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Abstract

To study lifetimes of certain engineering processes, a lifetime model which can accommo-
date the nature of such processes is desired. The mixture models of underlying lifetime distri-
butions are intuitively more appropriate and appealing to model the heterogeneous nature of
process as compared to simple models. This paper is about studying a 3-component mixture
of the Rayleigh distributionsin Bayesian perspective. The censored sampling environment is
considered due to its popularity in reliability theory and survival analysis. The expressions for
the Bayes estimators and their posterior risks are derived under different scenarios. In case
the case that no or little prior information is available, elicitation of hyperparameters is given.
To examine, numerically, the performance of the Bayes estimators using non-informative
and informative priors under different loss functions, we have simulated their statistical prop-
erties for different sample sizes and test termination times. In addition, to highlight the practi-
cal significance, an illustrative example based on a real-life engineering data is also given.

Introduction

The Rayleigh distribution has many real life applications in testing lifetime of an object whose
lifetime depends upon its age. The Rayleigh distribution is often used in different fields of phys-
ics to model processes such as wave heights (Rattanapitikon [1] and Van Vledder et al. [2]),
sound and light radiation (Siddiqui [3]), radio signals and wind power (Ahmed and
Mahammed [4]), ultrasound image modeling (Chivers [5] and Burekhardt [6]) etc. It is also
used to model lifetime in hours of tubes, resistors, networks, crystals, knobs, transformers, re-
lays and capacitors in aircraft radar sets. The Rayleigh distribution is used to study the wind
speeds over a year at wind turbine sites and the daily average wind speed. In all of above men-
tioned applications, it is not uncommon to assume that life of particular equipment does de-
pend upon its age. On the other hand, this distribution has got valuable attention in the field of
reliability theory and survival analysis, probability theory and operations research. Thus, to
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model the age dependent lifetimes of devices/ equipments, the Rayleigh distribution may be a
suitable candidate distribution.

When the data are given only from overall mixture distributions then modeling these data
as a mixture of some component distributions is known as direct application of the mixture
models. Li [7] and Li and Sedransk [8, 9] discussed different features of two types of mixture
models. If the component distributions of a mixture belong to same family, their mixture is
known as a type-I mixture model. Otherwise, it is named as a type-II mixture model.Mixture
models have been successfully applied in many areas such as engineering, physical sciences,
chemical sciences, biological sciences, etc. To understand the need of using mixture models,
imagine a practical situation of modeling lifetimes of certain electrical elements where the pop-
ulation of lifetimes may be divided into a number of components depending upon the possible
reasons of failure. Several authors have used mixture modeling in different practical problems.
For example, Harris [10] fitted mixture distributions to model the crime and justice data, Kanji
[11] described wind shear data using mixture distributions, Jones and McLachlan [12] applied
the mixture of normal and Laplace distributions to wind shear data.

Most of the researchers worked on the classical and the Bayesian analysis of 2-component
mixture models. McCullagh [13] derived some conditions under which quadratic and polyno-
mial Exponential models can be generated as mixtures of Exponential models. Sinha [14] used
the Bayesian counterpart of the maximum likelihood estimates of the 2-component mixture
model considered by Mendenhall and Hader [15]. Hebert and Scariano [16] compared the lo-
cation estimators for Exponential mixtures under Pitman’s measure of closeness. Sultan et al.
[17] investigated the properties of the 2-component mixture of inverse Weibull distributions.
Saleem and Aslam [18] discussed the use of the informative and the non-informative priors for
Bayesian analysis of the 2-component mixture of Rayleigh distributions. Also, Saleem et al.[19]
presented the Bayesian analysis of the 2-component mixture of the Power distributions using
the complete and censored sample. Kazmi et al. [20] described the Bayesian analysis for the
2-component mixture of Maxwell distributions.

