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Abstract
Background

Worldwide, dengue is an unrelenting economic and health burden. Dengue outbreaks have
become increasingly common, which place great strain on health infrastructure and ser-
vices. Early warning models could allow health systems and vector control programmes to
respond more cost-effectively and efficiently.

Methodology/Principal Findings

The Shewhart method and Endemic Channel were used to identify alarm variables that may
predict dengue outbreaks. Five country datasets were compiled by epidemiological week over
the years 2007-2013. These data were split between the years 2007—2011 (historic period)
and 2012—2013 (evaluation period). Associations between alarm/ outbreak variables were
analysed using logistic regression during the historic period while alarm and outbreak signals
were captured during the evaluation period. These signals were combined to form alarm/ out-
break periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used
to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase
in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive pre-
dictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1-12 weeks. An
increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and
Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of
1-12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of

72%/ 74% and 96%/ 45% in Mexico and Malaysia respectively, at a lag of 4—16 weeks.

Conclusions/Significance

Anincrease in probable cases was predictive of outbreaks, while meteorological variables,
particularly mean temperature, demonstrated predictive potential in some countries, but not
all. While it is difficult to define uniform variables applicable in every country context, the use
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of probable cases and meteorological variables in tailored early warning systems could be
used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue
transmission.

Introduction

Dengue epidemics have increased in frequency and magnitude globally since the 1970s [1], and
today represent a major, and still increasing, public health burden worldwide [2]. The primary
vector, Aedes aegypti, is highly anthropophilic [3] and breeds exclusively in small, freshwater
bodies. It thrives in dense, urban areas where it has evolved to complete its entire life cycle [3].
A secondary vector, Aedes albopictus has expanded its range dramatically in recent decades,
and is a serious threat for dengue transmission among populations where herd immunity is
low or absent [4]. With all four dengue serotypes now found worldwide [5], outbreaks caused
by a change in the predominant serotype form a major, global public health challenge [4].

Outbreaks can exert large pressures on public health systems, as hospitals and outpatient
clinics become overwhelmed by the surge in true dengue positive cases, as well as other febrile
illnesses [6,7]. These pressures are compounded by resource-limited or weak surveillance sys-
tems that might have given prior warning if sufficient funding, expertise and methodologies
were in place [8-11]. Arguably, the ability to predict outbreaks with a generous lag time should
enable public health systems to respond more efficiently through the timely allocation of
resources [6,12,13]. It is in this capacity that infectious disease modelling has become increas-
ingly relevant [12,14-16].

To date, epidemiological variables, such as the historic incident mean plus 2 standard devia-
tions (SD), have been used to forecast dengue outbreaks with some success [17-20]. Regression
functions are also a common feature of dengue modelling, and are used to calculate the proba-
bility of an outbreak, as reported recently in Vietnam [17] and Singapore [21]. These analyses
identified clear trends between abnormal changes in meteorological and/ or epidemiological
variables and subsequent dengue outbreaks.

Yet, due to the complex interactions between vector, pathogen and human [22], models
struggle to accurately capture spatial and temporal data required to project the intricate trans-
mission dynamics of dengue [23]. And while predictive models exist, these tend to focus on
smaller spatial units, which are often inadequate for the district- or country-level responses
required for public health control interventions [18-20,24]. Programme managers and regional
epidemiologists alike need user-friendly, early warning systems (EWS) that can adequately
explain inter-district dengue variation [13,25]. Novel approaches are required to develop pre-
dictive, accessible methodologies that utilise alarm variables on broad spatial scales [13]. To
this end, we considered the Shewhart method and Endemic Channel to build a simple model
based on logistic regression that can predict forthcoming outbreaks, with high sensitivity
(number of true positive outbreak detections) and a low number of false alarms (PPV).

The Shewhart method is typically used to monitor the quality control of goods within the
manufacturing process [26]. This method involves the use of control charts to define ‘in-con-
trol” and ‘out-of-control’ manufacturing states, using the historic mean and standard deviation
of the outcome variable [26,27]. Within a dataset, this method can identify variation that is
beyond the influence of natural, random fluctuation, i.e. the consequence of an identifiable or
‘attributable’ cause or change in the process [14,27,28]. Since regional epidemiologists often
collect historical data to calculate the moving incident mean (or median), applying this
approach to infectious diseases modelling becomes possible.
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These data can be used to forecast changes in the variable of interest, which is the primary
basis of the Endemic Channel calculation [29]. In this sense, the Endemic Channel represents
the number of cases within the expected normal range, or the ‘in control’ state, while anything
above this moving threshold would be considered representative of an unprecedented number
of cases and an ‘out of control’ state i.e. an outbreak. This approach is favoured in many coun-
tries, as it allows programme managers to easily define the presence/ absence of an outbreak
[6,10,30], despite the limitations associated with abnormally high historic means and the varia-
tion in the seasonal timing of dengue cases [6]. Such predictive methodologies have demon-
strated success in both Puerto Rico and Thailand [14,15,24], where measuring a prior increase
in the outcome variable enabled models to retrospectively predict subsequent outbreak periods,
thus indicating potential in prospective operational capacities. Extending this rationale further,
it should be possible to investigate a preceding rise in meteorological, entomological and epide-
miological independent variables, or alarm variables, to predict dengue outbreaks.

