

Citation: Montano S, Maggioni D, Arrigoni R, Seveso D, Puce S, Galli P (2015) The Hidden Diversity of *Zanclea* Associated with Scleractinians Revealed by Molecular Data. PLoS ONE 10(7): e0133084. doi:10.1371/journal.pone.0133084

Editor: Hector Escriva, Laboratoire Arago, FRANCE

Received: March 19, 2015

Accepted: June 22, 2015

Published: July 24, 2015

Copyright: © 2015 Montano et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

The Hidden Diversity of *Zanclea* Associated with Scleractinians Revealed by Molecular Data

Simone Montano^{1,2}*, Davide Maggioni^{1,2}, Roberto Arrigoni^{1,3}, Davide Seveso^{1,2}, Stefania Puce⁴, Paolo Galli^{1,2}

1 Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy, 2 MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of Maldives, 3 Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia, 4 Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy

* simone.montano@unimib.it

Abstract

Scleractinian reef corals have recently been acknowledged as the most numerous host group found in association with hydroids belonging to the Zanclea genus. However, knowledge of the molecular phylogenetic relationships among Zanclea species associated with scleractinians is just beginning. This study, using the nuclear 28S rDNA region and the fastevolving mitochondrial 16S rRNA and COI genes, provides the most comprehensive phylogenetic reconstruction of the genus Zanclea with a particular focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a combined mitochondrial 16S and COI phylogenetic tree revealed a multitude of hidden molecular lineages within this group (Clades I, II, III, V, VI, VII, and VIII), suggesting the existence of both host-generalist and genus-specific lineages of Zanclea associated with scleractinians. In addition to Z. gallii living in association with the genus Acropora, we discovered four well-supported lineages (Clades I, II, III, and VII), each one forming a strict association with a single scleractinian genus, including sequences of Zanclea associated with Montipora from two geographically separated areas (Maldives and Taiwan). Two host-generalist Zanclea lineages were also observed, and one of them was formed by Zanclea specimens symbiotic with seven scleractinian genera (Clade VIII). We also found that the COI gene allows the recognition of separated hidden lineages in agreement with the commonly recommended mitochondrial 16S as a DNA barcoding gene for Hydrozoa and shows reasonable potential for phylogenetic and evolutionary analyses in the genus Zanclea. Finally, as no DNA sequences are available for the majority of the nominal Zanclea species known, we note that they will be necessary to elucidate the diversity of the Zanclea-scleractinian association.

Introduction

Hydroids belonging to the genus *Zanclea* Gegenbaur, 1857 (Cnidaria, Hydrozoa) are distributed worldwide [1-5] and can be found from the intertidal zone [6-8] up to a depth of 500 m [9]. Of all 34 nominal species ascribed to this genus, a dozen have been described exclusively based on medusa specimens collected using plankton nets [10-14]. The remaining *Zanclea* species, identified through observation of both polyp and medusa stages, are known to have a preference for living substrates, usually forming symbiotic relationships with marine organisms such as bivalves, octocorals and bryozoans [5, 15-20]. Scleractinian reef corals are traditionally known to host many taxa of associated organisms [21, 22]; recently, several studies have revealed that the genus *Zanclea* is an additional component of this plethora of symbioses [6-8, 15].

After a few restricted preliminary reports from Mozambique [23, 24] and Papua New Guinea [15], an increasing number of studies on *Zanclea*-scleractinian symbiosis have recently been published focusing on different aspects of this close association such as ecology, taxonomy, physical interactions, and geographical distribution [6–8, 25–29]. The association with scleractinians currently involves the four species *Zanclea gilii* Boero, Bouillon & Gravili, 2000; *Zanclea margaritae* Pantos & Bythell, 2010; *Zanclea sango* Hirose & Hirose, 2011; and *Zanclea gallii* Montano, Maggioni & Puce 2014 and some as yet unidentified species [6–8, 15, 26–30]. All those species belong to the "*polymorpha* group" showing colonies of hydroids consisting of both retractile gastro-gonozooids and dactylozooids [15]. The geographic distribution of this association includes the Red Sea [27] and several Indo-Pacific regions such as Australia, Indo-nesia, Taiwan, Japan and the Republic of Maldives [7, 8, 26, 30]. The host range currently includes approximately 24 scleractinian genera belonging to 7 families, with a total of 33 scler-actinian species involved [29]. Thus, reef-building corals are the host group with the highest number of species found in association with *Zanclea* species.

Fontana et al. [26] recently proposed a genus-specific association between *Zanclea* and scleractinians. However, whereas *Z. gallii*, *Z. margaritae*, and the unidentified *Zanclea* specimens studied by Fontana et al. [26] settle locally on genus *Acropora* [6, 28], *Z. sango* is a more generalist species living on the genera *Pavona* and *Psammocora* and it shows a widespread distribution [28]. Unfortunately, except for these preliminary data, no other information at the species level is available regarding the host-specificity and diversity of *Zanclea* associated with scleractinians. Differences in the hydroid colony, the absence and presence of perisarc and the cnidome of both the polyp and medusa stages are the morphological features generally used to identify *Zanclea* species [7, 15, 16, 19, 28, 31]. Considering that the diversity of this genus, as well as of many cnidarians, could be underestimated due to the difficulty of morphologic identification, molecular techniques, as part of an 'integrated taxonomy' approach [32], may be very useful.

Knowledge regarding the molecular phylogenetic relationships among *Zanclea* species associated with scleractinians is still far from complete. In fact, with the exception of the recent description of *Z. gallii* based on an integrated morpho-molecular approach [28], the other three *Zanclea* species have been described only through the study of their morphological characters [6, 7, 15]. At present, mitochondrial and nuclear phylogenetic analyses have shown that all the available sequences of *Zanclea* associated with scleractinians form a monophyletic lineage clearly separated from the genus type species *Zanclea costata* Gegenbaur, 1857 [26, 28]. Within this cohesive group, both *Z. sango* and *Z. gallii* were recovered as distinct monophyletic lineages based on partial 16S gene sequences, with the latter species closely related but molecularly separated from the unidentified *Acropora*-associated *Zanclea* specimens studied by Fontana et al. [26, 28]. However, no sequences are currently available for *Z. gilii* and *Z. margaritae*.

The mitochondrial cytochrome c oxidase I (COI) gene has been broadly adopted as a barcoding gene for animal life [33, 34]. Nevertheless, its utility has been strongly criticized in some animals at the base of the Metazoan tree, such as Porifera and Cnidaria, due to the slow nucleotide substitution rate of the mitochondrial genome resulting in an overlap between intra- and interspecific divergence [35-37]. Concerning Hydrozoa, although in some cases this gene has been revealed as phylogenetically informative [38-40], the mitochondrial 16S rRNA gene has been preferentially used being highly variable, easy to amplify and useful for distinguishing nominal and cryptic hydroid species [28, 41-46]. For these reasons, the mitochondrial 16S gene has been proposed as a barcode across Hydrozoa [45].

Herein, we collected 63 specimens of *Zanclea* living on 13 scleractinian genera in Faafu Atoll, Maldives, which represents an area hosting a relatively high number of reef coral genera currently known to be involved in this symbiosis [29]. The genetic diversity and the phylogenetic relationships of *Z. sango, Z. gallii*, and several other unidentified *Zanclea* specimens associated with different scleractinian hosts were investigated by sequencing three molecular markers, the nuclear 28S rDNA region and the fast-evolving mitochondrial genes, 16S rRNA and COI genes, to evaluate the molecular diversity and degree of host specificity of *Zanclea* associated with scleractinians. Furthermore, we evaluated whether the COI gene is phylogenetically informative and appropriate among *Zanclea* species associated with scleractinians.

