
RESEARCH ARTICLE

Seasonal Cyclicity in Trace Elements and

Stable Isotopes of Modern Horse Enamel

Niels J. de Winter*, Christophe Snoeck, Philippe Claeys

Department of Analytical-, Environmental-, and Geochemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050,

Brussels, Belgium

* nidewint@vub.ac.be

Abstract

The study of stable isotopes in fossil bioapatite has yielded useful results and has shown

that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parame-

ters from archeological to geological timescales. In an effort to establish new proxies for the

study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a

modern horse are compared with trace element profiles measured using laboratory micro X-

Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship

between stable oxygen isotopes and local temperature seasonality, an age model is con-

structed that links records from six cheek upper right teeth from the second premolar to

the third molar. When plotted on this age model, the trace element ratios from horse tooth

enamel show a seasonal pattern with a small shift in phase compared to stable oxygen iso-

tope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respec-

tively by the state of the hydrological cycle and the animal’s diet, we argue that the seasonal

signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The

latter explanation is in agreement with seasonal changes observed in carbon isotopes of the

same teeth. This external forcing of trace element composition in mammal tooth enamel

implies that trace element ratios may be used as proxies for seasonal changes in paleo-

environment and paleo-diet.

1. Introduction

Records from fossil tooth bioapatite have often been used to reconstruct paleo-diet and paleo-

environment (e.g. [1] [2] [3]; [4] [5] [6]). Because of the resistance of enamel bioapatite to geo-

chemical alterations after burial, stable oxygen and carbon isotope ratios in this biomineral are

featured in various studies (e.g. [7] [8] [9] [10]). Mammal tooth enamel has proven to be an

ideal recorder of paleo-seasonality thanks to this high resistance to diagenesis and its incre-

mental growth, allowing the recovery of high temporal resolution records ([11[12] [13]). In

addition, geochemical proxy records of teeth from humans and other mammals have been

used in a range of archaeological studies to answer questions about past diet, cooking practice,

mobility and environmental change ([2] [14] [15] [16] [17] [18]). An added advantage of using

mammal teeth for sub-annual environmental reconstructions is the possibility of combining
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multiple teeth of the same individual to create a composite time series. This combination

allows the construction of longer continuous records of seasonal variations in paleo-environ-

ments during the years in which the teeth mineralized ([2] [19] [20]). In this study, a tooth

row from a modern horse is used as environmental recorder to investigate the robustness of

new paleo-seasonality proxies in tooth enamel that can be applied to fossil samples. More spe-

cifically, conventional stable isotope analysis is combined with μXRF analysis on the same

samples to study the changes in trace element concentrations in horse enamel over seasonal

time scales. The use of trace element concentrations in tooth enamel as proxies for paleo-envi-

ronmental and paleo-dietary conditions of the animal during tooth formation is evaluated.

The practice of paleo-seasonality reconstruction based on the analysis of stable carbon and

oxygen isotopes is established in various common domestic mammal taxa (e.g. cattle: [21], pig:

[20], sheep: [11] [22] and horse: [13] [23]. However, the use of trace element analysis for this

same purpose remains largely unexplored. While combining trace element records and stable

isotope profiles is common practice in paleo-seasonality reconstructions from other, often

invertebrate, paleo-seasonality archives, such as bivalves and corals (e.g. [24] [25] [26] [27] and

references therein), the use of such a multiproxy approach in the study of enamel records

remains rare ([10] [28]). Various new methods of fast, high-resolution and non-destructive

elemental analyses are now widely available (e.g. [29] [30] [31]), enabling the measurement of

trace elements in fossil material without altering the samples. The application of trace element

proxies for paleo-environmental reconstructions from tooth enamel using these new methods

opens up a whole range of opportunities to reconstruct paleo-seasonality, most noteworthy in

terrestrial ecosystems where data for seasonality reconstruction is sparse. In order to investi-

gate the use of trace element analyses as a proxy for paleo-seasonality, results of trace element

concentrations analyzed using a novel laboratory micro X-Ray Fluorescence (μXRF) scanning

method are combined with conventional stable isotope analysis on the carbonate fraction of

horse enamel in an effort to study the expression of seasonality in trace elements. In addition,

this study reports the first use of the μXRF line scanning method for non-destructive, high-res-

olution measurements of trace element abundances in mammal teeth and discusses the reli-

ability of this method for quantitative trace element analysis in bioapatite.

2. Background

2.1 Modern horse dentition

Modern horses (Equus caballus) have a hypsodont dentition ([32][33]) causing them to grow

high-crowned cheek teeth. Horse molars and premolars grow to about 8–9 cm length and

their relatively fast growth rate of 3–4 cm/yr ([34]) allows the construction of multi-year geo-

chemical records with a high (monthly) temporal resolution. The evolution of equids is well-

studied, and modern horses form the extant species in a long lineage of fossil equid ancestors

([35] [36]). The nearest living relative principle justifies the use of modern horse as an ana-

logue for its ancestors and allows the extrapolation of proxy relationships established on mod-

ern horses for the interpretation of fossil equid tooth records (e.g. [37] [38] [39]). This makes

horses an interesting modern analogue taxon potentially enabling terrestrial paleo-climate

reconstruction from the Early Eocene up to modern times ([13] [37] [38] [40] [41]).

The eruption and mineralization sequence of modern horses varies between races, but the

timing of mineralization of horse cheek teeth is known within a 1 to 3 months range ([34]).

This knowledge allows construction of a composite time series from multiple individual teeth.

The eruption sequence of modern horses is described in [42] and [43] and the mineralization

scheme was more recently studied by [34]. The first molar (M1), the first permanent tooth

to be formed, erupts around month 11. It is followed by M2 around month 23, the second
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premolar (P2) appears around month 30 and P3 around month 34. Finally, P4 (eruption

around month 46) and M3 (erupting around month 48) mineralize almost simultaneously.

Mineralization of enamel is known to continue after eruption and after the maximum length

of the tooth is reached, especially in molars ([34]). The total sequence of teeth covers a time-

span of over 4 years ([34] [38]).

2.2 Bioapatite in mammal tooth enamel

Mammal tooth enamel is composed of an inorganic mineral fraction of crystalline bioapatite,

with organic matter and water. The chemistry of the bioapatite is well studied and its composi-

tion can be approximated by the chemical formula: (Ca, Na, Mg, Ba, Fe, Sr, Zn, []) 10(PO4,

HPO4, CO3)6(OH, F, Cl, CO3, O, H2O, []) 2 ([44] [45] [46] [47]) where [] represent potential

vacancies in the crystalline structure. This formula shows that there are three phases in the bioa-

patite structure: cations (mostly Ca), phosphate, and the so-called channel-filling ions (e.g. OH).

In enamel bioapatite, phosphate and the channel-filling ions are partly replaced by carbonate

(CO3) ([45] [46] [48]). A range of trace element cations can substitute for Ca in the bioapatite

structure, while anions like F- and Cl- are present in traces in the channels between the calcium

and phosphate groups, replacing the hydroxyl-groups. Besides these groups, there is also room

in the hydration layers between bioapatite crystals in enamel where water, organic matter and

carbonates can be found ([49]). The presence of carbonates and organic matter in and between

the bioapatite crystals causes defects in the hexagonal structure of bioapatite, which makes the

more substituted bioapatites (such as bone and tooth dentine) prone to degradation and less sta-

ble in the archeological and fossil record compared to enamel bioapatite ([49] [50]).

