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Abstract

Most areas planted with sugarcane are located in southern China. However, remote sens-
ing of sugarcane has been limited because useable remote sensing data are limited due to
the cloudy climate of this region during the growing season and severe spectral mixing with
other crops. In this study, we developed a methodology for automatically mapping sugar-
cane over large areas using time-series middle-resolution remote sensing data. For this pur-
pose, two major techniques were used, the object-oriented method (OOM) and data mining
(DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugar-
cane growing period. Image objects were generated using a multi-resolution segmentation
algorithm, and DM was implemented using the AdaBoost algorithm, which generated the
prediction model. The prediction model was applied to the HJ-1 CCD time-series image
objects, and then a map of the sugarcane planting area was produced. The classification
accuracy was evaluated using independent field survey sampling points. The confusion
matrix analysis showed that the overall classification accuracy reached 93.6% and that the
Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient,
and applicable for extrapolating the classification of other crops in large areas where the
application of high-resolution remote sensing data is impractical due to financial consider-
ations or because qualified images are limited.

Introduction

Sugar is a major food additive and is one of the most important raw bioenergy materials. Sugar
made from sugarcane accounts for approximately 80% of the total sugar production in China
[1]. The areas of sugarcane planting and production in China are ranked third in the world
after those of India and Brazil. Regarding safety and policy making, it is important to quickly
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estimate sugarcane planting status over large areas. Conventionally, the local government usu-
ally estimates the sugarcane planting area by using a field survey; however, the survey coverage
is usually very limited and time consuming.

As a powerful alternative, remote sensing provides an effective method for monitoring crop
growth and estimating crop yield due to its unique capabilities in terms of its spectral, temporal
and spatial resolutions [2]. In the literature, many different types of optical remote sensing
data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER), Landsat-5 Thematic Mapper
(TM), High Resolution Imaging Camera (CCD) on board of China-Brazil Earth Resources Sat-
ellite-2 and -2B (CBERS-2 and -2B), Landsat-7 Enhanced Thematic Mapper Plus (ETM+),
SPOT-5 High Resolution Geometrical (HRG), and ENVISAT Advanced SAR (ASAR), have
been applied for discriminating between sugarcane varieties, mapping sugarcane planting areas
and estimating sugarcane yields [1-6].

Nevertheless, approximately 90% of China’s sugarcane crop is grown in southern and
southwest regions [1] where the landscape is highly heterogeneous and is covered by cloudy
weather during the sugarcane growing season. Consequently, only a few qualified remote sens-
ing images are available. Additionally, cross cultivation in the above-mentioned sugarcane
growing regions is common; thus, the extraction of sugarcane information from remote sens-
ing data is compromised by spectral mixing with other types of crops [7].

The unique phenology of sugarcane, which is longer than rice and peanut and shorter than
evergreen plants, such as banana and eucalyptus, may provide valuable information for remote
sensing classification in the study area. By properly using time-series remote sensing images,
the phenology of sugarcane, which can be used to differentiate the sugarcane planting area
from the other land cover types, may decrease the interference of similar spectra from the
other vegetation in the spectrum and increase the classification accuracy [8].

Conventional remote sensing classification algorithms, e.g., the unsupervised/supervised
classifiers, the Iterative Self-Organizing Data Analysis Technique (ISOData), the Maximum
Likelihood (ML) classifier, the Neural Network (NN) and the Support Vector Machine (SVM),
are applied directly to pixels and do not consider contextual information [9-11]. However,
pixel-based classification procedures, particularly those only using single imagery, may cause
problems in automatic pattern recognition due to phenological crop variability, different crop-
ping systems and non-uniform measurement conditions [12]. Alternatively, object-oriented
techniques based on multi-temporal remote sensing images have been widely applied for land
cover classification[13].

Compared with traditional pixel-based remote sensing classification methods, object-ori-
ented methods (OOM:s) consider the analysis of an “object in space” instead of a “pixel in
space” [14]. The objects in OOM:s have geographical features such as shape and length; texture
features such as the gray level co-occurrence matrix (GLCM); and topological entities such as
adjacency [15]. All of the attributes of a specific object form a knowledge base for the sample
objects and can be applied in the classification process using data mining (DM) techniques
[16].