Material and Methods

Sample collection

The sampling was conducted between March and May 2014 in the waters around Magoodhoo Island, Faafu Atoll, Republic of Maldives (3°04' N; 72°57' E) (<u>S1 Fig</u>). The presence of *Zanclea* on scleractinian genera was recorded qualitatively *in situ*. Up to 13 scleractinian genera hosting *Zanclea* were selected and small fragments were collected for each of them. Single hydroid polyps were carefully collected one by one using a syringe needle directly from a bowl filled with seawater placed under a stereomicroscope. Afterwards, they were immediately preserved in 95% ethanol for further molecular analyses and fixed in 4% formalin for taxonomic identification. For documentary purposes we took underwater photographs of *Zanclea*-coral associations using a Canon G11 camera in a Canon WP-DC 34 underwater housing (Fig 1). Microphotographs (32x) of hydroids protruding from the coral skeletons were taken by use of a Leica EZ4 D stereomicroscope equipped with a Canon G11 camera (Fig 1). All hydroids (except *Z. gallii* and *Z. sango*) were identified at genus level according to Bouillon et al. [47], while the scleractinian hosts were identified to genus level according to updated taxonomic classifications: Acroporidae [48, 49], Agariciidae [50], Dendrophylliidae [51, 52], Lobophylliidae [53, 55, 56], Poritidae [57].

Ethics Statement

The field study was approved by the Ministry of Fisheries and Agriculture of the Republic of Maldives and it did not involve endangered or protected species.

Molecular analyses

The total genomic DNA of 63 ethanol-fixed *Zanclea* samples from 13 scleractinian genera was extracted following a protocol modified from Zietara et al. [58]. Three different molecular markers were amplified: (1) a ~300 bp portion of the nuclear 28S ribosomal DNA gene (28S), (2) a ~400 bp portion of the mitochondrial 16S ribosomal RNA gene (16S), and (3) a ~700 bp portion of the mitochondrial cytochrome oxidase subunit I gene (COI). The first two regions

Fig 1. In situ photographs and microphotographs of living Zanclea hydroids associated with scleractinians. A) Goniastrea; B) Porites; C) Montipora; D) Acropora; E) Pavona; F) Favites; G) Dipsastrea; H) Echinopora; I) Platygyra. (Scale bars: ~ 500 μm)

doi:10.1371/journal.pone.0133084.g001

PLOS ONE

of DNA have been extensively used to infer phylogenetic relationships among hydroids in numerous previous molecular studies [26, 28, 44, 45, 59–61]. We also selected the barcoding region of COI gene because it turned out to be useful for species delimitation in Hydrozoa [40, 62]. 16S and 28S genes were amplified using hydroid-specific primers and the protocols proposed by Fontana et al. [26]. The barcoding region of COI gene was amplified using universal primers LCO1490 and HCO2198 and the protocol proposed by Folmer et al. [63]. All PCR products were purified and directly sequenced in forward and reverse directions using

an ABI 3730xl DNA Analyzer (Applied Biosystem, Foster City, CA, USA). The sequences obtained in this study were deposited with the EMBL, and the accession numbers are listed in Table 1.

Molecular phylogenetic analyses and haplotype network

The chromatograms were viewed, edited, and assembled using CodonCode Aligner 3.7.0 (CodonCode Corporation, Dedham, MA, USA). Alignments of the three separate datasets were generated using the E-INS-i option in MAFFT 7.110 [64, 65] with default parameters. Genetic distances (Kimura 2-parameter) within and among nominal *Zanclea* species and/or our *Zanclea* molecular lineages were computed for each separated molecular locus using MEGA 6 [66].

To examine whether the sequences from 16S and COI loci should be combined in a single analysis, a partition-homogeneity test was run in PAUP 4.0b1 [67], and significance was estimated by 1000 repartitions. This test, described as the incongruence-length divergence test by Farris et al. [68], indicated no conflicting phylogenetic signals between the datasets (P = 0.99). Therefore, 16S and COI were linked and datasets from both molecular markers were concatenated into a single data matrix, while the 28S sequences were considered as a separate set. Single 16S and COI trees are reported in <u>S2</u> and <u>S3</u> Figs, respectively. The newly obtained 28S sequences of Zanclea were aligned with other homologous ones available in GenBank and DRYAD databases (DOI: http://dx.doi.org/10.5061/dryad.g0b20) and belonging both to the genus Zanclea and to other families of the clade Capitata [26, 28, 59, 60, 69] (Table 1). Hydra vulgaris, a representative of the clade Aplanulata [59], was selected as outgroup due to its divergence from the clade Capitata [60, 70]. For the concatenated 16S and COI dataset, our newly obtained Zanclea sequences were aligned with homologous sequences of Zanclea sp. available in GenBank and coming from China Sea and unknown host (Table 1). We selected these sequences because of their sister relationship with our scleractinian-associated Zanclea sequences as shown in the 28S analyses. Phylogenetic analyses were performed using three methods: Maximum Parsimony (MP), Bayesian Inference (BI), and Maximum Likelihood (ML). MP analyses were performed using PAUP4.0b10 with heuristic searches stepwise addition and tree-bisection-reconnection (TBR) branch swapping. The node consistency was assessed using 500 bootstrap replicates with randomly added taxa. The software MrModeltest2.3 [71] was used, in conjunction with PAUP4.0b10, to select the bestfit nucleotide substitution models for each locus. The most suitable models estimated using the Akaike information criterion (AIC) were GTR + I + for 28S, HKI + I + for 16S, and GTR + I for COI. BI analyses were performed using MrBayes 3.1.2 [72]. Four parallel Markov Chain Monte Carlo runs (MCMC) were conducted for 5×10^7 generations for 28S and COI loci, 6x 10⁷ generations for 16S locus, and 6 x 10⁷ for the combined 16S and COI loci. Trees were sampled every 100 generations for each analysis, and the initial 25% of the total trees were discarded as burn-in based on checking the parameter estimates and convergence using Tracer 1.5 [73]. ML trees were built with PhyML 3.0 [74] using the evolutionary models selected by MrModeltest2.3 and the robustness of each clade was tested using 500 bootstrap replications.

Finally, sequences were converted into the Roehl format using DnaSP 5 [75] and haplotype networks for separate 16S and COI datasets were constructed in Network 4.6.1.2 (<u>http://www.fluxus-technology.com</u>) using the median-joining algorithm [76] and default settings.

Table 1. List of specimens. List of specimens included in the analysis, with specimen code, locality and GenBank accession numbers, when available.