2.3 Isotopes in bioapatite

Oxygen isotope ratios in the carbonate fraction of tooth bioapatite (δ18Oc) are shown to be

related to the oxygen isotope composition of the animal’s body fluid, which in large mammals

is approximately 2–3‰ more enriched than the isotope composition of ingested water ([19]

[22] [51] [52] [53] [54] [55]), which is driven by local precipitation and evaporation ([51]

[56]). In coastal Northern Europe, the oxygen isotope composition of surface water is 18O-

depleted (δ18O� -10 ‰) in winter and enriched in 18O (δ18O� -6 ‰) in summer ([57] [58]

[59]; Kevin De Bondt (VUB), personal communication). This seasonal signal is reflected in

δ18Oc of horse tooth enamel and enables the reconstruction of paleo-seasonality. For juvenile

mammals, the δ18Oc values of teeth mineralized during the weaning period can be higher,

because the water ingested through milk is enriched in 18O with respect to the drinking water

of the mother ([54] [60]). In case of modern feral horses and zebras, which wean their young

within the first 8–9 months after birth ([61]), the only permanent teeth mineralizing during

the weaning period are the first molars ([34] [54]). As a consequence of weaning, only a part of

the first molar of horses that mineralizes during weaning may show elevated δ18Oc values.

Carbon isotope composition (δ13Cap) in mammal teeth are related to the diet of the animal

([62] [63]). They have yielded good results in studies of long-term variation in floral ecosys-

tems, such as changes between dominance of C3 and C4 vegetation in diet ([8] [64] [65] [66]).

In studies of (intra-tooth) bioapatite, measurements of carbon isotope compositions yield

valuable insights into seasonal changes in paleo-diet and migration patterns ([3] [67] [68]). In

case of domesticated animals, where no migration takes place, δ13Cap variations indicate

changes in (paleo-)diet ([62] [69]).

In seasonally migrating taxa, seasonal stable carbon and oxygen isotope profiles from tooth

enamel are expected to be in phase as migration changes the provenance and type of diet as

well as the local environment of the animal, affecting both stable isotope proxies synchronously
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([37] [70]). However, as shown by earlier studies, in domestic taxa these proxies need not be in

phase since a seasonal change in diet can lag or lead the environmental seasonality ([2] [20]

[71])

2.4 Trace elements in bioapatite

While stable isotope values in bioapatite carbonate have been used for paleo-environmental and

paleo-dietary reconstruction, the meaning of trace element concentrations in bioapatite records

remains poorly understood ([72] [73]). There is a significant body of work focusing on the post

burial incorporation of these elements (e.g. [74] [75] [76]). The incorporation of trace elements

in bone and teeth through diagenesis is so prominent that trace element signatures in fossil

bone have been proposed as a proxy for fossil provenance ([9] [77] [78] [79] [80] [81]). Though

some elements seem to be taken up post mortem by diagenetic processes, calculations of diffu-

sivities show that this pathway does not fully explain trace element abundances found in fossil

bioapatite and that a significant portion of the trace element concentration taken up in vivo is

retained in fossil bioapatite ([81]). The mechanisms by which trace elements are included in

bone and teeth are not well understood and are likely to vary per element ([82] [83]). It has been

proposed that trace element concentrations in mammal bioapatite reflect the diet and trophic

level of the individual ([9] [74] [84] [85] [86] [87]). Uptake of trace elements through drinking

water is regarded to be too low to explain the concentrations found normally in teeth, and it is

instead suggested that, in addition to diet, ingested soil and dust accounts for the trace elements

incorporated into mammal bone and teeth ([83]). If trace elements found in bioapatite are

ingested through food or dust, changes in trace element concentrations are expected to occur

through seasonal migration patterns, changes in diet or variation in the availability of dust.

2.5 Seasonality in environmental trace elements

Both the amount of airborne dust (airborne particles with a diameter>4 nm and <100 μm,

[88]) and its trace element composition vary seasonally (e.g. [89] [90] [91]). These changes

could affect trace element abundances in the body of mammals either through direct soil and

dust ingestion ([83]) or indirectly through ingestion of drinking water or plants that take up

these trace elements from precipitated dust. A peak in the amount of dust deposition in North-

ern Europe in summer is strongly correlated with peaks in the deposition of trace elements

such as Sr ([91]), suggesting that airborne dust is an important source of these trace elements

in this area. Combined with large rainfall events in Belgium being concentrated in summer

([92] [93]), a significant increase in the deposition of trace element enriched dust particles

occurs in the summer months.

Resulting changes in trace element concentrations in local ground and surface water could

influence both the trace element concentrations in drinking water and that of ingested food,

especially if the food is grown locally from the same water source used for drinking water.

Changes in trace element concentrations in coastal ground water show a seasonal pattern, but

besides dust precipitation they are also related to changes in water influx, groundwater level,

redox state, pollution and exchange with ocean water ([94] [95]; [96]). Trace element concen-

trations in surface and ground water, like those of dust particles, are shown to peak in summer

([94]).

The seasonal pattern of these sources of trace elements points towards higher trace element

concentrations in the environment of the horse during the summer period ([94]). This season-

ality signal can be incorporated into the body fluid of mammals by ingestion either through

food or water and incorporated in the teeth. In this case, trace elements are incorporated in

larger concentration into dentine and deeper enamel layers through the pulp cavity, causing
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trace element concentrations to increase with enamel depth ([97]). Trace elements can also be

incorporated into the enamel from the outside of the tooth. This post-eruption incorporation

would cause a profile of decreasing trace element concentrations with depth ([98] [99] [100]).

Both mechanisms are in agreement with depth profiles of several trace elements (e.g. Zn, U

and Sr) found by [81] and [83] in modern teeth of domesticated cattle and wild mammal taxa.

It is shown that trace element concentration and isotope ratios are more stable in enamel than

in dentine, as part of the dentine (secondary dentine) is continuously deposited after initial

deposition [101]. Records of seasonal changes in trace element availability preserved in tooth

enamel, either during mineralization or post-eruption, therefore constitute promising proxies

for seasonal variations in diet or in environmental parameters such as dust availability during

tooth formation.

3. Materials and Methods

3.1 Studied specimen

The teeth used in this study are from a single adult male Belgian draft horse (race: Braba-
nçon) kept in the region of Eastern Flanders, Belgium, born in May 2008 and deceased in

August 2014. The horse lived outdoors on a cool-season grass pasture (C3) situated on the

Eocene sand deposits of northern Belgium, allowing it to graze year-round. The fraction of

fruit-bearing trees or C4 vegetation in the part of the diet ingested by grazing was negligible.

Draft horses have an efficient metabolism compared to other races and are usually sustained

on a diet consisting almost exclusively on foraged raw food ([102]). Due to their vulnerabil-

ity to obesity, the proportion of diet consisting of molasses-containing food supplements

and starch-rich maize is usually avoided or strongly limited in draft horses (<10% of diet, or

~0.2% of the animal’s weight per day in winter, Prof. Paul Simoens, personal communica-

tion; [102]). It can however not be excluded that, besides abundant amounts of hay, the

horse’s diet was supplemented with small amounts of concentrated food pellets (oats and

barley (C3) with added vitamins and minerals usually mixed with molasses from local

sugar beet refineries; [103]) and possibly small amounts of maize (C4) in the winter season

(December, January and February), when fresh grass is less available (Prof. Geert Janssens

and Prof. Richard Ducatelle, personal communication).