In daily life, many types of data including simple data, grouped data, truncated data, cen-
sored data and progressively censored data are encountered. Censoring is an important and
valuable aspect of the lifetime data. Censoring is a form of primary quality and missing life
time data problems. A valuable account of censoring is given in Romeu [21], Gijbels [22] and
Kalbfleisch and Prentice [23].

Motivated by above mentioned applications of mixture of Rayleigh distributions, we plan to
have Bayesian analysis of a 3-component mixture of Rayleigh distributions with unknown mix-
ing proportions. The parameters of component distributions are assumed to be unknown.
Four different priors and three different loss functions are used for Bayesian analysis. In addi-
tion, we assume an ordinary type-I right censored sampling scheme.

The rest of the paper is organized as follows: The 3-component mixture of Rayleigh distri-
butions is defined in Section 2. The expressions for posterior distributions using the non-infor-
mative and the informative priors are derived in Section 3. The elicitation othyperparameters,
if unknown, is given in Section 4. In Section 5, the Bayes estimators and posterior risks using
the uniform, the Jeffreys’, the inverted chi-square and the square root inverted gamma priors
under squared error loss function (SELF), precautionary loss function (PLF) and DeGroot
loss function (DLF) are presented. The limiting expressions of the Bayes estimators and their
posterior risksare derived in Section 6. The simulation study and the real data application are-
presented in Sections7 and 8, respectively.Finally, the conclusion of this study is given in Sec-
tion 9.
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3-Component mixture of the Rayleigh distributions

The probability density function (p.d.f.) and the cumulative distribution function (c.d.f.) of the
Rayleigh distribution for a random variable Y are given by:

2

.0 im):%exp<—2}}7>,y20, 2, >0, m=1,2, 3. (1)

2
F (y) =1 —exp<—2y7>, m=1,2,3, )

where 4,, is the parameter ofthe Rayleigh distribution.
A finite 3-component mixture model with the unknown mixing proportions p; and p, is de-
fined as:
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For different values of component and mixing proportion parameters, the behavior of a
3-component mixture of the Rayleigh distributions is depicted in the Fig 1.

The cumulative distribution function of 3-component mixture of the Rayleigh distributions
is given by:

F(y):plFl()’)+P2F2(y)+(l_P1 _Pz)Fs()’) (5)

Y Y y’
F(y)=1 —plexp(—gf) — P.exp (—@) — (1 —=p, — p,)exp “o) (6)

The posterior distribution using the non-informative and the
informative priors

In this section, likelihood and posterior distributions of parameters given data, say y, are de-
rived using the non-informative (uniform and Jeffreys’) and the informative (inverted chi-
square and square root inverted gamma) priors.

3.1 The likelihood function

Suppose 7 units from the 3-component mixture of Rayleigh distributionsare used in a life test-
ing experiment with fixed test termination time . Let the experiment be performed and it is ob-
served that 7 out of » units failed until fixed test termination time ¢ and the remaining n — r
units are still working. It is to be noted that out of r failures, r;, r, and r failures can be catego-
rized as belong to subpopulation-I, subpopulation-II and subpopulation-III, respectively, de-
pending upon the reason of failure. So, the number of uncensored observations is 7 = r,+7,+73.
The remaining n — r observations are the censored observations. Now we define yy, 0 < yi < t,
be the failure time of the k™ unit belonging to the I* subpopulation, where = 1,2,3 and k = 1,
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3-Componert Mixture of Rayleigh Distribution
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Fig 1. Graphs of 3-component mixture of the Rayleigh distributions for different values of parameters.

doi:10.1371/journal.pone.0126183.g001

2,- -+, 1. For a 3-component mixture model, the likelihood functioncan be written as:

L(dly) o {Hhﬂ(m }{ﬁpzfg(m)}{ﬁ(l—ﬂ —PQ)fe,%k)}{l —F@®O}™ ()

k=1

After simplification (see S1 File), the likelihood function of 3-component mixture of Ray-
leigh distributions is given by:
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for the uncensored observations and ¢ = (41, 15, 43, p1, p2)-
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3.2 The posterior distribution usingthe uniform prior

