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Abstract

We aimed at quantifying the extent to which agricultural management practices linked to ani-

mal production and land use affect environmental outcomes at a larger scale. Two practices

closely linked to farm environmental performance at a larger scale are farming intensity,

often resulting in greater off-farm environmental impacts (land, non-renewable energy use

etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the

degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources,

with higher control over nutrient recycling and thus minimization of losses to the environ-

ment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We

explored the relationship of these practices with farm environmental performance for 185

French specialized dairy farms. We used Partial Least Squares Structural Equation Model-

ling to build, and relate, latent variables of environmental performance, intensification and

self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/

cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm

energy/total energy use etc.). Environmental performance was represented by an aggre-

gate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed

with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-

physical conditions, production patterns) regions. For both regions, eco-efficiency was sig-

nificantly negatively related with milk yield/cow and the use of maize silage and imported

concentrates. However, these results might not necessarily hold for intensive yet more self-

sufficient farms. This requires further investigation with latent variables for intensification

and self-sufficiency that do not largely overlap- a modelling challenge that occurred here.

We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on
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particular farming systems and circumstances, although we note that more self-sufficient

farms may be preferable when they may benefit from relatively low land prices and agri-envi-

ronment schemes aimed at maintaining grasslands.

Introduction

Meeting the world’s rapidly growing food demands in perpetuity while preserving the environ-

ment and the planet’s natural resources is an enormous challenge for agriculture [1]. The

European Union (EU) is attempting to address this challenge through the Common Agricul-

tural Policy (CAP), whose earlier focus on market price support and recent shift to direct pay-

ments and abolition of milk quotas have resulted in an intensification of dairy farming in the

past few decades [2,3]. However, several dairy studies find that a trade-off might exist between

dairy farm intensification and environmental performance [4–7] because intensification often

has externalities associated with the production of imported inputs.

Assessing the relationship between intensification and environmental performance requires

‘global’ metrics able to capture both on and off-farm environmental impacts of dairy farming.

Global metrics can be calculated with Life Cycle Analysis (LCA), an internationally standard-

ized method for estimating the environmental impacts of agricultural products from a whole-

system perspective [8]. Numerous studies use LCA to assess dairy farm environmental perfor-

mance by calculating ‘eco-efficiency’ ratios, that is, environmental impacts expressed per unit

of milk or land area [5,6,8,9]. Yet eco-efficiency ratios have several drawbacks [10], for example

the allocation of environmental impacts to several dairy farm products (milk, meat, crops) is

challenging. Dairy studies are therefore increasingly coupling LCA indicators with the multi-

ple-input, multiple-output method Data Envelopment Analysis (DEA [11]) to calculate single

aggregated eco-efficiency scores per farm, by accounting for all LCA impacts (or carbon foot-

printing indicators), inputs and outputs simultaneously [10,12–19].

With global eco-efficiency indicators in hand, the next challenge is to identify farm man-

agement strategies that can improve eco-efficiency. The global efficiency indicator is based on

a ratio between productions of goods and inputs (or environmental impacts). A wealth of

dairy studies [5,6,8,10,13,19–22] show that eco-efficiency is generally influenced by two man-

agement strategies improving this ratio with an increase in outputs or a decrease in inputs: (i)

the level of intensification at animal and farm-levels, i.e. higher production per unit of input so

that increases in outputs outweigh potential increases in inputs and environmental impacts;

and (ii) the farm’s degree of self-sufficiency, i.e. its capacity to produce goods from its own

resources [21], so that decreases in inputs and environmental impacts outweigh likely

decreases in outputs. In fact, self-sufficiency, with higher control over nutrient recycling and

thus minimization of losses to the environment, can be considered as a key agro-ecological

principle, central to improving the sustainability of livestock systems [23].

Nevertheless, so far a few dairy studies have attempted to holistically measure self-suffi-

ciency, production intensity and environmental performance and to study their relationships

from a whole-system perspective [21]. Certainly, this reflects the challenge of obtaining suffi-

cient data on all three aspects [21]. Moreover, specific relationships between these aspects can-

not be predetermined; it is a managerial choice to intensify production while being less or

more self-sufficient, with implications for the environment in either case. On the one hand,

intensive and less self-sufficient systems may increase production in a very resource use-effi-

cient manner. For example, increasing cow productivity and the use of concentrated feeds can
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increase feed efficiency and milk yield per cow and per ha (104 m2) on-farm land, and can

decrease manure volume and nutrients [5,19,24]. Nonetheless, high efficiency may not be

enough to reach environmental targets [25]. On the other hand, intensive and more self-suffi-

cient systems recycle more elements on-farm, with lower environmental impacts per ha but

not necessarily per unit of milk [5].

By coupling LCA data with DEA, Soteriades et al. [10] found that the less the proportion of

maize silage in the total forage area of French specialized dairy farms, the higher the farms’

eco-efficiency. This confirmed earlier findings that increasing maize silage in dairy farms gen-

erally implies higher animal and farm-level farming intensity and lower farm self-sufficiency

(higher supplementation with protein-rich feeds, usually imported soybean meal) [5,8,26,27].

They also showed that eco-efficiency performance can be region-dependent. Their findings

suggested a possible relationship between dairy farm eco-efficiency, intensification and self-

sufficiency, which could differ between regions, although, as commented earlier, these rela-

tionships cannot be predetermined. Additionally, a more holistic analysis of this relationship

should involve more indicators representing these three aspects. From a modelling perspective,

such cases can be dealt with the multivariate method Partial Least Squares Structural Equation

Modelling (PLS-SEM [28,29]). PLS-SEM can account for multiple indicators to search for

latent patterns in the data when there is no or only little prior knowledge on how the variables

are related, while accounting for (regional) heterogeneity [30].