In spite of the progress made in modelling high risk areas and population dynamics [13,31-
33], reliable, affordable and practical dengue early warning systems are still needed to mitigate
the growing economic and human costs of dengue [25]. Accordingly, as part of IDAMS (Inter-
national Research Consortium on Dengue Risk Assessment, Management and Surveillance)
and the WHO-based Special Programme for Research and Training in Tropical Diseases
(TDR), this paper describes the development and evaluation of an early warning system using
the Shewhart method and Endemic Channel to predict dengue outbreaks at the district and
country level in five countries in Asia and Latin America.

Materials and Methods
Objectives

Using retrospective country datasets, the aim was to define and detect dengue outbreaks using
probable/ hospitalised cases as the outbreak variable [3], and successfully predict these out-
breaks using earlier changes in various entomological, meteorological and epidemiological
alarm variables.

Data Collection

The five participating countries (Brazil, Dominican Republic, Mexico, Malaysia and Vietnam)
were selected from a larger group whose dengue surveillance systems had been analysed previ-
ously [6,34]. A protocol for the data capture of a number of evidence-based alarm variables
was agreed [6,10] and a data capture spreadsheet using Microsoft Excel was created. Participat-
ing countries conducted active data collection from October 2013 to April 2014. Data from 7
years (2007-2013) were collected and split into two periods: a 5-year historic period (2007-
2011), used to calibrate and parameterise the model, and a 2-year evaluation period (2012—
2013), used to test the model. WHO-TDR support staff periodically visited each country to
ensure that data capture was completed accurately and to verify data sources to reduce the risk
of misreporting. Each visit was documented and known problems were communicated.

All data were collected in-country with the cooperation of the Ministries of Health. The tem-
poral unit was the epidemiological week (Sunday to Saturday) and the spatial unit was based on
pre-existing political boundaries, most commonly the district (the municipality in Brazil; the
locality in Mexico). The following variables were captured using the Excel spreadsheet:

« Meteorological (outdoor mean air temperature, rainfall, outdoor relative humidity);

o Epidemiological (mean age, circulating serotype, probable dengue cases [3], hospitalised den-
gue cases [3]);
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 Entomological (Breteau Index, House Index, Ovitrap Index (Mexico only)).

Datasets were hugely variable but in general described an increase in temperatures and out-
break intensity, depending on the country context.

All meteorological data were matched to the district of interest to minimise spatial bias,
although this was not possible in Malaysia. Paucity among meteorological datasets was some-
times high; consequently, external websites Wunderground [35] and Tutiempo [36] were used
to augment the data collection. Where this was not possible, no meteorological variables were
captured (Vietnam only). No remote sensing data were collected or used.

Weeks 1 and 53 for all variables were excluded due to inconsistent data quality. All patient
medical data were anonymised. Microsoft Excel was used to transform daily data to weekly
units and build epidemiological, entomological and meteorological datasets.

Due to paucity among datasets, logistic models for each district were not possible. There-
fore, while meteorological data were not aggregated at the country level, one logistic model was
based on data from all districts i.e. the same relationship observed at the national level between
alarm variables and outbreaks was assumed to exist to the same degree within each district.

The Endemic Channel

Two Endemic Channels were created using the outbreak variables probable cases and hospital-
ised cases. Each Endemic Channel was used in two prediction models to quantify outbreaks.
Each Endemic Channel was defined and calculated as follows:

No. of weekly hospitalised cases
District population

No. of weekly probable cases
District population

The Endemic Channel was calculated for each district using a smoothed 13-week (6+1+6
week) moving mean and standard deviation, based on data in the historic period [14,28,37].
Using a multiplier of the standard deviation known as ‘Z’, it was possible to vary the Endemic
Channel within the evaluation period.