The most common non-informative priors are the uniform prior (UP) and the Jeffreys’ prior
(JP). Bayes [24], de Laplace [25] and Geisser [26] proposed that one may take the UP for the
unknown parameters of interest. We assume the improper UP (which is proportional to a con-
stant) for the component parameters 1,, A, and A3, i.e., 4; ~ Uniform(0,00), 1, ~ Uniform
(0,00) and A3 ~ Uniform(0,00). The UP over the interval (0,1) is assumed for the proportion
parameters p; and p,, i.e., p; ~ Uniform(0,1) and p, ~ Uniform(0,1). Assuming the indepen-
dence of parameters, the joint prior distribution of parameters 4, 1,, A3, p; and p, may be
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written as:

T (p) o< 1y gy Ay, 43 >0, pyy py >0, py+p, < 1. )

The joint posterior distribution of parameters 4, 4, 13, p; and p, given data y, using the UP
is given by (see S1 File):

L(8ly)m, ()
/ L(8ly)m, (6)do
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3.3 The posterior distribution usingthe Jeffreys’ prior

According to Jeffreys [27, 28], Bernardo [29] and Berger [30], the Jeffreys’ prior (JP) for 4,,
(m=1,2,3)isdefined as p(1,) < 1/|I(4,,)|, where I(1,) = —E [‘)Zfa(f'—f;'”)} is the Fisher’s infor-
mation matrix. It is interesting to note that the JP for proportion parameters p; and p, cannot
be assumed under the current settings. Therefore, again, the uniform distribution over the in-
terval (0,1) is assumed for both the p; and p,, ie., p; ~ (0,1) and p, ~ (0,1). Under the as-
sumption of independence of all the parameters, the joint prior distribution of parameters 1,,
Az A3, p1 and p, is given by:

1 ,
7,(4) o R Aoy Agy 4y >0, Py py >0, py+p, < 1. (12)
14243

Now, the joint posterior distribution of parameters 41, A,, A3, p; and p, given datay, is given
by (see S1 File):

L :
[ o)
[
A - . B, B, Ago—1, Bga—1 Coa—1
ZZ(ﬂ ; r) (;)exp(—ﬁ)exp(—f)exp( )Plo) P (L=p,—py) ™"
&(dly) = Q, }vaqul/néAzﬁligAgfrl , (14)

" ry
whereA12 = T’],Azz = 1"2,A32 =713, 312 = (1’[ —r— l)é_‘_%zyfk’ B22 - (l _])§+%Z}}§k’
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3
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3.4 The posterior distribution using the inverted chi-square prior

As an informative prior, we take inverted chi-square prior (ICP) for component parameters 4,,
A2, A3 and bivariate beta prior for proportion parameters p;, p,. Symbolically, it can be written
as: A1 ~ IC(ay,b1), A, ~ IC(ay,by), A3 ~ IC(as,bs), and py, p, ~ Bivariate Beta(a,b,c). Again,
assuming the independence of parameters, the joint prior distribution of parameters A, A,, 43,
p1 and p; is given by:

a b —(ay b _“J a— c—
m(0) 2 Ve (= ) e (< 7 ) <“ep< %)pl P p ) 09)

The joint posterior distribution of parameters 4;, 4,, 13, p; and p, given data y is given by
(see S1 File):

L(3ly)m(9)
/ L(ly)my(6)dé

n—r i n—r l B ‘ B A B )
T e
i=0  j=0 1 ] A s /“3

&(¢ly) = Q, /«LzA13+1}éA23+1i§A33+1 - (17)