The objective of this paper was to explore the relationships between dairy farm eco-effi-

ciency, self-sufficiency, and farm and animal-level intensification, by extending the LCA-

based dairy farm exercise of Soteriades et al. [10] that accounted for impacts both on and off-

farm. That way it was possible to determine whether or not on-farm management practices

promoting self-sufficiency and/or increasing input per ha and output per unit input- especially

per ha- could explain dairy farm environmental performance at a larger scale. In other words,

this study attempts to quantify the extent to which agricultural management practices linked

to animal production and land use affect output and environmental outcomes (see [31]).

Another contribution of this study is that it accounted for spatial heterogeneity between farms,

which could result in different relationships between eco-efficiency, self-sufficiency and inten-

sification in each region. The relationships were explored with PLS-SEM. From a policy per-

spective, this study provides information for the identification of dairy farming systems that

can mitigate dairy farm impacts while ensuring food security.

Materials and Methods

This study builds on the dairy farm exercise by Soteriades et al. [10] for French specialized

dairy farms (see above) which combined LCA with DEA to calculate dairy farm eco-efficiency.

A brief description of their exercise (data, model and results) is therefore given below before

turning to the PLS-SEM framework employed here to study the relationships of eco-efficiency

with intensification and self-sufficiency.

The study of Soteriades et al. [10]

LCA data and eco-efficiency. Soteriades et al. [10] used main dairy farming impacts

quantified by LCA that is, non-renewable energy use, land use, eutrophication, acidification

and global warming potential [6,32]. Note that in LCA studies non-renewable energy use and

land use are typically considered as environmental impacts [5,6,8,32] representing ‘use of

resources’ ([32], p.72). Use of resources can be seen both as resources to be used more effi-

ciently and as environmental impacts resulting from the use of non-renewable resources, for
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instance CO2 emissions from combustion of fossil fuels [32]. That is why in this study non-

renewable energy use and land use were considered as environmental impacts.

DEA and eco-efficiency scores for French specialized dairy farms. DEA was developed

by Charnes et al. [11], originating from Farrell’s [33] work. It is a non-stochastic, non-

parametric technique that benchmarks different decision-making units (DMUs) performing

the same task in terms of their capacity to convert inputs into outputs. DEA calculates dimen-

sionless and aggregated efficiency indices without requiring a priori assumptions on the

importance of each variable for the DMUs’ performance, i.e. the variables’ weights are

obtained from the data themselves. DEA constructs an efficient frontier, that is, a piece-wise

linear surface over observed data points against which all DMUs are benchmarked. This fron-

tier comprises of the best performers and the performance of all other DMUs is evaluated by

deviations from the frontier line [34]. This is a fundamental difference between DEA and

methods such as regression as the latter reflects ‘average’ or ‘central tendency’ behaviour

[34,35].

The characteristics of DEA make it a particularly attractive tool for the calculation of aggre-

gate eco-efficiency ‘scores’ as an alternative to multiple eco-efficiency ratios. This is easily dem-

onstrated with the study of Soteriades et al. [10]. These authors fed a DEA model with the five

aforementioned dairy farm LCA indicators (non-renewable energy use, land use, eutrophica-

tion, acidification, global warming potential) generated by, and three outputs (milk, meat and

crop production) produced by, each French specialized dairy farm in the sample. The DEA

model (known as the range adjusted measure of inefficiency [36], described in S1 Appendix)

then calculated the ‘distance’ of each farm from the efficient frontier by determining by

how much each LCA environmental impact should be reduced, and each output should be

increased, for each farm to reach the frontier. These ‘distances’ are called inefficiencies, as they

indicate that a farm is over-generating environmental impacts and/or under-producing out-

puts relatively to other farms in the sample. The DEA model averaged all inefficiencies for

each farm to produce a score between 0 and 1. A score less than 1 meant that a farm was ineffi-

cient as it had to eliminate its inefficiencies to reach the frontier. A score of 1 meant that the

farm was efficient, as its distance from the frontier- and thus its inefficiencies- were 0. The

aggregation was done by the DEA model itself, which was able to weight and sum the ineffi-

ciencies altogether. Weighting the inefficiencies cancelled out the variables’ different measure-

ment units (e.g. land use in ha, non-renewable energy use in 106 J, milk in kg protein), making

the aggregation meaningful. The DEA model calculated the weights from the data themselves

and thus no subjective weighting choices were required. Finally, note that the range adjusted

measure carries with it a ranking property allowing for the ranking of farms by their eco-effi-

ciency scores (see S1 Appendix).

Using the aforementioned DEA model and LCA and output data, Soteriades et al. [10] cal-

culated eco-efficiency scores for 185 French specialized dairy farms. Note that the eco-effi-

ciency measure did not include operational inputs (e.g. labour, capital, on-farm electricity use

etc.) and ‘undesirable’ outputs (e.g. kg CO2-equivalents, wastewater etc.) because the idea was

to aggregate altogether the two elements used in LCA ratios: environmental impacts and out-

puts. In other words, Soteriades et al. [10] were concerned with the environmental impacts

rather than the amount of operational inputs and undesirable outputs of DMUs (see [16],

p.715). This is standard practice in dairy farm LCA exercises [5,6,8]. Because eco-efficiency

measures an organization’s capability to produce goods and services with minimal environ-

mental impacts [37], Kuosmanen and Kortelainen [37] argue that it represents a societal rather

than a managerial perspective. Therefore, they argue that although inputs such as labour and

capital are expenditures for the owners of the firm, these inputs represent income (wages and

rents) for the society. Thus, such inputs are irrelevant to the context of an eco-efficiency
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indicator. See also sub-subsection ‘Choice of DEA variables’ in Soteriades et al. [10] and Jan

et al. [16] p.715.

