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Abstract

The dry subtropics are subject to a rapid expansion of crops and pastures over vast areas of

natural woodlands and savannas. In this paper, we explored the effect of this transformation

on vegetation productivity (magnitude, and seasonal and long-term variability) along aridity

gradients which span from semiarid to subhumid conditions, considering exclusively those

areas with summer rains (>66%). Vegetation productivity was characterized with the proxy

metric “Enhanced Vegetation Index” (EVI) (2000 to 2012 period), on 6186 natural and culti-

vated sampling points on five continents, and combined with a global climatology database

by means of additive models for quantile regressions. Globally and regionally, cultivation

amplified the seasonal and inter-annual variability of EVI without affecting its magnitude.

Natural and cultivated systems maintained a similar and continuous increase of EVI with

increasing water availability, yet achieved through contrasting ways. In natural systems, the

productivity peak and the growing season length displayed concurrent steady increases

with water availability, while in cultivated systems the productivity peak increased from semi-

arid to dry-subhumid conditions, and stabilized thereafter giving place to an increase in the

growing season length towards wetter conditions. Our results help to understand and predict

the ecological impacts of deforestation on vegetation productivity, a key ecosystem process

linked to a broad range of services.

Introduction

Although the dry subtropics have been historically subject to a diverse array of human inter-

ventions, including logging, grazing, and cropping [1], in the last decades, a rapid expansion of

agriculture took place over woodlands and savannas [2], leading to a deep environmental and

human change [3]. This process was triggered fundamentally by the increasing overseas

demand for food and fuel, technological improvements, the development of transport infra-

structure in formerly remote areas, and the stabilization of local economies and politics [4].
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(2016) Vegetation Productivity in Natural vs.

Cultivated Systems along Water Availability

Gradients in the Dry Subtropics. PLoS ONE 11(12):

e0168168. doi:10.1371/journal.pone.0168168

Editor: Cristina Armas, Estacion Experimental de

Zonas Aridas, SPAIN

Received: July 13, 2016

Accepted: November 25, 2016

Published: December 22, 2016

Copyright: © 2016 Baldi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by grants from the

Inter-American Institute for Global Change

Research (http://www.iai.int, IAI) CRN 3095,

supported by the US National Science Foundation

(Grant GEO-1128040) [GB EGJ], and the Agencia

Nacional de Promoción Cientı́fica y Tecnológica

(http://www.agencia.mincyt.gob.ar) PICT-2013-

2973 [GB]. The funders had no role in study

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168168&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.iai.int
http://www.agencia.mincyt.gob.ar


Cultivation of crops and pastures often leads to shifts in ecosystem functioning through the

modification of the composition and structure of vegetation and consequently, of resource

acquisition strategies and potential growth rates [5,6]. In these regions, the few previous stud-

ies dealing with the biophysical consequences of this transformation showed small and non-

significant differences in the magnitude of vegetation productivity, but strong contrasts in its

seasonal and long-term variability [7,8].

In most of the classical and more recent empirical models of vegetation productivity drivers,

climate interacts with vegetation structure dictating the temporal and spatial productivity pat-

terns of natural ecosystems [6,9]. In particular, along water availability gradients–set by the bal-

ance between precipitation and evapotranspiration–, the average productivity shows a linear

increase up to a threshold beyond which it levels off or decreases, likely because nutrient avail-

ability and/or solar radiation become the most limiting factors [5]. Also, strong effects on sea-

sonality and inter-annual variability are described, particularly with the expansion of the

growing season and the greater stability among years with increasing water availability [10–12].

Our understanding of the link between productivity and water availability has grown

steadily in the last decades, focused initially on the water-use efficiencies [13] and later on the

responses to global climate change [14]; however, much remains to be learned about vegeta-

tion productivity responses to land use transformations [15–17]. Notoriously, most studies

have been biased towards North American and Asian temperate grasslands [12,18], with

woody or agricultural systems being mostly overlooked [19,20]. These knowledge gaps are par-

ticularly critical as we try to integrate the effects of cultivation with those of climate on the

multiple dimension of the Earth System functioning, among which vegetation productivity is

one of the most critically connected with biogeochemical cycles and energy fluxes [5].

