differences. In addition, an ANOVA was conducted to compare the total num-
ber of nematodes (regardless of species identity) in FiD with D and FiT with T. A Tukey’s hon-
estly significant differences test was performed on the significant factors.

Results

Effect of temperature regime and interspecific interactions on the fithess
of the species

Temperature regime had no effect on the juvenile or adult abundances of Pm I (Fig 1A). How-
ever, the abundance of Pm I adults was influenced by interspecific interactions and time
(Table 1). Lower abundances of adults and juveniles were found when all three species were
present (treatment T) compared with the two other treatments (all p< 0.03). No significant
interaction terms were found (Table 1).

Temperature regime also had no effect on juvenile and adult abundances of Pm IV, while
interspecific interactions and time did affect adult and juvenile abundances (Table 1). For this
species, however, the highest abundances of adults were found in the D treatment (Pm I and
Pm IV together) (p< 0.0001) (Fig 1B). Significant interaction terms were only found for the
juvenile abundances between interspecific interaction treatment and time (Table 1). Pm IV
juveniles had higher abundances in the D treatment (1121 + 107.2 juveniles) compared with
the M4 treatment (193 + 69.6 juveniles) only after 7 days. In the T treatment, lower juvenile
abundances (92 * 55.4 juveniles) were present after 21 days compared with the M4 and D treat-
ment (respectively 447 + 83.1 and 1109 + 191.7).

Temperature regime did not affect adult abundances of Pm III, but it did affect juvenile
abundances (Fig 1C). Numbers of Pm III adults were influenced by the interaction of time and
interspecific interaction treatment (Table 1), with more adults after 14 days when Pm III
occurred alone (M3: 168 + 17.7) compared to the treatment where Pm III was incubated
together with the two other species (T: 47 + 23.6) (pairwise PERMANOVA: p = 0.005). This
difference was not present after 7 or after 21 days. Time, temperature regime, interspecific
interactions treatment, the interaction between time and temperature and the interaction
between time and interspecific interactions treatment all had significant influences on the juve-
nile abundances of Pm III (Table 1). After 14 and 21 days, lower juvenile Pm III abundances
were found in the T treatment (respectively 368 + 160.9 and 287 + 158.0) compared with the
M3 treatment (respectively 1787 + 354.9 and 1149 £ 176.9). After 14 days, more juveniles were
found at the fluctuating temperature (1570 + 457.5) compared with a constant temperature
regime (584 + 215.9). In Tables 2 and 3, respectively, the average number of nematodes in the
different treatments and an overview of the effect of the interspecific interactions on the fitness
of all three species can be found.

Assemblage composition and dynamics

In the treatment with two species, total abundances of adults and juveniles (regardless of spe-
cies) were affected by time and interspecific interactions treatment (respectively F, 5, = 24.30,
p<0.001 and F, 54 = 50.03, p<0.001 for adults and F, ,4 = 10.55, p<0.001 and F, 5, = 7.10,

p = 0.014 for juveniles), but not by temperature. Lowest abundances of nematodes occurred
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Fig 1. Time-averaged number of nematodes (* SE) of Litoditis marina species (adults and juveniles) in
the different interspecific interaction treatments (three species: T, two species: D and one species: M)
and different temperature treatments (F and C) for (a) Pm I, (b) Pm IV and (c) Pmlll.

doi:10.1371/journal.pone.0131625.g001

after 7 days. They did not differ between 14 and 21 days. Much higher numbers of nematodes
were observed in the D treatment compared with the FiD treatment (respectively 930 + 171.6
vs. 97 £ 83.9 adults and 1459 + 95.1 vs. 1074 + 274.6 juveniles (Fig 2)). Comparing adult assem-
blage dynamics of Pm I and Pm IV between the D and FiD treatments showed significant
effects of interspecific interactions, time and the interaction of interspecific interactions with
temperature regime on the assemblage composition (Table 4). Pm I became dominant over Pm
IV in the D treatment at the end of the experiment at a constant temperature, but the opposite
was true at a fluctuating temperature. In the fictitious treatment (FiD), however, Pm IV was
not dominant over Pm I at this fluctuating temperature (Fig 2A). For juvenile assemblage
dynamics, only time and interspecific interactions were significant (Table 4, Fig 2B). A clear
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Table 1. Statistical results of the effect of temperature regime on fitness.