After obtaining the scores from the whole sample, Soteriades et al. [10] split the sample into

two regions, West and Continental France, to examine if the differences in bio-physical condi-

tions between them [38] would favour a specific region in terms of eco-efficiency performance.

‘West’ was defined by regions with oceanic climate (Basse-Normandie, Bretagne, Haute-Nor-

manndie, Pays de la Loire, Poitou-Charentes) and ‘Continental’ by regions with continental

climate (Alsace, Centre, Champagne-Ardennes, Franche-Comté, Lorraine, Rhône-Alpes).

Farms on the West were called Oceanic Specialized Systems (OSS, n = 126) as opposed to Con-

tinental Specialized Systems (CSS, n = 59) in Continental France. The farms were also split

into three feeding strategies (regardless of region), defined by the proportion of maize silage in

the total forage area of each farm.

Results showed that OSS systems ranked higher, on average, than CSS in terms of eco-effi-

ciency scores (mean ranks of the DEA scores were 84 for CSS and 97 for OSS). Moreover,

farms with<10% and with 10–30% maize in the total forage area ranked, on average, higher

than farms with>30% maize in the total forage area in terms of eco-efficiency scores (mean

ranks of DEA scores were, respectively, 114, 99 and 78). As commented earlier, the latter

results justified a more holistic analysis of the relationships between dairy farm eco-efficiency,

intensification and self-sufficiency, leading to the current study. The former results warranted

the inclusion of regional heterogeneity effects in the PLS-SEM exercise of this article.

Exploring the relationship of eco-efficiency with intensification and self-

sufficiency using PLS-SEM

PLS-SEM is a structural equation modelling (SEM) approach, the latter being a general term

for methods used to study the relationships among latent variables indicated by multiple mani-

fest variables [39]. The setting of the PLS-SEM model built in the current study involved four

latent variables: for eco-efficiency (ECO), animal-level intensification (INTENS-A), farm-level

intensification (INTENS-F) and self-sufficiency (SELF), see Table 1 and Fig 1. ECOwas repre-

sented by one manifest variable, the DEA eco-efficiency measure of Soteriades et al. [10].

INTENS-Awas represented by three manifest variables, milk yield (in kg of raw milk) per cow/

year (‘milk/cow’); meat production (kg carcass weight produced) per livestock unit (LU) per

year (‘meat/LU’); and concentrate fed (103 kg concentrate) per LU per year (‘concentrate/LU’).

INTENS-Fwas represented by four manifest variables, kg mineral and organic nitrogen (N)

per ha total on-farm area (‘N/on-farm ha’); kg mineral and organic phosphorous (P) per ha

total on-farm area (‘P/on-farm ha’); stocking density (LU/ha main forage area); and the pro-

portion of maize silage in the total forage area (‘maize/forage ha’).

SELF was represented by four manifest variables of self-sufficiency: ‘economic’ (gross oper-

ating profit/turnover); ‘energy’ (on-farm energy use/total energy use); ‘feed’ (feedstuff pro-

duced on-farm/total use of feedstuff); and ‘land’ (on-farm land use/total land use). These four

variables captured different dimensions of a farm’s capacity to produce goods from its own

resources (i.e. to require little purchased inputs) and are complementary, providing a more

holistic view of farm self-sufficiency than earlier studies (see [21]). For instance, economic

self-sufficiency is an indicator of the degree of economic dependence on external inputs, e.g.

pesticides (a similar indicator is used by Lebacq et al. [21]). On the other hand, land self-suffi-

ciency indicates the extent to which a farm depends on ‘imported’ land but is unable to do so

for other inputs such as pesticides and manure. Energy self-sufficiency accounts for, among

others, energy required for manure for crop production, with the latter being either imported

or recycled on-farm. At the same time, feed self-sufficiency alone fails to consider that farms
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also produce crops in addition to animal products. From this example it is evident that the

four variables agree with the self-sufficiency definition adopted in this study and are

complementary.

The dataset used for the PLS-SEM exercise is summarized on Table 1. See S1 File for the

whole dataset. Fig 1 is a graphical representation of the PLS-SEM model built in the current

study. The model is further explained below.

PLS-SEM comprises of two models (see [41]), the structural model and the measurement

model (Fig 1). The structural model assumes a linear relationship between latent variables

(also called constructs) and uses linear regression to estimate the path coefficients, represent-

ing the strength and direction of the relationships between the response latent variable, or tar-

get (endogenous) construct (ECO), and the predictor latent variables, or predictor constructs

(INTENS-A, INTENS-F and SELF). In Fig 1 this relationship is represented by single-headed

arrows from the predictor latent variables towards the response latent variable. In a similar

manner, the measurement model uses linear regression to estimate the loadings, i.e. the corre-

lations between a latent variable and its manifest variables. In Fig 1 this relationship is repre-

sented by single-headed arrows from the latent variables towards their manifest variables. The

arrows’ directions imply that the constructs (INTENS-A, INTENS-F, SELF, ECO) cause the

measurement (more precisely, the covariation) of their corresponding manifest variables [30].

The mathematical equations representing the PLS-SEM model in Fig 1 are presented in S2

Appendix.

PLS-SEM was deemed the appropriate SEM method to examine the relationship of ECO
with INTENS-A, INTENS-F and SELF for the following reason. The procedure in PLS-SEM

Table 1. Statistics for intensification, self-sufficiency and eco-efficiency variables per system.