Drinking water was supplied from local meteoric water and was subject to quality checks of

the Flanders Institute for Animal Health (DGZ) as summarized in S7 File. These quality guide-

lines restrict the maximum concentration of common trace elements to the mg/L level (up to

tens of ppm by weight). The animal had been euthanized at Ghent veterinary science depart-

ment for reasons unrelated to this study. The owner of the animal has given his personal con-

sent for the use of its remains for research and permission for the use of the material was given

by Prof. Paul Simoens of UGent’s veterinary science department.

The full upper right row of cheek teeth was removed from the animal and cleaned using

cold water maceration ([104]) for 72 hours at 35˚C in a SW22 shake bath (Julabo GmbH). The

outer surface of cheek teeth was cleaned with milliQ water, abraded superficially with a dia-

mond-coated polishing disk, and left to dry in an oven at 50˚C. Cleaning by abrasion was done

to rid the surface of the teeth of any varnish or other superficial contamination that was visible

and not to produce a smooth surface. The thickness of enamel removed by this process was

not visible with the naked eye (< 0.1 mm).

3.2 μXRF measurements

μXRF line scans were executed on the cleaned and abraded mesial enamel surface of all

cheek teeth (P2-4 and M1-3). Measurements from the uppermost part of the crown and
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lowermost part of the enamel, which showed discoloration that was not removed by afore-

mentioned superficial cleaning, were excluded. All line scans were done on a Bruker M4

Tornado μXRF scanner (Bruker, Germany) using a Rh source tube at 50 kV and 600 μA. All

XRF analyses were carried out at the XRF lab of the Vrije Universiteit Brussels (VUB, Brus-

sels, Belgium). The X-Ray beam was focused with a polycapillary lens and fluorescence

X-Ray spectra were recorded using a Si drift detector. A continuous line of individual points

of 25 μm diameter with an integration time of 10 seconds per point were combined into line

scans of up to 90 mm. The line-scan method thus produced a straight line of circular points

with a diameter of 25 μm. Total measurement time was approximately 10 hours per tooth.

During the measurements, teeth were kept horizontal in a container filled with 3 mm glass

beads (Carl Roth GmbH). For some teeth, line-scans had to be composed of several line seg-

ments to accommodate irregular or sloping tooth surfaces. This way, samples need not be

completely flat to allow for reliable measurements, as the X-ray beam could be refocused

between line segments. The attenuation length of X-Ray photons (penetration depth after

which X-ray intensity drops to 1/e times the original intensity) into bioapatite can be calcu-

lated by the Beer-Lambert Law ([105]). It varies with the X-ray photon energy and is there-

fore different for each element. The attenuation lengths of elements measured in this study

range from 10 μm (Mg) to 600 μm (Sr). An overview of the attenuation lengths of X-rays of

the different energies associated with analyzed elements into bioapatite is given in S9 File.

Point spectra were deconvoluted and quantified using Bruker Esprit software and the errors

of deconvolution introduced in the conversion of spectra of XRF counts to trace element

concentrations (hereafter: deconvolution errors) were calculated using Bruker’s ARTAX

spectral analysis software ([31]). All measured concentrations that were below a detection

limit of three standard deviations of deconvolution were rejected. Correction factors needed

to compensate for matrix effects in the X-Ray Fluorescence functional parameters quantifi-

cation algorithm were determined for all elements using one-point calibration with the

ISO certified BAS-CCB01 bioapatite standard (Bureau of Analysed Samples Ltd., Middles-

brough, UK, for certified values please see S8 File). All elemental concentrations were recal-

culated from mass to molar percentage and trace element concentrations were divided by

the concentration of calcium and given in mmol/mol. Individual μXRF point measurements

were checked based on P/Ca ratio. All points with a P/Ca ratio deviating more than one

standard deviation from the mean P/Ca value were rejected. The Si concentration was

higher on the edges of the teeth where Si was measured in the glass beads supporting the

teeth during the measurement, driving the average of all Si measurement to an (for bioapa-

tite samples) unreasonable value of 4%. Close observation of the data showed that the transi-

tion of measurements from the glass beads to the sample was sharp and took place in about

15 measurements (375 μm). A conservative threshold value of 5% was chosen to reject mea-

surements that were contaminated by the glass beads while avoiding the removal of bioapa-

tite measurements. Measurements with Si concentrations higher than 5% were rejected.

Repeated point measurements (N = 30) on the BAS-CCB01 cremated bone bioapatite stan-

dard were used to calculate repeatability standard deviations (hereafter: measurement

errors) of μXRF measurements. The BAS-CCB01 standard is chosen for having same matrix

as the samples that were measured (bioapatite), allowing the error of matrix effects in the

XRF measurements to be included in the reproducibility testing.

3.3 Isotope ratio mass spectrometry

Samples for stable isotope analysis were drilled on the same mesial side of the teeth as used

for μXRF analyses, using a dental drill with a diamond coated drill bit. About 40 mg of enamel
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powder was collected from lines with an average width of 0.8 mm and length of 20 mm drilled

perpendicular to the growth axis of the tooth. Care was taken to exclusively sample the enamel

layer as the dentine has a larger organic matter content and may therefore have a different iso-

tope signature ([106] [107]).

Samples for stable isotope analysis were subject to a conservative pretreatment in order to

facilitate comparison of stable isotope results with those of archaeological and palaeontological

studies, where pretreatment is necessary. Approximately 11 mg of sample were pre-weighed

for pretreatment and subsequently treated with a 1 M calcium acetate-buffered acetic acid

(CH3COOH) solution in excess for 30 minutes ([108]). After treatment, samples were rinsed

three times with milliQ water and dried overnight at 50˚C. Dried pretreated samples were

weighed to determine weight loss during the pretreatment procedure. Compared to conven-

tional pretreatment procedures (e.g. [109]), acid treatment time was shortened and no agent

for organic matter removal was used. This decision was made based on results from multiple

studies showing that care should be taken in applying conventional pretreatment methods

(especially using long reaction times) and that the use of oxidizing agents for the removal of

organic matter in enamel is likely to be superfluous and might introduce error in stable isotope

measurements ([108] [110] [111] [112]).

On average 1.4 mg of pretreated sample was weighed for stable carbon and oxygen isotope

(δ13Cap and δ18Oc) measurements of the carbonate fraction on a Nu Perspective Isotope Ratio

Mass Spectrometer (IRMS) with a NuCarb carbonate preparation device in the stable isotope

lab of the Vrije Universiteit Brussel (VUB, Brussels, Belgium). Samples of ±1 mg of bioapatite

were reacted for 10 minutes with phosphoric acid (H3PO4.H2O) at 70˚C and produced CO2

was led into the mass spectrometer using a dual inlet device. Mass spectrometry results were

corrected for variations in the amount of produced CO2 and instrumental drift and then cor-

rected using a three point calibration with the in-house MAR2 carbonate standard (δ13C:

3.41‰ ± 0.10‰; δ18O: 0.13‰ ± 0.20‰, calibrated using the NBS-19 standard; [113]), the in-

house Enf enamel standard (δ13C: -9.83‰ ± 0.08‰; δ18O: -5.41‰ ± 0.30‰) and the in-house