Incident cases with a value above the Endemic Channel triggered outbreak signals. Out-
break signals were combined into outbreak periods. An outbreak period was begun when 2
consecutive outbreak signals were detected; the same outbreak period ended when the outbreak
signal had been absent for 2 consecutive weeks (Fig 1). Epidemic years were not excluded.

The Shewhart Method

Alarm variables were used to detect outbreaks. Each variable is described below, including any
formulae used.

1) Relative change in mean age of dengue incident cases was calculated using a smoothed
average due to noisy, low frequency data. The formula used is as follows:

Smoothed average at week X — (smoothed value at week X — 1)

Smoothed value at week X — 1

2) Number of probable cases divided by the population (per 1,000 population)

3) Mean weekly outdoor temperature (weekly mean of daily means)
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Fig 1. Modelling with a test dataset (3 years only) using the z value (z = 1.25) to form the Endemic Channel. Outbreak signals were
detected (black dots) where incidence crossed the Endemic Channel. Outbreak periods (red dots) were formed when 2 consecutive
outbreak signals were present; outbreak periods ended when 2 absent consecutive outbreak signals were registered (incidence did not

cross the Endemic Channel for 2 consecutive weeks).

doi:10.1371/journal.pone.0157971.g001

4) Total weekly rainfall

5) Mean weekly outdoor relative humidity (weekly mean of daily means)

Model Calibration

Using data within the historic period, logistic regression was performed on the alarm variable
(continuous) and outbreak signal (binary), which provided coefficients for use during the eval-
uation period. The statistical fit of the logistic regression model was not evaluated alone but
considered as a part of the full outbreak detection model in terms of sensitivity and PPV. For
each calendar week, data from all years were combined and separate models (in total 51 models
from week 2 to 52) were estimated to accommodate for seasonal differences in the relation
between the alarm variable levels and the risk of an outbreak. Accommodating these temporal
patterns by simply estimating one model per calendar week implies that data from all districts
need to be used and limits the possibilities for a spatial breakdown of the analysis. Hence, each
observed relationship between alarm variable and outbreak signal was assumed to exist on a
countrywide-basis, even though there were likely differences at smaller spatial scales.
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Subsequently, each coefficient, together with the absolute value for the alarm variable in the
current week, was used to calculate the outbreak probability during the evaluation period. This
outbreak probability was plotted on a weekly basis against an artificial threshold, known as the
alarm threshold. An alarm signal was triggered when the outbreak probability crossed the
alarm threshold.

To reduce spurious associations with outbreak periods, weekly alarm signals were combined
to form alarm periods, which were equal to 2 alarm signals within the lag period (see definition
below). Thereafter the alarm threshold was systematically altered between values of 0.08-0.2 to
find a balanced environment within which alarms periods were formed. These alarm periods
were used to predict outbreak periods, and as the basis for model performance outputs.

Model Validation

The parameter settings, such as the threshold levels for outbreak and alarm and the definition
of an outbreak period (2 outbreak signals vs. 3 outbreaks signals), were changed for each run.

Sensitivity. The successful detection of outbreaks was reported using sensitivity. The num-
ber of positive events e.g. alarms periods and outbreak periods, were used to calculate sensitiv-
ity by the following formula:

Outbreak periods detected by alarm periods

Total no. outbreak periods

Specificity. The number of negative events was not recorded due to the difficulty of defin-
ing absent alarm and outbreak periods.

Positive Predictive Value. The proportion of false positive alarms was calculated using
the positive predictive value (PPV). The formula can be seen below. NB: Multiple positive
events (alarm periods) were defined as correct, even if they were positive for the same out-
break.

No. of correct alarm periods
Total no. of defined alarm periods

Negative Predictive Value. The number of negative events was not recorded due to the
difficulty of defining absent alarm and outbreak periods.

Lag Period

Research has shown diverse effects of a range of lag times between independent variables and
epidemic dengue transmission [38-41], however as yet no systematic review exists that can
provide a definitive range of an appropriate lag time for each covariate. There is evidence that
early monitoring and targeting of both the ‘quiet phase’, when cases are few in the inter-epi-
demic period, and the ‘development phase’, characterised by increasing number of cases, can
provide the most effective and timely period in which to intervene [22]. Accordingly, evidence
from these sources was discussed in detail in consultation with expert opinion [42] before
defining each lag period, detailed below:

o Temperature: 1-12 weeks before the outbreak
« Rainfall: 3-12 weeks before the outbreak

« Humidity: 2-12 weeks before the outbreak
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o Mean Age: 4-16 weeks before the outbreak

Breteau Index: 1-8 weeks before the outbreak

« House Index: 1-8 weeks before the outbreak

Opvitrap Index: 2-8 weeks before the outbreak

« Probable Cases: 1-4 weeks before the outbreak (altered to 1-12 weeks due to too few alarm
periods)

Data Analysis

Analyses were run in duplicate, independently by two of the authors (LRB and MP) to limit
systematic error. The Endemic Channel and Shewhart method were programmed in Stata 13.1
[43].