CSS (n = 59) OSS (n = 126)

Mean SD Median Mean SD Median

INTENS-A

Milk/cow (kg raw milk/cow/year) 6986 1560 7016 7015 1196 7095

Meat/LU (kg carcass weight produced/LU/year) 166 48 162 172 50 174

Concentrate/LU (103 kg concentrate fed/LU/year) 1.00 0.41 0.98 0.95 0.38 0.98

INTENS-F

N/on-farm ha (kg mineral and organic N/ha total on-farm area) 149 57 141 164 48 165

P/on-farm ha (kg mineral and organic P/ha total on-farm area) 54 23 51 60 19 57

Stocking density (LU/ha main forage area) 1.42 0.54 1.26 1.49 0.34 1.45

Maize/forage ha (% maize silage area in the total forage area) 0.20 0.20 0.20 0.28 0.16 0.30

SELF

Economic (gross operating profit/turnover) 0.41 0.07 0.40 0.40 0.08 0.40

Energy (on-farm energy use/total energy use) 0.60 0.17 0.57 0.63 0.15 0.59

Feed (feedstuff produced on-farm/total use of feedstuff); 0.90 0.06 0.89 0.90 0.07 0.90

Land (on-farm land use/total land use) 0.88 0.08 0.91 0.89 0.07 0.91

ECO

DEA eco-efficiency 0.94 0.05 0.93 0.95 0.05 0.95

CSS: continental specialized systems; OSS: oceanic specialized systems; LU: livestock unit; N: nitrogen; P: phosphorous; DEA: data envelopment

analysis. The multiple measures building the latent constructs of animal and farm-level intensification (INTENS-F and INTENS-A) and self-sufficiency

(SELF) were obtained from a comprehensive Life Cycle Analysis (LCA) exercise [40] resulting from a partnership involving voluntary participation of farmers

(‘Inosys Réseaux d’Elevage’), the Chambers of Agriculture (France) and the French Livestock Institute. The LCA exercise is described in [10]. See same

reference, text above and S1 Appendix for more details on the DEA eco-efficiency scores building the latent construct of eco-efficiency (ECO).

doi:10.1371/journal.pone.0166445.t001
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is an ordinary least squares regression-based estimation and thus is especially useful for devel-

oping theories in exploratory research, that is, to search for latent patterns in the data when

there is no or only little prior knowledge on how the variables are related (as in this study). It

does so by focusing on explaining the variance in the dependent variables (ECO) when exam-

ining the model, i.e. it places emphasis on prediction and theory development. This is by con-

trast with other SEM methods such as covariance-based SEM, which follows a maximum

likelihood procedure and is thus better-suited to confirming (or rejecting) theories, i.e. it

focuses on causation. See [30,42,43].

Fig 1. Partial Least Squares Structural Equation Model for eco-efficiency, animal and farm-level intensification, and self-

sufficiency. LU: livestock unit; N: nitrogen; P: phosphorous; DEA: data envelopment analysis; INTENS-A: animal-level intensification;

INTENS-F: farm-level intensification; SELF: self-sufficiency; ECO: eco-efficiency.

doi:10.1371/journal.pone.0166445.g001
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Putting all methods together

Fig 2 summarizes graphically how the different elements of this study’s analysis integrate.

Soteriades et al. [10] used LCA impacts and farm outputs to produce the DEA eco-efficiency

scores for the sample of French specialized dairy farms. The results suggested a possible rela-

tionship between eco-efficiency, farming intensity and farm self-sufficiency, which could differ

between regions. Further evaluation of this relationship in this study required additional data

capturing several aspects of intensity and self-sufficiency. Also, modelling this relationship

required a model not based on an ad hoc assumption of how the three elements are related,

thus PLS-SEM was chosen. The eco-efficiency scores of Soteriades et al. [10] were used to

build the manifest variable for ECO in the current study. Additional data were used in this

study to create manifest variables for INTENS-A, INTENS-F and SELF so as to build the

PLS-SEM model. Spatial heterogeneity was accounted for in the PLS-SEM model to examine if

regional differences could lead to different findings in West and East France.

All calculations were performed in the R language [44]. The PLS-SEM exercise and evalua-

tion were performed with the R package ‘plspm’ [41] and, where necessary, the first author’s

own R functions.

Results

This section summarizes the PLS-SEM results for CSS and OSS. The PLS-SEM models for

both CSS and OSS complied with the minimum sample size requirements (see [30], p.20-22).

Before running the exercise, the raw data were standardized (mean = 0, variance = 1) because

doing so allowed the PLS-SEM model to calculate standardized coefficients between -1 and +1

for every relationship in the measurement and structural models [30].

Because PLS-SEM does not have a single goodness-of-fit criterion the measurement and

structural models had to be evaluated independently and step-by-step using several assessment

criteria and guidelines outlined in [30,41,42,45,46]. Given the multitude of criteria and guide-

lines, it is standard practice in many PLS-SEM studies (e.g. [43,47,48]) to briefly describe crite-

ria, guidelines and their results altogether, and step-by-step. The same practice was adopted

here. It should be noted that many of the criteria did not apply for single-item and/or endoge-

nous constructs such as ECO, unless explicitly stated below.

The results are presented in four phases. Phase 1 is the measurement model evaluation for

CSS and OSS. Phase 2 describes an issue related with the measurement model in Phase 1 and

proposes alternative PLS-SEM models for CSS and OSS. Phase 3 is the measurement model

evaluation of the new models. Phase 4 is the structural model evaluation of the new models.

Phase 1: step-by-step evaluation of the measurement models for CSS

and OSS

The measurement models were first evaluated for indicator reliability, which requires that the

constructs should explain over 50% of their manifest variables’ variance [30]. Thus, manifest

variables with loadings less than 0.70 should be removed because their construct explains less

than 0.702 = 0.49� 50% of their variance. The manifest variables meat/LU, P/on-farm ha,

stocking density and economic and land self-sufficiency had loadings less than 0.70 for CSS.