DM is a separate stage within a process known as knowledge discovery in database (KDD)
[17]. In the KDD process, decision tree (DT) classification techniques have been used to clas-
sify remote sensing data and have several advantages over the maximum likelihood method
and artificial neural network algorithms. DT has the ability to handle data measured on differ-
ent scales, but lacks any assumptions concerning the frequency distributions of data in each of
the classes and the ability to handle non-linear relationships between features and classes [9].
For high-dimensional data, DT has no obvious advantages compared with the ANN and MLC
classifiers [18]. However, the boosting method in machine learning is more robust than
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traditional DT. The basic idea of boosting is to create a highly accurate prediction rule by com-
bining many relatively weak and inaccurate rules [19]. The AdaBoost (Adaptive Boosting)
algorithm was the first practical boosting algorithm and remains one of the most widely used
and studied data mining algorithms [20].

The small sun-synchronous satellites for environmental and disaster monitoring and fore-
casting (HJ-1 A/B) of China were launched in 2008, with a spatial resolution of 30 m, four spec-
tral bands ranging from 0.43-0.90°um and a revisit cycle of four days (the revisit cycle of the
constellation is 2 days) [11]. Considering the influences of climate and the affordability of high
spatial resolution remote sensing data, this study aimed to demonstrate the feasibility of using
OOMs and the AdaBoost algorithm based on HJ-1 A/B data to classify sugarcane growing
areas in regions with limited data and complex land cover. Thus, this study aimed to classify
sugarcane production at a large regional scale in southern China. The phenological informa-
tion regarding the major crops in the study area was used to facilitate the selection of remote
sensing data and the interpretation of the results. The accuracy of this classification was evalu-
ated using an independent validation data set.

Materials and Methods
Ethics statement

No specific permissions were required for the field investigation in Suixi County, China. We
confirm that the field investigation in Suixi County did not involve endangered or protected
species.

Study area

The study area, Suixi County, is located north of the Leizhou Peninsula in Guangdong Province
(Fig 1). The terrain in this area is relatively flat, and the mean elevation is approximately 40 m
above sea level. Suixi County has a subtropical maritime monsoon climate with a mean annual
temperature of approximately 22.8°C and an annual precipitation between 1700-1800 mm.
Suixi County is a major sugarcane planting area in Guangdong Province, with approximately
467 km? of planted area year round. In addition to sugarcane, the major vegetation in this
region includes rice, peanut, banana, grass, pineapple, pitaya, mango and eucalyptus. However,
the dominant types of crops in terms of area are rice and peanut.

Crop phenologies

Crop phenology is well correlated with changes in the spectral features of vegetation and is an
important reference parameter for selecting remote sensing images [21, 22]. For sugarcane, the
seedling period is from March to early June (including ratoon crops), the stem elongation
period is from early June to the end of September, the sugar accumulation period is in October,
the maturation period is from November to December, and harvest begins in late December
and lasts until March of the next year. As mentioned above, of the other crops, only rice and
peanut were considered because they cover large growing areas. The corresponding phenolo-
gies are listed in Table 1.

Remote sensing images

The sensor characteristics of the HJ-1 CCD images are presented in Table 2. To better differen-
tiate sugarcane from the other land cover classes, 6 HJ-1 CCD images (Table 3) were obtained
based on the sugarcane phenological periods shown in Table 1. The HJ-1 CCD images were
geometrically corrected (the total root mean square error<0.5 pixel) by using Landsat-8 OLI
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Fig 1. Study area in Suixi County, China. HJ-1 CCD image acquired on 26 October 2013 with a composition of R (4), G (3) and B (2). The HJ-1 CCD
images were downloaded from the China Center for Resources Satellite Data and Application. | request permission for the open-access journal PLOS ONE
to publish Fig 1 under the Creative Commons Attribution License (CCAL) CC BY 3.0.

doi:10.1371/journal.pone.0142069.g001

data (acquired on 14/11/2014, path/row: 124/45) of the entire study area for the reference
image. Atmospheric correction was performed using the FLAASH module in the ENVI
package.

Classification methods. The proposed approach includes two major steps: image segmen-
tation and data mining. The first part includes object-oriented multi-resolution image segmen-
tation and attribute table generation, and the second part includes building the training set,
using the AdaBoost algorithm and boosted classifiers, and interpreting and evaluating the clas-
sification results (Fig 2).