Pmi Pm IV Pm il
Adults Juveniles Adults Juveniles Adults Juveniles
F p F P F P F p F p F p

Temp. 0.13 0.72 1.15 0.29 0.42 0.53 <0.001 0.99 0.25 0.61 6.56 0.017
Intersp.int. 19.71 <0.001 9.31 <0.001 15.93 <0.001 16.38 <0.001 1.22 0.23 27.61 <0.001
Time 6.10 0.005 2.95 0.07 5.42 0.009 5.33 0.009 3.11 0.07 14.90 <0.001
Temp.:Intersp.int 1.35 0.27 0.30 0.74 1.69 0.20 0.18 0.83 2.11 0.16 1.33 0.26
Temp:Time 2.96 0.06 0.54 0.59 1.77 0.18 0.34 0.72 2.10 0.15 7.40 0.003
Intersp.inter:Time 1.23 0.32 0.79 0.54 1.45 0.24 7.10 <0.001 4.40 0.02 16.90 <0.001
Temp:Intersp.inter: Time 2.05 0.11 0.65 0.63 0.41 0.80 0.13 0.97 2.98 0.07 2.72 0.09

Results of the within-species statistical analyses on fitness (independent factors: temperature (fluctuating vs. constant), interspecific interactions (M, D and
T for Pm I and Pm IV; M and D for Pm lll) and time; dependent factors: number of adults and juveniles in three cryptic species of Litoditis marina). Level of
confidence = 95%. Interspec.int. = interspecific interactions; temp. = temperature; p = statistical p value; F = F statistic.

doi:10.1371/journal.pone.0131625.1001

effect of interspecific interactions was shown, with Pm IV juveniles being dominant over Pm I
in the D treatment compared with the FiD treatment independent of temperature regime.

In the treatments with three species, total numbers of adults (regardless of the species) were
affected by time, the interaction between time and interspecific interactions treatment as well
as the interaction between interspecific interactions treatment and temperature (respectively
F,,,=6.88,p=0.004, F,,4, =473, p =0.019 and F, 54 = 5.05, p = 0.034), with lower numbers
of adults in the T treatment compared with the FiT treatment at fluctuating temperature at the
end of the experiment (Fig 3). In the T treatment, more adults were found at the constant tem-
perature compared with the fluctuating temperature (respectively 358 + 43.2 and 232 + 43.0
adults). Total abundances of juveniles (regardless of species) were affected by time, interspecific
interactions treatment, temperature (respectively F, ,, = 17.71, p<0.001, F; , = 17.35, p<0.001
and F; 54 = 5.89, p = 0.023), the interaction between time and interspecific interactions treat-
ment, and the interaction between time and temperature (respectively F, ,4 = 14.95, p<0.001
and F, 5, = 8.46, p = 0.002). Abundances of juveniles differed between the T and FiT treatment
after 14 days and 21 days, with very low numbers of juveniles in the T treatment. Only at day
14, numbers of juveniles were higher in the fluctuating temperature regime compared with the
constant temperature (Fig 3). For the assemblage dynamics, no effect of temperature regime on
the adult assemblages was found. There was an effect of time, interspecific interactions (T vs
FiT) and the interaction of time and interspecific interactions (Table 4) on the adult assem-
blages. Differences in assemblage dynamics were found between the FiT and the T treatment at
every time moment (Fig 3). SIMPER analysis showed that Pm I was the main responsible for
the dissimilarity between these treatments. Pm I was less abundant in the T treatment than
expected based on the FiT-treatments, in which Pm I became dominant after 14 days (Fig 3A
and 3B), while Pm IV was the most abundant species in the T treatment after 7 and 14 days
and Pm III after 21 days. Moreover, juvenile assemblage composition was also influenced by
time, interspecific interactions, temperature, the interaction of time and interspecific interac-
tions and the interaction of time and temperature (Table 4, Fig 3C and 3D).

The assemblage dynamics differed between the FiT and T treatment and corresponded well
with those observed in the adults. After 7 days, Pm I juveniles were less dominant in the T
treatment than expected based on the FiT treatment, and after 14 days Pm IV was the most
abundant species in the T treatment. After 21 days Pm III juveniles became more abundant
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Table 2. Overview of number of nematodes for the different treatments.

