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Abstract

The development of a soil cover is a dynamic process. Soil cover can be altered within a few

decades, which requires updating of the legacy soil maps. Soil erosion is one of the most

important processes quickly altering soil cover on agriculture land. Colluvial soils develop in

concave parts of the landscape as a consequence of sedimentation of eroded material. Col-

luvial soils are recognised as important soil units because they are a vast sink of soil organic

carbon. Terrain derivatives became an important tool in digital soil mapping and are among

the most popular auxiliary data used for quantitative spatial prediction. Prediction success

rates are often directly dependent on raster resolution. In our study, we tested how raster

resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils.

Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor

and convergence index) were calculated for the given raster resolutions. Four models were

applied (boosted tree, neural network, random forest and Classification/Regression Tree) to

spatially predict the soil cover over a 77 ha large study plot. Models training and validation

was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted

real extent and shape of the colluvial soil area was examined. In general, no clear trend in

the accuracy prediction was found without the given raster resolution range. Higher maxi-

mum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil

cover of the study plot, can be explained by the choice of terrain derivatives that were best

for Colluvial soils differentiation from other soil units. Regarding the character of the pre-

dicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of

the colluvial soil as part of the cover over the study area.

Introduction

The delineation of soil classes based on digital soil mapping (DSM) using auxiliary data has

developed extensively in last two decades. It has been applied at local, regional [1] [2], national

[3] [4] [5] or at global scales [6] [7]. Development of these methods is either connected to
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mapping of new areas [6] or to updating of legacy data such as traditional soil maps [8] [9]

[10] [11].

The soils cover evolution is a dynamic process, occurring over a long period. However, the

human influence very often leads to an intensification of one or more of the soil forming pro-

cesses, including soil erosion [12]. Erosion processes change formerly homogenous soil cover

into a soil mosaic with high heterogeneity. It is caused by a truncation of soil profiles in sloping

and convex parts of the landscape, and an increase of soil thickness due to sedimentation in

concave parts of the landscape [13] [14]. Typically, the soil cover of a certain area is stratified

into a mosaic of original untouched soil units, degraded soils with truncated profiles (Rego-

sols) and Colluvial soils in slope bases where a large amount of eroded material accumulates,

and often fully buries the original soils [12] [15]. Colluvial soils are recognised as an important

soil unit because they are a vast sink of soil organic carbon. Colluvial soils very often fill the

side valleys as well and form prolongated areas in the soil mosaic [16]. This spatial arrange-

ment of colluvial soil in the landscape resembles the spatial character of Fluvisols or Gleysols

in valley bottoms around water courses, characterized by prolongated narrow polygons [17].

Such soil cover change can develop within a few tens of years, which necessitates soil map

updating [5] [18] [19].

Soil cover development is traditionally recognized as a result of a set of soil forming factors,

defined by Dokuchayev and Jenny [20], and quantitatively redefined by McBratney as the

SCORPAN model [21]. The influence of the single soil forming factors varies. At a local scale,

the topography is the main soil forming factor that influences the local soil properties and

units variability [22]. This is enhanced in areas where erosion processes play an important

role. The terrain derivatives, calculated from digital elevation models (DEMs), are then used as

the only predictors. Such an approach is used in many studies dealing with soil units spatial

delineation [1] [2]. Terrain derivatives quantitatively characterize the shape of the terrain (pri-

mary derivatives—e.g. slope gradient, slope aspect, profile and contour curvature) or con-

nected processes (secondary derivatives—e.g. topographic position index or convergence

index). The terrain derivatives used as auxiliary data vary within the studies and there is no

general model that is applied [22].

In soil terrain modelling, several aspects should be considered: choice of appropriate terrain

derivatives, choice of models/methods and spatial scale of the modelling given by raster

resolution.