CBA calcine bone standard (δ13C: -14.77‰ ± 0.18‰; δ18O: -9.97‰ ± 0.21‰). The Enf and

CBA standards were calibrated using NBS18, NBS19 and IA-R022 Calcium Carbonate (Iso-

Analytical Ltd, Crewe, UK; δ13C: -28.63‰ ± 0.09‰; δ18O: -22.69‰ ± 0.11‰). Repeatability of

independent MAR2 measurements (N = 68) yielded a standard deviation of reproducibility of

0.07‰ and 0.08‰ for δ13Cap and δ18Oc, respectively. All isotopic values are reported relative

to Vienna Pee Dee Belemnite (VPDB). Carbonate content was calculated from sample weight

and CO2 pressure, using a linear relationship observed between CO2 pressure in the dual inlet

and weight of pure carbonate (MAR2) samples. All samples with insufficient CO2 production

for a reliable stable isotope measurement were rejected. The standard deviation of reproduc-

ibility of CO3 content measurements was 0.50% for the ENF standard (N = 29) and 0.12% for

the CBA standard (N = 30). Stable isotope records were compared to monthly mean tempera-

ture data measured in Vlissingen (Netherlands), obtained from the open database of the Royal

Netherlands Meteorological Institute (KNMI, Netherlands).

4. Results

4.1 μXRF line scanning

Table 1 shows that the deconvolution errors (referred to as machine errors) are lower than the

measurement errors calculated from repeated measurements on the BAS-CCB01 standard

(measurement errors). These repeated measurements show that only Na, Mg and Ni have stan-

dard deviations above half their mean value. Therefore, the values obtained for these elements

are not statistically significant (statistically separable from zero) within a 95% confidence level
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of two standard deviations of measurement error. Correction factors determined using the

BAS-CCB01 standard show large variations between elements. Relatively low measurement

errors show that the method yields reproducible results for elements heavier than Mg with

concentrations above 1 ppm. Accuracy for these elements was <5% (for CRM01 certified val-

ues see S8 File).

Fig 1 shows average values and ranges of elemental abundances measured on the bioapatite

after excluding points with deviating Ca/P ratio and high Si concentrations (see above). Major

elements are present in a Ca:P:O molar ratio of 10: 4: 20. The most abundant trace elements

are cations (e.g. Mg, Rb, Sr, K, Al), while Cl and S are also present in relatively high abundance.

Concentrations of trace elements Zn, Sr and Ba are ~300 ppm, ~100 ppm and ~30 ppm respec-

tively. Relatively high concentrations are found for the so-called “bone-seeking elements” Zn,

Sr, Ba and Pb as well as other common trace elements, such as Na, Mg, Cl and K. Concentra-

tions of Si, Mn and Al are 0.3%, 200 ppm and 0.07% respectively.

Lighter elements show more variation and have higher measurement errors than elements

heavier than Al (Fig 1). Values for Ti and Ni show a very large range, and a large portion of the

values for these elements are below 1 ppm. A large part of the Ni, Ti and Cr concentrations is

below the measurement error, and is not statistically significant. Therefore, even though mean

values of these elements are above the confidence level of two standard deviations of measure-

ment error, most results of Ni, Ti and Cr were not reliable enough for the records to be inter-

preted. Measurement errors for other more abundant trace elements (Table 1) are between 1%

and 5% of the measured value.

4.2 Stable isotopes and pretreatment

Mass spectrometry results (Fig 2) show that δ13Cap varies between -19‰ and -13‰. δ18Oc

ranges between -7‰ and 0‰. Weight loss caused by the pretreatment procedure ranges

between 14% and 48% (Fig 2A, 2C and 2E). Carbonate content of enamel samples exhibit a

variation between 1% and 6% (Fig 2A, 2B and 2D).

Table 1. Table showing the standard deviations of deconvolution (machine errors) and reproducibility (measurement errors) of elemental abun-

dances measured with the μXRF, as well as correction factors implemented to correct the values using the BAS-CCB01 standard (see S8 File).

Element Mean value: Machine error Measurement error Correction factor

O 62.41% 2.06% 1.00

Ca 20.74% 38.4 ppm 0.67% 0.99

P 16.40% 25.3 ppm 0.49% 2.88

Si 0.24% 6.81 ppm 0.01% 1.86

Na 0.03% 4.05 ppm 0.09% 2.11

Mg 0.13% 10.5 ppm 0.10% 4.50

Al 108 ppm 0.74 ppm 22.1 ppm 0.19

Fe 64 ppm 0.64 ppm 3.80 ppm 0.62

Zn 68 ppm 0.29 ppm 3.07 ppm 1.00

Sr 183 ppm 1.21 ppm 2.24 ppm 0.84

Cu 6.0 ppm 0.50 ppm 1.61 ppm 1.00

Ni 0.3 ppm 0.01 ppm 0.5 ppm 1.00

Ba 61 ppm 1.10 ppm 7.11 ppm 5.00

Pb 7.7 ppm 0.84 ppm 0.74 ppm 1.00

Ti 3.6 ppm 0.02 ppm 0.98 ppm 0.25

Cr 7.7 ppm 1.02 ppm 2.05 ppm 1.00

doi:10.1371/journal.pone.0166678.t001
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Linear regressions between all measured parameters have low (<0.01) p-values indicative

of a significant linear trend in the data. The R2 values calculated for these linear trends are

below 0.25 for all regressions except for the regression between δ18Oc and carbonate content.

With a coefficient of determination (R2) of 0.48, stable oxygen isotopes show a weak negative

relationship with carbonate content (Fig 2D). Fig 2F shows that there is no correlation between

the two stable isotope proxies, and Fig 2C and 2E show that there is no linear correlation

between the loss of sample weight in the pretreatment procedure and measured isotope ratios.

Weight loss by pretreatment shows no significant correlation with carbonate content in the

sample after pretreatment (Fig 2A).

4.3 Tooth records

A selection of trace elements with relatively high abundances in the studied teeth (Sr, Zn, Fe,

K, S and Mg) is discussed in terms of variations through time in the measured sample. Results

for individual teeth of the modern horse show the full potential of μXRF for high resolution

trace element abundance line scanning (Fig 3A and 3B). These figures also document the

spread of data between individual points as a result of small variations in surface conditions

Fig 1. Overview of mean molar concentrations (black dots) and concentration ranges (green areas) of all elemental abundances detected and

quantified with μXRF. Red bars show standard deviations of reported reproducibility tests on the BAS CCB01 standard (see Table 1). Not all elements

have red bars because concentrations of only a few elements were certified for the BAS-CCB01 standard. Note that red bars in this Fig are standard

deviations on the BAS-CCB01 standard, while means and ranges of concentrations indicated in green are from the horse bioapatite.

doi:10.1371/journal.pone.0166678.g001
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and concentrations in the sample. Larger irregularities on the sample surface were accommo-

dated by refocusing the X-ray beam between line segments. In order to visualize the mm-scale

trends of XRF records through the tooth length, a 50 point moving average was constructed by

averaging, for every point that was measured, the measured value on this location with values

Fig 2. Cross plots of all combinations of the four parameters obtained by pretreatment and mass spectrometry: carbonate content (%CO3),

weight loss during pretreatment (%), carbon isotope composition (δ13Cap) and stable oxygen isotope composition (δ18Oc). Dashed lines show

linear regressions through the cross plots and p-values and coefficients of determination (R2) of the regressions are given.

doi:10.1371/journal.pone.0166678.g002
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of 49 measurements directly above and below the measurement. The smoothed records thus

obtained illustrate that mm-scale variations in the records of trace element concentration are

larger than the measurement error, and therefore statistically significant.