For OSS, variables with loadings less than 0.70 were meat/LU, N/on-farm ha, P/on-farm ha,

stocking density and economic self-sufficiency.

Two things should be noted here. First, leaving the PLS-SEM model for OSS with just one

manifest variable (maize/forage ha) representing INTENS-F is at odds with conventional mea-

surement theory, according to which constructs should be typically represented by several
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Fig 2. Graphical summary of how the different elements of this study’s analysis integrate. LCA: life

cycle analysis; DEA: data envelopment analysis; PLS-SEM: partial least squares structural equation

modelling; INTENS-A: animal-level intensification; INTENS-F: farm-level intensification; SELF: self-

sufficiency; ECO: eco-efficiency.

doi:10.1371/journal.pone.0166445.g002
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(reflective) manifest variables (see [49], p.436). (This was not the case with ECO as its single

manifest variable was a comprehensive measure of multiple LCA impacts and outputs. Hence,

representing ECO by several manifest variables was unnecessary.) For that reason, N/on-farm

ha, which had a loading of 0.51, was not deleted from the OSS model. Keeping manifest vari-

ables with loadings less than 0.70- but at least 0.50- is usual when situations like the present

one require it (see [50], p.198). Second, the results indicated that land self-sufficiency should

be retained for OSS but deleted for CSS. Retaining it in OSS would render impossible any com-

parisons between the PLS-SEM models for CSS and OSS as the manifest variables must be

identical among models [51]. Therefore, it was removed from both models.

The final set of variables of the three exogenous constructs was, for both CSS and OSS,

milk/cow, concentrate/LU, N/ on-farm ha, maize/forage ha and energy and feed self-suffi-

ciency. The two models were then evaluated for internal consistency reliability, that is, mani-

fest variables in the same construct should be highly correlated since they measure the same

construct [30]. The criteria for internal consistency reliability used [52] were Cronbach’s alpha
and Dillon-Goldstein’s rho, which should be at least 0.70, and the eigenvalues of the correlation

matrix, where the first and second eigenvalues should be greater than and smaller than 1

respectively. Both models complied with these criteria, except for OSS with Cronbach’s alpha
equal to 0.65. This value was close to 0.70 and was considered acceptable, given the aforemen-

tioned issue with N/on-farm ha but also that the criteria for Dillon-Goldstein’s rho and the

eigenvalues were fulfilled.

The next step was to evaluate the two models in terms of convergent validity, that is, the

extent to which a construct converges in its manifest variables by explaining the items’ vari-

ance [42]. Convergent validity is assessed by the average variance extracted, which equals the

mean of the squared loadings for all manifest variables in a construct [42]. An average variance

extracted value of 0.50 or higher is acceptable as it indicates that on average, a construct

explains over 50% of the variance of its manifest variables [42]. Convergent validity was

achieved in both models.

The final step was to evaluate the two models’ discriminant validity, that is, the extent to

which a construct is truly distinct from other constructs in terms of how much it correlates

with them, as well as how much manifest variables represent only a single construct [30]. Dis-

criminant validity was not achieved for either model, because they failed to comply with the

HTMT criterion [46]. The HTMT criterion is an estimate of the correlations between two con-

structs so an absolute value over 0.85 can be interpreted as a violation of discriminant validity

[46,53]. All pairwise HTMT correlations between INTENS-A, INTENS-F and SELF had abso-

lute values over 0.85, with their bias-corrected confidence intervals (95%, 5000 samples with

replacement of farms within regions; see [30]) containing 1. The only exception was the corre-

lation between INTENS-A and INTENS-F for OSS, with a HTMT value of 0.72 and a bias-cor-

rected confidence interval of (0.55, 0.88). HTMT signs were positive for correlations between

INTENS-A and INTENS-F and negative between INTENS-A and SELF and between INTENS-F
and SELF.

The HTMT results provided strong evidence that INTENS-A, INTENS-F and SELF were not

truly distinct from each other in either model. This required a complete reconsideration of the

PLS-SEM model displayed in Fig 1.

Phase 2: re-considering the PLS-SEM model

The HTMT results suggested that the three exogenous latent variables INTENS-A, INTENS-F
and SELF measured ‘the same thing’. In fact, the negative HTMT correlations of SELF with

INTENS-A and INTENS-F suggested that SELF could be better suited as a measure of
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intensification; that is, the lower the self-sufficiency levels the higher the intensification levels.

Therefore, the PLS-SEM model displayed in Fig 1 was replaced by the PLS-SEM model in Fig

3, where the manifest variables for SELF were inverse-coded to reflect intensification, because

that way the higher the self-‘insufficiency’ levels the higher the intensification levels. (Inverse-

coding is standard practice in PLS-SEM when facing similar issues. It is done by multiplying

the manifest variables of interest by -1, see [30,41].) The new exogenous latent variable, com-

prising of INTENS-A, INTENS-F and inverse-coded SELF is denoted as INTENS-ALL. It should

be made clear though that by no means can this result be generalized to suggest that more

intensive farms are less self-sufficient. This result was rather specific to the available dataset

and is further discussed in the Discussion section. Therefore, a second PLS-SEM model was

considered, where the manifest variables for SELF were completely removed (Fig 4). In this

case, the new exogenous latent variable, comprising of INTENS-A and INTENS-F is denoted as

INTENS-AF. The two new PLS-SEM models were named accordingly, that is, PLS-SEM-ALL

(Fig 3) and PLS-SEM-AF (Fig 4). The mathematical equations representing these two models

are presented in S3 Appendix.