In DSM, the determination of an optimal grid size for prediction of soil properties using

environmental factors is still an unsolved issue with only a few empirical guidelines available

[23]. The spatial resolution of the DEMs is driven by several factors, such as the resolution of

the primary data, computational resources, spatial extent of the mapped areas or demanded

resolution of the final map product. The resolution of DEMs varies among studies, from sub-

meter resolution to a resolution of hundreds of meters. Many of the regional or global studies

use a resolution of 90 meters, which is given by an easily accessible SRTM global DEM product

[24]. Local studies use a wide range of DEM sources, such as interpolated contours [25], ste-

reographic photographs or LIDAR data.

The raster resolution directly influences the computation of terrain derivatives and can sig-

nificantly change the morphological description of the study area [26] [27] [28] [29]. On one

hand, the range of many terrain derivatives decreases (slope gradients tend to decrease, ranges

in curvatures decrease, flow-path lengths) with increasing pixel size due to DEM flattening

[30] [25] [31]. On the other hand, an increase of DEM grid size shifts the topographic index

towards higher values due to greater upslope contributing area and smaller slope [32] [33] [34]

[35]. The general expectation that DEMs with highest resolution deliver the best results is not

always valid [30] [36] [37]. Some studies showed that the prediction accuracy increases with
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increasing raster resolution at a pixel range of hundreds to tens of meters [38] [39] [40], but

this trend is often not significant when the pixel size ranges from a few meters to 1 meter or

even sub-meter resolution. This can be explained by the fact that at finer resolutions, terrain

attributes hold an excess of details generating too much “noise” that, inevitably invalidate the

accuracy of the prediction [23]. In some cases, the optimal resolution is driven by the character

(size and shape) of the mapped terrain features [41].

Background and aim of study

Up-to-date soil maps are important sources of information for agricultural or environmental

applications and modelling. The agriculture land of the Czech Republic was mapped at the

scale 1:10 000 in 1960s. These maps represent a vast source of spatial information, but during

the last 50 years, the soil cover has changed significantly due to intensive soil erosion as a con-

sequence of land consolidation. We believe that our study represents a useful background in

the actualization of this map source, namely in regions impacted by soil mass redistribution

due to soil erosion.

The purpose of this study is to test the role of spatial scale and its impact on colluvial soil

spatial prediction by testing the interaction between pixel resolution (1, 2, 3, 5, 10, 20 and

30m) and prediction accuracy. The specific objective of our study was to examine the influence

of pixel resolution on (i) general success rate of applied models, (ii) performance of the models

with regard to the spatial extent of predicted colluvial soils and (iii) shape of delineated areas

of colluvial soils.

Material and Methods

Regional setting

The study plot is located in Central Bohemia in the Czech Republic (N50.457567, E14.508250)

(Fig 1a). The research plot is a common agriculture land with no specific nature protection.

The sampling was done with agreement of the landlord Mr. Zdeněk Gregor and no plant or

animal protected species were involved or endangered. The mean annual precipitation is 588

mm and the mean annual temperature is 8.2˚C. The study plot (77 ha) is a part of a larger ara-

ble field (176 ha). It is characterized by two perpendicular side valleys (north–south and east–

west) connected in the south-west part of the plot. Adjacent slopes reach up to 15˚. Large flat

upper parts (0–0.5˚) occur in the south, north-east and north-west sections of the plot. The

mean slope of the plot is 5˚ (Fig 1b). The plot belongs to a Luvisol region. According to the

1:10 000 soil map from 1960s, Haplic Luvisol dominates the whole plot [42]. The land is in

long-term use as arable agriculture land. The large agriculture plot is a result of land consolida-

tion made in the 1950s.

Terrain sampling

A regular sampling design (30 × 30 m) was used. In total, 111 soil profiles up to a depth of 1

meter were described at each sampling point (Fig 1a). The profile stratigraphy was used for

soil classification. Soils with stratigraphy Ap-Bt-C were classified as Luvisols (LU), soil with

Ap-C stratigraphy as Regosols (RG) and soils with Ap-Ax-C stratigraphy, where Ap+Ax >

50cm were classified as colluvial soils (CO); for more details see the study of Zádorová et al.