Proof of Concept

As a starting point, multiple runs with a test dataset were conducted to analyse the reliability of
the model and consistency of the approach. A test dataset is defined as a dataset that is 100%
complete and reliable that was taken from multiple sources to act as a ‘control’ for the model. It
was necessary to evaluate the model in this capacity to generate results and demonstrate proof
of concept i.e. when datasets are complete, accurate and reliable, this is the way in which the
early warning system uses and interprets the data.

Alarm and Outbreak Thresholds

Altering the z-value was the only method used to change the Endemic Channel and generate
outbreak periods. As z was increased, fewer outbreak periods were generated (Fig 2). At alow
z-value, outbreak periods were generated by relatively low magnitude incidence, and were con-
tinually recorded for long durations (Fig 2). Thereafter, as the z-value increased, lower magni-
tude incidence did not cross the Endemic Channel, and the number of outbreak periods
became less frequent.

In a similarly systematic approach, the outbreak probability was tested against the alarm
threshold to generate alarm signals/ periods prior to outbreak periods (Fig 3). As with the
Endemic Channel and outbreak periods, alarm period frequency also decreased as the alarm
threshold was increased (Figs 3 and 4).

Alarm and Qutbreak Definitions

To ensure that detection times were reasonably short, 2, 3 and 4 weekly alarm/ outbreak signals
were used to define alarm/ outbreak periods. Altering the number of signals required to form
an alarm/ outbreak period increased or decreased the frequency of alarm/ outbreak periods
(Fig 5). It also affected the temporal relationship between alarm and outbreak periods by alter-
ing the week at which alarm/ outbreak periods were observed (Fig 5). In prospective terms,
increasing the number of alarm signals required to form outbreak periods delayed detection
times. In addition, the analyses showed that using 2 or 3 alarm/ outbreak signals to form
alarm/ outbreak periods generated highest model performance metrics. Considering these
results, the model was parameterised using 2 signals as this reduced detection delay and
resulted in higher model performance.
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Ethical Permission

Ethical approval for the study protocol was sought from and granted by WHO Regional Ethical
Committees, specifically the Pan American Health Organization Ethics Review Committee
(PAHO-ERC; Ref No. 2011-12-0021) and the Western Pacific Regional Office Ethics Review
Committee (WPRO-ERC; Ref. 2013.25.ICP.2.ESR). All patient medical data were anonymised.

Results
Model Performance Evaluation

After demonstrating the functionality of the model using a test dataset (Figs 1-5), country
datasets (evaluation period) were subsequently used.

Firstly, z-values and outbreak probabilities that provided sufficient alarms and outbreaks
were determined. A systematic approach ensured that all z and alarm threshold values were
tested incrementally, using three of the five country datasets (Brazil, Mexico, Malaysia), as
these were most complete at this stage. Results indicated that, despite altering the alarm and
outcome variables, a z-value of between 1.0-1.3, and an alarm threshold of between 0.08 and
0.12, yielded the best model performance (Figs 6-9). Higher coefficients of either outbreak
probabilities or z-values resulted in marked decreases in sensitivity, and to some extent, PPV
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Fig 2. Modelling with a test dataset (3 years only) using two z values (Top: z = 1.25; Bottom: z = 2.0) to form the Endemic Channel. Outbreak
periods (red dots) were equal to two consecutive outbreak signals (black dots) and ended in the absence of 2 consecutive outbreak signals.

doi:10.1371/journal.pone.0157971.9002
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highlighted. z = 1.25.
doi:10.1371/journal.pone.0157971.9003

(Figs 6-9). Hence, z = 1.25 and an alarm threshold = 0.12 as parameters for all subsequent eval-
uations of country datasets. These country results can be seen in Table 1.