1

&(oly) = (16)

where A, =71 + % Ay =1, + 2 Ay =1, +% B, =(n—r—i)C+} Zylk

2)

p) 3
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k=1 k=1
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=jrste, Qp = §F(A13)F(A23)F(A33)Z ; j B(Ay3; Bys, Cys)Brs *Boy By ™.
0
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3.5 The posterior distribution using the square root inverted gamma prior

Now, we assume the square root inverted gamma prior (SRIGP)as an informative prior for
component parameters A, 1,, 13, i.e, A, ~ SRIG(ay,b;), 1, ~ SRIG(a,,b,) and A3 ~ SRIG(as,
b;), and abivariate beta prioras an informative prior for proportion parameters p;, p,, i.e., p1, P2
~ Bivariate Beta(a,b,c). So, assuming the independence of parameters, the joint prior distribu-
tion of parameters A;, A5, A3, p; and p, is given by:

—(2a b 2 —(2ag b —(2as a [
m(0) o 1 Vewp - 7)1 z*”exp(—i—;)xg(“*”exp( ;>p1 P )19
2 "3

1
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&(dly) =

In this case, the joint posterior distribution of parameters A, 1,, 43, p1 and p, given data y is
given by (see S1 File):

&(¢ly) = / (19)

I (n—r\[i B B B _
D |exp (— #) exp (— —?) exp| ——2 | pi" p (1 — p, — po)
i—0 j=0 1 ) Ay I A3
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r
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ro r3
By =(i=))5+5> Yu+buBy=j5+1D ¥yt by Ao = nr—itri+a, Boy = i-jtryth,

k=1 k=1
C04 :j+r3+C,
o fn—r i
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Elicitation of hyperparameters

Elicitation is a tool used to quantify a person’s prior belief and knowledge. In Bayesian perspec-
tive, elicitation most often arises as a method of specifying the prior distribution of the random
parameter(s). Elicitation is simply the quantification of prior knowledge about the random pa-
rameter(s) so that this can then be combined with the likelihood to obtain posterior distribu-
tion for further statistical analysis. Elicitation has remained a challenging problem for the
statistician.Authors who have discussed this problem include Kadane et al. [31], Gavasakar
[32], Al-Awadhi and Gartwaite [33], Aslam [34], Hahn [35] and Saleem and Aslam [18]. In
this study, we adopted prior predictive method based on predictive probabilities given by
Aslam [34].

4 1 Elicitation of hyperparameters using the ICP

For eliciting the hyperparameters, prior predictive distribution (PPD) is used. The PPD using
the ICP for a random variable Y is defined as:

) = / FOl6)my(6)do (21)

On substituting (4) and (15) in (21) and then simplifying, we get:

1 aa bmTl ba b%2 ca b%
pb) = (a+b+c) ( ] ;}“}—IH T : Z)’;—ZH—" : Zy—*+1> (22)
(b, +)5 b+ (0, 49"

Using the prior predictive distribution given in (22), we consider nine intervals (0, 0.5), (0.5,
1), (1, 1.5), (1.5, 2), (2, 2.5), (2.5, 3), (3, 3.5), (3.5, 4) and (4, 4.5) with respective probabilities
0.12, 0.26, 0.24, 0.15, 0.10, 0.05, 0.03, 0.02 and 0.01 as an expert’s belief about these intervals.
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Using (22), following nine equations in (23) are solved simultaneously in Mathematica
package for eliciting the hyperparameters ay, by, a,, b,, a3, b3, a, band c.

0.5 1 1.5
/pQ/) dy = 0.12; /p(y) dy = 0.26; /p(y) dy = 0.24;
0 0.5 1
2 2.5 3
/}@ww=o¢a /?@ﬁw=01m /}@wwzooa} (23)
1.5 2 2.5
3.5 4 4.5
[ p)dy =005 [pdy =00 [p01dy =001
3 3.5 4

The elicited values of the hyperparameters a;, by, a,, by, a3, b, a, b and ¢ are obtained as
5.88796, 5.67093, 5.4940, 5.28366, 4.90644, 4.68736, 3.46665, 4.68959 and
4.30064, respectively.