[16]. The sampling set was randomly divided to a training (70% points) and validation subset

(30% points).
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Fig 1. Study plot with sampling scheme. A. The study plot (77 ha) is a part of a larger agricultural plot (176 ha), it is

located in the Northern part of the Czech Republic. Soil survey with regular soil sampling scheme was preceded and the

sampling points were randomly divided to training and validation subsets. B. Geomorphologic features of the study plot

(vertical scale is 2.5x to horizontal scale). The plot is formed by two perpendicular side valleys and a plateau. The transition

between these two units is characterized by rather distinct convex shoulders.

doi:10.1371/journal.pone.0165699.g001
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Digital elevation model

The stereo-photogrammetry based DEM was provided as a 1 × 1 m grid (provider Georeal

Ltd.) The DEM was acquired when the field was prepared for seeding (at its minimal rough-

ness). DEM was further smoothed and filtered using a Gaussian filter in SAGA GIS [43]. Six

terrain derivatives were used in the analysis. They represent a set of morphometrical attributes

that contributed best for soil cover delineation at the study plot in a previous study [16]. Ter-

rain derivatives calculated from the DEM using integrated algorithms implemented in SAGA

GIS include: altitude (ALT), slope (SLP), plane curvature (PLANC), topographic position

index (TPI), Slope Length and Steepness factor (LS) and convergence index (CONVIN). The

original 1 meter grid was resampled to 2, 3, 5, 10, 20 and 30 meters. All the derivatives were

calculated for all raster resolutions: 1, 2, 3, 5, 10, 20 and 30 meters (S1 Fig). The terrain deriva-

tives were calculated for the whole arable field and then clipped to the size of the study plot.

The range of raster resolution corresponds to the most commonly used raster resolution used

for large to medium soil mapping [44].

Produced terrain derivatives were compared using ANOVA, and statistically significant dif-

ferences between the raster means were assessed by Post hoc LSD test using Statistica 12 [45].

Spatial prediction models

Machine-learning techniques are widely used in soil prediction mapping [46]. They apply

computer-based statistical models, where a fitted model (using training data) is used for pre-

diction purposes on new data [47]. Four models were applied: boosted tree (BT), neural net-

work (NN), random forest (RF) and Classification/Regression Tree (CRT). The delineation of

colluvial soils was made for each raster resolution. In total, 28 delineations were calculated.

The models were trained using the training subset of sampling points and the models were

applied for the whole study plot using the Data miner Recipes in Statistica 12 [45]. The input

data were analyzed by “Fast predictor screening” tool [45] to assess the importance of the vari-

ables of the predictors and optionally reduce the number of inputs (predictors) and uncover

which variables are important for the analysis. The default Statistica software setting was used

four chosen models when applied [45].

The models performance was evaluated by widely applied approaches: point validation and

visual interpretation of resulting soil maps. Three assessment methods were employed to eval-

uate the models performance at different raster resolutions: (i) all soil classes (CO, LU, RG)

prediction was validated with an independent validation dataset at each resolution, (ii) predic-

tion of only Colluvial soils (CO) was validated with an independent validation dataset at each

resolution, (iii) shape and areal extent of the CO soil was examined by visual inspection to

assess how well the predicted CO areals are depicted. The validation of the results using the

validation dataset was evaluated as overall accuracy.