The aim of our study is to compare the vegetation productivity patterns of implanted crops

and pastures (hereafter, cultivated systems) with the natural–predominantly woody–vegetation

that they replace (hereafter, natural systems), across climatic water availability gradients in the dry

subtropics (only those with summer rains). We focus our analysis on the magnitude, seasonality

and inter-annual variability of vegetation productivity. Our guiding questions are: (1) How do key

vegetation productivity attributes respond to cultivation?, and (2) How does this response vary

along water availability gradients? The analyses are conducted at global and regional levels by

means of the “Enhanced Vegetation Index” (EVI) and additive models for quantile regressions.

Methods

Study area

We focused on the dry subtropics receiving summer rains, as defined by climatic and topo-

graphic features: warm temperatures (20 to 25˚C of mean annual temperature), dry winters/wet

summers (>66% of precipitation in the warm half of the year), semiarid to subhumid conditions

defined by the ratio of mean annual precipitation to potential evapotranspiration (PPT:PET,

from0.35 to 1.0), gentle slopes (<0.7%), and low elevation (<1200 m). Resulting regions were

named as Chaco, India-Pakistan, Mesquite, North-eastern Australia, and Zambezi-Kalahari (Fig

1). These are predominantly uncultivated (except India & Pakistan) and show large differences

in terms of population density, connectivity to markets, and affluence/technology [21].

Sampling design

Across the study area, we generated a regular grid of sampling points distributed within 35

transects (20 km-wide and 125 to 250 km away from each other) that covered major PPT:PET-

gradients. These points, that maintained an approximate distance of 7 km with each other,

were classified into two possible land use systems, natural or cultivated, based on a visual

Productivity Shifts in Dry Subtropics

PLOS ONE | DOI:10.1371/journal.pone.0168168 December 22, 2016 2 / 16

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



inspection of high resolution satellite images (“Google Earth”, http://www.google.com/earth/

index.html) and online photographic archives (“Confluence Project”, http://www.confluence.

org, and “Panoramio”, http://www.panoramio.com). Cultivated sampling points represented

areas where natural vegetation was removed in order to implant artificial communities. We

restricted all analyses to points with a homogeneous and constant land use/cover at the mea-

surement scale and throughout the study period. We confirmed the homogeneity through the

visual inspection of Google Earth images on 1.5 km-radius windows, while we resolved the

constancy by restricting analyses to natural points characterized as such in 2012, and to culti-

vated points characterized as such in 2000 or earlier. These conditions were evaluated by visual

inspection of circa 2000 imagery from the “GeoCover” Orthorectified Landsat ETM+ Mosaics

project [22] and Google Earth images obtained in 2012 or later. Those points that fell within

salt pans, lakes, marshes, or other azonal land cover types, were manually relocated within a

radius of ~3 km from the original position, or eliminated if the azonal cover dominated the

landscape. After the selection and relocation processes, we maintained 6,186 points, 4,340 clas-

sified as natural and 1,846 as cultivated.

We accounted for the spatial climatic variability by calculating the PPT:PET based on the

“Ten Minute Climatology database”, which averages 1961–1990 monthly data [23]. PET was

calculated using the Penman-Monteith algorithm [24]. By using PPT:PET instead of PPT, we

approach the conditions or water environment experienced by the vegetation. See the regional

location of transects in Baldi and Jobbágy [21].