Discussion

Early warning systems are becoming more important as a tool to mitigate the impact of disease
outbreaks [44]. Clearly, alarm variables that provide advance warning of outbreaks are the
most valuable, in order to enact timely clinical preparations and vector control responses. It is
crucial that these same alarm variables should not trigger too many false positive alarms, as
this would result in reduced confidence in the EWS, primarily due to wasted resources. In this
study, the Shewhart method and Endemic Channel were used to evaluate alarm variables with
the potential to predict subsequent outbreak periods. A number of epidemiological and meteo-
rological variables were tested, primarily to evaluate their predictive potential, and secondarily
to establish the most appropriate case definition to define outbreaks.
Surprisingly, despite inherent variability throughout the datasets, certain meteorological
and epidemiological alarm variables were predictive across all countries. These findings are
consistent with trends and evidence reported elsewhere at smaller spatial levels [17-21,45].
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doi:10.1371/journal.pone.0157971.g004

Epidemiological Variables

Alarm variable: probable cases. Epidemiological variables have already been used to pre-
dict outbreaks retrospectively with some success [45]. Of the epidemiological alarm variables
studied here, probable dengue cases demonstrated the greatest predictive capacity. In Mexico
and the Dominican Republic, sensitivity and PPV were high, at 93%/ 83% and 97%/ 86%
respectively, while in Brazil and Vietnam, model performance was 97%/ 43% and 93%/ 43%
respectively (Table 1) (No data were available from Malaysia). From these data it is clear that
the use of probable cases as an alarm variable was highly sensitive across all countries, and
while the same broad success cannot be said for PPV, still in Mexico and Dominican Republic,
this output was relatively high-high enough to ensure few false alarms in practice. The metrics
demonstrate that models that work well in one country context can also be beneficial in others.

In both Dominican Republic and Mexico, it could be argued that the success achieved was
because incidence during the period of evaluation better reflected the patterns observed during
the historic period, i.e. that outbreaks were aligned in time and space throughout the historic
and evaluation periods, thereby resulting in fewer false alarms. While on the contrary, in Brazil
and Vietnam, the lower PPV values could be attributed to noisier datasets that were
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doi:10.1371/journal.pone.0157971.9005

inconsistent across the years. This would not be surprising given that the length of historic
periods was relatively low when compared to similar forecasting models [15,19,46].

There are almost certainly other factors at play here. The observed differences between PPV
values could reflect the context-dependent nature of dengue transmission, which has long been
argued as a feature of dengue [47-49]. Equally, country surveillance systems are often unique,
resulting in heterogeneous case registration and reporting systems [10,30]. Indeed these differ-
ences could also be due to the presence of co-circulating infections with similar clinical presen-
tations, such as Chikungunya or Zika viruses [50,51], which may be confounding probable
dengue case diagnoses, or because case definitions are less specific (or likely a combination of
both) [4,52].

Nonetheless, while suspected or probable cases are notifiable within many existing disease
surveillance systems [10,30], these data suggest that probable case data can, in some cases, be
predictive of dengue outbreaks and should be considered for use in early warning systems.

Alarm variable: mean age. Theoretically, since population-level serotype shifts are known
to fluctuate inter-annually [53-56] thereby influencing the herd immunity of a population
[55], it should be possible to detect such changes through a proxy increase or decrease in the
mean age of infection [57]. Throughout these analyses the model performance metrics for
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doi:10.1371/journal.pone.0157971.g006

mean age were extremely varied-the range of sensitivity was 57%-96% while PPV range was
41%-74%. Indeed, in the context of this specific model, these results indicate that the use of a
change in mean age may warrant further investigation, but due to inconsistency, mean age can
not currently be recommended for use in early warning systems.

The limited success of this model in using mean age as a predictor for dengue outbreaks
may in part be due to the following limitations. Firstly, it was not possible to correlate the inci-
dent age distribution of dengue with serotype shifts to stratify the risk of infection among age
groups, primarily due to inconsistent data entry. Secondly, mean age was calculated as either a
function of probable or hospitalised cases, perhaps masking true associations that may have
been more pronounced if the calculation had been standardised across countries. Finally,
where the calculation of mean age was based on probable cases, the effect of poorer specificity
within this case definition likely diluted any associations with the outbreak variable probable
cases, which may explain why all countries, excepting Vietnam, generated lower PPV values
when compared with the outbreak variable hospitalised cases.

Meteorological variables. Countries that had access to better meteorological datasets
(Mexico and Brazil) produced higher performance metrics when compared to those countries
that captured fewer data points (Table 1). These were often spread disparately over wide geo-
graphic areas (Dominican Republic and Malaysia). It is likely that meteorological data captured
over broader spatial scales poorly reflected the weather variation present over finer scales.
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doi:10.1371/journal.pone.0157971.g007

Consequently, any outbreak probability calculated using these data may not have been repre-
sentative of the interactions between meteorological and outbreak variables in the district.
Additionally, inconsistencies between the location of data captured for meteorological and out-
break variables within districts may have increased variability.