Results and Discussion

Soil survey

According the detailed soil survey, the study plot is formed by Luvisols, Regosols and Colluvial

soils. From a total 111 sampling points, 72 were classified as Luvisols, 24 as Regosols and 15 as

Colluvial soils. Recent soil development is driven by intensified erosion forming a typical soil

mosaic (Fig 2). Luvisols occupy the large gently sloping and flat areas (plateau) with limited

erosion and represents a non-degraded soil unit. Regosols are present in the steep convex parts

of the plot. Their development occurs by removal of topsoil due to erosion and degradation of

the soil profile. Colluvial soils, formed by accumulated humus rich material, with a maximum
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thickness of 100 cm have developed in the depositional areas of the landscape, represented by

two perpendicular side valleys (Fig 1b). In the E-W side valley, the colluvial soil forms a contin-

uous area limited on the sides by back slopes. The N-S side valley is less pronounced with a

steeper flow path and the depth of sedimented material forming colluvial soil in north part of

the valley, interrupted by a middle part with colluvic Luvisols. The colluvial soils are then

found again on the confluence with the E-W side valley. The convex shoulders of the slopes

and upper part of back slopes of the side valleys are formed by Regosols. The main gently sop-

ping plateau in the east part of the plot and sloping area in the very south part of the plot are

covered by Luvisols.

Terrain derivatives

Rasters of the six terrain derivatives were derived for the given resolutions. Values extracted at

sampling points were compared (Table 1). For some properties, clear trends of changing raster

means with resolution can be observed (Fig 3). Mean altitude (ALT) does not change with the

decreasing raster resolution. It stays constant. This corresponds with other studies, where alti-

tude mean is constant but DEM min/max range decreases with coarser resolution due to the

effect of flattening [25]. The mean slope (SLP) was observed to decrease with increasing pixel

size, also in concordance with findings of other authors [23]. The LS factor shows a clear

trend. With increasing pixel size, mean LS factor increases from 1.02 to 2.03. The trend has a

linear shape. The Post hoc LSD test recognises statistically significant differences between

some of the resolution (Table 2). Plan curvature has a similar trend as LS factor. The PLANC

mean tends from negative values towards 0 with increasing pixel size. The trend has a linear

shape, but it is not as steep as for LS factor. The Post hoc LSD test did not show any statistically

significant differences between any of the raster resolutions (Table 1). Slope has an opposite

trend to LS factor and PLANC; mean slope decreases with increasing pixel size. The trend is

weak from 1 to 5 meter resolution and then shows a more significant decrease. Despite a

Fig 2. Typical soil toposequence of the study plot. Luvisols (LU) are present on flat or slightly sloping areas (plateau). Regosols (RG) result from

accelerated erosion on the steeper convex parts of the landscape. The removed material is transported down the slope and sediments in the base of the

side valleys. If the depth of the colluvial material is higher than 50 cm, the soils are classified as Colluvial soils (CO), if less as Colluvic Luvisols (LUco).

doi:10.1371/journal.pone.0165699.g002
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marked trend, the Post hoc LSD test does not prove statistically significant difference between

any of the resolution. A mean slope decrease with increasing pixel size was observed by other

studies [23] [25] [32] [33] [48] as well. Topographic position index (TPI), as well as ALT, does

not change with the decreasing raster resolution and stays constant. Mean convergence index

Table 1. Basic statistic of the terrain derivatives. The table presents mean, median, min., max and standard deviation values of the six terrain derivatives

for all resolutions (1, 2, 3, 5, 10, 20 and 30 meters).

Derivatives Resolution Mean Median Min. Max. St.dev.