Vegetation functioning

We characterized vegetation productivity exclusively based on the “Enhanced Vegetation

Index” (EVI) time series, produced by the Terra “Moderate Resolution Imaging Spectroradi-

ometer” (MODIS) instrument [25]. By applying a single recording protocol in time and space,

Fig 1. Study regions. Global distribution of dry subtropical systems with summer rains, defined by climatic and topographic features. Within these

regions, we sampled natural and cultivated points along water availability gradients, encompassing semiarid to subhumid conditions.

doi:10.1371/journal.pone.0168168.g001
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this remote sensing variable has been extensively used to track different processes that depend

on the light absorbed by vegetation canopy, regardless its type or ecophysiological condition

[26–30]. EVI would outperform the earlier “Normalized Difference Vegetation Index”

(NDVI) by minimizing the atmospheric noise, the saturation effects of high biomass areas, the

canopy background signal, and the effects of absorption by non-photosynthetic components

of the leaves [25,29,31].

Following Xiao et al. "Vegetation Photosynthesis Model" [32] and others [33,34], we con-

sidered EVI as equal to fAPAR (i.e. the fraction of photosynthetically active radiation (PAR)

absorbed by the photosynthetic active vegetation in the canopy). Under the Monteith light use

efficiency (LUE) model [35,36], EVI constitutes a first step to calculate GPP (GPP = LUE �

fAPAR� PAR). However, in the context of our study, we elude GPP calculation in order to avoid

introducing errors and biases due to (1) the lack of direct measurements of LUE at landscape

scales (encompassing multiple plant functional types) [37], (2) the disparity of PAR values among

regions (ranging from 2,600 Mj�m-2�y-1 in Mesquite or India & Pakistan to 3,800 Mj�m-2�y-1 in

NE Australia or Zambezi-Kalahari, S1 Fig), and (3) the compensating mechanisms between PAR

values, LUE and season length on annual GPP among regions and plant types [38]

Data processing and analysis

For the 6,186 sampling points, we downloaded EVI data from 2000 to 2012 (coded as

MOD13Q1; spatial and temporal resolutions of 250 m and 16 days) from the ORNL “MODIS

Global Subsets: Data Subsetting and Visualization” tool (www.daac.ornl.gov). We only consid-

ered EVI values with the highest quality (flagged as category VI)–representing 79% of the

entire data set–, eliminating the potential noise from clouds and aerosols. We used the soft-

ware TIMESAT v.3.1 to reconstruct the EVI time series [39]. This tool smoothes series by

means of model functions that capture one or two cycles of growth and decline per year. We

selected an adaptative Savitzky-Golay model. From the reconstructed series, we calculated

seven functional metrics depicting magnitude, seasonality, and inter-annual variability of veg-

etation productivity (Table 1) [10,40–42].

To obtain a first graphic description of the productivity/water availability relationship, we

represented seasonal dynamics of EVI for four PPT:PET equal intervals (0.2 to 0.4 up to 0.8 to

Table 1. EVI-based functional metrics.

Metric Description

1 Mean EVI Mean EVI value. Calculated as the average of the 2000–2012 annual mean

values (same for metrics #2 to #6 but changing the focus annual value).

2 Maximum EVI Average of maximum EVI values.

3 Minimum EVI Average of minimum EVI values.

4 Intra-annual EVI CV Average of the coefficient of variation values.

5 Peakness Ratio between 10,000 * maximum EVI and length of the growing period

(metrics #2 and #6) representing kurtosis. The higher the value, the acuter the

peak.

6 Length of the growing

season

Length, in time (days), between the beginning to the end of the growing

seasons. Beginning and end are recorded when the fitted EVI curve crosses

the minimum + 0.25 * range value within a single year.

7 Inter-annual EVI CV Inter-annual coefficient of variation of the 2000–2012 mean annual EVI values.

The seven metrics depict the magnitude (metrics 1 to 3), seasonality (4 to 6), and inter-annual variability (7)

of the“Enhanced Vegetation Index” (EVI), a proxy variable of vegetation productivity [27,28]. Metrics were

based on Paruelo et al. [41], Jobbágy et al. [10], Eklundh and Jönsson [42], and Baldi et al. [40].