4.2 Elicitation of hyperparameters using the SRIGP
The PPD using SRIGP for a random variable Y is given by:

mw=/}mwmwm¢ (24)

Using (4), (18) and (24), we get:

1 aa,bi'y ba,bs’y ca,by’y
@+ etV (e t) ™ (ae)
(bes) (nrs) (8+3)

Through the above criteria as defined in Subsection 4.1, the values of the hyperparameters
a, by, ay, by, as, bs, a, b and c are now obtained as 5.74419, 4.97886, 5.65643, 5.43122, 4.93333,
4.93038, 11.8838, 6.41829 and 7.0491, respectively.

ply) =

(25)

Bayes estimators and posterior risks using the UP, the JP, the
ICPand the SRIGPunder SELF, PLF and DLF

If d is a Bayes estimator then p(d) is called posterior risk and is defined as:

p(d) =E AL (4, d)}. Our purpose, in this study, is to look for efficient Bayes estimators of the
different parameters. For this purpose, three different loss functions, namely, SELF, PLF and
DLF are used to obtain the Bayes estimators and their posterior risks. The SELF, defined as L
(A, d) = (A - )%, was introduced by Legendre [36] to develop the least square theory. Norstrom
[37] discussed an asymmetric PLF and also introduced a special case of general class of PLFs,
which is defined as L(4,d) = % The PLF approaches infinitely close to the origin to avert
underestimation, so yielding conventional estimators when underestimation may lead to grave

results. The DLF is presented by DeGroot [38] and is defined as L(4, d) = (-9 ’,
For a given prior, the Bayes estimator and posterior risk under SELF are calculated as: d=
E,, (%) and p(d) = E/-y‘y()f) - {Eily(/l)}Q, respectively. Similarly, the Bayes estimators and pos-

terior risks with PLF and DLF are given by: d = {E/l‘y(i?)}%, p(d) = 2{E/Z\y(j‘2)}% —2E, (4),
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~ 2 2
andd = z‘yy(&)), p(d)=1-— —<)}, respectively. The Bayes estimators and posterior risks

using the UP, the JP, the ICP and the SRIGP for the parameters A, 4,, 43, p; and p, under
SELF, PLF and DLF are obtained as:

}le :r( 05) W ZZ( )( )BlV(Ah Ua)BiAZVB;VA&vB(AOWC ) ( 01/7A0v
j

i=0 j=0

+G,,) (26)

s T(A)T(A, — 05)T(Ay) s (=T \ () i (e 05) g As,
Aoy = : 28Q : Z / i BlvAlvBQV(AZV o7 B3\:4$ B(A,,, C,,)B(B,,, A,

+G,) (27)

A TA (AT (A, —08) S~ n—r\[i\ ., o
/’LSV: ( lV) ( Zéz)( > )ZZ< . )(].)BIVAIVBQVAZVBSV(ASV 05 (AUWC ) ( Uv?AUv

v i=0 j=0
+C,) (28)
o TADTANT(A) A (= N [EN o a s
P, = ( 1") éQQV) ( ‘SV) Z Z ( . > (J ) BlvAlszvszBgvA'}VB(Bova Cov)B(A()v +1,B,,
v i=0 j=0
+C,) (29)
. I(A, ' .
va - ( ) dv Z Z ( > (J > Blf”BZvAZVdeAJVB(AOv’ C(]v) ( Oy + 17A0v
i=0 j=0
+C,) (30)

. T4, — DA (A )=\ [P\ o
p(i“): ( - )SQ( QV) ( SV)ZZ< . ><j>B1v(Alv UBZVAZVB;;;‘MB(AUWC )B(BowAw