PLS-SEM-ALL and PLS-SEM-AF were run for CSS and OSS. The results for the new mea-

surement models for CSS and OSS are reported in Phase 3 below.

Phase 3: step-by-step evaluation of the new measurement models for

CSS and OSS

The final set of manifest variables kept in PLS-SEM-ALL for both CSS and OSS was milk/cow,

concentrate/LU, maize/forage ha, and energy and feed self-‘insufficiency’. For PLS-SEM-AF,

the final set of manifest variables was milk/cow, concentrate/LU and maize/forage ha for both

CSS and OSS. Skewness and kurtosis values for all aforementioned variables, as well as for

Fig 3. Partial Least Squares Structural Equation Model for eco-efficiency and intensification (including inverse-coded self-

sufficiency variables). LU: livestock unit; IC: inverse-coded; DEA: data envelopment analysis; INTENS-ALL: animal and farm-level

intensification, as well as inverse-coded self-sufficiency; ECO: eco-efficiency.

doi:10.1371/journal.pone.0166445.g003
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DEA eco-efficiency, were between -1 and +1 and thus complied with the requirement that

with PLS-SEM data can only slightly depart from normality (this minimizes the chances of

obtaining unreliable results, see [30]). The only exception was milk/cow for CSS with kurtosis

of -1.29, which was not ‘too far’ from -1 and was not considered a problem [30,54].

The final measurement models complied with all criteria for indicator reliability, internal

consistency reliability and convergent validity (S1, S2, S3 and S4 Tables). Bootstrapped confi-

dence intervals (95%, 5000 samples with replacement of farms within regions; see [30]) showed

that all the relationships between the manifest variables and their construct were significant

(S1, S2, S3 and S4 Tables).

Phase 4: evaluating the structural models for CSS and OSS

The first step of the structural model assessment was to determine the structural models’ pre-

dictive accuracy and relevance by means of R2, R2-adjusted and Stone-Geisser’s cross-validated

Q2 (blindfolding) [30].

The R2 is a measure of the proportion of the endogenous construct’s (ECO) variance that is

explained by the exogenous constructs (INTENS-ALL or INTENS-AF). For PLS-SEM-ALL

the R2 values were 0.13 (CSS) and 0.33 (OSS). The respective R2-adjusted values, that is, R2

adjusted for sample size to allow for comparisons between models, were 0.11 for CSS and 0.32

for OSS. For PLS-SEM-AF, the R2 (R2-adjusted) values were 0.09 (0.08) for CSS and 0.31 (0.30)

for OSS.

The Q2 is a measure of the structural models’ predictive relevance and values above 0 are

considered acceptable. For PLS-SEM-ALL Q2 ranged between 0.08 and 0.11 for CSS and

between 0.29 and 0.32 for OSS, indicating, respectively, small and large predictive relevance

for CSS and OSS. For PLS-SEM-AF Q2 ranged between 0.05 and 0.08 for CSS and between

0.27 and 0.29 for OSS, again indicating, respectively, small and large predictive relevance for

CSS and OSS.

The second and final step was to evaluate the strength and significance of the structural

models’ path coefficients. The results and their bootstrapped estimates (95%, 5000 samples

Fig 4. Partial Least Squares Structural Equation Model for eco-efficiency and intensification (self-sufficiency variables

removed). LU: livestock unit; DEA: data envelopment analysis; INTENS-AF: animal and farm-level intensification; ECO: eco-efficiency.

doi:10.1371/journal.pone.0166445.g004
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with replacement of farms within regions; see [30]) are presented in Table 2. The path coeffi-

cients INTENS-ALL! ECO and INTENS-AF! ECOwere significant and negative for both

CSS and OSS. By means of a permutation test (5000 repetitions) [55], significant differences at

p< 0.05 were found between the path coefficients of CSS and OSS for both PLS-SEM-ALL

(p = 0.036) and PLS-SEM-AF (p = 0.024) (Table 2).

Discussion

This paper studied the relationship between dairy farm eco-efficiency, self-sufficiency, and

farm and animal-level intensification so as to quantify the extent to which agricultural man-

agement practices linked to animal production and land use affect output and environmental

outcomes at a larger scale. Importantly, this paper accounted for spatial heterogeneity in

dairy farms, an increasingly recognized potentially differentiating factor of dairy farm per-

formance [10,18,56–59]. From a policy perspective, this study provides information for the

identification of dairy farming systems that can help mitigate dairy farm impacts while

ensuring food security.

Eco-efficiency, intensification and self-sufficiency: relationships,

overlaps and recommendations

As noted earlier, a possible confusion could arise from the HTMT results in that they suggested

that the higher the (animal and farm-level) intensification, the lower the self-sufficiency. This

finding resulted from the available dataset, but it is not always the case. Counterexamples

include (i) the ‘average’ New Zealand dairy farm that is intensive per ha on-farm land, however

imports less than 10% of total feed offered [5]; and (ii) intensive grazing systems in Belgium

with high milk yields per cow and ha [22]. Both cases suggest a synergy between intensification

and self-sufficiency, contrary to what was found in this study.

Nevertheless, in the case of this study’s 185 French specialized dairy farms, the negative

relationship between intensification and self-sufficiency indicated by the HTMT results is

fairly intuitive. Indeed, half the country’s milk production comes from more intensive systems

making heavy use of maize silage (especially in the West), which requires supplementation

with protein-rich complements, mainly soybean meal imported from Brazil [26,27,60], conse-

quently reducing the farms’ self-sufficiency levels.