doi:10.1371/journal.pone.0168168.t001
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1.0). At each sampling point, we averaged the reconstructed EVI values of the 23 dates per year

provided by MOD13Q1 for the temporal series of 13 years. We then explored the relationship

by regressing functional metrics against PPT:PET by means of additive models (L2 smoothing

splines) for quantile regression [43,44]. We selected the 0.5 quantile (hereafter τ50) in order to

provide a description of the effect of X on the central tendency of Y, and 0.9 and 0.1 quantiles

(τ90 and τ10, respectively) to describe the behavior of the Y variable when X is the dominant

constraining variable [45], trying to avoid the effects of unmeasured factors (such as nutrient

availability depressing productivity levels) or any type of sub-optimal use. We employed τ90 to

represent the healthy or permissive state of unmeasured factors in variables like the magnitude

of productivity, which are maximized by water availability. The opposite occurs for the vari-

ability of productivity, which is likely minimized by water availability and thus τ10 is the logical

option. We selected for all regressions a smoothing term λ = 0.5, which empirically implied a

good compromise between the goodness of fit and model simplicity.

For the global level approach, we balanced sampling size differences among land use/cover

systems and regions (S1 Table) by applying an ad hoc resampling method [46]. This implied

that, for each system and region, (1) we randomly sampled five points within four equal inter-

vals of the PPT:PET gradient (0.2 to 0.4 up to 0.8 to 1.0). (2) We fitted for each 100-points sub-

samples (5 points � 4 PPT:PET intervals � 5 regions) the additive models previously described

and repeated this process 500 times. (3) We generated a median condition of all subsamples

models (thick lines in Figs 2 and S3) by using the fitted data of individual models, and (4) we

characterized the overall effects of cultivation by averaging along the PPT:PET gradient the fit-

ted values (Table 2 and S2 Table). For the regional level approach, we repeated the additive

model procedure but using the entire local set of points for each system, generating confidence

bands (95%) along the PPT:PET gradient based on the Hotelling [47] tube approach. We used

the fitted values from global and regional models to assess the net change on each functional

metric. All processes were run in R (packages quantreg, MASS, splines, mgcv) (www.r-project.

org). All information is available at the S1 Dataset.

Results

When considering all regions together and the median distribution (τ50), natural and cultivated

systems did not differ in terms of mean EVI (Table 2), displaying only slight variations along

the PPT:PET gradient (cultivated surpassed natural systems towards drier conditions and vice

versa towards more humid; crossover at PPT:PET = 0.53) (Fig 2). This notable convergence was

achieved by cultivated systems through the increase of productivity peakness between PPT:PET

0.2 and 0.6, and through the extension of the growing season length at PPT:PET> 0.6 (Figs 2

and 3). Cultivation increased the annual maxima and decreased the annual minima of EVI

(average τ50 +0.06 and-0.04, respectively). Initially, along the gradient of increasing water avail-

ability, maximum productivity grew in parallel on both systems; however, at PPT:PET> 0.6 a

major functional change occurred with cultivation, since the maximum productivity of the

implanted systems stabilized, diverging from the natural vegetation–which continued increas-

ing up to the humid end of the gradient–(S2 Fig). The more extreme minimum EVI levels intro-

duced by cultivation became more significant towards humid conditions, with models of

cultivated systems showing the least pronounced slopes for this attribute along the water avail-

ability gradient (Fig 2). Regarding maximum EVI, we found that cultivation increased produc-

tivity peaks for theτ90 models, surpassing natural systems throughout the entire gradient

(average differences: τ90 = +0.10 vs. τ50 = +0.06, Table 2 and S2 Table; S3 Fig).