				Genbank accession numbers			
Species	Coral host genus	Specimen code	Locality	COI	16S	28S	
Zanclea gallii	Acropora	MA056	Maldives	LN714228	LN714105	LN714169	
Zanclea gallii	Acropora	MA057	Maldives	LN714229	LN714106	LN714170	
Zanclea gallii	Acropora	MA058	Maldives		LN714107	LN714171	
Zanclea gallii	Acropora	MA059	Maldives	LN714230	LN714108	LN714172	
Zanclea gallii	Acropora	AC1	Maldives	LN794213	LK934472	LK934479	
Zanclea sango	Pavona	MA051	Maldives	LN714225	LN714100	LN714164	
Zanclea sango	Pavona	MA052	Maldives	LN714226	LN714101	LN714165	
Zanclea sango	Pavona	MA053	Maldives	LN714227	LN714102	LN714166	
Zanclea sango	Pavona	MA054	Maldives		LN714103	LN714167	
Zanclea sango	Pavona	PA1	Maldives		LK934475	LK934483	
Zanclea sp.	Goniastrea	MA001	Maldives	LN714179	LN714050	LN714115	
Zanclea sp.	Goniastrea	MA002	Maldives	LN714180	LN714051	LN714116	
Zanclea sp.	Goniastrea	MA003	Maldives	LN714181	LN714052	LN714117	
Zanclea sp.	Goniastrea	MA004	Maldives	LN714182	LN714053	LN714118	
Zanclea sp.	Goniastrea	MA005	Maldives	LN714183	LN714054	LN714119	
Zanclea sp.	Favites	MA006	Maldives	LN714184	LN714055	LN714120	
Zanclea sp.	Favites	MA007	Maldives	LN714185	LN714056	LN714121	
Zanclea sp.	Favites	MA008	Maldives	LN714186	LN714057	LN714122	
Zanclea sp.	Favites	MA009	Maldives	LN714187	LN714058	LN714123	
Zanclea sp.	Favites	MA010	Maldives	LN714188	LN714059	LN714124	
Zanclea sp.	Dipsastrea	MA011	Maldives	LN714189	LN714060	LN714125	
Zanclea sp.	Dipsastrea	MA012	Maldives	LN714190	LN714061	LN714126	
Zanclea sp.	Dipsastrea	MA013	Maldives	LN714191	LN714062	LN714127	
Zanclea sp.	Dipsastrea	MA014	Maldives		LN714063		
Zanclea sp.	Dipsastrea	MA015	Maldives		LN714064	LN714128	
Zanclea sp.	Leptoseris	MA016	Maldives	LN714192	LN714065	LN714129	
Zanclea sp.	Leptoseris	MA017	Maldives	LN714193	LN714066	LN714130	
Zanclea sp.	Leptoseris	MA018	Maldives	LN714194	LN714067	LN714131	
Zanclea sp.	Leptoseris	MA019	Maldives	LN714195	LN714068	LN714132	
Zanclea sp.	Leptoseris	MA020	Maldives	LN714196	LN714069	LN714133	
Zanclea sp.	Leptastrea	MA021	Maldives	LN714197	LN714070	LN714134	
Zanclea sp.	Leptastrea	MA022	Maldives	LN714198	LN714071	LN714135	
Zanclea sp.	Leptastrea	MA023	Maldives	LN714199	LN714072	LN714136	
Zanclea sp.	Leptastrea	MA024	Maldives	LN714200	LN714073	LN714137	
Zanclea sp.	Leptastrea	MA025	Maldives	LN714201	LN714074	LN714138	
Zanclea sp.	Echinopora	MA026	Maldives		LN714075	LN714139	
Zanclea sp.	Echinopora	MA027	Maldives	LN714202	LN714076	LN714140	
Zanclea sp.	Echinopora	MA028	Maldives	LN714203	LN714077	LN714141	
Zanclea sp.	Echinopora	MA029	Maldives		LN714078	LN714142	
Zanclea sp.	Echinopora	MA030	Maldives	LN714204	LN714079	LN714143	
Zanclea sp.	Turbinaria	MA031	Maldives	LN714205	LN714080	LN714144	
Zanclea sp.	Turbinaria	MA032	Maldives	LN714206	LN714081	LN714145	
Zanclea sp.	Turbinaria	MA033	Maldives	LN714207	LN714082	LN714146	
Zanclea sp	Turbinaria	MA034	Maldives	LN714208	LN714083	LN714147	
Zanclea sp.	Turbinaria	MA035	Maldives	LN714209	LN714084	LN714148	
Zanclea sp.	Platygyra	MA036	Maldives	LN714210	LN714085	LN714149	
o	, auggyta	111 1000	maranyoo			LIT 14140	

(Continued)

Table 1. (Continued)

SpeciesCoral host genusSpecimen codeLocalityCOI16S28SZanclea sp.PlatygyraMA037MaldivesLN714211LN714086LN714Zanclea sp.PlatygyraMA038MaldivesLN714212LN714087LN714Zanclea sp.PlatygyraMA039MaldivesLN714213LN714088LN714Zanclea sp.PlatygyraMA040MaldivesLN714214LN714089LN714Zanclea sp.SymphylliaMA041MaldivesLN714215LN714090LN714Zanclea sp.SymphylliaMA042MaldivesLN714216LN714091LN714	
Zanclea sp.PlatygyraMA037MaldivesLN714211LN714086LN714Zanclea sp.PlatygyraMA038MaldivesLN714212LN714087LN714Zanclea sp.PlatygyraMA039MaldivesLN714213LN714088LN714Zanclea sp.PlatygyraMA040MaldivesLN714214LN714089LN714Zanclea sp.SymphylliaMA041MaldivesLN714215LN714090LN714Zanclea sp.SymphylliaMA042MaldivesLN714216LN714091LN714	
Zanclea sp.PlatygyraMA038MaldivesLN714212LN714087LN714Zanclea sp.PlatygyraMA039MaldivesLN714213LN714088LN714Zanclea sp.PlatygyraMA040MaldivesLN714214LN714089LN714Zanclea sp.SymphylliaMA041MaldivesLN714215LN714090LN714Zanclea sp.SymphylliaMA042MaldivesLN714216LN714091LN714	4150
Zanclea sp.PlatygyraMA039MaldivesLN714213LN714088LN714Zanclea sp.PlatygyraMA040MaldivesLN714214LN714089LN714Zanclea sp.SymphylliaMA041MaldivesLN714215LN714090LN714Zanclea sp.SymphylliaMA042MaldivesLN714216LN714091LN714	4151
Zanclea sp. Platygyra MA040 Maldives LN714214 LN714089 LN714 Zanclea sp. Symphyllia MA041 Maldives LN714215 LN714090 LN714 Zanclea sp. Symphyllia MA042 Maldives LN714216 LN714091 LN714	4152
Zanclea sp. Symphyllia MA041 Maldives LN714215 LN714090 LN714 Zanclea sp. Symphyllia MA042 Maldives LN714216 LN714091 LN714	4153
Zanclea sp. Symphyllia MA042 Maldives LN714216 LN714091 LN714	4154
	4155
Zanclea sp. Symphyllia MA043 Maldives LN714217 LN714092 LN714	4156
Zanclea sp. Symphyllia MA044 Maldives LN714218 LN714093 LN714	4157
Zanclea sp. Symphyllia MA045 Maldives LN714219 LN714094 LN714	4158
Zanclea sp. Porites MA046 Maldives LN714220 LN714095 LN714	4159
Zanclea sp. Porites MA047 Maldives LN714221 LN714096 LN714	4160
Zanclea sp. Porites MA048 Maldives LN714222 LN714097 LN714	4161
Zanclea sp. Porites MA049 Maldives LN714223 LN714098 LN714	4162
Zanclea sp. Porites MA050 Maldives LN714224 LN714099 LN714	4163
Zanclea sp. Montipora MA061 Maldives LN714232 LN714110 LN714	4174
Zanclea sp. Montipora MA062 Maldives LN714233 LN714111 LN714	4175
Zanclea sp. Montipora MA063 Maldives LN714234 LN714112 LN714	4176
Zanclea sp. Montipora MA064 Maldives LN714235 LN714113 LN714	4177
Zanclea sp. Montipora MA065 Maldives LN714236 LN714114 LN714	4178
Zanclea sp. XMZS1 China KF962188 KF962532 KF962	2373
Zanclea sp. XMZS2 China KF962189 KF962533 KF962	2374
Zanclea sp. XMZS3 China KF962190 KF962534 KF962	2375
Zanclea sp. XMZS4 China KF962191 KF962535 KF962	2376
Zanclea sp. XMZS5 China KF962192 KF962536 KF962	2377
Zanclea sp. XMZS6 China KF962193 KF962537 KF962	2378
Zanclea sp. XMZS7 China KF962194 KF962538 KF962	2379
Zanclea sp. XMZS8 China KF962195 KF962539 KF962	2380
Zanclea sp. XMZS9 China KF962196 KF962540 KF962	2381
Zanclea sp. XMZS10 China KF962197 KF962541 KF962	2382
Zanclea costata MHNG INV26507 France EU876553 EU879	9951
Zanclea costata MHNG INV26507 France FN687559	
Zanclea costata France AY512531	
Zanclea giancarloi Fn687560	
Zanclea giancarloi France FN687561	
Zanclea giancarloi Spain FN687562	
Zanclea sessilis Spain AY512532	
Zanclea sessilisMHNG INV61438FranceFN687557	
Zanclea sessilis Spain FN687558	
Zanclea prolifera KUNHM 2793 Japan EU305488 EU272	2598
Asyncoryne ryniensis KUNHM 2639 Japan EU876552 GQ424	4289
Cladocoryne floccosa EU876554 EU272	2551
Hydra vulgaris Argentina EU879	9941
Hydrocoryne miurensis KUNHM 2814 Japan GQ424	4313
Millepora sp. EU876551 EU879	9950
Moerisia sp. California AY512534 AY920	0801

(Continued)

Table 1. (Continued)

				Genbank accession numbers			
Species	Coral host genus	Specimen code	Locality	COI	16S	28S	
Moerisia sp.					EU876555		
Odessia maeotica		MHNG INV53642	France		GQ395324	GQ424314	
Olindias sambaquiensis			Brazil		EU293977		
Pennaria disticha		MHNG INV29809	Spain			GQ424316	
Porpita porpita					AY935322	EU883551	
Porpita sp.			Guam			AY920803	
Solanderia ericopsis			New Zealand		AY512530		
Solanderia ericopsis		MHNG INV29593	New Zealand		AY787881	EU272593	
Solanderia secunda		KUNHM 2611	Japan		EU305484	EU305533	
Sphaerocoryne agassizii			Florida		GQ395323	GQ424318	
Stauridiosarsia cliffordi		MHNG INV36025	Canada		GQ395313		
Stauridiosarsia producta		MHNG INV48751	Norway			GQ424301	
<i>Velella</i> sp.		AGC1031				EU272597	

Boldface indicates newly obtained sequences.

doi:10.1371/journal.pone.0133084.t001

Results

Molecular results

The total genomic DNA of 63 ethanol-fixed *Zanclea* samples from 13 scleractinian genera was extracted, and three molecular markers were amplified (28S, 16S and COI) for a total number 183 sequences.