Image segmentation. Object-oriented image segmentation was performed using the
eCognition software [23]. The generation of objects was subjected to the heterogeneity criteria
by adjusting the spectral band weight, scale parameter, form factor, and compactness factor.
To guarantee the homogeneity of objects, all bands of the HJ-1 CCD time-series images were

Table 1. Summary of the major phenological periods of the three major crops grown in the study area.

Crop Year (2013) Year (2014)
Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May
Sugarcane ST ST ST ST SA MA MA/HA HA HA HA/SE HA/SE SL
Rice HA SO VE RE MA HA FA FA FA SO VE RE/MA
Peanut MA/HA SE SL FP MA HA FA FA FA SE SL FP

Note: HA: harvest stage; SE: seeding stage; SL: seedling stage; ST: stem elongation stage; SA: sugar accumulation stage; MA: maturation stage; SO:
sowing-transplanting stage; VE: vegetative stage; RE: reproductive stage; FA: fallow; FP: flowering-podding stage.

doi:10.1371/journal.pone.0142069.1001
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Table 2. Specifications of the HJ-1 A/B satellites.

Satellite
HJ-1 A/B

Payload

Multispectral CCD camera

doi:10.1371/journal.pone.0142069.t002

Band

1
2
3
4

Spectral range (um)

Table 3. HJ-1 A/B CCD images used in the classification.

No. Satellite
HJ-1 A
HJ-1 A
HJ-1 A
HJ-1 B
HJ-1 A
6 HJ-1 B

doi:10.1371/journal.pone.0142069.t003

a B~ 0N =

Object-oriented
Image Segmentation

Multi-temporal HJ-1
Images

v

Image Segmentation

0.43-0.52 30
0.52-0.60 30
0.63-0.69 30
0.76-0.90 30
Sensor Date (dd/mm/yyyy)
CCD2 13/06/2013
CCD1 03/10/2013
CCD1 26/10/2013
CCD2 28/12/2013
CCD1 23/01/2014
CCD2 13/05/2014

Spatial resolution (m)

Swath width (km)
360 (700 for two)

Revisit cycle (day)

4 (2 for constellation)

Phenology of sugarcane

Stem elongation
Sugar accumulation
Sugar accumulation

Maturation
Harvest
Seedling

selected for segmentation. The object attributes used in the following classification are shown
in Table 4. The selected attributes were spectral, spatial, textural and customized attributes,
such as the normalized difference vegetation index (NDVI) [24], which has been demonstrated
as closely correlated with the leaf area, biomass, percent ground cover and crop productivity
[25, 26]; the enhanced vegetation index (EVI) [27]; and the 2-band enhanced vegetation index
(EVI2) [28].

Training data sets. A field campaign was conducted in 2014 in the study area, and 382

field samples were collected using a portable GPS (Trimble SA). Among the samples, 146 were

Data Mining

Field Survey

v

Training Set

v

AdaBoost Algorithm

v

Boosted Classifiers

Validation

Classification Evaluation

Multi-temporal Images

Classification

;
|
t |
|
|
|

Fig 2. Schematic diagram illustrates the primary processes in the extraction of sugarcane growing areas. | request permission for the open-access

journal PLOS ONE to publish Fig 2 under the Creative Commons Attribution License (CCAL) CC BY 3.0.

doi:10.1371/journal.pone.0142069.g002
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Table 4. Object attributes used to characterize sugarcane and the other classes in the selected HJ-1 CCD time-series images.

Type
Customized

Spectral

Spatial

Texture

Attribute

NDVI
EVI
EVI2
Mean

Standard
deviation

Area
Border length
Pixel number

Asymmetry
Border index

Compactness
Elliptic fit

Main direction
Rectangular fit

Roundness
Shape index
GLCMPcontrast

GLCM
homogeneity

GLCM
dissimilarity
GLCM entropy
GLCM mean
GLCM std. dev
GLCM correlation

Description

Vegetation index
Vegetation index
Vegetation index
Mean spectral intensity of an image object
Standard deviation of the spectral intensity of an image object

Total area of an image object
Sum of outer and inner borders, if existing, of an image object
Number of pixels forming an image object
Relative length of an image object compared to a regular polygon

Ratio between the border length of the image object and the smallest enclosing
rectangle

Product of the length and width divided by the number of pixels of the image object
Describing how well an image object fits into an ellipse of similar size and proportion