As expected from the EVI extremes, the intra-annual CV for τ50 models was approximately

one-third higher on cultivated systems compared to their natural counterparts (Table 2).
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Noticeably, intra-annual CV resulted more strongly affected by cultivation (average τ50 +0.12)

than by water availability, showing little variation along the PPT:PET gradient (Fig 2). This

behavior could be ascribed to a parallel increase of the seasonal variance–as suggested by the

peakness–and the mean values (i.e. lower productivities coincide with wider seasonal curves)

(Fig 3 and S3 Table). Only by exploring the change between models, a slight increase of vari-

ability was found around a PPT:PET = 0.6 (S2 Fig). Interestingly, the joint analysis of the

intra-annual CV and seasonal dynamics (depicting an averaged behavior) (Figs 2 and 3), indi-

cated that even absolute CV values remained invariant, the synchronization of individual

curves of cultivated points acquired its maximum between a PPT:PET of 0.6 and 0.8. Culti-

vated systems showed the highest peakness (20% more acute shape) and a reduced growing

season length (-21 days on average), resulting from longer lapses of low photosynthetic activity

balanced by a delayed but accelerated and coordinated greening followed by an anticipated

browning (Table 2 and Figs 2 and 3)–unlike natural systems, where both metrics increased lin-

early along PPT:PET gradients–. Cultivated systems also showed productivity peaks in winter/

dry periods, unseen in natural systems.

Inter-annual EVI CV was a fifth higher on cultivated systems along the 13-year period

(average CVunc = 0.09 vs. CVcul = 0.11, Table 2), being highly sensitive to water availability

conditions (the drier the more unstable). Differences between systems were, however, short-

ened towards the humid end of the gradient, mainly due to the partial stabilization of natural

systems above PPT:PET = 0.6 (S2 Fig). These patterns changed radically in the extreme τ10

models, with natural systems being more unstable than cultivated systems towards arid condi-

tions, and all the way around towards the humid (S2 and S3 Figs).

Regional results generally sustained the global patterns in terms of average contrasts

between systems (Table 2), yet loosely in the shape of the responses to water availability (S4

and S5 Figs). Notable departures arose for cultivated systems, especially in India & Pakistan

and Zambezi-Kalahari. In the Asian region, cultivation led to higher mean values, wider

curves, and longer growing seasons over most of the PPT:PET gradient. In the African region,

the systems converged for the maximum and inter-annual CV EVI (τ50 and τ90 models) result-

ing from a relatively low productivity of cultivated systems. At last, contrary to the global

behavior (τ50 and τ10 models), we found that the intra-annual CV markedly decreased towards

humid conditions in Chaco and NE Australia.

Discussion

Our study, encompassing a broad spatial and temporal range (6.4x106 km2, five continents, 13

years of data), revealed that deforestation and subsequent agricultural expansion in the dry

subtropics with summer rains appears to have a nil effect on the productivity of vegetation–

given by the mean EVI–(Table 2), in line with previous remote sensing and eddy covariance

assessments [7,48]. This contrasts with the generalized idea that this land use/cover change

leads to a major functional degradation, with high risks of productive failure and misuse of

resources in the short term [49]. Possibly, this outcome arises from the counterbalance of culti-

vated/natural vegetation advantages: the evolutionary adaptations of natural systems involving

higher water use efficiency and stress tolerance vs. the human-selected adaptations of culti-

vated systems involving lower respiration costs and better responses to the environment of

Fig 2. Median functional responses to water availability of natural vs. cultivated systems at the global

level. Each panel represents the behavior of an EVI-based functional metric in relation to the PPT:PET. The

thin lines represent the individual additive models for the 0.5 quantile (τ50) after a resampling approach (500

points). The thick line represents the averaging (with a median) of these individual models.

doi:10.1371/journal.pone.0168168.g002
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disturbances and subsidies (e.g. fertilizers, pesticides) [50]. Whichever the specific causes, we

found that cultivated systems tracked natural ones in their steady increase of mean EVI along

the entire water availability gradient (Fig 2). From dry to intermediate conditions, cultivation

led to a progressive concentration of photosynthetic activity within a short growing season,

and from intermediate to humid conditions, to an extension (or multiplication) of the growing

season. This would reveal a mechanism through which humans, even when deeply intervening

land ecosystems, tend to foster the exhaustive use of rainfall inputs.