The total alignments of 28S, 16S, and COI datasets were respectively 252, 374, and 647 bp long, while the concatenated set of mitochondrial markers was 1009 bp long. Phylogenetic trees obtained from BI, ML, and MP analyses were similar and, therefore, only Bayesian topologies with significant branch support indicated by Bayesian posterior probability scores, ML bootstrapping supports, and MP bootstrapping supports were shown in Figs 2 and 3 and in S2 and S3 Figs.

The general topologies of 28S and 16S trees (Fig 2 and S2 Fig, respectively) were consistent with previous studies [26, 28]. They confirmed the paraphyly of the Zanclea genus, due to the divergent position of Zanclea prolifera. Furthermore, Zanclea associated with scleractinians and the other Zanclea species not living in association with hard coral are separated by high values of genetic distances, with a mean genetic distance of $6.1 \pm 1.5\%$ for 28S and $11.3 \pm 1.4\%$ for 16S. The monophyly of Zanclea associated with scleractinians was strongly supported in all the nuclear and mitochondrial phylogeny reconstructions. In the 28S analysis, all our newly obtained sequences clustered in a single lineage together with the other Zanclea associated with scleractinians sequences obtained from previous works [26, 28] but the relationships within this group were unresolved (Fig 2). 16S and COI trees were mostly congruent and their concatenation increased branch support values. Combined mitochondrial 16S and COI phylogenetic tree showed a better resolution of phylogenetic relationships among Zanclea associated with scleractinians and seven well-supported monophyletic lineages were identified (Clades I, II, III, V, VI, VII, and VIII) (Fig 3A, S2 and S3 Figs). 16S tree showed an additional clade (Clade IV) (S2 Fig), due to the presence in the analysis of Acropora-associated Zanclea sp. sequences from Fontana et al. [26], for which no COI sequences are currently available. Almost all of the seven Zanclea clades were genus-specific, except for Clade VIII that was associated with seven

doi:10.1371/journal.pone.0133084.g002

different host genera,. Hydroids belonging to Clade I were associated with *Goniastrea* and according to the concatenated analysis they represented the earliest diverging group of *Zanclea* associated with scleractinians (Fig 3A). Other early diverging clades were Clade II and Clade III, which included hydroids symbiotic respectively with *Porites* and *Montipora*. In the 16S tree, Clade III also included a specimen found on *Montipora* from Taiwan by Fontana et al. [26], for which there are no available COI data. *Acropora*-associated hydroids were

PLOS ONE

Fig 3. Phylogenetic trees and haplotype network analyses based on mithocondrial 16S and COI genes. A) Phylogenetic tree based on the combined mitochondrial genes 16S and COI inferred by Bayesian inference. The clade support values are *a posteriori* probabilities (≥ 0.7), bootstrap values from Maximum Likelihood (≥ 70), and bootstrap values from Maximum Parsimony (≥ 70), in this order. Clades of *Zanclea* associated with scleractinians are boxed in different colors depending on the host coral genera. **B-C**) Most parsimonious median-joining networks of *Zanclea* associated with scleractinians inferred from mitochondrial genes 16S (**B**) and COI (**C**). The size of circles is proportional to the frequencies of specimens sharing the same haplotype. The colors of circles referred to clades found in 3A. **Zanclea* sp. sequences from Fontana et al. [26]

doi:10.1371/journal.pone.0133084.g003

monophyletic and themselves divided in two geographically distinct clades, Clade IV and Clade V, with the latter group corresponding to the nominal species *Z. gallii*. Clade VI was composed by hydroids belonging to the nominal species *Z. sango*, that we found in association with corals of the genus *Pavona*. Finally, *Zanclea* specimens of Clade VII were associated with *Favites*, while Clade VIII consisted of *Zanclea* samples found in association with *Dipsastrea*, *Echinopora*, *Leptastrea*, *Leptoseris*, *Platygyra*, *Symphyllia*, and *Turbinaria*. Within-clade genetic distances were extremely low for both mitochondrial markers being generally 0%, while interclade genetic distances were higher for COI rather than for 16S (Tables 2 and 3), with a mean of $6.9 \pm 0.6\%$ and $4.4 \pm 0.7\%$, respectively. For example, the genetic distances between *Z. gallii* and *Z. sango* are $7.9 \pm 1.1\%$ for COI and $6.1 \pm 1.4\%$ for 16S (Tables 2 and 3).

	ONE
--	-----

Genetic distances	Clade I	Clade II	Clade III	Clade IV	Clade V	Clade VI	Clade VII	Clade VIII	<i>Zanclea</i> sp.*	Z. giancarloi	Z. sessilis	Z. costata	Z. prolifera
Clade I	0.0 (0.0)												
Clade II	3.2 (0.9)	0.0 (0.0)											
Clade III	2.9 (0.9)	2.6 (0.8)	0.0 (0.0)										
Clade IV	5.1 (1.2)	4.6 (1.1)	5.5 (1.2)	0.3 (0.2)									
Clade V	5.1 (1.3)	4.2 (1.1)	5.1 (1.2)	1.1 (0.5)	0.1 (0.1)								
Clade VI	4.1 (1.1)	5.7 (1.3)	5.4 (1.2)	6.5 (1.3)	6.1 (1.4)	0.0 (0.0)							
Clade VII	3.8 (1.1)	4.8 (1.1)	3.8 (1.0)	4.6 (1.1)	4.2 (1.1)	3.5 (1.0)	0.0 (0.0)						
Clade VIII	4.1 (1.1)	4.4 (1.1)	4.8 (1.1)	4.3 (1.1)	3.9 (1.1)	3.2 (1.0)	0.9 (0.5)	0.0 (0.0)					
<i>Zanclea</i> sp. *	10.4 (1.8)	9.4 (1.7)	10.4 (1.8)	11.3 (1.9)	10.8 (1.9)	12.4 (2.0)	11.0 (1.8)	11.4 (1.8)	0.0 (0.0)				
Z. giancarloi	9.3 (1.6)	8.4 (1.5)	9.0 (1.6)	10.2 (1.7)	10.1 (1.7)	11.4 (1.8)	9.4 (1.6)	9.1 (1.5)	9.1 (1.6)	1.4 (0.5)			
Z. sessilis	9.4 (1.6)	8.3 (1.5)	8.6 (1.5)	10.8 (1.8)	10.7 (1.8)	11.3 (1.7)	9.9 (1.7)	9.6 (1.6)	9.4 (1.6)	5.7 (1.2)	1.0 (0.4)		
Z. costata	12.1 (1.7)	12.5 (1.7)	12.2 (1.7)	13.6 (1.9)	13.4 (1.9)	14.3 (2.0)	12.4 (1.8)	12.7 (1.8)	11.2 (1.7)	7.9 (1.3)	8.8 (1.4)	4.0 (0.9)	
Z. prolifera	15.2 (2.3)	15.2 (2.2)	16.6 (2.4)	18.0 (2.5)	17.4 (2.4)	17.3 (2.4)	16.2 (2.3)	16.6 (2.3)	15.5 (2.2)	14.1 (2.1)	15.6 (2.2)	15.7 (2.2)	n.c.