R T(A,)T(Ay, — DE(Ay) A =1\ (1) 4 —as,
p()“2v): ( 1) (SZQ ) ( : ZZ( i ><j>BlvAlvB2v(A2V 3\:42 B(AUV’COV) ( 0v7AUv

i=0 j=0

+ C(]v) - (221;)2 (32)

s T(A, )T (A, )T(Ay, — 1) s (=T [(E\ o a o oo
p(iy,) = I T )ZZ< . )(J)BBM UB(A,. C, BB, Ay,

+ Cl]v) - (231;)2 (33)
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R T(A DT (A )T(A) A= (=T (N ae anoa
P(P]v): ( 1) éQZ) ( S)ZZ< )( )BlvAVBQVAVBSVA.WB(BOWCUV)B(AO1/+QaBUV

+ C()v) - (ﬁlv)Q (34)

. T(A )T (A )T (A = (= [ F\ o ae an i
p(p2V) - ( 1V) éQZV) ( SV) Z Z( 1 ) <] > BllfAlvB2vA2VB31/AJVB(A0v7 CUV)B(BUV + 27A0v

+Cy) = (B2) (35)

where v = 1 for the UP, v = 2 for the JP, v = 3 for the ICP and v = 4 for the SRIGP. The Bayes es-
timators and posterior risks using the UP, the JP, the ICP and the SRIGP under PLF and DLF
can also be derived in similar way and are presented as supporting information in S1 File.

Limiting expressions

When test termination time — 00, uncensored observations r tends to sample size n and r;
tends to n;, [ = 1,2,3. Consequently, all the observations which are censored become uncensored
and the information contained in the sample is increased. As a result, the posterior risks of the
Bayes estimatorsdiminish and efficiency of the Bayes estimators is increased because all the ob-
servations are incorporated in sample. The limiting expressions for the Bayes estimators and
posterior risks using the UP, the JP, the ICP and the SRIGP under SELF are given in Tables
A-D in S2 File. The limiting expressions for the Bayes estimators and posterior risks using the
UP, the JP, the ICP and the SRIGP under PLF and DLF can also be derived in similar way.
These limiting expressions can be used in case of uncensored sampling schemes.

Simulation study

To know the performance of Bayes estimatorsunder different priors, loss functions, sample
sizes and test termination times. Samples of sizes, n = 50, 100, 200, 500 are generated froma
3-component mixture of Rayleigh distributions with different set of parametric values 4, 4,,
A3, p1 and p; fixed as (1, A2, 43, p1, p2) = {(14, 12, 10, 0.5, 0.3), (16, 14, 12, 0.5, 0.3), (11, 13, 15,
0.3,0.5)}.

For a fixed sample size, test termination time and set of parameters, the p;n (p,n,(1 — p; —
p2)n) observations are randomly taken from first (second, third) component density.The obser-
vations which are greater than a fixed ¢ are declared as censored observations. For each t, only
failures are identified either as member of subpopulation-I or subpopulation-II or subpopula-
tion-III. . .Based on such sample, the Bayes estimates (BEs) and posterior risks (PRs)are com-
puted using the UP, the JP, the CIP and the SRIGP under SELF, PLF and DLF. In order to
evaluate the impact of test termination time on Bayes estimators, the type-I right censoring
scheme is used for fixed test termination times ¢ = 25 and 30. All the above procedure is repeat-
ed 1000 times using Mathematica software. The results are then averaged over the 1000 sam-
ples and are arranged in S1-S12 Tables.

From S1-S12 Tables, it can be seen that the extent of over-estimation (under-estimation) of
thecomponent and proportion parameters (through Bayes estimators)using all considered pri-
ors and loss functions is greaterfor small sample size (test termination time)as compared to
large sample size (test termination time) at different test termination times (sample sizes).Simi-
larly,the extent of over-estimation (under-estimation) of component and proportion parame-
ters is lesserfor smaller values of component parameters as compared to larger values of
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component parameters atvaryingtest termination times and sample sizes. It is observed that
difference of the BEs from assumed parameters reduce to zero with an increase in sample size
for different test termination times.The same observation can be made with larger test termina-
tion time as compared to smaller test termination time for varying sample sizes.