The measurement error (shown on Fig 3A and 3B as vertical error bars) varies between dif-

ferent elemental ratios and between different teeth depending on the surface conditions, and is

relatively high for elements with a lower abundance, such as Sr (see also Fig 1 and Table 1). Fig

3A and 3B show that the record of Mg, which has a relatively high abundance, contains consid-

erable spread with various high amplitude mm-scale shifts. These mm scale shifts in the Mg/

Ca 50 point moving average seem to correlate to mm-scale shifts in other records of element

ratios, but have a larger amplitude in Mg/Ca. Mg/Ca records are shown for all teeth except for

P4, where the Mg peak was too small to produce a continuous record. These Mg/Ca records

show that deconvolution of an insignificant XRF peak produces a record with large (artificial)

mm-scale shifts in abundance.

For paleo-environmental reconstruction purposes, the larger-scale variations that occur on

a spatial resolution in the order of multiple centimeters are more interesting. On this scale

large shifts in elemental abundance take place, which are significant with respect to the

reported measurement errors. Comparison with Mg/Ca records also shows that the larger cm-

scale variations observed in other trace element records are not present in Mg/Ca. Fig 3A and

3B show that most cm-scale variations in trace element ratios are of the same order of magni-

tude through different teeth (M1-3 and P2-4). Exceptions are the K/Ca and Zn/Ca ratios of P2

and the Fe/Ca ratio of P3, which are plotted on a separate scale to illustrate the variations

observed in these records. The K/Ca and Zn/Ca values as well as other trace elemental concen-

trations in P2 are higher than in other teeth. The Fe/Ca values from P3 are lower than in the

other tooth records.

Fig 3A and 3B show that carbonate content in the individual tooth records is always lowest

in the oldest part of the tooth, closest to the tip. These low values for carbonate content coin-

cide with high δ18Oc values in all teeth except for P2. The tip of most teeth is also associated

with low δ13Cap values, although the trend is less pronounced than in the δ18Oc record. Sam-

ples with lower carbonate content further down the teeth do not show higher δ18Oc values or

lower δ13Cap values. The oldest 15–20 mm of the M1 δ18Oc record shows the highest values

of all records, exceeding 0‰ (Fig 3A). The cm-scale trend observed in the δ18Oc of M1 is

increased by these high δ18Oc values but is still visible if these samples are removed from the

record.

The spatial resolution of stable isotope measurements is not good enough to show mm-

scale variations in the teeth, but cm-scale trends are observed. Comparison on centimeter scale

shows that trace element records and oxygen isotope records show a similar trend, with trace

element records shifted horizontally by approximately 20 mm compared to oxygen isotope

records. The Sr concentration record seems to be more in phase with the δ18Oc record than

the other trace elements, but still lags the isotope record by about 10 mm. To compare and

interpret variability in the multiproxy records from horse teeth, multiple teeth from the indi-

vidual are combined to create an age model.

4.4 Age model

Using the eruption pattern of horse teeth ([34] [42]), stable isotope plots for individual teeth

can be superimposed on the monthly mean temperature record (Fig 4). A first tentative age

model based on eruption times of the teeth shows that the oxygen isotope record lines up with

the monthly temperature record. This shows that a positive relationship between precipitation,

seasonal temperature and stable oxygen isotope ratios in mammal teeth, as proposed in other
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Fig 3. Records of carbonate content (green bars), stable isotope compositions (δ13Cap in red and δ18Oc in

blue) and trace element ratios (dots, colored lines represent moving averages) of all molars (A) and

premolars (B). Larger vertical bars indicate the specific measurement error for each tooth and each element. The

black line on top shows how Ca/P ratios vary over the line-scan. Vertical error bars plotted on the inside of y-axes

mark the tooth- and element-specific measurement errors (σ).

doi:10.1371/journal.pone.0166678.g003
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studies ([3] [114]), is valid in this study as well. Maxima and minima in both δ18Oc and tem-

perature are used as additional tie points to constrain the age model. According to the age

model, tooth mineralization occurred over a period of 4–5 years, which is in agreement with

[34] This age model is applied on the isotope data as well as on the trace element records.

4.5 Seasonal variations

Stable carbon isotope ratios measured in horse enamel seem to be in antiphase with respect to

oxygen isotopes, even though there is no linear correlation between the two proxies (Fig 2). A

seasonal cyclicity is observed in δ13Cap values with lower δ13Cap values in the summer and

higher δ13Cap values in the winter season. When all trace element records are plotted on the

same time axis using the age model, a clear seasonal pattern emerges in all plotted records (Fig

5). It must be noted that the K/Ca and Zn/Ca records of P2 and the Fe/Ca record of P3 are plot-

ted on individual scales, but they follow the same seasonal pattern. Patterns in both oxygen

and carbon isotope ratios measured in different teeth mineralizing in the same time period

(e.g. P2/P3 and P4/M3) show a very similar pattern. Overlapping μXRF records (plotted as dif-

ferent lines in Fig 5) match as well, even on small spatial scales. The cm-scale annual cyclicity

in the trace element ratios is best expressed in the middle part of the record, where records

from multiple teeth overlap and more tie points are available to create a more reliable age

model. Towards the oldest and youngest parts of the composite record the age model has to be

extrapolated resulting in a slight mismatch of elemental abundance records with the monthly

temperature record. To illustrate differences in the seasonal extent of trace element composi-

tion between individual teeth, seasonal ranges and annual averages of all tooth records are

shown in Table 2. The offset of trace element values in P2 and P3 with respect to other records

is not similar (e.g. variation and absolute values are higher than average in P2, but lower in P3).

Seasonal variations in S/Ca, Sr/Ca and both stable isotope proxies are of the same order of

magnitude in all teeth.

5. Discussion

5.1 Pretreatment and carbonate content

The lack of correlation of weight loss during pretreatment with CO3 content as well as with sta-

ble isotope results shows that the amount of material removed from the samples during pre-

treatment does not influence the resulting stable isotope ratios and measured carbonate

contents in a systematic way. The observation of seasonal patterns in stable isotopes and the

fact that all isotopic values fall within the expected range for modern teeth indicates that con-

tamination of the samples after pretreatment is unlikely, or at least that it has no effect on the

interpretation of these seasonal cycles.

Fig 3A and 3B shows that carbonate content is lowest in the oldest, most mature parts of

the enamel of all teeth. This can be explained by a decrease in carbonate content in older

enamel related to its maturation process ([115]). Higher δ18Oc and lower δ13Cap values are

observed in the oldest parts of all teeth except P2. This exception and the fact that carbonate

content in younger parts of tooth records does not correlate with δ18Oc and lower δ13Cap

shows that the relationship between stable isotopes and carbonate content is only valid for

samples from the tips of the teeth. Since all reported stable isotope measurements were cor-

rected for variations in produced CO2 during the acid reaction and all samples yielded enough

CO2 for measurement, fractionation during the measurement cannot account for the observed

correlation. Such a fractionation would also have driven δ18Oc and δ13Cap values in the same

direction ([116] [117]), while observations show that the correlation with carbonate content is

negative for δ18Oc values and positive for δ13Cap values. The correlation with stable isotope
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values is instead driven by the fact that all teeth except P2 started mineralizing in the summer

season and therefore have high δ18Oc at their tip. As a consequence, we argue that variations in

carbonate content are a result of tooth development, while stable isotope ratios vary according

to environmental and dietary parameters.