Pmil

Pm IV

Pm il

Pmil

Pm IV

Pm il

Adults

7 days
14 days
21 days
Adults

7 days
14 days
21 days
Adults

7 days
14 days
21 days
Juveniles

7 days
14 days
21 days
Juveniles

7 days
14 days
21 days
Juveniles

7 days
14 days
21 days

Co

48 + 14
187 £ 94
311+ 25

Co

89 +44
257 +37
201 £11

Co

78+37
15618
100+3

Co
99145
986+463
1304453

Co
169164
555175
5371149

Co

88+16
1018+189
12131288

M

Fl

89+ 23
300+ 40
293+ 43

Fl

62 +32
300 +40
205 +48

Fl
90+48
179437
13614

Fl
286+46
818+288
634+219

Fl
217+140
818288
356+63

Fl
74+15
2554+71

Co

37+ 18
803+ 347
1003+ 392

Co

428 £32
590 +254
344 +263

Co
118+21
537+330
463+200

Co

1030+124
12204403
1162+160

1086+264

Fl

74+ 67
78+ 51
353+ 142

Fl

350 54
994 +197
570 £259

Fl

67+21
6064280
526+335

Fl
12124348
9784334
1056+394

Co

5t 4
79+ 40
83+ 82

Co

317 £60
228 +90
168 +85

Co
11211
79139
269184

Co
92154
150+93
380+341

Co

442+108
4541246
140+114

Co
2871148
150+93
360+323

Fl

55+ 29
1+ 1
157+ 86

Fl

142 97
316 £38
26 +15

Fl
108460
14+11
91+71

Fl

52+18
292+287
107+80

Fl
462+159
8861451
44+10

Fl

525+383
5864271
214122

Number of nematodes + SE (adults or juveniles) over time for the different temperature treatments (Co = constant; FI = fluctuating) and interspecific
interaction treatments.

doi:10.1371/journal.pone.0131625.t002

Table 3. Overview of the effect of the interspecific interactions on the fitness.

Pm |
Pm IV
Pm Ill

Adults

D
0¥
+
NA

oa

NA

Effect of interspecific interactions on population abundance (adults and juveniles) of the different cryptic

species of Litoditis marina (Pm |, Pm lll and Pm V) in the D and T treatment compared with the M

treatment (0 = statistically no differences;-: lower abundance compared with M; +: higher abundance
compared with M).

*: At constant temperature a positive effect for Pm | adults occurred

a: at 14 days a negative effect occurred
b: at 21 days a negative effect occurred
c: at day 7 no difference was found

doi:10.1371/journal.pone.0131625.t003
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Fig 2. Total number of nematodes (adults: a + b, juveniles: ¢ + d) over time in the different temperature
treatments (constant temperature: a + c, fluctuating temperature: b + d) with assemblage dynamics at
the different sampling times (three pie charts correspond with following time moments: 7, 14 and 21
days): upper pie charts for the D treatment (Pm | and Pm IV with interspecific interactions), lower pie
charts are the dynamics in the FiD treatment (Pm | and Pm IV without interspecific interactions).

doi:10.1371/journal.pone.0131625.9g002

compared with the other time moments (Pm III contributions to differences between time
moments: all > 47.63%). The difference between the FiT and T treatment was mainly due to
Pm IV (65.23% contribution to the dissimilarity). Temperature regime had an effect on day 14,
when Pm III juveniles were more abundant at constant temperature compared with the fluctu-
ating temperature (Pm IIT contributed 62.11% to this dissimilarity).

Discussion

The results of this study demonstrate that interspecific interactions rather than temperature
regime governed assemblage dynamics of species mixtures. The effect of daily temperature

Table 4. Statistical results of the effect of temperature regime on assemblage dynamics.

D compared with FiD T compared with FiT
Adults Juveniles Adults Juveniles
F P F p F P F p
Temp. 2.88 0.09 0.99 0.39 0.85 0.50 3.66 0.019
Intersp.int. 9.27 0.001 14.59 0.001 6.44 0.004 14.42 0.001
Time 5.38 0.002 3.88 0.01 4.60 0.004 9.01 0.001
Temp.:Intersp.int. 4.36 0.03 0.62 0.51 0.85 0.44 0.83 0.46
Temp.:Time 1.24 0.30 0.70 0.60 1.05 0.39 3.79 0.002
Interspec.int.:Time 1.01 0.40 1.26 0.28 3.17 0.01 7.69 0.001
Temp.:Intersp.int.: 1.22 0.33 0.76 0.49 1.22 0.30 1.34 0.24

Time

Results of the two 3-way PERMANOVA analyses on interspecific interactions (independent factors: temperature (constant vs. fluctuating), interspecific
interactions (fictitious vs. real populations) and time), dependent factors: adult and juvenile assemblage compositions)) for experiments with two species
(D vs. FiD) and three species (T vs. FiT). Level of confidence = 95%. Interspec.int. = interspecific interactions; temp. = temperature; p = statistical p value;
F = F statistic.

doi:10.1371/journal.pone.0131625.1004
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Fig 3. Total number of nematodes (adults: a + b, juveniles: ¢ + d) over time in the different temperature
treatments (constant temperature: a + c, fluctuating temperature: b + d) with assemblage dynamics at
the different sampling times (three pie charts correspond with following time moments: 7, 14 and 21
days): upper pie charts for the T treatment (Pm I, Pm IV and Pm lll with interspecific interactions),
lower pie charts are the dynamics in the FiT treatment (Pm I, Pm IV and Pm Ill without interspecific
interactions).

doi:10.1371/journal.pone.0131625.g003

fluctuations in the tested range on the fitness of cryptic species of Litoditis marina is limited
and species-specific. However, temperature regime did affect certain interactions between
species.