Direction of the eigenvector belonging to the larger of the two eigenvalues derived
from the covariance matrix of the spatial distribution of the image object

Describing how well an image object fits into a rectangle of similar size and proportion

Describing how similar an image object fits into an ellipse
Describing the smoothness of the surface of an image object border
Measure of the amount of local variation in the image
Opposite of the contrast

Similar to contrast but increases linearly

A measure of textural uniformity of an image
Average intensity of all pixels in a 2-D image object that belonged to the GLCM
Standard deviation of all pixels in a 2-D image object that belonged to the GLCM
Linear dependency of gray levels of neighboring pixels

@Cmn: the darkest possible intensity; C"®: the brightest possible intensity.
bGLCM: gray level co-occurrence matrix.

doi:10.1371/journal.pone.0142069.t004

Reference value range
[-1,1]
[-1 ) 1 ]
[-1,1]
[Cr, Cre?
[0,5C™)

[0, scene size]
[0, 0]

[0, scene size]
[0,1]

[1, 00], 1 = ideal

[0, oc], 1 = ideal

[0, 1], 1 = complete fit, and
0 = no fit

[0, 180]

[0, 1], where 1 represents a
perfect rectangle

[0, oc], 0 = ideal
[0, 1]
[0, 65025]
[0, 1]

[0, 255]

[0, 10404]
[0, 255]
[0, 255]

[0, 1]

sugarcane, while the rest of the samples belonged to the other land cover types, e.g., water

body, impervious surface/buildings, and other types of vegetation.

Data mining. Data mining involv.es the selection and application of intelligent techniques
to extract patterns of interest for the effective production of knowledge [17]. In this study, the
overall goals of data mining were to extract information from a data set (i.e., the 382 samples)

and transform it into an understandable structure for further use. For this purpose, the boost-

ing technique was applied.

Boosting is a machine learning ensemble meta-algorithm that can be used to reduce bias
and variance in supervised learning. The basic principle of boosting is to learn multiple classifi-
ers (weak classifiers) by changing the weights of the training samples and then combine these

classifiers to improve classification performance. In this study, we used the AdaBoost

algorithm.

AdaBoost is a generic iterative supervised learning algorithm that combines the other learn-

ing algorithms (weak learners) into a weighted linear boosted classifier to obtain a much higher

PLOS ONE | DOI:10.1371/journal.pone.0142069 November 3, 2015
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accuracy [29]. Itis the first practical boosting algorithm and works by changing the weights of
training data at each iteration (i.e., increasing the weights of the misclassified samples in the
previous weak classifier and reducing the weights of the correctly classified samples). Thus, the
misclassified samples will receive more attention due to their increased weights. Using this
method, we should obtain a series of weak classifiers. Second, the algorithm adopts a weighted
majority vote strategy in which the weights of the weak classifiers with small classification
error rates are increased to improve their importance in the vote and vice versa [20, 30]. The
package 'adabag’ in the R environment was used for this purpose [31].

To evaluate the classification model generated by the AdaBoost algorithm, a standard statis-
tics tool known as cross validation was used to provide an objective measure of quality for the
generated model [32]. Specifically, a k-fold cross-validation method was adopted. The k-fold
cross-validation involves partitioning a data set into k randomly complementary subsets. Of
the k subsets, the decision tree built from the remaining k-1 subsets (called the training sets)
will be validated by the retained single one. The cross validation process is then repeated k
times (the folds), with each of the k subsets used exactly once as the validation data. Additional
details on the cross-validation concept may be found in [33, 34]. We used a 10-fold cross vali-
dation to test the prediction model and summarized information regarding the classification
error, such as the mean absolute error and relative absolute error.

Classification of multi-temporal images and evaluation. Using the verified predict
model generated by the AdaBoost algorithm, the segmented HJ-1 CCD multi-temporal series
data were classified into two classes of interest, sugarcane and others, by using the rules defined
by the attributes and their respective thresholds, which were identified by AdaBoost.

Another 500 randomly selected sampling points (not involved in the training) were used to
evaluate the classification accuracy. The confusion matrix assessment method was applied, and
the global accuracy and Kappa coefficients were evaluated.