5.2 Seasonality in stable isotope ratios

A seasonal range of 3‰ observed in carbon isotope ratios is much smaller than that found in

studies of mammal enamel in which a seasonal change in diet from C3 to C4 vegetation is sug-

gested ([3] [20] [118]), in which case a seasonal range of 6‰ was reached. The range obtained

is in good agreement with seasonal shifts of 3‰ found in horse enamel by [13], which indicate

comparatively small annual variations within a diet composed almost exclusively of C3 vegeta-

tion. The mean of δ13Cap value of -16‰ is also in agreement with a diet consisting exclusively

of C3 vegetation ([35] [119]). This is to be expected from a domestic horse fed on a constant

diet of fresh grass supplemented with small amounts of cereal grains. The 3‰ seasonality in

δ13Cap indicates that there were small seasonal changes in diet through the year. Such a change

Fig 4. Stable oxygen (blue to purple) and stable carbon (red to brown) isotope records of all teeth of the modern horse correlated to a local

monthly mean temperature curve (Vlissingen, Netherlands, Royal Dutch Meteorological Institute). Dots represent individual measurements. The

standard deviation of reproducibility is contained within the dot. Different colors are associated with different teeth. Tooth records are labeled in the same

color as their measurements. Arrows (in the same color as stable oxygen isotope measurements) indicate the approximate eruption times of the teeth

according to [34]. The age model used for the remainder of the study is based on these eruption patterns and on the linkage of δ18Oc record to the

temperature record using a positive correlation between the two.

doi:10.1371/journal.pone.0166678.g004
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Fig 5. Records of stable isotope ratios and trace element ratios plotted against time using the age model based

on the relationship between oxygen isotopes and temperature seasonality. Dots represent individual stable isotope

measurements. The standard deviation of reproducibility of these measurements is contained within the dot. Different

colors are associated with different teeth. Tooth records are labeled in the same color as their measurements Note that

three of the trace element records are plotted on a different scale (see also Table 2). These three trace element records

are shown in a different color and their scales are shown to the side of the record in that same color.

doi:10.1371/journal.pone.0166678.g005
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resulted from an increase in grazing in summer while in winter a larger part of the diet con-

sisted of dry food. A larger relative proportion of grass at the expense of dried cereal (e.g. bar-

ley) would explain more negative δ13Cap values in enamel in summer, since grass has a more

depleted δ13C signature ([63]). Incorporation of minor amounts of maize (a C4 plant) into the

dry food that made up to winter diet probably explains the higher (less negative) carbon iso-

tope signature in this season. Several factors, such as water availability, amount of sunlight and

growth rate, can also cause seasonal changes in the δ13C value of plants ([120] [121]). These

factors could change the δ13C value of grass consumed by the individual and amount to part of

the seasonality observed in δ13Cap values of horse teeth.

Oxygen isotope values reported here exhibit a seasonal range of 4–5‰, which is similar to

the seasonal variation observed in horse teeth from mid-latitude setting of North Dakota by

[13]. Ranges are larger than the 2‰-3‰ found in studies of sheep from Orkney Island ([3]

[118]) and pig teeth from Corsica ([20]). Variation in seasonal δ18O amplitude of the rainwater

on these different locations explains the observed difference in seasonal amplitude of δ18Oc

between this study and those mentioned above. The sheep and pig teeth originate from island

specimens where marine influence may lower the seasonal amplitude of the isotope composi-

tion of precipitation compared to more terrestrial environments ([58]). The horse in the pres-

ent study lived at a distance of ~60 km from the North Sea coast and ~450 km from the

Atlantic Ocean, it is expected that marine influence on the continental mainland will presum-

ably be less important than on an island setting. Indeed, the seasonal amplitude of rainwater in

coastal Northern Europe is approximately 4‰ ([57]; Keven De Bondt (VUB), personal com-

munication) Another explanation for the difference in seasonal amplitude might be that differ-

ences in the uptake of water or the formation of the teeth between species cause differences in

seasonal amplitude in oxygen isotopes between sheep, pig and horse teeth. Absolute δ18Oc val-

ues are in good agreement with seasonal variations in oxygen isotopes from horse enamel

reported by [13] and are also in the same order of magnitude of δ18Oc values found in sheep

enamel by [3] and [118] and in pig enamel [20]. Furthermore, oxygen isotope ratios measured

in this study are enriched by approximately 3‰ with respect to local meteoric water, which is

in agreement with [52]. This shows that the δ18Oc values obtained are reasonable for modern

Table 2. Summary of the seasonal variation observed in all trace element records from all teeth and the observed annual average. Trace element

concentrations indicated in orange (K/Ca and Zn/Ca of P2 and Fe/Ca of P3) have different values from the same records in other teeth.

Elemental ratio Values in mmol/mol P2 P3 P4 M1 M2 M3

S/Ca min value 2 4 2 2 2.8 1.8

max value 7 5 4.5 5.5 6 6

mean value of cycle 5 4.5 3.5 3.5 4.5 4

K/Ca min value 2 1 1 4 3 2

max value 16 10 12 13.5 10 9

mean value of cycle 10 6 7 9 6 5

Fe/Ca min value 0.2 0.1 0.2 0.2 0.25 0.1

max value 1.5 0.6 1 1.3 1.2 1.3

mean value of cycle 0.8 0.4 0.5 0.8 0.7 0.6

Zn/Ca min value 0.5 0.7 0.4 0.5 0.75 0.6

max value 2.4 1.3 1.2 1.2 1.1 1.2

mean value of cycle 1.5 0.9 0.7 0.9 0.9 0.8

Sr/Ca min value 0.2 0.15 0.12 0.14 0.13 0.12

max value 0.32 0.32 0.28 0.28 0.27 0.27

mean value of cycle 0.26 0.22 0.2 0.22 0.2 0.19

doi:10.1371/journal.pone.0166678.t002
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and archeological mammal teeth, and that the interpretation of cyclic variations in stable iso-

tope profiles as seasonal cyclicity is valid. The highest δ18Oc values observed in the oldest part

of the M1 record are most likely caused by effects of weaning in the first months of the animal

lifetime. Weaning can increase the δ18Oc values of tooth enamel in juvenile mammals by as

much as 2–3‰ ([54]), and a similar offset in δ18Oc values is observed in this study. While feral

horses wean their young after 8–9 months depending on the race, weaning of domestic foals

typically occurs between 4–6 months after birth ([122]). Fig 5 shows that increased δ18Oc val-

ues in the first 15–20 mm are consistent with a weaning period of 4–6 months. Measurements

of δ18Oc values from the tip of M1 that are exceeding 0‰ are for this reason excluded from the

age model graphs and from further seasonality interpretation (Fig 4).