However, mean temperature was a reliable variable in Mexico, and to some extent in Brazil,
where sensitivity and PPV were 79%/ 73% and 81%/ 46% respectively. Rainfall and humidity
were more variable and generally less reliable early warning variables for dengue outbreaks.
This was the case across all countries, but that is not to say that these variables should be ruled
out of early warning systems altogether. It is certainly conceivable that each meteorological var-
iable could indicate increased risk of transmission, rather than forecast an outbreak. Indeed,
given their direct influence on vector population dynamics and on the extrinsic incubation
period of the dengue virus, it is perhaps not surprising that meteorological variables have dem-
onstrated potential, both in this study and in various mathematical models also using field data
[17,18,25].

That mean temperature generally outperformed both rainfall and humidity is unsurprising.
Associations between temperature and dengue have been observed before, as with other vector
borne diseases, often as a consequence of the effect on the development rate of the vector and
the extrinsic incubation period of the pathogen [58-61]. In particular, temperature variations
are known to influence DENV replication, vector survival and larval development [13,62-64],
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while rainfall, or lack thereof, can affect the quantity and/ or quality of breeding sites
[18,22,24,65,66]. Certainly, some of the variation observed within this study might be attribut-
able to land use, vegetation, altitude and indeed human behaviour [67,68] —data that were not
readily available during the data capture process. At the same time, spatial smoothing effects
might also be a contributory factor, as district sizes were not standardised between countries—
working at coarser resolutions tends to obscure or weaken associations often present at finer
spatial scales. Nevertheless, the differences between countries in this study, particularly with
regard to rainfall and humidity, are similar to other research that has also reported context-
dependent meteorological alarm variables [69]. For example, rainfall has been positively associ-
ated with subsequent dengue outbreaks in a number of studies [70,71]. Indeed in Mexico, sen-
sitivity and PPV was modest at 59%/ 63%, and although it has not been strongly predictive in
all locations, there is the suggestion that all meteorological variables can play a part in the pre-
diction of dengue outbreaks.

Defining Outbreaks

Probable and hospitalised cases. Defining outbreaks using incident hospitalised cases, a
common practice today [6], broadly demonstrated significantly better predictions with alarm
variables when compared with incident probable cases. It is reasonable to presume that lower
sensitivities and PPV's were likely the result of less specific dengue case definitions. If so,
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outbreak probabilities calculated during the historic period would have been consistently
weaker, thereby reducing the performance metrics for each dataset accordingly. And yet, the
utility of probable case definitions as outbreak variables should not be diminished. Similar
trends observed between alarm variables and hospitalised cases were also seen between alarm
variables and probable cases. Thus, this variable could be used as a substitute when developing
Endemic Channels and epidemic curves, if timely reporting of hospitalised cases is not avail-
able [4].

The Endemic Channel. Worldwide, the multiplier 2’ is used to build the Endemic Chan-
nel using the following formula: mean+2*SD. This multiplier is used as it broadly captures 95%
of the variation in dengue incidence about the mean. However, for the purposes of outbreak
detection, this does not account for any localised variation that may warrant context-specific
multipliers [47,72]. It is also important to identify that dengue incidence fluctuates on an inter-
annual basis, and that the pattern of outbreaks may shift in time, frequency and duration [47].
Indeed, in terms of prediction, it is crucial to capture local covariates in order to anticipate
whether the seasonal pattern of outbreaks is likely to change, perhaps due the presence of a
new serotype early in the season [72,73]. In this model, it was not possible to capture such
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Table 1. Summary results table stratified by country (data from evaluation period). Most sensitive variables stratified by country where z = 1.25 and

probability = 0.12.

Country
Mexico
Mexico
Mexico
Mexico

Brazil
Brazil
Brazil
Brazil
Brazil
Brazil

Malaysia

Malaysia

Malaysia

Dominican Republic
Dominican Republic
Dominican Republic
Dominican Republic
Dominican Republic
Dominican Republic
Dominican Republic
Vietnam
Vietnam