Table 2. Pairwise comparisons and genetic distance. Pairwise comparisons of genetic distance within and between nominal species of Zanclea and/or clades of Zanclea associated with scleractinians based on the mitochondrial gene 16S.

*Zanclea sp. sequences from China available in GenBank.

n.c. not calculated

Standard deviations are indicated in brackets.

doi:10.1371/journal.pone.0133084.t002

	Clade I	Clade II	Clade III	Clade V	Clade VI	Clade VII	Clade VIII	Zanclea sp.*
Clade I	0.0 (0.0)							
Clade II	6.9 (1.0)	0.0 (0.0)						
Clade III	4.9 (0.9)	5.2 (0.9)	0.0 (0.0)					
Clade V	9.3 (1.2)	7.5 (1.1)	8.4 (1.2)	0.3 (0.2)				
Clade VI	8.5 (1.2)	7.6 (1.1)	7.3 (1.1)	7.9 (1.1)	0.0 (0.0)			
Clade VII	8.5 (1.2)	9.2 (1.3)	7.6 (1.2)	9.3 (1.2)	5.5 (0.9)	0.0 (0.0)		
Clade VIII	8.0 (1.1)	8.7 (1.2)	8.2 (1.2)	9.5 (1.3)	5.1 (0.9)	2.1 (0.6)	0.1 (0.0)	
Zanclea sp.*	13.7 (1.4)	16.3 (1.7)	14.9(1.6)	16.7 (1.6)	13.7 (1.4)	16.2 (1.6)	15.4 (1.5)	0.0 (0.0)

Table 3. Pairwise comparisons and genetic distance. Pairwise comparisons of genetic distance within and between species of *Zanclea* and/or clades of *Zanclea* associated with scleractinians based on the mitochondrial gene COI.

*Zanclea sequences from China available in GenBank.

Standard deviations are indicated in brackets.

doi:10.1371/journal.pone.0133084.t003

A total of 12 and 10 haplotypes were obtained respectively from 16S and COI sequences of *Zanclea* associated with scleractinians, Median-joining networks for each mitochondrial marker are shown in Fig <u>3B</u> and <u>3C</u>. Both networks were congruent with mitochondrial phylogenetic reconstructions and they are similar between each others. No haplotypes were shared between representatives of two or more clades identified with phylogenetic analyses and, thus, all of the clades were genetically separated from each other. COI haplotypes were separated by an approximate four times higher number of substitutions compared to 16S haplotypes. For example, the only two nominal species of *Zanclea* included in network analyses (*i.e. Z. gallii* and *Z. sango*) were separated by 26 substitutions in 16S network and by 81 substitution in COI network.

Morphological results

For all the sampled hydroids, the morphology observed was in accordance with the description of the genus *Zanclea* [47]. The polyps arise abundantly from the scleractinian surface, being frequently scattered on the corallite edges or between corallites and have been recorded highly proximal to scleractinian polyps.

As already reported in Montano et al. [28], the morphological characters mainly used to distinguish *Zanclea* species are the organization of the colony (monomorphic or polymorphic), the presence of perisarc that covers the hydrorhiza and hydrocauli, the number of polyp tentacles, the placement of medusa buds on polyps, the cnidome of both polyps and medusae, and the number of cnidophores on the tentacles of medusae. The morphological characters of the clades resulted from the molecular analyses are reported in the <u>Table 4</u> and in <u>S4 Fig</u>.

Discussion

Zanclea molecular phylogeny

The results provided in this study currently represent the most comprehensive phylogenetic reconstruction of the genus *Zanclea* with a particular focus on scleractinian-associated species. The broad-based phylogenetic trees obtained with both 28S and 16S molecular markers (Fig 2 and S2 Fig) are consistent with previous molecular studies [26, 60]. These trees essentially depict the genus *Zanclea* as a paraphyletic group within the Zancleida clade [26, 28, 60] due to

Table 4. Morphological differences among clades. Morphological characters of the clades resulted from the molecular analyses.

				Polyp tentacles		Cnidome		
Genetic clade	N° of host genera	Perisarc	Polymorphism	Oral	Aboral	Two-size stenoteles	Macrobasic euryteles	Medusae observation
l ^a	1	Yes	Unknown	6	25–36	Yes	Yes	No
ll ^a	1	Unknown	Unknown	5–6	26–33	Yes	No	No
III ^{b,c}	1	Yes	Unknown	5–6	27–30	Yes	No	No
IV ^b	1	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	No
Vc	1	No	Yes	4–6	14–26	Yes	No	Yes
VI ^c	2	Yes	Yes	4–6	11–22	Yes	Yes	Yes
VII ^a	1	Yes	Unknown	5–6	26–30	Yes	Yes	No
VIII ^a	7	Yes	Yes	5–7	23–35	Yes	Yes	No

^a present study;

^b Fontana et al. 2012;

^c Montano et al. 2015.

doi:10.1371/journal.pone.0133084.t004

the unresolved position of *Zanclea prolifera*. This species was formally classified in the genus *Zanclea* even though its polyp stage was unknown [11]. Furthermore, several molecular works have shown that *Z. prolifera* is more closely related to *Asyncoryne* spp. than to the other *Zanclea* species [26, 28, 60]. This genetic evidence is not unexpected considering that *Zanclea* and *Asyncoryne* have similar medusae [47, 77]. For this reason, several authors have proposed to move *Z. prolifera* into the genus *Asyncoryne* [15, 26, 60, 78], a hypothesis consistent with our 16S phylogenetic tree (S2 Fig).

Both the nuclear and mitochondrial phylogenetic reconstructions resolved Zanclea associated with scleractinians as a monophyletic lineage. As already discussed in Montano et al. [28], the monophyly of Zanclea associated with scleractinians is consistent with the recovery within the genus Zanclea of two distinct groups proposed by Boero et al. [15] mainly based on the occurrence of a monomorphic (the alba group) or polymorphic (the polymorpha group) colony. The latter group counts seven species to date, including three species associated with bryozoans (Zanclea polymorpha Schuchert, 1996, Zanclea hirohitoi Boero, Bouillon & Gravili 2000, and Zanclea tipis Puce, Cerrano, Boyer, Ferretti & Bavestrello, 2002) and the four currently described Zanclea species associated with scleractinians (Z. gilii, Z. margaritae, Z. sango, and Z. gallii). Therefore, the character state "polymorphic colony" could be consistent with the monophyly of Zanclea species associated with scleractinians and with their separation from Zanclea species showing a monomorphic colony. Nevertheless, detailed morphological data are not available for several specimens of Zanclea in symbiosis with scleractinians, and molecular data remain unavailable for most of the nominal species of Zanclea, including the polymorphic species associated with bryozoans. Therefore, the evolutionary validity of the distinction between the *alba* group and the *polymorpha* group needs to be further addressed in thefuture with full morphological and molecular analyses of Zanclea species ascribed to the two groups to undertake any formal taxonomic action.

Genetic diversity of scleractinian-associated Zanclea

In addition to the commonly recommended mitochondrial 16S gene as a DNA barcode for Hydrozoa [40, 45, 79–81], we showed herein that the gene COI allows the recognition of separated hidden lineages in agreement with 16S data, revealing reasonable potential for phylogenetic and evolutionary analyses in the genus *Zanclea*. Indeed, COI turned out to be more variable than 16S, having approximately four times more mutations compared with 16S, despite the analysed portion of COI being bigger than that of 16S (647 bp for COI and 374 bp for 16S). Therefore, the levels of divergence observed within *Zanclea* associated with the scleractinian group strongly encourage and support the use of both COI and 16S sequences in phylogenetic studies of these hydroids. This conclusion is consistent also with several previous molecular works which successfully used COI gene in order to evaluate the potential presence of cryptic species or intraspecific population subdivision in *Plumularia setacea* [40], *Obelia geniculata* [38], and in the genus *Cordylophora* [81].