The approximate antiphase relationship between δ13Cap and δ18Oc values is opposite from

the in-phase pattern found by [13], but is in agreement with other studies ([20] [118]). The lat-

ter explain seasonal variation in δ13Cap values of 6‰ as a result of changes in diet with incor-

poration of C4 plants or fruits in winter, which occurred in this individual only to a small

extent. The low δ13Cap values observed here are indicative of a diet consisting primarily of C3

plants, leading to the assumption that changes in δ13Cap observed in these horse teeth are

caused at least partly by changes within a C3 diet. The 3‰ seasonality in δ13Cap observed by

[13] in North Dakota is attributed to seasonal aridity affecting the water use efficiency (WUE)

of plants in the animal’s diet ([123]). In regions with seasonal aridity, reduced WUE dimin-

ishes the carbon isotope discrimination and results in heavier δ13C values in drier summer

months ([123] [124]). However, the horse studied here lived in a coastal temperate climate

with limited seasonal drought and the WUE of the grass is most likely not a leading factor driv-

ing its δ13C values. It is more likely that δ13Cap seasonality is primarily driven by small changes

in the composition of the diet, and that changes in δ13C of the ingested plants (grass) explain

only a small fraction of the carbon isotope seasonality. Since the exact composition of the sup-

plemented winter food and the relative proportion of isotopically heavy maize in the diet is

unknown, no reliable mass balance for carbon isotopes could be made for this study. An actual

culture experiment in which food and water sources are carefully controlled may shed more

light on the effect of dietary supplements on carbon isotope. Such a study would, however, be

expensive and time consuming and is beyond the scope of this paper. It cannot be excluded

that added maize in winter drove the shift to heavier carbon isotope values in the enamel

studied here. The fact that the maxima in δ13Cap are recorded during the late winter season

(between January and March) shows that the dietary change towards relatively higher amounts

of dry food (including C4 maize with higher δ13C values) is recorded within 2 months (Decem-

ber–February). Such a lag can be explained by the combined effects of the response time of

body fluid in mammals (15 days to a month; [13]) and time lag introduced due to mineraliza-

tion of the teeth (1–2 months; [21] [34] [69]). The seasonal shift in oxygen isotopes is expected

to start earlier, as stable oxygen isotope values of rainwater start to drop significantly as early

as October ([57]). A phase lag of 2 months of stable carbon isotope seasonality relative to the

seasonality of stable oxygen isotopes can therefore be explained by a delayed change in diet.

5.3 Reliability of μXRF results

The large variation in correction factors required to calibrate the quantification of μXRF

measurements for bioapatite shows that the matrix effect in apatite samples has a big impact

(Table 1). This demonstrates that it is always necessary to do a standard calibration specifi-

cally for the matrix of the samples that are analyzed, and that failure to do so results in large

inaccuracies in the quantified values. The deconvolution error found for μXRF data using

the ARTAX software is a gross underestimation of the real measurement error determined
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by reproducibility tests (Table 1). This shows that it is always necessary to calculate the mea-

surement error on a certified standard with the same matrix composition as the samples (in

this case: the BAS-CCB01 bioapatite standard) to determine the standard deviation on the

result. Measurement errors obtained for elements heavier than Mg and with a concentration

>1 ppm (1 to 5% of the measured value) are comparable with standard deviations reported

for LA-ICP-MS and ICP-OES ([125] [126] [127] [128]).

The comparison of elemental records with the Mg/Ca record shows that deconvolution of

small XRF peaks leads to noisy records with artificial mm-scale variations. Similar small-scale

fluctuations superimposed on the larger seasonal trend of records of other trace elements (Fig

3A and 3B) may also be attributed to errors in the deconvolution of XRF spectra. The larger

cm-scale variations observed in horse enamel trace element records represent real changes in

chemical composition of the teeth. They reveal a seasonal pattern in trace element ratios in

horse enamel that is in antiphase with δ13Cap and shows a 2–3 months phase lag with respect

to the δ18Oc values and monthly temperature records.

5.4 Trace element abundances in horse teeth

Observed Ca:P:O proportions obtained by μXRF are in agreement with the formula of bioapa-

tite, (Ca, Na, Mg, Ba, Fe, Sr, Zn, []) 10(PO4, HPO4, CO3)6(OH, F, Cl, CO3, O, H2O, []) 2, in

which part of the PO4 and OH groups are substituted by CO3. The spread in both Ca and P

concentration is low, showing that measurements on the tooth surface sampled almost exclu-

sively bioapatite. Fig 3A and 3B furthermore show that the Ca/P ratio remains relatively con-

stant through all line scans. The most abundant trace elements found in horse teeth are cations

substituting for Ca, although Cl and S are also present in relatively high concentrations

(>0.1%, see Fig 1). Zn, Sr and Ba are present in the same order of magnitude as those found in

other studies of trace elements in enamel ([83]). These results are in agreement with other

studies reporting relatively high concentrations of so-called “bone-seeking elements” Zn, Sr,

Ba and Pb ([81]) as well as other elements found commonly in bioapatite, such as Na, Mg, Cl

and K ([9]). Elemental concentrations that do show a significant offset from values reported in

other studies include Mn and Al, which are higher in this study compared to earlier work ([9]

[83]). An enrichment in Mn and Al may be a result of different provenance of the animal or a

difference in preferential enrichment of the abovementioned elements in horse enamel com-

pared to the other taxa studied in [9] and [83]. A possible source of Mn or Al might be air-

borne dust, but concentration data from other specimens and their environment would be

needed to pinpoint the source of these elements in horse enamel and determine why concen-

trations are elevated in the current specimen.

Some small mm-scale variations in trace element records are repeatable through different

teeth and are probably linked to small weekly to monthly scale variations in growth rate or

enamel thickness ([129]). These differences in enamel growth rate can influence trace element

concentrations ([34]). Since the integration depth of the μXRF remains constant for each

given element (see Methodology section), variations in the enamel thickness can result in vari-

ations in the trace element concentrations measured when these concentrations change with

depth in the enamel ([83]).

5.5 Seasonality in trace elements

The consistency between different trace element records suggests a single mechanism for in

vivo uptake of all reported trace elements into the enamel. The seasonal cyclicity observed in

all records suggests that the variation in trace element concentrations in teeth is driven by

environmental and/or dietary factors rather than by internal changes in the trace element
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uptake mechanism during enamel formation. It has been suggested that a large part of the

trace elements is acquired in mammal tissues from environmental sources and therefore vary

with the rate of environmental uptake ([87] [130]).

The use of a domestic horse in this case effectively rules out changes in trophic level or

migration as drivers for trace element variations in teeth. An increase in grass consumption at

the expense of cereal grains, hay and maize, indicated by the small but significant seasonal var-

iation in δ13Cap values, shows that a small seasonal change in diet could explain the seasonality

in trace element ratios as well as carbon isotopes, especially since trace element and δ13Cap rec-

ords are almost exactly in antiphase (Fig 5). A seasonal change in the intake and composition

of soil and dust constitutes an additional mechanism that could explain the observed seasonal

pattern in trace element ratios (as suggested in [83]).

Both trace element concentrations in dust particles in the atmosphere and abundance of

these particles in Europe are highest in the summer period and could lead to the observed sea-

sonal signal in enamel trace elements for several months ([89] [91]). Such an increase in trace

element deposition through dust particles provides a possible explanation for the higher con-

centration in trace elements in horse teeth in the months directly following summer. Dust

could enter the animal by direct ingestion ([83]) or indirectly through uptake in local plants

and surface water ([131]). The latter pathway is plausible, since trace elements dissolved in sur-

face water peak in summer ([94]) just like trace element concentrations found in enamel in this

study. Furthermore, the trace element concentrations of drinking water were disregarded in

earlier studies on the basis of them being too low to affect the concentrations of body fluids in

mammals ([83]). The quality control mentioned in the Materials and Methods section further

restricts the trace element concentrations of drinking water to values much below the values

measured in tooth enamel (see S7 File). Seasonal variations within these low concentrations

(ppm level) would have little effect on the larger changes in trace element concentrations in

tooth enamel. We therefore reject drinking water as the source for trace elements in horse

enamel and assume that trace element ingestion through dust and/or changes in diet explain a

large part of the seasonality in trace element ratios in enamel found in this study.