Results
Image segmentation

In the process of segmenting the multi-temporal HJ-1 CCD time-series images, image objects
were generated based on several adjustable criteria of homogeneity or heterogeneity in color
and shape. The four parameters listed in Table 5 (i.e., scale, shape, color and compactness)
need to be calibrated. We focused on adjusting the scale parameter because this parameter
affects the average image object size (a larger value leads to larger objects and vice versa). To
achieve better classification results, four different scale parameter values were used, and the
results were compared using visual interpretation to determine the most suitable scale parame-
ter value (Fig 3).

We tuned the scale parameter using four different settings, i.e., 50, 40, 35 and 30. In Fig 3a,
the segmentation was inadequate and the mixing of different types of cropland was severe (e.g.,
in the green circle). In Fig 3b, the pattern was more reasonable and the value of the scale
parameter decreased to 40, which split the large mixed croplands into smaller mixed croplands.

Table 5. Multi-resolution segmentation criteria used for the multi-temporal HJ-1 CCD images.

Parameter (a) (b) (c) (d)
Scale 50 40 30 35
Shape 0.2 0.2 0.2 0.2
Color 0.8 0.8 0.8 0.8
Compactness 0.5 0.5 0.5 0.5

doi:10.1371/journal.pone.0142069.t005
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Fig 3. Multi-resolution segmentation using four different segmentation criteria. The base map of the multi-temporal HJ-1 CCD multi-spectral images
with the following composition: R (4), G (3) and B (2). | request permission for the open-access journal PLOS ONE to publish Fig 3 under the Creative
Commons Attribution License (CCAL) CC BY 3.0.

doi:10.1371/journal.pone.0142069.9003

When the scale parameter decreased to 30, as shown in Fig 3¢, over-segmentation occurred,
indicating that further reducing the scale parameter would not improve the effect of segmenta-
tion. However, when the scale parameter was set to 35, as shown in Fig 3d, the segmentation
effect showed no obvious changes (in green circles) compared with Fig 3b; however, the resi-
dential areas (in blue circles) were over-segmented. Thus, we selected the parameters in column
(b) in Table 5 and segmented the HJ-1 CCD time-series images into 22,763 objects to form the
test set (including the training set).

Data mining

To determine suitable boosting iteration number ranges, we gradually increased the boosting
iteration number from 1 to 100 and calculated the classification error rate as shown in Fig 4.
The error rate decreased quickly as the boosting iteration number increased from 1 to 25.
Beyond 25, increasing the boosting iteration number did not improve the error rate signifi-
cantly, and the error rate was approximately 0.036.

We further tested the changes in the relative importance of each attribute in the boosting
tree as the boosting iteration number increased from 100 to 1000. Fig 5 shows the relative
importance of each attribute after 100 iterations. We increased the iteration number to 1000,
retrieved the relative importance of each attribute again, and then compared our findings with
the results shown in Fig 5. The ranks of the first four attributes remained unchanged, while the

PLOS ONE | DOI:10.1371/journal.pone.0142069 November 3, 2015 8/16
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ranks of the other attributes (importance>1) only exhibited minor changes. Thus, we ran the

AdaBoost algorithm using 100 iterations, and the overall accuracy was 96.35% with a Kappa
coefficient of 0.92.

Decision rules

By applying the AdaBoost algorithm iteratively, 100 DT's were generated. We chose the DT
with the largest weight to illustrate the reasonability of the generated decision rules from the
HJ-1 multi-temporal CCD time-series images (Fig 6).

The root of DT was M_Bluel, the mean value (M) of the spectral reflectance in the blue
band of the No. 1 HJ-1 data (see Table 3, and all the attributes will follow the same nomencla-
ture) and most of the eucalyptus and banana samples fell on the left side of the DT. During this
period, the sugarcane was in the early stem elongation stage with small plants and low chloro-
phyll content in the canopy; thus, the reflectance in the blue band was obviously higher than
that of eucalyptus and banana.

The No. 2 node was S_Greenl, which is the standard deviation (S) of the spectral reflectance
in the green band of the No. 1 HJ-1 data, and most of the residential objects fell on the right
side of the branch. For crop objects, the spectral reflectance in the green band and its standard
deviation were much more uniform than those of the residential land (particularly the village,
where scattered tree canopies usually mixed with houses).