According to the mitochondrial phylogenetic trees and haplotype network analyses, all *Zanclea* specimens associated with scleractinians group together in a cohesive and monophyletic cluster; moreover, they are characterized by considerable genetic diversity (Fig 3A). Indeed, our molecular results indicate that this group is composed of multiple reciprocally well-supported monophyletic lineages (Clades I through VIII) that show a peculiar pattern of host specificity, as discussed in the following paragraph. Two of these seven lineages notably correspond to the nominal species *Z. sango* (Clade VI) and *Z. gallii* (Clade V), and the genetic divergence between the two species overlaps the distance values found between all the other molecular clades using both the mitochondrial 16S and COI genes (Tables <u>2</u> and <u>3</u>). Although

we are far from the establishment of an appropriate and widely accepted genetic distance threshold to differentiate hydrozoan species using 16S sequences, Moura et al. [45] proposed a conservative maximum of 2% divergence for intraspecific sequence distance in the Sertulariidae. In our 16S analysis, all the intraclade distances are under this value, while the interclade divergences exceed this conservative threshold in most of the pairwise comparisons. Furthermore the genetic differentiation of 16S locus between our multiple lineages of *Zanclea* (Table 2) is clearly consistent with those calculated between nominal and putative species of the genus *Turritopsis* (3.6%–12.1%) [80] and *Acryptolaria* (up to 3.1%) [42]. Comparable 16S genetic distances revealed the existence of cryptic species within *Cordylophora* (3.3%- 6%) [81], *Nemertesia* (up to 4.8%) [43], *Stylactaria* (up to 6%) [46], *Cryptolaria pectinata* (up to 2.2%) [42], and *Lafoea dumosa* (up to 5%) [42, 44].

In conclusion, for both mitochondrial markers, relevant comparisons with previous similar works suggest that the genetic divergence found within *Zanclea* associated with scleractinians might be better explained by assigning independent species status to all molecular clades rather than considering these lineages to be the result of a strong population subdivision. Nevertheless, to discriminate between these two alternative hypotheses, it will be mandatory to corroborate our mitochondrial data with investigations of additional variable nuclear markers and to evaluate the possible presence of morphological features that are clade-diagnostic in the group of *Zanclea* associated with scleractinians.

Host specificity of Zanclea associated with scleractinians

Currently, there is evidence concerning increasing reports of the occurrence of associations between scleractinians and hydroids belonging to the genus *Zanclea* in the coral community [6–8, 26, 27, 29]. This growing number of works likely reflects only a lack of attention about this association in previous decades, due to the small dimensions of hydroids, that have limited their observation. However, the absence of previous data prevents us from excluding a possible recent spread of this association in the reefs of the Indo-Pacific and the Red Sea. Furthermore, our molecular data showed that the genetic diversity within *Zanclea* associated with scleractinians is very high and that there is a multitude of hidden molecular lineages within this group. Boero et al. [15] hypothesized that radiation similar to bryozoan-inhabiting hydroids also occurred in coral-inhabiting hydroids, and the combined morpho-molecular data reported for the recently described species *Z. gallii* [28] as well as the molecular data obtained in the present study, seem to support this hypothesis.

With the exception of the less specialized Z. alba (Meyen, 1834), considered a species with characters near to the ancestral state, and Z. costata, which is not compulsorily associated with bivalves [15], the genus Zanclea usually shows high host specificity [15–19]. The present study suggests the existence of both host-generalist and genus-specific lineages of Zanclea associated with scleractinians. In addition to Z. gallii living in association with the genus Acropora in Maldives, we discovered four well-supported lineages (Clades I, II, III, and VII), each one forming a strict association with a single scleractinian genus. This evidence, together with the close relationship between sequences of Zanclea associated with Montipora from two geographically separated areas (Maldives and Taiwan), support the hypothesis that Zanclea in symbiosis with scleractinians include lineages that settle on scleractinian hosts belonging to a preferred genus, as already suggested by Fontana et al. [26]. However, two host-generalist Zanclea lineages were also observed. The first lineage includes Z. sango, a nominal species currently known to be associated with the two scleractinian genera Pavona and Psammocora [7, 28]. In addition, our analysis recovered a second well-supported lineage formed by Zanclea specimens symbiotic with seven scleractinian genera (Clade VIII). These two lineages could represent less

specialized and more generalist *Zanclea* lineages living in association with several scleractinians ascribed to different genera.

Concerning morphological traits related to host specificity, Puce et al. [16] noted the importance of the presence or absence of a perisarc around the hydrorhiza. The authors suggested that ancestral species are predicted to be host generalists and characterized by hydrorhiza covered by a perisarc, whereas advanced species that establish specific associations with host species should have lost their perisarc. Although this scenario was already observed between Z. gallii and Z. sango [28], the morphological results herein obtained reveal the presence of a perisarc covering the hydrorhiza in both host-specific (Cades I, III and VII) and host-generalist (Clades VI and VIII) lineages. This evidence may suggest a less integrated relationship between Zanclea belonging to Clades I, III and VII and their host. An alternative hypothesis is that, as the presence of macrobasic euryteles [15], the absence of the perisarc, instead of being a derived character, might be due to independent events of loss and acquisition of the related structure. Despite the absence of some morphological information, the combined characters "perisarc" and "macrobasic euryteles" allow one to distinguish clades I, III and V. In addition, even though the presence of the perisarc is unknown, clade II differs from clade I, and in accord with the possible presence/absence of the perisarc it may be different from clade V or III, respectively. Clades I, VI, VII and VIII share the same state of the characters "perisarc" and "macrobasic euryteles", but the last three represent a monophyletic clade and their similarities could be related to this condition. The character "polymorphic colony" was frequently unknown owing to the difficulty of noticing the presence of the very contractile dactylozooids. Three of the clades (V, VI, VIII) share polymorphic colonies, but additional investigations are required to determine whether this character is shared between all clades or if it may help to morphologically differentiate them. Moreover, knowledge of the life cycle of the specimens belonging to each clade will provide important information regarding the evolutionary history of Zanclea associated with scleractinians.

The available data prevent us from excluding the possibility that some *Zanclea* lineages, as some other cosmopolitan species of hydroids, may be complexes of species [82, 83]. Indeed, nominal species of hydroids known to have a very wide, circumglobal distribution could eventually result in different geographically delimited species [38, 46, 79, 81, 84, 85], sometimes suggesting the existence of cryptic species [40]. At present we can only speculate on the true diversity of *Zanclea* associated with scleractinians because the incomplete set of information currently available makes any discussion inconclusive. In fact, some *Zanclea* species lack complete morphological information, and no DNA sequences are available for the majority of the nominal *Zanclea* species known. Thus, we strongly stress that DNA sequences of already described *Zanclea* species are necessary to clarify the true diversity of the entire genus, and especially of species living in association with scleractinians.

Conclusion

The recent literature [6–8, 26, 27, 29] suggests that the *Zanclea*-scleractinians symbiosis is widespread in coral communities of the Indo-Pacific and Red Sea. Although the analysis of species boundaries within the genus *Zanclea* is still far from complete, our results show that the barcoding region of the COI gene is very informative and useful in such scope. Herein, we set a starting point for further investigations, showing high genetic diversity in the *Zanclea*-scleractinian symbiosis and reporting potential hidden lineages both host-specific and host-generalist. Currently, the available morphological data suggest that some identified clades are morphologically different and that the possibility of crypticism between some molecular line-ages is observed. Molecular phylogeny is currently revolutionizing the traditional systematics

in a multitude of marine taxa including Hydrozoa [59, 60, 62]. Therefore, integration between a complete morphological approach that investigates both polyp and medusa stages and a molecular multilocus approach is needed to better clarify the diversity of the *Zanclea*-scleractinian association.

Supporting Information

S1 Fig. Map of the study area. A) Maldives; B) Faafu Atoll; C) Magoodhoo Island. (TIF)

S2 Fig. Phylogenetic tree based on the mitochondrial gene 16S inferred by Bayesian inference. The clade support values are *a posteriori* probabilities (≥ 0.7), bootstrap values from Maximum Likelihood (≥ 70), and bootstrap values from Maximum Parsimony (≥ 70), in this order.