ALT 1 322,706 322,625 313,960 333,880 5,096

ALT 2 322,708 322,655 313,810 333,890 5,095

ALT 3 322,719 322,645 314,070 333,880 5,092

ALT 5 322,701 322,630 314,070 333,960 5,081

ALT 10 322,736 322,665 313,870 333,830 5,106

ALT 20 322,680 322,445 313,870 333,930 5,031

ALT 30 322,816 322,420 313,620 333,590 5,112

CONVIN 1 -0,059 -0,092 -4,435 10,587 1,623

CONVIN 2 0,018 -0,239 -8,622 30,336 3,908

CONVIN 3 -0,001 -0,259 -12,621 43,191 5,517

CONVIN 5 -0,546 -0,195 -18,303 23,524 4,519

CONVIN 10 -1,374 0,106 -25,923 14,176 5,666

CONVIN 20 -2,974 -2,281 -28,473 17,880 7,269

CONVIN 30 -5,962 -3,000 -40,036 20,336 10,929

LS 1 1,019 0,982 0,023 2,662 0,460

LS 2 1,182 1,120 0,013 2,845 0,512

LS 3 1,283 1,221 0,016 3,083 0,548

LS 5 1,438 1,383 0,015 3,382 0,602

LS 10 1,660 1,643 0,018 3,488 0,687

LS 20 1,923 2,071 0,033 3,319 0,720

LS 30 2,031 2,061 0,167 4,521 0,789

PLANC 1 -0,001 0,000 -0,021 0,009 0,005

PLANC 2 -0,001 0,000 -0,017 0,007 0,004

PLANC 3 -0,001 -0,001 -0,015 0,006 0,004

PLANC 5 -0,001 0,000 -0,010 0,004 0,003

PLANC 10 -0,001 0,000 -0,006 0,004 0,002

PLANC 20 0,000 0,000 -0,004 0,001 0,001

PLANC 30 0,000 0,000 -0,002 0,001 0,001

SLP 1 0,091 0,095 0,009 0,165 0,031

SLP 2 0,091 0,093 0,005 0,165 0,031

SLP 3 0,090 0,093 0,005 0,165 0,031

SLP 5 0,090 0,092 0,004 0,161 0,030

SLP 10 0,088 0,089 0,004 0,159 0,030

SLP 20 0,086 0,089 0,005 0,130 0,027

SLP 30 0,082 0,085 0,016 0,128 0,025

TPI 1 -0,389 0,099 -3,820 1,967 1,591

TPI 2 -0,386 0,160 -3,931 1,983 1,596

TPI 3 -0,386 0,154 -3,776 1,987 1,591

TPI 5 -0,387 0,050 -3,847 1,972 1,593

TPI 10 -0,390 0,042 -3,843 2,040 1,603

TPI 20 -0,413 -0,290 -3,824 1,943 1,563

TPI 30 -0,411 0,149 -4,268 1,983 1,751

doi:10.1371/journal.pone.0165699.t001
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stays constant for 1, 2 and 3 meter raster. CONVIN mean shows values close to zero between 1

and 3 meter resolution and starts to decrease from 5 m raster. The decreasing trend becomes

pronounced with the increasing pixel size. The Post hoc LSD test recognises statistically signif-

icant differences between some of the resolutions.

Soil cover delineation

Prediction accuracy for whole soil cover. Soil units were spatially predicted by the four

models for all raster resolutions (Fig 4). The performance of the models varies among both

models and resolutions (Fig 5). The prediction accuracy ranges between 42% (RF, 1m

Fig 3. Terrain derivatives means with 95% confidence interval for the different raster resolutions: altitude (ALT), slope (SLP), plane curvature

(PLANC), topographic position index (TPI), LS factor (LS) and convergence index (CONVIN).

doi:10.1371/journal.pone.0165699.g003
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resolution) and 76% (CRT, 2m resolution). In general, there are only a few trends among the

models and resolutions. The BT model does not show any trend in the prediction accuracy

among the changing resolution. Best BT model performance was obtained at 20m resolution

(73%), when the average accuracy was 67%. CRT model accuracy is highest at 1 and 2m resolu-

tion (73% and 76% respectively) and then slightly drops to 67%. NN model reaches best accu-

racy in the interval between 2 and 10 meters resolution (70–73%). The accuracy clearly

decreases to 64 and 58% for 20m and 30m resolution respectively. RF model accuracy is lowest

among all the models. Surprisingly, the best accuracy is at 30m (70%) and the worst result was

obtained at 1m resolution (42%). Accuracy at other resolutions was less that 70%. When com-

paring the four models at all resolutions, there is no significant trend in the accuracy of the

whole soil cover prediction. At each resolution level, we can find at least one model with the

accuracy higher than 70%.