The most prominent change brought by cultivation was a generalized increase in seasonal-

ity (captured by the intra-annual EVI CV), independently from the water availability condi-

tions (Fig 2). This amplification was associated with an accentuation of EVI extremes and a

shortening of the productive period–as shown by the length of the growing season and the

peakness–(S3 Table). Unlike for natural vegetation, the latter functional traits maintained a

non-linear relationship with water availability in cultivated systems, implying the existence of

environments of a maximum functional impact after deforestation (especially at 0.5 to 0.6 of

PPT:PET, S2 Fig). Notably, these conditions occurred in the more intensively cultivated areas

within each region, e.g. the subhumid Chaco [21]. We relate these functional and land use/

cover patterns to the dominance of pastures and the reliance on irrigation and fertilization of

cropping activities towards the dry extreme of the gradient [49,51], and the increasing water-

logging and biotic stresses for crops towards humid areas [52].

Fig 3. Median seasonal patterns of natural vs. cultivated systems at the global level. Each panel represents the seasonal behavior of an EVI-based

functional metric within one of four equal PPT:PET intervals (0.2 to 0.4 up to 0.8 to 1.0) at the global level. The thin lines represent the individual additive

models for the 0.5 quantile (τ50) after a resampling approach (500 points). The thick line represents the averaging (with a median) of these individual models.

Upper panels represent natural systems, while lower ones, cultivated (dotted white lines symbolize the opposite system). Southern and Northern hemisphere

sampling points were coordinated by shifting six months the data from one hemisphere.

doi:10.1371/journal.pone.0168168.g003
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Cultivation also increased significantly the variability of production from year to year

(Table 2) but less so towards more humid conditions (Fig 2), supporting previous assessments

[11,12]. According to Paruelo and Lauenroth [53] and Volante et al. [7], this impact would be

mostly related to the changes in the magnitude of the peak of productivity rather than to the

changes in the growing season length. From a managerial perspective, we relate these results to

the dependence of farmers decisions on fluctuating climatic and economic signals [53], espe-

cially in regions dominated by large-scale production systems oriented to regional/global mar-

kets (e.g. Chaco, Mesquite, and NE Australia, Table 2) [40]. On the contrary, smallholders

would stabilize productivity through a diversified management that offers a more constant

food supply (e.g. Zambezi-Kalahari). We acknowledge that the productive structure of land-

scapes could affect variability results, as stability might arise from the statistical averaging of

several small-size paddocks within a MODIS pixel, potentially blurring the values obtained for

India & Pakistan and Zambezi-Kalahari results [54].

From a morphological/ecophysiological perspective, the differences in inter-annual vari-

ability between systems could also be ascribed to human-selected vs. nature-selected plant

adaptations. Native species display hydraulic redistribution, have larger rooting depths, slow-

growth strategies, and particular structural tissues that confer individuals a high water use effi-

ciency and stress tolerance, allowing for a stable production in dry and wet years [55,56].

Oppositely, cultivated species growth and production respond more rapidly to higher water

availability in wet years, but experience higher risk of failure in dry years [57]. Beyond species-

specific traits, cultivated systems have lower functional diversity, implying a larger vulnerabil-

ity to disturbances and environmental fluctuations [15].

Undoubtedly, the conversion of natural vegetation increased the appropriation of vegeta-

tion productivity for human consumption [7,17]. Nevertheless, land use/cover transformation

influences virtually all natural processes, jeopardizing the long-term provision of other ecosys-

tem services [49]. Due to the dry climate and very flat topography of the encompassed regions,

the arisen seasonal concentration of vegetation productivity and the lower mean productivity

under humid conditions (Fig 2) may imply a partial consumption of incoming water, poten-

tially triggering flooding and soil salinization processes [58]. Likewise, the significant lower

minima values brought by cultivation, together with the higher inter-annual variability, repre-

sent an increased exposure of soils to erosion [59]. Beyond structural modifications, the accen-

tuated temporal dynamics of productivity would affect the faunal composition and abundance

of cultivated lands and surroundings by modifying the characteristics and the dynamics of

habitat and resource availability [60].