(TIF)

S3 Fig. Phylogenetic tree based on the mitochondrial gene COI inferred by Bayesian inference. The clade support values are *a posteriori* probabilities (≥ 0.7), bootstrap values from Maximum Likelihood (≥ 70), and bootstrap values from Maximum Parsimony (≥ 70), in this order.

(TIF)

S4 Fig. Morphological characters of *Zanclea* hydroids associated with scleractinians. A) Gastrozooids and a dactylozooid (arrowhead) emerging from *Pavona varians*; B-C) Gastrogonozooid and a blastostyle bearing mature medusa buds on *Porites* sp. and *Acropora muricata*, respectively. D) An extended polyp belonging to clade VIII and growing on *Turbinaria* sp.; E) a contracted dactylozooid belonging to a *Zanclea sango* colony. F-G) Micrographs showing the basal portion of *Zanclea* hydroids associated with *Leptoseris* sp. and *Leptastrea* sp., respectively; the hydrocauli are covered by a transparent perisarc (arrowheads). H) Undischarged two-sized stenoteles; I-J) large and small discharged stenoteles. K-L) Undischarged apotrichous macrobasic eurytele from *Zanclea sango* and a detail of the distal part of the shaft of the same discharged nematocyst. (Scale bars: A-C ~ 0.5 mm; D-G ~ 100 µm; H-L ~ 5 µm). (TIFF)

Acknowledgments

We thank the staff of the Marine Research and High Education Center and the community of Maghoodhoo for the logistic support provided. Finally we thank two reviewers whose comments greatly improved the manuscript.

Author Contributions

Conceived and designed the experiments: SM. Performed the experiments: SM DM RA. Analyzed the data: RA DM SP. Contributed reagents/materials/analysis tools: DS PG. Wrote the paper: SM RA DS SP.

References

- Kramp P (1968) The Hydromedusae of the Pacific and Indian Oceans. Sections II and III. Dana Rep 72: 1–200.
- 2. Stepanjants S (1972) Hydroidea of the coastal waters of the Davis Sea (collected by the XIth Soviet Antarctic Expedition of 1965–1966). Biol res Soviet Antarct Exped 5: 56–79.
- Ristedt H and Schuhmacher H (1985) The bryozoan *Rhynchozoon larreyi* (Audouin, 1826)–A successful competitor in coral reef communities of the Red Sea. Mar Ecol 6: 167–179.

- Calder DR (1988) Shallow-Water Hydroids of Bermuda: The Athecatae. R Ont Mus Life Sci Contrib 148: 1–107.
- 5. Gravili C, Boero F and Bouillon J (1996) *Zanclea* species (Hydroidomedusae, Anthomedusae) from the Mediterranean. Sci Mar 60: 99–108.
- 6. Pantos O and Bythell JC (2010) A novel reef coral symbiosis. Coral Reefs 29: 761–770.
- 7. Hirose M and Hirose E (2011) A new species of *Zanclea* (Cnidaria: Hydrozoa) associated with scleractinian corals from Okinawa, Japan. J Mar Biol Assoc U K 92: 877–884.
- 8. Montano S, Maggioni D, Galli P, Seveso D and Puce S (2013) *Zanclea*–coral association new records from Maldives. Coral Reefs 32: 701.
- Bouillon J, Pagès F, Gili J-M, Palanques A, Puig P and Heussner S (2000) Deep-water Hydromedusae from the Lacaze-Duthiers submarine canyon (Banyuls, northwestern Mediterranean) and description of two new genera, *Guillea* and *Parateclaia*. Sci Mar 64: 87–95.
- 10. Haeckel EHPA (1879) Monographie der Medusen. G. Fischer.
- 11. Uchida T and Sugiura Y (1976) On a Hydromedusa, *Zanclea prolifera* n. sp., of which the medusa gives rise to medusa-buds. Proceedings of the Japan Academy 52: 141–144.
- Xu Z, Huang J and Chen X (1991) On new species and record of Hydromedusae in the upwelling region off the Minnan-Taiwan Bank fishing ground, China. Minnan-Taiwan Bank Fishing Ground Upwelling Ecosystem Study (in Chinese) Beijing: Science Press 469: 486.
- Xu Z, Huang J and Guo D (2008) Six new species of Anthomedusae (Hydrozoa, Hydroidomedusae) from Beibu Gulf, China. In: Hu J. and Yang S., editors. Symposium on Oceanography of the Beibu Gulf I China Ocean Press, Beijing. pp. 209–221.
- 14. Gershwin LA and Zeidler W (2003) Encounter 2002 expedition to the isles of St Francis, South Australia: medusae, siphonophores and ctenophores. Trans R Soc S Aust 127: 205–241.
- **15.** Boero F, Bouillon J and Gravili C (2000) A survey of *Zanclea*, *Halocoryne* and *Zanclella* (Cnidaria, Hydrozoa, Anthomedusae, Zancleidae) with description of new species. Ital J Zool 67: 93–124.
- 16. Puce S, Cerrano C, Boyer M, Ferretti C and Bavestrello G (2002) *Zanclea* (Cnidaria: Hydrozoa) species from Bunaken Marine Park (Sulawesi Sea, Indonesia). J Mar Biol Assoc U K 82: 943–954.
- Puce S, Bavestrello G, Di Camillo CG and Boero F (2007) Symbiotic relationships between hydroids and bryozoans. Symbiosis 44: 137–143.
- Puce S, Cerrano C, Di Camillo CG and Bavestrello G (2008) Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J Mar Biol Assoc U K 88: 1715–1721.
- Puce S, Di Camillo CG and Bavestrello G (2008) Hydroids symbiotic with octocorals from the Sulawesi Sea, Indonesia. J Mar Biol Assoc U K 88: 1643–1654.
- McKinney FK (2009) Bryozoan-hydroid symbiosis and a new ichnogenus, *Caupokeras*. Ichnos 16: 193–201.
- Stella JS, Pratchett MS, Hutchings PA and Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev 49: 43–104.
- 22. Hoeksema BW, Van der Meij SET and Fransen CHJM (2012) The mushroom coral as a habitat. J Mar Biol Assoc U K 92: 647–663.
- 23. Millard NAH (1975) Monograph on the Hydroida of Southern Africa. Ann S Afr Mus 68: 1–513.
- Millard NAH and Bouillon J (1974) A collection of hydroids from Moçambique, East Africa. Ann S Afr Mus 65: 1–40.
- Pantos O and Hoegh-Guldberg O (2011) Shared skeletal support in a coral-hydroid symbiosis. PLoS One 6: e20946. doi: <u>10.1371/journal.pone.0020946</u> PMID: <u>21695083</u>
- Fontana S, Keshavmurthy S, Hsieh HJ, Denis V, Kuo C-Y and Hsu C-M et al. (2012) Molecular evidence shows low species diversity of coral-associated hydroids in *Acropora* corals. PLoS One 7: e50130. doi: <u>10.1371/journal.pone.0050130</u> PMID: <u>23209655</u>
- 27. Montano S, Galli P, Maggioni D, Seveso D and Puce S (2014) First record of coral-associated *Zanclea* (Hydrozoa, Zancleidae) from the Red Sea. Mar Biodivers 44: 581–584.
- 28. Montano S, Arrigoni R, Pica D, Maggioni D and Puce S (2015) New insights into the symbiosis between Zanclea (Cnidaria, Hydrozoa) and scleractinians. Zool Scr 44: 92–105.
- Montano S, Seveso D, Galli P, Puce S and Hoeksema BW (2015) Mushroom corals as newly recorded hosts of the hydrozoan symbiont Zanclea sp. Mar Biol Res, doi: 10.1080/17451000.2015.1009467
- Gravier-Bonnet N and Bourmaud C (2012) Hydroids (Cnidaria, Hydrozoa) of Baa Atoll (Indian Ocean, Maldives Archipelago). Atoll Res Bull: 82–123.