Prediction accuracy of Colluvial soils. When we focus on the prediction accuracy of Col-

luvial soils only, the results differ. In this case, only a match of observed/predicted soil units

with colluvial soils is taken into consideration. The models accuracy has a much wider range.

The best models accuracy reaches in several cases up to 89%, but the lowest accuracy decreases

in one case to 0%. The BT model accuracy is highly unbalanced. The best accuracy was reached

at 20m resolution followed by 1m resolution. In contrast, the lowest prediction accuracy was

obtained for neighbouring pixel sizes at 2m and 30m respectively. The CRT model provides

best prediction accuracy at 1m resolution. With increasing pixel size the accuracy drops to

about 55% at 30m resolution. 20m raster represents an exception with prediction accuracy at

the same level as in 1m raster. The NN model reaches prediction accuracy maximum at 1, 2

and 5m resolution (78%). Significantly lower accuracy is at 3m resolution (56%). At resolution

coarser than 5 meters, a significant trend in accuracy decrease is visible. The prediction accu-

racy drops to 33% and 0% at 20 and 30m resolution respectively. In contrast to this, RF shows

an increasing trend in prediction accuracy with the increasing pixel size. The minimum accu-

racy is obtained at 1, 2 and 3m resolution (67%) and the maximum at 20 and 30m (78%).

Higher maximal prediction accuracy for Colluvial soil, compared to the prediction accuracy

of total soil cover of the study plot, can be explained by choice of terrain derivatives that were

in a previous study, evaluated as the best for Colluvial soils differentiation to other soil units

[16]. In such a case, the model is not universal, but promotes prediction accuracy for a specific

soil unit, in this case the Colluvial soil.

Extent and shape of soil units delineation. An important aspect of the model plausibility

is the shape and area of the delineated extent of the soil units, especially colluvial soils. Such

assessment is of course partly done by the point validation, but visual assessment and interpre-

tation is important as well [34], and it can explain some of the spatial connections of the

Table 2. Statistically significant differences between the terrain derivatives means (Post hoc LSD

test).

raster resolution (m)

1 2 3 5 10 20 30

ALT a a a a a a a

SLOPE a a a a a a a

PLANC a a a a a a a

TPI a a a a a a a

LS factor a ab bc c d e e

CONVIN a a a a ab b c

doi:10.1371/journal.pone.0165699.t002
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Fig 4. Soil units predicted by the four models at given resolutions 1, 2, 3, 5, 10, 20 and 30 meters. (CO-

blue; LU-green; RG-red colour).

doi:10.1371/journal.pone.0165699.g004
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Fig 5. Models accuracy at different raster resolution for all soil classes (left column) and Colluvial soils only

(right column). The dark grey vertical line at each column indicates the range (min-max) of all four models at a given

resolution. The short horizontal line is the mean value of the four models accuracy.

doi:10.1371/journal.pone.0165699.g005
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processes functioning in the landscape. When comparing the results of the modelling with the

facts found during the detailed soil survey, we can make several statements.

Colluvial soil delineation: In general, the CO soils are well delineated in the more pro-

nounced and wider E-W side valley (Fig 4). There are very few exceptions of this (BT 2, 30m

and NN 30m model). The BT model tends to underestimate the area of CO in this part of the

study plot when high resolution data is used. The CRT model does not suffer this and keeps

the extent of CO soil in the E-W side valley rather constant. NN fails in the CO soils delinea-

tion at coarser resolutions (10, 20 and 30m). RF provides a very unbalanced result in this case.