The heavy use of maize silage also has implications for the farms’ environmental perfor-

mance. We confirmed earlier studies [5,10,20] arguing that heavy reliance on maize silage

and/or concentrates can reduce dairy farm environmental performance. This is because

Table 2. Path coefficients and their bootstrapped confidence intervals, standard errors, t-values and p-values for the final structural models for

CSS and OSS.

Path Path coefficient (95% CI) SE t-value p-value

INTENS-ALL! ECO (CSS) -0.36a (-0.55, -0.21) 0.124 -2.860 0.001

INTENS-ALL! ECO (OSS) -0.57b (-0.67, -0.47) 0.074 -7.770 < 0.001

INTENS-AF! ECO (CSS) -0.31a (-0.51, -0.15) 0.126 -2.416 0.019

INTENS-AF! ECO (OSS) -0.55b (-0.65, -0.45) 0.075 -7.369 < 0.001

INTENS-ALL: exogenous construct in model PLS-SEM-ALL, consisting of manifest variables for animal and farm-level intensification, and inverse-coded

self-sufficiency; INTENS-AF: exogenous construct in model PLS-SEM-AF, consisting of manifest variables for animal and farm-level intensification; ECO:

eco-efficiency, endogenous construct in both PLS-SEM-ALL and PLS-SEM-AF; CSS: continental specialized systems; OSS: oceanic specialized systems;

CI: confidence interval; SE: standard error. Values within a column with different superscripts differ significantly at p < 0.05. Note that superscripts are not

comparable between PLS-SEM-ALL and PLS-SEM-AF.

doi:10.1371/journal.pone.0166445.t002
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importing soybean meal to complement maize silage-based diets of more intensive systems

implies major environmental impacts at the point of production from the expansion of soy

area and forest clearing [26,61]. Note that these impacts were fully accounted for in the LCA

indicators used to derive the eco-efficiency scores thus revealing the true implications of on-

farm management decisions for the environment.

The results also confirmed that although increasing milk yield per cow can improve envi-

ronmental performance at the cow-level [8,9], this does not necessarily hold at whole farm-
level [62,63]. The role of DEA enhanced the validity of this finding because the method does

not express each impact per some functional unit (e.g. unit of milk or land), choice of which

may lead to radically different conclusions [64]; DEA rather aggregates farm impacts and out-

puts altogether, providing a single eco-efficiency measure for the whole farm. It is noteworthy,

however, that two recent DEA studies found that intensification at cow-level actually resulted

in better environmental performance at farm-level, regardless of feed self-sufficiency levels

as reflected by two different feeding practices (lower versus higher reliance on imported con-

centrates) [13,19]. These findings demonstrate the potential for intensive farms to improve

environmental performance [9], perhaps by adoption of highly self-sufficient management

practices, in line with of agro-ecological concepts.

The concept of agro-ecology considers agro-ecosystems as a whole in terms of several

aspects (biological, technical, economic, etc.) and aims at eliminating the disconnectedness of

livestock farming from the land [23]. More self-sufficient systems are more in line with agro-

ecology because they can better regulate biogeochemical cycles and environmental fluxes to

the atmosphere and hydrosphere through interactions among different farm units in space

and time [23]. When stocking densities are kept at lower levels, adequate cropland on-farm

offers a high potential for the recycling of manure-related nutrients [65]. By coupling agro-

ecological concepts with other practices that reduce reliance on external nutrient sources (e.g.

by improving the efficiency of nutrient utilization by the animals; [23]), self-sufficiency then

has the potential for high environmental performance without necessarily lowering a farm’s

intensification level [5,22] or, in some cases, by just moderately reducing productivity/ha (see

RAD, 2010 in [23]). Given that in our sample more grass-based farms exhibited higher eco-

efficiency than more maize silage-based farms (see [10]), intensive yet self-sufficient farms

with higher reliance on grass than maize silage may then be preferable because (i) land in

France is relatively cheap [66]; (ii) farms could benefit from agri-environment schemes aimed

at maintaining grasslands, for example France’s ‘prime à l’herbe’ grassland support scheme

[2].

In summary, contrasting results between studies leave less room for a definitive answer as

to whether or not intensification is beneficial for the environment; it depends on particular

farming systems and circumstances. However, increasing self-sufficiency could offer a way

to improve the eco-efficiency of intensive dairy farms, in line with ago-ecological concepts

and the consensus that food production should be increased with the least possible environ-

mental impacts [67,68]. In any case, PLS-SEM is very advantageous for exploring relation-

ships between potentially overlapping elements, especially when these relationships are

theory-skeletal, which is the case with eco-efficiency, intensification and self-sufficiency.

Finally, feeding PLS-SEM with data derived by LCA and DEA enhanced the credibility of the

findings.

The pros and cons of PLS-SEM to study farm sustainability

A wealth of methods has been employed to aggregate different farm sustainability and/or

efficiency indicators and/or to explore the relationships between them. Methods include
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bivariate and multivariate statistics, linear programming, DEA, LCA, simulation, and moni-

toring tools [4,8,9,16,18,69–73]. In this study, PLS-SEM was deemed as the appropriate

exploratory tool for two main reasons. First, PLS-SEM allows for the aggregation of manifest

variables into latent variables, as opposed to simply feeding the manifest variables altogether

into, for example, a regression [9] or principal component analysis [8] model. Second, with

PLS-SEM it is possible to simultaneously explore the relationships between more than two

latent variables at a time, contrary to bivariate statistics that can only handle pairs of vari-

ables. Actually, the first and second aforementioned advantages derive from the fact that

PLS-SEM can analyse the whole model as a unit, rather than dividing it into pieces (adopted

from [54]).