- **31.** Bouillon J, Medel MD, Pagès F, Gili JM, Boero F and Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68: 5–438.
- 32. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85: 407-415.
- **33.** Hebert PD, Penton EH, Burns JM, Janzen DH and Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. Proc Natl Acad Sci U S A 101: 14812–14817. PMID: <u>15465915</u>
- 34. Hebert PD, Ratnasingham S and deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270 Suppl 1: S96–99. PMID: <u>12952648</u>
- Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6: 24. PMID: <u>16542456</u>
- Shearer TL and Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8: 247–255. doi: <u>10.1111/j.1471-8286.2007.01996.x</u> PMID: <u>21585766</u>
- Huang D, Meier R, Todd PA and Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66: 167–174. doi: <u>10.</u> <u>1007/s00239-008-9069-5</u> PMID: <u>18259800</u>
- Govindarajan AF, Halanych KM and Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146: 213–222.
- Ortman BD, Bucklin A, Pagès F and Youngbluth M (2010) DNA Barcoding the Medusozoa using mtCOI. Deep-Sea Res Part II Top Stud Oceanogr 57: 2148–2156.
- Schuchert P (2014) High genetic diversity in the hydroid *Plumularia setacea*: a multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol 76: 1–9. doi: <u>10.1016/j.ympev.2014.02</u>.
 <u>020</u> PMID: <u>24602986</u>
- Schuchert P and Reiswig HM (2006) Brinckmannia hexactinellidophila, n. gen., n. sp.: a hydroid living in tissues of glass sponges of the reefs, fjords, and seamounts of Pacific Canada and Alaska. Can J Zool 84: 564–572.
- Moura CJ, Cunha MR, Porteiro FM and Rogers AD (2012) Polyphyly and cryptic diversity in the hydrozoan families Lafoeidae and Hebellidae (Cnidaria: Hydrozoa). Invertebr Syst 25: 454.
- Moura CJ, Cunha MR, Porteiro FM, Yesson C and Rogers AD (2012) Evolution of *Nemertesia* hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and western Mediterranean. Zool Scr 41: 79–96.
- Moura CJ, Harris DJ, Cunha MR and Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37: 93–108.
- 45. Moura CJ, Cunha MR, Porteiro FM and Rogers AD (2011) The use of the DNA barcode gene 16S mRNA for the clarification of taxonomic problems within the family Sertulariidae (Cnidaria, Hydrozoa). Zool Scr 40: 520–537.
- 46. Miglietta MP, Schuchert P and Cunningham CW (2009) Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa). Zool Scr 38: 403–430.
- 47. Bouillon J, Gravili C, Gili J-M and Boero F (2006) An introduction to Hydrozoa. Paris: Publications Scientifiques du Museum.
- Wallace CC, Done BJ and Muir PR (2012) Revision and Catalogue of Worldwide Staghorn Corals Acropora and Isopora (Scleractina: Acroporidae) in the Museum of Tropical Queensland. Mem Queensl Mus 57: 1–255.
- 49. Wallace CC, Chen CA, Fukami H and Muir PR (2007) Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs 26: 231–239.
- 50. Veron J (2000) Corals of the World. Townsville, Australia: Australian Institute of Marine Science.
- Cairns SD (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 615: 1–75.
- Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, et al. (2014) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zool Scr 43: 661–688.
- Budd AF, Fukami H, Smith ND and Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166: 465–529.
- Arrigoni R, Terraneo TI, Galli P and Benzoni F (2014) Lobophylliidae (Cnidaria, Scleractinia) reshuffled: pervasive non-monophyly at genus level. Mol Phylogenet Evol 73: 60–64. doi: <u>10.1016/j.ympev.2014.</u> <u>01.010</u> PMID: <u>24472672</u>

- Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, et al. (2014) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera *Merulina*, *Goniastrea* and *Scapophyllia* (Scleractinia, Merulinidae). Zool Scr 43: 531–548.
- Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND and Budd AF (2014) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171: 277–355.
- Kitano YF, Benzoni F, Arrigoni R, Shirayama Y, Wallace CC and Fukami H (2014) A phylogeny of the family Poritidae (cnidaria, scleractinia) based on molecular and morphological analyses. PLoS One 9: e98406. doi: <u>10.1371/journal.pone.0098406</u> PMID: <u>24871224</u>
- Zietara MS, Arndt A, Geets A, Hellemans B and Volckaert FA (2009) The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae). J Parasitol 86: 1368–1373.
- 59. Collins AG, Winkelmann S, Hadrys H and Schierwater B (2005) Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. Zool Scr 34: 91–99.
- **60.** Nawrocki AM, Schuchert P and Cartwright P (2010) Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39: 290–304.
- Schuchert P (2010) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata part 2. Rev Suisse Zool 117: 337–555.
- Nawrocki AM, Collins AG, Hirano YM, Schuchert P and Cartwright P (2013) Phylogenetic placement of Hydra and relationships within Aplanulata (Cnidaria: Hydrozoa). Mol Phylogenet Evol 67: 60–71. doi: 10.1016/j.ympev.2012.12.016 PMID: 23280366
- Folmer O, Black M, Hoeh W, Lutz R and Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299. PMID: <u>7881515</u>
- Katoh K, Misawa K, Kuma Ki and Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. PMID: <u>12136088</u>
- Katoh K and Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. doi: <u>10.1093/molbev/mst010</u> PMID: 23329690
- 66. Tamura K, Stecher G, Peterson D, Filipski A and Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. doi: <u>10.1093/molbev/mst197</u> PMID: <u>24132122</u>
- Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. b.10. Sunderland, MA: Sinauer Associates.
- Farris JS, Källersjö M, Kluge AG and Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44: 570–572.
- 69. Evans NM, Lindner A, Raikova EV, Collins AG and Cartwright P (2008) Phylogenetic placement of the enigmatic parasite, *Polypodium hydriforme*, within the Phylum Cnidaria. BMC Evol Biol 8: 139. doi: <u>10.1186/1471-2148-8-139</u> PMID: <u>18471296</u>
- Cartwright P, Evans NM, Dunn CW, Marques AC, Miglietta MP, Schuchert P, et al. (2008) Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J Mar Biol Assoc U K 88: 1663–1672.
- Nylander J (2004) MrModeltest v2. Software distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Ronquist F and Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PMID: <u>12912839</u>
- Drummond AJ and Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. PMID: <u>17996036</u>
- Guindon S and Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. PMID: <u>14530136</u>
- 75. Rozas J, Sanchez-DelBarrio JC, Messeguer X and Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497. PMID: <u>14668244</u>
- 76. Bandelt HJ, Forster P and Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. PMID: <u>10331250</u>
- Migotto AE (1996) Benthic shallow-water hydroids (Cnidaria, Hydrozoa) of the coast of São Sebastião, Brazil, including a checklist of Brazilian hydroids. Zool Verh Leiden 306: 1–125.
- Hirohito ES (1988) The hydroids of Sagami Bay. Tokyo: Publications of the Biolological Laboratory, Imperial Household.
- Schuchert P (2005) Species boundaries in the hydrozoan genus Coryne. Mol Phylogenet Evol 36: 194–199. PMID: <u>15904866</u>

- **80.** Miglietta MP, Piraino S, Kubota S and Schuchert P (2007) Species in the genus *Turritopsis* (Cnidaria, Hydrozoa): a molecular evaluation. J Zool Syst Evol Res 45: 11–19.
- Folino-Rorem NC, Darling JA and D'Ausilio CA (2009) Genetic analysis reveals multiple cryptic invasive species of the hydrozoan genus *Cordylophora*. Biol Invasions 11: 1869–1882.
- 82. Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7: 114–118. doi: <u>10.1016/</u> 0169-5347(92)90144-Z PMID: <u>21235975</u>
- **83.** Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25: 547–572.
- Martinez DE, Iniguez AR, Percell KM, Willner JB, Signorovitch J, et al. (2010) Phylogeny and biogeography of *Hydra* (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 57: 403–410. doi: 10.1016/j.ympev.2010.06.016 PMID: 20601008
- **85.** Lindner A, Govindarajan AF and Migotto AE (2011) Cryptic species, life cycles, and the phylogeny of *Clytia* (Cnidaria: Hydrozoa: Campanulariidae). Zootaxa: 23–36.