Our global findings were influenced by unconsidered biophysical factors and by current

and past management strategies and legacies on natural and cultivated vegetation [61]. By

exploring extreme quantiles (τ90 and τ10), we revealed at the global level that cultivated systems

can display the highest long-term stability under the driest conditions (S3 Fig). Regional

results supported this for the extensively irrigated and fertilized India & Pakistan, but also for

the rain-fed technified Mesquite and the non-technified Zambezi-Kalahari (Table 2 and S2

Table and S5 Fig) [62]. The condition or degradation status of the natural systems being

replaced, together with the characteristics of the implanted cultivated systems, seem crucial

determining the net effects of cultivation on productivity. In India & Pakistan and NE Austra-

lia, the combination of a degraded natural vegetation and a technified agriculture [63,64]

would be responsible for the increase in mean EVI and the expansion of the growing season

with cultivation. A high demand for forest products and livestock pressure [65], and the exten-

sive aggressive mechanized clearance campaigns [66] are likely responsible for the low produc-

tivity of natural systems in these two regions.
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Even though this paper refers to vegetation productivity, we recognize that translating

remote sensing radiometric variables such as EVI into accurate gross primary productivity

(GPP) or net primary productivity (NPP) remains a major challenge. Regarding annual GPP,

uncertainties are related to the apparent need of site-specific empirical scaled EVI-fAPAR

functions [67], and the variability of annual LUE (affected by vegetation structural and func-

tional traits–e.g. photosynthetic syndrome–, and soil and climatic conditions) [67–72], some-

times solved by means of look-up tables (based on biome type and climatology) [37,73] or

more recently by means of the carotenoid-sensitive “Photochemical Reflectance Index” (PRI)

[38,74,75]. However, the accuracy of annual EVI-GPP relationships seems to improve in land

covers with high annual EVI ranges and summer rainfalls [28], as in our case. Regarding NPP,

even larger uncertainties emerge, particularly those coming from the disparate respiration

rates of foliage, stem, and roots [76,77], with a still elusive quantification over large extensions

and contrasting plant functional types. In the dry subtropics, despite limited direct measures

of GPP or NPP from long-term controlled field experiments (e.g. biomass harvests or flux tow-

ers), evidence shows that cultivated systems achieved the highest maximum daily rates of pho-

tosynthetic uptakes, but this difference is compensated by the temporality of production

[17,48].

Conclusion

Our remote sensing approach provides a new quantitative insight on the relative productive

differences between original natural woody systems and novel cultivated systems in dry sum-

mer-rains subtropics. Cultivation increased the seasonality and the inter-annual variability of

vegetation productivity without affecting its magnitude, which responded mainly to water

availability. Climatic water availability is important determining productivity in natural sys-

tems; however, it loses its strength in cultivated systems, which seem to saturate their produc-

tivity at dry subhumid conditions (PPT:PET around 0.5). In the last decades, many researchers

have explored the physical constraints of vegetation productivity in order to predict its

response to global climate change. Using similar data and methodologies, we assess a different

dimension of change, driving the functional debate towards the effects of the ubiquitous and

accelerated land use/cover shifts. We highlight the considerable changes in seasonal vegetation

activity and long-term variability (with likely parallels on carbon, water, and surface energy

exchange) and reveal that the implications of the land transformations depend both on the

physical and human contexts (accounted here by the water availability gradients and by the

regions).

Supporting Information

S1 Dataset. In Baldi_et al_Sup Inf (data).xlsx, all EVI values and EVI metrics data are

available.

(XLSX)

S1 Fig. Regional differences in the precipitation and the photosynthetically active radia-

tion (PAR). We calculated precipitation and PAR (MJ�m-2) from the Climatic Research Unit–

UEA “Ten Minute Climatology” data base [23], with a spatial resolution of 10 min (1961–1990

period). For PAR, average values about the sunshine (fraction of maximum daylength) were

transformed using the Allen et al. [24] algorithms, and considering the ratio between radiation

and PAR as 0.48 according to Tsubo and Walker [78] for a dry subtropical, summer-rain cli-

mate.