Fluctuating temperature and interspecific interactions affect fitness in a
species-specific way

Fluctuating temperature had no differential effect compared with constant temperature on the
fitness of Pm I and Pm IV populations. However, the population fitness of Pm III was affected
by temperature regime: higher juvenile abundances occurred after 14 days under fluctuating
temperature. This could be the result of a positive effect of the maximum temperature on life-
history traits, such as reproduction and development time [36]. Experiments at constant tem-
peratures have indeed shown that Pm III performs better at 25°C than at 15°C [26], and that
this effect is more pronounced than in the other cryptic species. Moreover, phylogeographic
data show the presence of Pm III in regions with higher average temperatures, where the other
species were absent [21]. This may indicate that Pm III is better adapted to higher temperatures
than the other cryptic species, while it does not perform worse than the other species at lower
temperatures (15°C and 20°C [26]). However, the higher abundance of Pm III juveniles at fluc-
tuating temperature was a transient feature only found after 14 days, which could also point to
a stress response (different conditions compared with the stock culture). Hence, temperature
regime had only limited effects on population fitness of any of the three Litoditis species in
monoculture.

In contrast, interspecific interactions clearly influenced the fitness of all three species, both
positively and negatively. Decreased population sizes are the result of interspecific competition
between the species, which can be due to reductions in survival, growth or fecundity [37].
Competition was asymmetrical, mainly affecting the abundances of Pm I and Pm III juveniles
but not those of Pm IV. Asymmetrical competition has also been found among other bacterial-
feeding free-living nematodes [38,39]. In contrast, Pm IV appeared to benefit from the pres-
ence of Pm I (D treatment), suggesting some sort of facilitative interaction [40]. Over time, the
interspecific interaction effect sometimes changed, which indicates that population dynamics
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are still changing and that longer-term studies can be important to properly predict the out-
come of those interactions.

Fluctuating temperature alters some interspecific interactions

Temperature fluctuations altered interactions between Pm I and Pm IV in the two-species
treatment but not in the three-species treatment. Pm I and Pm IV are phylogenetically more
closely related to each other than to other cryptic Litoditis marina species, and we therefore
expected stronger competition between them according to the competition-relatedness rela-
tionship [10]. Indeed, in a previous competition experiment with four cryptic species in closed
microcosms under constant environmental conditions, Pm IV was completely outcompeted
[16]. The current experiment contradicts our prediction: Pm I and Pm IV were able to coexist
in high abundances, even under constant temperatures, suggesting that Pm I was not the main
competitor of Pm IV in our earlier experiment, and/or that the presence of additional species
changes the type of their interaction. In fact, at a constant temperature, both Pm I and Pm IV
attained higher population abundances when they occurred together (without the third species,
D treatment) (for adults and juveniles in Pm IV, only for adults in Pm I), suggesting a sort of
facilitative mutualism [40,41]. Higher total nematode densities at the start of the experiment
can potentially affect bacterial growth and abundance through grazing or mucus production
[42] and could thus have increased food availability and enhanced nematode growth in both
species. At fluctuating temperature, the facilitative effect was still pronounced for Pm IV, but
disappeared for Pm I. Pm IV now became more abundant than Pm I, pointing at a facilitative
commensalism, with a positive effect of Pm I on Pm IV, and no effect of the presence of Pm IV
on Pm I. Temperature regime thus altered the interaction between these two species from a
sort of mutualism to commensalism, demonstrating that interactions between the species can
change depending on the abiotic environment [43]. Such environmental impacts on species
interactions could result from species-specific responses to the abiotic environment. However,
in this experiment, no significant differences in fitness were found in the monospecific treat-
ments at fluctuating temperature compared with the constant temperature. Experiments on
their life history at constant temperatures (15°C, i.e. the lowest temperature in our F treatment,
20°C and 25°C, i.e. the highest temperature in our F treatment) revealed no obvious differences
in generation time, reproduction rate or total population development between these two L.
marina species (Pm I and Pm IV) [26], suggesting that differences in their life histories at these
temperatures are negligible. Nevertheless, some studies on fish and butterflies have shown that
fluctuating compared to constant temperatures caused shorter development times [44], and we
did not include development or generation time as life-history traits in our present experiment.
Hence, further investigation on the effect of fluctuating temperature on generation time is
needed to check if the difference in interactions is the result of differences in life history.
Another possibility is a direct effect on the interspecific behaviour of the two species with the
abiotic factors having an effect on the way species interact with each other [43], for instance by
influencing interference behaviour [45]. Additionally, the result of the interspecific interactions
was not fully consistent among adults and juveniles: whereas adult abundances of both Pm I
and Pm IV were higher in the combination treatment (D, a sort of mutualism), only Pm IV
juveniles were more abundant in the D than in the M treatment (facilitative commensalism).
Processes as maturation, reproduction and mortality could be differentially influenced at each
stage of the individual by interspecific competitive interactions [46]. Valiente-Banuet and
Verdu [41] demonstrated in plants that interactions can alter along their development and/or
in response to temporal fluctuations of the environment. In this experiment, an effect of both
could be found: differential interactions between adults and juveniles of the different species
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were found under certain abiotic conditions. Juveniles have often been demonstrated to be
more sensitive to various kinds of environmental stress than adults [47], which may contribute
to such differential interactions.