Alarm Variable
Mean Temperature
Rainfall
Mean Age
Probable Cases
Mean Temperature
Probable Cases
Rainfall
Mean Humidity
Mean Temperature
Mean Age
Mean Age
Mean Temperature
Mean Humidity
Rainfall
Mean Temperature
Mean Humidity
Probable Cases
Mean Humidity
Mean Temperature
Rainfall
Mean Age
Probable Cases

doi:10.1371/journal.pone.0157971.t001

Outbreak variable Lag Period (weeks) Sensitivity (%) Positive Predictive Value (%)
Hospitalised Cases 1-12 79 73
Hospitalised Cases 3-12 59 63
Hospitalised Cases 4-16 72 74
Hospitalised Cases 1-12 93 83
Hospitalised Cases 1-12 81 46
Hospitalised Cases 1-12 97 43
Hospitalised Cases 3-12 70 33
Hospitalised Cases 2-12 79 46
Probable Cases 1-12 49 50
Hospitalised Cases 4-16 86 41
Hospitalised Cases 4-16 96 45
Hospitalised Cases 1-12 14 35
Hospitalised Cases 2-12 9 32
Hospitalised Cases 3-12 17 76
Hospitalised Cases 1-12 24 82
Hospitalised Cases 2-12 6 80
Hospitalised Cases 1-12 97 86
Probable Cases 2-12 5 71
Probable Cases 1-12 23 81
Probable Cases 3-12 16 70
Probable Cases 4-16 57 45
Hospitalised Cases 1-12 93 43

variation due to paucity among the datasets; hence regression coefficients were derived on a
countrywide scale, arguably too coarse to detect such nuances.

So how should dengue outbreaks be defined? In this study, we altered z-values to improve
the success of detection, rather than consider the operational or financial implications of
changing outbreak definitions. These neglected implications had ramifications: low z-values
resulted in outbreaks that were often infrequent, long and protracted in nature, and would
require resource-intensive responses. We observed that as the z-value gradually increased, only
the highest magnitude peaks were captured—it was even possible to create additional outbreaks
as the z increased further (Fig 2). From these analyses it is clear that standardised thresholds
failed to distinguish between certain types or stages of the outbreak.

Dengue transmission is often characterised by a series of peaks in incident cases, which is a
function of variable intrinsic and extrinsic incubation periods [74]. The implication is that as one
increases the z-value, there will come a point at which a greater frequency of distinct outbreaks is
recorded, resulting in shorter duration but greater frequency outbreak responses (Fig 2). Consid-
eration to the type of outbreak detected is rarely given, which would otherwise be beneficial to
those in operational capacities. Indeed if it was possible to predict certain stages of an outbreak,
such dichotomies (outbreak/ no outbreak) that arise from use of the Endemic Channel, would
disappear. With it would go the mistrust that follows perceived unreliable or confusing forecast-
ing [75]. So rather than focus on a simple binary output, perhaps it would be prudent to charac-
terise outbreaks by a relative weekly increase in incidence, or indeed use the slope of the curve to
forecast the top of the epicurve. Such a system would provide programme managers and epide-
miologists with a more detailed insight into the speed and magnitude of future outbreaks, which
would increase the efficiency and cost-effectiveness of dengue outbreak responses.

PLOS ONE | DOI:10.1371/journal.pone.0157971
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While the above techniques are under consideration, the results from this study suggest that
the Endemic Channel meanwhile remains an operationally useful aid, primarily because of its
ability to clearly demarcate thresholds based on simple summary statistics.

Temporal Associations between Alarm and Outbreak Variables

Timely outbreak detection. Using 2 or 3 alarm/ outbreak signals to define alarm/ out-
break periods produced the highest outcome metrics, while there was little difference between
these two multipliers across all alarm/ outbreak variables. As demonstrated previously, altering
this multiplier can increase or decrease outbreak detection times (Fig 5), which is particularly
important in a prospective context. Similarly, working with a moving average tends to delay
the anticipated outbreak pattern by delaying the increase and postponing the decrease in inci-
dence. In this study, the smoothing took place over 13 weeks (6+1+6), but this could be
reduced to better reflect real-time events. However, this would be at the expense of increasing
the impact of any noise in the dataset, also an important consideration prospectively.

Candidate Alarm Variables

In addition to the alarm variables explored within this study, there is increasing evidence that
novel variables may prove valuable in forecasting dengue outbreaks. Internet-based trending
metrics can warn of forthcoming outbreaks, with evidence suggesting that these data might be
useful for predicting dramatic surges in dengue incidence [8]. Both search query data [76,77]
and social media trends [78] have shown promise for detection of disease outbreaks, although
social media has yet to be evaluated for dengue. Other avenues of exploration could also
include the use of alternative summary statistics for those alarm and outbreak variables already
explored within this study, such as the diurnal temperature range instead of the mean tempera-
ture, or cumulative mean instead of the moving mean [47, 79]. And as the use of GIS-based
and remotely sensed data capture becomes increasingly prevalent, spatial analyses and predic-
tion based on the clustering nature of dengue, as well as geo-referencing of alarm variables,
should enable scientists to better pinpoint potential high risk transmission areas at smaller spa-
tial scales [46, 80-82].