(EPS)
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S2 Fig. The absolute effect of cultivating the dry subtropics at the global level. Each panel

represents the difference between cultivated and natural additive models for the 0.5 and 0.9 or

0.1 quantiles (τ50 and τ90 or τ10) in relation to PPT:PET. Numbers within panels indicate aver-

age values about the differences between land use/cover systems according to the τ50 and τ90or

τ10 models. Data came from the global additive median models (fitted values) for the seven

EVI-based functional metrics.

(EPS)

S3 Fig. Extreme functional responses to water availability of natural vs. cultivated systems

at the global level. Each panel represents the behavior of an EVI-based functional metric in

relation to the PPT:PET. The thin lines represent the individual additive models for the 0.9 or

0.1 quantiles (τ90 or τ10) after a resampling approach (500 points). The thick line represents

the averaging (with a median) of these individual models.

(EPS)

S4 Fig. Median functional responses to water availability of natural vs. cultivated systems

at the regional level. Each panel represents the behavior of an EVI-based functional metric

and region in relation to the PPT:PET. Each dot represents a sampling point and each line an

additive 0.5 quantile (τ50) model. Note that not all regions cover the entire water availability

gradient. Gray bands indicate 95% confidence intervals according to the Hotelling [47] tube

approach.

(EPS)

S5 Fig. Extreme functional responses to water availability of natural vs. cultivated systems

at the regional level. Each panel represents the behavior of an EVI-based functional metric

and region in relation to the PPT:PET. Each dot represents a sampling point and each line an

additive 0.9 or 0.1 quantiles (τ90 or τ10) model. Note that not all regions cover the entire water

availability gradient. Gray bands indicate 95% confidence intervals according to the Hotelling

[47] tube approach.

(EPS)

S1 Table. Sampling details (transects and points) across the dry subtropics receiving sum-

mer rains.

(DOC)

S2 Table. Extreme effects of cultivating the dry subtropics at global and regional levels.

Average and standard deviation values for the seven EVI-based functional metrics showing

0.9quantile (τ90) and 0.9quantile (τ10) additive median models of natural and cultivated sys-

tems (fitted values in S3 Fig). Acronym: CV, coefficient of variation.

(DOC)

S3 Table. Kendall’s τ non-parametric correlation coefficients among functional metrics.

(DOC)
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10. Jobbágy EG, Sala OE, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian

steppe: a remote sensing approach. Ecology 83: 307–319.

11. Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary

production. Science 291: 481–484. doi: 10.1126/science.291.5503.481 PMID: 11161201

12. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, et al. (2008) Primary production and rain use efficiency

across a precipitation gradient on the Mongolia plateau. Ecology 89: 2140–2153. PMID: 18724724

13. Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, et al. (2004) Convergence across

biomes to a common rain-use efficiency. Nature 429: 651–654. doi: 10.1038/nature02561 PMID:

15190350

14. De La Maza M, Lima M, Meserve PL, Gutiérrez JR, Jaksic FM (2009) Primary production dynamics and

climate variability: Ecological consequences in semiarid Chile. Global Change Biology 15: 1116–1126.

15. Ospina S, Rusch GM, Pezo D, Casanoves F, Sinclair FL (2012) More stable productivity of semi natural

grasslands than sown pastures in a seasonally dry climate. PLoS ONE 7: e35555. doi: 10.1371/journal.

pone.0035555 PMID: 22590506

16. Ruppert JC, Holm A, Miehe S, Muldavin E, Snyman HA, Wesche K, et al. (2012) Meta-analysis of

ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear

response along precipitation gradients in drylands. Journal of Vegetation Science 23: 1035–1050.

17. Murray F, Baldi G, von Bernard T, Viglizzo EF, Jobbágy EG (2016) Productive performance of alterna-
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