The interactions between the species changed when three species were present (T treat-
ment), and temperature did not alter these interactions; however, the total number of nema-
todes (regardless of species) was affected by the temperature regime. Over time, the dominance
of the species changed in adult and juvenile assemblages in both temperature regimes: in the
beginning, Pm IV was the most abundant species, whereas after 21 days Pm III became the
most abundant one. This suggests that the community was still changing after three weeks. For
Pm III juveniles this dominance occurred faster for the constant temperature (already at 14
days) compared with the fluctuating temperature. However, Pm I and Pm III showed lower
abundances in the T treatment compared to the respective monospecific treatments (M1 and
M3) (Fig 1), which can be the result of competition between these two species. No effect of Pm
Iand Pm IIT on Pm IV was found. These results are in conflict with a previous study [16] in
which the same species, together with a fourth one (Pm II), were simultaneously inoculated
into closed microcosms. In that experiment, Pm IT and Pm IV adults went extinct after 35 days
at a constant temperature of 20°C, whereas no substantial effect of competition on Pm I and
Pm III was evident. Perhaps the time frame of the present experiment was too short for this
competitive effect to become manifest. The fact that Pm IV juvenile abundance dropped after
21 days in the T treatment compared to the M4 treatment may point to this explanation. Alter-
natively, the extinction of Pm IV in that previous experiment could have mainly resulted from
competition with Pm II and/or Pm II could have changed the interactions between the other
species. It seems that there are complex interactions between the species, which are not just the
sum of their separate pairwise interactions. As a result, a competitively intransitive network, in
which species’ abilities cannot be ranked in a hierarchy [48], exists in this cryptic species com-
plex. An addition of one species to a community can change all existing interactions between
the others. One species can alter the effect that another species has on a third one, and thus
pairwise species interactions are influenced by the presence and density of other species in the
community. These indirect effects may importantly affect the success of a species [49]. More-
over, total number of juveniles was lower when interspecific interactions occurred, again point-
ing to the fact that juveniles may be more sensitive to stress [47]. Altough there was no clear
effect of temperature regime on the assemblage dynamics, fluctuating temperature had an
effect on the total abundances of nematodes over time (regardless of species) in the T treat-
ment, with a decrease in abundances by the end of the experiment compared with the constant
temperature. This could point out that the competitive interactions will be more severe for all
species at fluctuating temperature, without affecting the relative contribution of each species.
Salinity already proved to have an effect on the strength of the interactions between Litoditis
species [16], showing that differences in abiotic parameters can change the strength of interspe-
cific interactions.

Conclusions

The results of this experiment show that a competitively intransitive network between the cryp-
tic species of Litoditis marina exists and daily temperature fluctuations can alter these interac-
tions. Fluctuating temperature only had a small effect on the fitness of one of the three cryptic
species studied here, but interspecific interactions can change or get weaker depending on the
temperature regime. The results indicate that there is a complex interaction between abiotic
and biotic factors, and that temperature fluctuations may change interspecific interactions,
depending on the assemblage dynamics. The outcome of interactions cannot be easily

PLOS ONE | DOI:10.1371/journal.pone.0131625 July 6, 2015 12/15



@’PLOS ‘ ONE

Temperature Regime Affects Species Interactions

predicted, but in natural situations these different regulators—biotic (interspecific interactions)
and abiotic (temperature)- can alter the outcome of the interactions between species and tem-
perature fluctuations may facilitate coexistence.
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