PLS-SEM combined with LCA and DEA has potential as a guiding tool for the identifica-

tion of more sustainable dairy farming practices and the formation of environmental regula-

tions. Recent studies argue that environmental externalities are unlikely to decrease solely as a

result of market-based instruments and the free market-oriented CAP reforms, hence some

policy intervention is necessary [7,74]. Consider, for example, dairy farms in West France.

These farms are generally highly industrialized and competitive and have demonstrated a

greater ability to respond to CAP’s shift from milk support prices to direct payments and

towards trade liberalization than farms in other areas [60]. Yet, this study demonstrated that

such farms might perform poorly in terms of environmental performance when considering

market and non-market goods, as well as local and ‘imported’ impacts and spatial heterogene-

ity (recall results in Table 2). Hence, our holistic, ‘global’ framework could help guide the for-

mation of local environmental regulations that typically ignore ‘imported’ impacts of farming,

potentially resulting in self-sufficient farms experiencing greater enforcement as they tend to

generate higher local impacts than less self-sufficient farms.

On the downside, a widely recognized problem with the assessment of PLS-SEM is that,

unlike other SEM models, it does not have a standard goodness-of-fit statistic [75]. For

instance, there is no universal agreement as to which value of R2 is considered acceptable and

in some cases a value as low as 0.10 is satisfactory [42]. A general guideline is to interpret R2 in

the context of the study at hand by considering R2 values from related studies [42]. This was

impossible to do in this study for the following reason. From the six applications of SEM to

dairy farming identified in the literature [47,76–80], only Gyau et al. [47] employed PLS-SEM

as the preferred SEM method and the objective of their study had no relevance to that of the

current study. Consequently, it was hard to draw any conclusions on the structural model’s

performance based on the R2 values obtained in this study. It should be admitted though that

the R2 values for CSS were probably too low and a future step would be to develop a better

PLS-SEM model for CSS with more data. At least, the positive Q2 values indicated the predic-

tive relevance of the structural models, especially for OSS where the values were ‘well above

zero’ ([42], p.111). It is noteworthy that in other studies R2 and Q2 values as low as for CSS

were considered acceptable (e.g. [43]). Other indices to judge the overall model fit in PLS-SEM

models have been suggested, such as the global and relative goodness-of-fit indices (see [75]).

However, these indices have proven unsuitable for model validation [75] and were not used

here.

In summary, the advantages of PLS-SEM as an exploratory tool to study farm sustainability

lie on the fact that it can analyse the whole model as a unit, rather than dividing it into pieces.

When the PLS-SEM analysis is enriched by holistic LCA and DEA data, the method has poten-

tial as a guiding tool for the identification of more sustainable dairy farming practices and the

formation of environmental regulations. A disadvantage of PLS-SEM is that it has no standard

goodness-of-fit statistic and so its performance can only be assessed with general guidelines

and by comparisons with other studies.
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Conclusions

The findings of the current study suggested that whether intensive dairy farming is ‘good’ or

‘bad’ for the environment depends on particular farming systems and circumstances. In this

study, on-farm management practices such as increased reliance on maize silage and bought-

in concentrates reduced eco-efficiency when the latter was assessed at a ‘global’ level with the

LCA-based DEA eco-efficiency scores. The same was true for the effect of increasing milk

yield/cow on eco-efficiency because other products (meat and crops) and their associated

impacts were also accounted for in the aggregate DEA eco-efficiency scores. However, these

results might not necessarily hold for intensive farms with higher self-sufficiency levels and

thus better ability to recycle elements on-farm. Intensive yet self-sufficient farms with higher

reliance on grass than maize silage may be preferable in cases where they may benefit from

relatively low land prices and agri-environment schemes aimed at maintaining grasslands.

Finally, our holistic, ‘global’ framework proved to be a valuable tool for quantifying the extent

to which agricultural management practices linked to animal production and land use affect

output and environmental outcomes, and could help guide the formation of local environmen-

tal regulations that typically ignore ‘imported’ impacts of farming.
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28. Lohmöller J-B. Latent variable path modeling with partial least squares. Heidelberg: Physica-Verlag;

1989.

29. Wold H. Path models with latent variables: the NIPALS approach. In: Blalock HM, Aganbegian A, Bor-

odkin FM, Boudon R, Capecchi V, editors. New York: Academic; 1975.

30. Hair JF, Hult GT, Ringle CM, Sarstedt M. A primer on partial least squares structural equation modelling

(PLS-SEM). SAGE Publications Inc; 2014.

31. Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, et al. Agroecology: a review from a

Global-Change perspective. Annu Rev Env Resour. 2011; 36: 193–222.

32. de Boer IJM. Environmental impact assessment of conventional and organic milk production. Livest

Prod Sci. 2003. 80: 69–77.

33. Farrell MJ. The measurement of productive efficiency. J Roy Stat Soc A. 1957; 120: 253–290.

34. Cooper WW, Seiford LM, Tone K. Data envelopment analysis: a comprehensive text with models,

applications, references and DEA-Solver software. 2nd ed. Springer Science+Business Media, LLC;

2007.

35. Cooper WW. Origins, Uses of, and relations between goal programming and data envelopment analy-

sis. Journal of Multi-Criteria Decision Analysis 2005; 13: 3–11.

36. Cooper WW, Park KS, Pastor JT. RAM: a range adjusted measure of inefficiency for use with additive

models, and relations to other models and measures in DEA. J Prod Anal. 1999; 11: 5–42.

37. Kuosmanen T, Kortelainen M. Measuring eco-efficiency of production with data envelopment analysis.

Journal of Industrial Ecology 2005; 9: 59–72.

38. Gac A, Manneville V, Raison C, Charroin T, Ferrand M. L’empreinte carbone des élevages d’herbi-
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