Limitations

Inconsistent data collection and missing data almost certainly affected the quality of datasets,
especially with regard to entomological indices. As observed in another review [82], entomo-
logical indices were generated on varied temporal and/ or spatial scales in different countries,
resulting in a mismatch with the outbreak variables. Accordingly, these alarm variables could
not be fairly evaluated.

The following additional limitations in the routine surveillance data were observed:

o Temporal variation (monthly timescale observed for some entomological variables)

o Spatial variation (data, especially meteorological, were sometimes only available at coarser
resolutions)

« Paucity/ absence of data/ variables
« Varied data sources (independent online systems)
« Multiple non-verifiable data sources

» Random (inconsistent) sampling (particularly entomological indices)
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 Annual data entered only on one date rather than each week of the year
o As indicated above, mean age calculations were inconsistent between countries

The moving average and regression probabilities calculated during the historic period were
reliant upon a relatively low number of years (<5) of historic data, in contrast to others fore-
casting models [15,18,46]. Using a greater number of historic years would have generated a
more stable mean and outbreak probabilities.

Outbreak probabilities for alarm variables were based on countrywide associations, a spatial
scale that smoothens variation found at the district level, potentially underestimating true
probabilities. Also, due to co-linearity between variables, multivariate analyses were not
conducted.

Generally, z-values of 1.25 and alarm thresholds of 0.12 were the most appropriate to gener-
ate high sensitivities and PPVs by country. The reason the z value is lower than the normal 2’,
is due to the inclusion of epidemic years among the data, which if excluded would have necessi-
tated larger standard deviations to detect outbreaks [6]. This combination of z value and alarm
threshold would likely benefit from minor alterations to suit individual spatial units in any
future prospective investigations.

Some variables, in particular temperature, have been known to show non-monotonic rela-
tions concerning mosquito and viral replication [69,63,83], however these effects were not cap-
tured in the current model.

Conclusions

The findings reported here suggest that the Shewhart method and Endemic Channel,—relatively
simple approaches—are viable techniques that can be used retrospectively, and potentially pro-
spectively, to detect dengue outbreaks using alarm variables with an attributed lag time. This
approach builds on earlier observations that utilised multiple alarm variables on similar spatial/
temporal scales [13], and combined prior theoretical observations into a practical model [25].
While there is emerging evidence of alternative models that may be used for time series datasets,
in particular, the LASSO (least absolute shrinkage and selection) method [84], evidence suggests
that such alternatives may require particularly complete and detailed datasets. Datasets compiled
by mandatory electronic reporting and standardised surveillance systems will greatly improve
the quality of datasets and lend themselves to such analyses. Until this point, simpler methods
such as the Shewhart method and Endemic Channel may be more appropriate.

Of the epidemiological alarm variables studied, the number of probable cases showed great-
est predictive potential and should be routinely captured during active surveillance systems for
use in early warning systems. Increases in this metric may provide advance warning of increas-
ing dengue outbreaks in subsequent time periods (in this study, 1-12 weeks). By contrast, the
mean age of dengue cases requires further validation as a potential variable.

Meteorological alarm variables were more powerful predictors of outbreak periods in both
Mexico and Brazil than other countries, likely due to more frequent spatial data points and
accurate spatial correlations with outbreak variables. Therefore, where spatial meteorological
data are discordant with the spatial area of analysis, interpolation or remote-sensing techniques
should be used to generate additional climate data. Indeed, given the widespread availability of
temperature and humidity data, dengue surveillance programmes should routinely record
these metrics in order to detect any sustained, abnormal changes that may indicate increased
risk of dengue transmission, as well as outbreaks.

Exploratory analyses of the value of entomological indices as predictors of epidemic dengue
transmission are still required. This can only take place if study designs and data capture
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processes are standardised [85], thereby improving the quality of entomological datasets for
use in predictive models.

In the absence of process-based models, predictive dengue modelling must be based on
available retrospective datasets, validated across multiple contexts and parameterised for
smaller spatial scales to capture local drivers in dengue transmission.

This model could be simply transformed into a real-time, user-friendly early warning sys-
tem to identify at-risk areas in order to allocate resources more efficiently before outbreaks
begin. At the time of writing, the model is deployed in a predictive capacity across 3 dengue-
endemic countries, with initial results expected in the latter part of 2016.
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