It significantly underestimates the CO extent at high resolution (1, 2m), and overestimates the

extent at 3m resolution. Surprisingly, lower raster resolutions provide best results. Even at 30

m resolution, where the other methods failed, the CO are still depicted by RF. Partially differ-

ent model plausibility was assessed in the N-S side valley. In the case of high resolution raster

application, the CO are usually well delineated in the N-S side valley. This side valley is shal-

lower and narrower in comparison to the E-W side valley. Therefore, it is more sensitive to

changes of the terrain derivatives produced for coarser raster resolutions. This is probably the

main reason, why the models at coarser resolution failed to predict the CO in this side valley.

Rarely, the CO were overestimated; this happened only in two cases (CRT 5 m and RF 3m).

Considering the proportion of CO soils found during the soil survey as a benchmark and

comparing it to the proportion of the CO soils calculated by models, several discrepancies can

be determined (Fig 6). The CO area represents 14% of the total soil cover according to the soil

Fig 6. Proportion of soil units on the soil cover of the study plot calculated by the four models at all raster resolutions. The blue and red lines

indicate the spatial extent of CO and RG respectively according the soil survey (nr. of observed profiles).

doi:10.1371/journal.pone.0165699.g006
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survey; it reaches lower values in most of the models (17 out of 28 models). The underestima-

tion ranges from 2% to 100% (relative %; Fig 7). The reason of such a discrepancy (as it was

already stated above) is, according to visual inspection of predicted maps, mainly the weak CO

prediction in the N-S side valley. The lowest average deviation (19%) was determined at 1 m

resolution. At all resolutions, we can find at least one model within the accuracy of CO area

prediction lower than 10%.

Examining the character of the predicted CO areas in detail, we can observe a significant

discontinuity in the CO delineation at 1 meter resolution, forming unrealistic areas of this

unit. This is because of an over-detailed resolution where the influence of field roughness is

incorporated in the DEM. There are no such features visible at any of the coarser resolutions.

Conversely, predicted maps at 20 and 30 m resolution seem to be, from a point of visual inter-

pretation and possible further interpretation of the results, too coarse for practical application

in detailed soil mapping. Maps from 2 to 10 m resolution provide reasonable interpretation of

the colluvial soil as a part of the cover over the study area.

Delineation of other soil units: Delineation of Regosols and Luvisols is even more unbal-

anced than CO prediction (Fig 6). According to the soil survey, Regosols are present mostly at

west and east parts of the N-S side valley, forming a rather narrow strip and occupying about

22% of the study plot. Spatial extent variation is mainly due to the exclusion of Luvisols. In

general, the BT model significantly underestimates the RG area on one hand. On the other

hand, RG is greatly overestimated by the RF model, which delineates the RG on the majority

Fig 7. Deviation of CO soils prediction by models from an aerial extent of CO found by the soil survey (relative %). Blue columns show negative

and positive relative % deviation. The light blue columns indicate absolute average deviation.

doi:10.1371/journal.pone.0165699.g007
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of the study plot. CRT and NN models provide the most realistic delineation, but none of the

models provide consistent results among various resolutions. In the case of BT, CRT and NN

models, the predicted RG are logically located at the side valleys, when RF predicts illogically

the RG over the plateau where Luvisols are the only unit found by the soil survey.

General remarks

Our study shows that the pixel/raster resolution ranging from 1 to 30 meters does not signifi-

cantly influence the model prediction accuracy, contrary to our expectations. When we com-

pare our results with other studies dealing with soil-terrain modelling at similar resolution

range, we can find similar results [27] [49]. Some other authors [41] found, that 1 to 20 meter

resolution raster can provide very similar results for geomorphological features prediction.

There are probably several reasons why the high resolution DEMs with 1 meter or even more

detailed resolution do not provide the best results. Excessive accuracy of the high resolution

models is stated as one of the reasons [50] [51][52]. The high resolution models often depict

instant relief features, such as furrow and other elements, given by cultivation that undesirably

influences the general trend of the relief. In our case, we can observe this problem at 1m reso-

lution, when a discontinuous mosaic of Colluvial soils with other units is delineated instead of

continuous areas (polygons). The general trend of relief is often considered as a better predic-

tor of long-term soil development. Such results were obtained e.g. for organic layer thickness

modelling, when 20 m resolution performed best over a range of 5, 10, 15 and 20 meter raster

[53].