The No. 3 node classified most of the sugarcane into the right branch. Except for several
sugarcane objects, most of the samples (i.e., eucalyptus, banana and the mixture of evergreen
forest and bare land) were classified into the right branch of the No. 4 node. Thus, at this stage

PLOS ONE | DOI:10.1371/journal.pone.0142069 November 3, 2015 9/16
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object at the angle of 0°. | request permission for the open-access journal PLOS ONE to publish Fig 5 under the Creative Commons Attribution License
(CCAL) CCBY 3.0.

doi:10.1371/journal.pone.0142069.9005

(sugar accumulation for sugarcane, and maturation for rice and peanut), the average green
band spectral reflectance was suitable for separating the major crops from the other plants.

At the same stage as the No. 3 node, the No. 5 node used the average red band spectral
reflectance and classified a large portion of the sugarcane into the left branch. As mentioned
above, the sugarcane was at its most vigorous growing stage (i.e., the sugar accumulation
stage), and the relatively high chlorophyll content of the sugarcane canopy compared with the
rice and peanut canopies decreased the spectral reflectance of the red band (the red band is a
major chlorophyll absorption spectral region).

In December, i.e., the No. 6 node (HJ-1 image No. 4), the rice and peanut crops had been
harvested and the corresponding croplands were in the fallow state. During this period, sugar-
cane harvesting had recently began, and 5 sugarcane samples were misclassified. However,
most of the sugarcane samples, which had relatively higher blue band spectral reflectance, fell
on the right branch.

Finally, the remaining sugarcane samples were identified by lower mean GLCM values and
lower blue reflectance standard deviations in the No. 2 HJ-1 image, and bare lands and roads
were classified as other objects with higher GLCM mean values. Additionally, the objects with
higher blue reflectance standard deviations in the No. 2 HJ-1 image were classified as residen-
tial areas.
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Classification results

The prediction model built by the AdaBoost algorithm was applied to the entire study area; the
classification results for the sugarcane growing area are shown in Fig 7. The total growing area
of sugarcane was approximately 481.58 km” in the 2013-2014 harvest year. According to the
statistical data of the local agriculture department in 2014, the total acreage of sugarcane was
492.97 km?, and the relative classification accuracy was approximately 97.68%.

The confusion matrix shown in Table 6 was generated using another 500 sampling points,
which are mentioned in section 2.4.4. Among the 500 reference sampling points, 159 points
belonged to the sugarcane class and 24 points were misclassified into the “others” class. Overall,
341 points belonged to the “others” class, and only 8 points were misclassified into the
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Table 6. Confusion matrix of the classification verified using independent sampling points.

Reference map

Class Sugarcane Others Total

Classification result Sugarcane 135 8 143
Others 24 333 357

Total 159 341 500

doi:10.1371/journal.pone.0142069.t006

sugarcane class. Finally, the overall classification accuracy and Kappa coefficient were 93.60%
and 0.85, respectively.

Discussions
Image segmentation

Image segmentation is a fundamental step in object-oriented classification; however, the effec-
tiveness of segmentation, which is determined by the segmentation parameter settings, heavily
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relies on the experience of the expert and the specific objects of interest [35]. In this study, we
adopted a trial and error strategy, calibrated the scale parameter values from 50 to 30, and com-
pared the different segmentation results. The results showed that setting the scale parameter to
50 is too loose and that setting the scale parameter to 30 is too tight. Furthermore, no obvious
differences were observed when the scale parameter was set to 40 or 35 for croplands; however,
when 35 was adopted, the fragmentation of residential land became severe and classification
could not be performed. Thus, setting the scale parameter to 40 is appropriate for this specific
problem.

Data mining

The classification error rate decreased significantly and converged quickly when we used the
AdaBoost algorithm (Fig 4). Compared with traditional DT classification, the ensemble classi-
fier AdaBoost can effectively improve the classification accuracy.

The object attributes involved in the classification were generally classified as customized,
spectral, spatial and texture (Table 4). Fig 5 only shows the 28 attributes with relative impor-
tance greater than 1 in the prediction model. Most of these attributes (18/28) belonged to the
spectral category, followed by the customized (5/28), texture (3/28) and spatial (2/28) attribute
categories. We speculated that the highly fragmented landscape in the study area (common in
southern China) resulted in the extremely diversified geometric patterns, even for the same
crops. The effects of the texture attributes on the classification were not significant and were
potentially caused by the relative coarse spatial resolution of the HJ-1 CCD image data.