It is observed that the PRs of Bayes estimatorsusingthe different priors and loss functions re-
duce with an increase in samplesize at different test termination times.For smallertest termina-
tion time, the PRs of Bayes estimators are larger than the PRs for large test termination time
irrespective of the prior, loss function and sample size. Also, the PRs of Bayes estimators are
smaller (larger) for smaller (larger) component parametric values for each sample size and test
termination time considered in the simulation study.

As far as the problem of selecting a suitable prior is concerned, it can be seen that SRIGP
emerges as the best prior amongst the different non-informative and informative priors consid-
ered in this study. On the other hand, the DLF is observed performing better than PLF and
SELF for estimating component parameters, whereas, for estimating the proportion parame-
ters, SELF is observed superior to PLF and DLF. It is to be noted that selection of best prior
(loss function) for a given loss function (prior) is made based on PRs associated with it. Also,
the selection of best prior and loss function does not depend on sample size and test termina-
tion time.

Real data application

The real mixture data, z = (2,1, Zy5, -+, 21,5 Zo1s Zogs - -+ Zorys Za1s Z3ay - -+ 5 2y, ) AL taken
from Davis [39]. These data represent hours to failure of a V805 Transmitter Tube, a Transmit-
ter Tube and a V600 Indicator Tube used in aircraft radar sets. Davis [39] showed that the data
z can be modeled by a mixture of exponential distributions. The transformation y = v/2z of an
exponential random data (z) yields the Rayleigh random data (y). This transformation allows
us to use the Davis mixture data for applying the proposed Bayesian analysis. To have a type-I
right censored data we fix t = 600 hours. The tests are conducted 1340 times. Thus, we have a
type-I right censored data at t = 600 hours on n = 1340 radar sets. The data summary required

r r Ty ro
to evaluate the BEs and PRs is given by: nyk = 22 z,, =268160, Zygk = QZ Zy,
k=1 k=1 k=1 k=1

3 3
= 100750, > 3 =23z, = 32500, n = 1340, 1, = 866, 15 = 337,13 = 83, r = ry+7p+13 =
k=1 k=1
1286, n—r = 54.
The BEs and the PRs using the UP, the JP, the ICP and the SRIGP under SELF, PLF and
DLF are presented in S13 Table.
From S13 Table, it is observed that the results based on the real data are compatible with
simulation results.The results about the best prior and the best loss function are also the same
as we have discussed in the Section 7.

Concluding remarks

In this study, we have considered the Bayesian analysis of3-componenten mixture of Rayleigh
distributionsusing the non-informative (uniform and Jeffreys’) and the informative (IC and
SRIG) priors under SELF, PLF and DLFto model lifetimes of objects. We conducted a compre-
hensive simulation and real life study to judge the relative performance of the Bayes estimators
and also to deal with the problems of selecting the priors and loss functions at different sample
sizes and test termination times. From simulated results, we observed that an increase in sam-
ple size or test termination time provides improved Bayes estimators. The extent of over-
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estimation (under-estimation) of the Bayes estimators is quite larger (smaller)for relatively
smaller(larger) sample sizes (test termination times) at different test termination times (sample
sizes). Furthermore, as sample size (test termination time) increases (decreases) the PRs of
Bayes estimators decrease (increase) for a fixed test termination time (sample size). However,
the PRs of Bayes estimators are large when component parameters are relatively larger and vice
versa.Also, the DLF (SELF) is observed as a suitable choice for estimating component (propor-
tion) parameters.Finally, we conclude that the SRIGP is more suitable prior under DLF for esti-
mating the component parameters. In case, when SELFis used, the SRIGP is preferablepriorfor
proportion parameters. Moreover, the same pattern is observed for the JP when only non-in-
formative priors (UP and JP) are considered.
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