On the other hand, too coarse resolution can decrease the modelling accuracy as well. Simi-

larly to our findings, other studies showed that pixel sizes in the range of meters to a few tens

of meters (up to 20–25 m) provide satisfactory results, while the prediction accuracy decreases

at coarser resolution. Several studies [31] [32] [33] [54] give 30(50)– 100 m resolution as an

upper limit of pixel size in the soil-terrain modelling. Beyond these limits, the relief details

depiction is insufficient to properly represent soil properties and processes development and

distribution, resulting in the disappearance of fine-scale features [33]. The influence is more

significant in areas with more dissected relief [34].

Therefore, a proper raster resolution should be selected according to the aim of the model-

ling and character of the study area, because the influence of raster resolution on modelling

accuracy differs, as well locally according to local settings [51].

In our study, the use of machine-learning algorithms resulted in very different outputs.

Such a result is common in many other studies. There are recommendations from authors

[47] who tested a larger set of machine learning models to not restrict to a single method or a

small selection of them, but to apply a wider range of models.

Conclusions

• The purpose of our study was to test the influence of a raster resolution on colluvial soils

delineation by predictive mapping using soil terrain modelling. Colluvial soils are an impor-

tant part of many of the agriculturally used regions. They are a result of sedimentation of

eroded material in concave parts of the landscape. We tested the interaction between the

pixel resolution (1, 2, 3, 5, 10, 20 and 30m) and the prediction accuracy of four models based

on machine learning techniques. We evaluated the plausibility of applied models by both

independent validation point dataset and visual evaluation of predicted delineations of collu-

vial soils.
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• Six terrain derivatives—altitude (ALT), slope (SLP), plane curvature (PLANC), topographic

position index (TPI), LS factor (LS) and convergence index (CONVIN)- were calculated

from the 1 m DEM at resolution 1, 2, 3, 5, 10, 20 and 30 meters. Some of the derivatives

showed a trend of changing raster means with changing resolution. However, no statistically

significant difference between the raster resolutions was found in most cases.

• The study shows, that the pixel/raster resolution ranging from 1 to 30 meters does not signif-

icantly influence the model prediction accuracy, contrary to our expectations. The models

accuracy shows high variability. No significant general trend in the whole soil cover predic-

tion accuracy was determined when comparing all four models at all resolutions. At each res-

olution level, we can find at least one model of which accuracy exceeds 70%.

• Higher maximal prediction accuracy for Colluvial soil, compared to the prediction accuracy

of total soil cover of the study plot, can be explained by the choice of terrain derivatives that

were evaluated as the best for Colluvial soils differentiation to other soil units. The resulting

improved CO prediction accuracy weakens the versatility of the model.

• The shape of the colluvial soil area was visually evaluated. The most reasonable interpreta-

tion was provided by intermediate resolutions (from 2 to 10 meters). Finer resolution pro-

duced discontinuous areas, reflecting the details of instant relief features, while the coarser

resolution ignored important details reflecting the soil cover development.

• Similarly to our study, many other studies showed that pixel sizes in the range of meters to a

few tens of meters (up to 20-25m) provide satisfactory results, and that the prediction accu-

racy decreases with coarser resolution.
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S1 Fig. Calculated terrain derivatives for the study plot. The six terrain derivatives (altitude

(ALT), slope (SLP), plane curvature (PLANC), LS factor (LS), convergence index (CONVIN)

and topographic position index (TPI)) were calculated for 1, 2, 3, 5, 10, 20 and 30 DEM resolu-

tion in SAGA GIS.
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