Among the 18 spectral attributes, 6, 5 and 5 attributes were related to the red, green and
blue bands, respectively. Only two attributes (i.e., M_NIR4 and M_NIR3) were related to the
NIR band, and the relative importance of these attributes was minor. This finding may be
directly related to the low importance of vegetation indices (customized attributes) in the pre-
diction model. Furthermore, this finding indicated that the combined single bands could
achieve sound classification results without fully using the vegetation index information.

Regarding temporal attributes, the 4 (M_Bluel, S_Greenl, EVI1 and S_Red1), 6 (S_Red2,
M_Green2, S_Blue2, S_Green2, M_Blue2 and EVII2), 7 (M_Green3, S_Red3, NDVI3,
S_Blue3, M_Red3, EVI3 and M_NIR3), 4 (M_Green4, M_Red4, M_Blue4 and M_NIR4), 1
(M_Red5) and 1 (EVI6) attributes were related to HJ-1 images 1-6, respectively, as shown in
Table 3. These findings clearly show that the images from the early and middle phenology
stages of sugarcane were more critical than the latter ones.

Function of crop phenology in the classification

The phenologies of the major crops in the study area could provide key information for select-
ing remote sensing images [36]. The six images used in this study (Table 3) covered the entire
sugarcane growing season and included the major phenologies of rice and peanut (Table 1).
For example, the 1* temporal period was June, when the blue band spectral reflectance could
be used to clearly discriminate the crops (sugarcane, rice and peanut) from eucalyptus and
banana. In Fig 6, the No. 5 node, which corresponds to the image from October, used the maxi-
mum red light absorption capability of sugarcane at that stage to differentiate between rice and
peanut. When using knowledge of the phenologies of the major crops in the specific study area,
the image selection should be very specific and the prediction model should be easy to
interpret.

From Figs 5 and 6, we observed that the first four images dominated the building processes
of the decision rules (i.e., the left two images might be redundant). Thus, under this technical
framework, we built knowledge regarding which critical temporal window should be used to
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guide image selection. Next, the redundant images of these ranges could be safely omitted. For
this specific study, if only several qualified images covering the early and middle sugarcane
phenologies can be obtained, then the classification accuracy should be guaranteed. Addition-
ally, the remote sensing images obtained during the latter phenologies after sugar accumulation
may not be necessary.

Conclusion

The classification of sugarcane in southern China in large areas faces two challenges: (1) a lim-
ited amount of qualified (and affordability in practical applications) remote sensing data due to
pervasive cloudy weather and (2) the complex mixture of land cover and their similar spectral
reflectances. In this context, our goal was to fully use the spectral and textural differences in
various croplands in limited middle-resolution remote sensing images to facilitate the classifi-
cation of sugarcane. Additionally, we aimed to determine whether a suitable temporal window
exists to guide the selection of key remote sensing images in sugarcane classification.

In this study, six HJ-1 CCD images with a spatial resolution of 30 m and covering the entire
sugarcane growing season (2013-2014) were used. The composite image, including the vegeta-
tion indices, was segmented into 22,763 objects using an object-oriented method. Next, the
AdaBoost algorithm was used to build the DT model using 100 iterations. A 10-fold cross-vali-
dation method was applied to 382 field samples and showed that the overall classification and
Kappa coefficient were 96.35% and 0.92, respectively. The DT model was applied to the entire
study area to classify sugarcane and was tested using another 500 independent sampling points
in the field. The overall accuracy achieved was 93.6%, and the Kappa coefficient was 0.85.

The classification model (i.e., a boosting tree) was built using the AdaBoost algorithm, and
the categories and temporal features of the object attributes (Table 4) with relative importance
greater than 1 were specifically checked (Fig 5). According to the proportion, most of the attri-
butes belonged to the spectral category, followed by the customized, texture and spatial catego-
ries. Most of the spectral attributes were related to visible bands, and the effects of NIR bands
and vegetation indices were minor. Only three texture and two spatial attributes with relative
importance greater than 1 were identified, which might be caused by the relative coarse spatial
resolution of the HJ-1 CCD data and the highly fragmented and irregular landscape in the
study area.

Interestingly, we found that most of the attributes belonged to the early and middle tempo-
ral HJ-1 images and that the images during the early and middle phenology stages of sugarcane
were clearly more critical compared with the latter images. Thus, under this technical frame-
work, constructing an optimized image selection principle to guide remote sensing classifica-
tion in similar regions is possible.
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