The observed phase lag of trace element records of 2–3 months with respect to the seasonal

oxygen isotope signal could indicate that the total lag between trace element uptake and incor-

poration into the tooth enamel was 2–3 months slower than that of oxygen isotopes. Such a lag

could be explained by a longer residence time of bone-seeking trace elements in the body of

horses compared to that of lighter and more abundant oxygen and carbon atoms ([132]). The

response time of body fluids suggested as a source of time lag in the uptake of carbon and oxy-

gen isotopes ([13]) might be longer for trace elements. The lower concentrations of these ele-

ments in the animal’s body or their larger atomic weight may explain a longer residence time,

causing a time lag in the apparent seasonal signal (as in [13]). Another explanation might be

that the moment of uptake of trace elements lags the temperature seasonality and that the

highest concentrations of trace elements are actually taken up 2–3 months later than the oxy-

gen isotopes (near the end of summer). A lag of 2–3 months due to reservoir effect in the horse

body on trace element incorporation into horse tooth enamel would place the moment of

ingestion of highest concentrations of trace elements in the middle of the summer (in phase

with high δ18Oc). If the trace element seasonality is caused by changes in diet, this would sug-

gest that diet in summer would be more enriched in trace elements than in winter. The fact

that trace element seasonality is in antiphase with δ13Cap seems to suggest such a relationship

and favors the hypothesis that trace elements are driven by diet. An increase in trace element

uptake in the summer season also favors the hypothesis that increased dust input forces higher

trace element concentrations in the environment in summer, which are then incorporated

into the enamel with a slight (2–3 month) lag in time ([89] [91]). The time lag can in this case
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be explained in part by longer residence times of trace elements in the environment, as part of

the trace element input will be taken up by the horse indirectly through the vegetation ([87]

[131] [133]). The data provided here seems to suggest that both dust input into the environ-

ment and changes in diet over the year are sources of trace element variations in the horse

specimen. Further research into the pathways of trace element uptake and incorporation into

bioapatite would be needed to confirm the most important mechanism explaining trace ele-

ment seasonality in horse molars. The best way to conduct such a study for large mammals

would be to allow growth of the animals under fully controlled circumstances and to measure

stable isotope ratios and trace element concentrations of all sources of food and water. Such a

study would be time consuming and potentially ethically complicated.

5.6 Enamel thickness and depth integration

The offset of K/Ca and Zn/Ca values of P2 and Fe/Ca of P3 shown in Table 2 could indicate

that the rate of incorporation of trace elements is variable with tooth position. However, this is

unlikely because the offset is not observed equally in all elements and is not consistent within

one tooth. Another reason for the difference is posed by [83] who found cross sectional gradi-

ents in trace element concentrations through mammal teeth. If such gradients exist in horse

teeth, a variation in the thickness of the enamel between different teeth is expected to signifi-

cantly change the trace element abundance measured with μXRF. Since the attenuation depth

of X-Ray radiation increases with atomic weight ([134] [135]), lighter elements are measured

more superficially than heavier elements. A change in the inward gradient of trace element

concentrations resulting from a thinner (more condensed) enamel layer or the removal of the

outer (more trace element-rich) part of the enamel will therefore result in a larger change in

the measurements of lighter elements compared to heavier elements. The effect of enamel

thinning is dampened in measurements of heavier elements because they are more depth-aver-

aged. The fact that trace element ratios in P2 are higher than in other teeth while Fe/Ca in P3 is

lower (Table 2) may therefore indicate that the enamel layer measured in P2 was thicker than

average and that of P3 was thinner and more condensed than in the other teeth. Table 2 reveals

that the other trace element records of P2 also have elevated concentrations, supporting the

hypothesis of a thicker enamel and a relatively bigger contribution of the trace element-

enriched outer enamel layer. The preparation of the teeth for XRF scanning by cleaning off the

most contaminated outer layer of the tooth could also result in differential loss of outer enamel

between different teeth. However, since the amount of enamel removed by this cleaning proce-

dure is very limited (<0.1 mm) it is not likely to cause the large offset in trace element concen-

tration reported in Fig 5 and Table 2. For future studies it is recommended that such pre-

cleaning of teeth for XRF, or any other surface-based analysis, is done by air-abrasion to allow

even more control on the amount of enamel to be removed. Another possibility is that analysis

are executed on enamel cross sections, although this does compromise the non-destructive

character of the XRF measurement and might as such not be a favorable procedure on pre-

cious samples. Cross-sectional transects through modern horse teeth could also reveal whether

an inward gradient in trace elemental abundance is present in horse enamel, supporting this

hypothesis.

Because the enamel mineralization front in mammal molars is not perpendicular to the

growth direction of the tooth, variations in depth integration between elements also influence

time averaging in the sample volume ([136]). Work by [21] elegantly shows how samples

taken perpendicular to the tooth surface combine enamel that mineralized over a larger period

of time. Based on their work and information about the slope of the mineralization front in

horse molars (5 to 10 degrees; [34]) and their growth rate (3–4 mm/yr; [34]), measurements of
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heavier elements like Sr and Zn with attenuation lengths of 100s of microns will average about

2–3 months of enamel formation while lighter elements like Mg and Si with attenuation

lengths of a few microns will average only several days of enamel formation. As a result, sea-

sonality curves for heavier elements are more smoothed than those of lighter elements.

Besides, shallower samples (lighter elements) also sample comparatively younger enamel than

deeper samples (see also modelling and discussion in [21]). The difference in average age is

around 1–2 months and may explain a lag of the seasonality of heavier elements like Zn and Sr

with respect to lighter elements like Fe and S. Other, less penetrative, techniques for determin-

ing trace element abundance can be attempted to show whether depth-integration causes the

offsets observed between teeth.

5.7 Broader implications for further research

The discovery of seasonally fluctuating trace element concentrations in mammal teeth opens

up the possibility for the development of new paleo-dietary and/or paleo-environmental prox-

ies. The preliminary results presented in this paper clearly show that the measurement of trace

element profiles in mammal tooth enamel with the new μXRF line-scanning technique is feasi-

ble within a short timeframe without physical alteration of the samples. While further investi-

gation is required to confidently interpret seasonal trace element profiles in mammal enamel,

the current study clearly shows that there are seasonal patterns in several common trace ele-

ments that will be of interest for future archaeological and palaeontological research. Once

established, trace element proxies in bioapatite could be used in combination with or as a

replacement of stable isotope analyses as they have often been used in studies of seasonally

resolved carbonate records (e.g. [24] [25] [26] [27] [137] and references therein). Trace ele-

ment profiles in tooth enamel could then play a role in a wide range of paleo-dietary and

paleo-environmental studies aiming to solve questions of past human and animal migration,

paleo-diet and seasonal variations in paleo-environment.

6. Conclusions

μXRF scanning on the cleaned surface of mammal molars and premolars yields repeatable val-

ues for trace elements heavier than Mg and with a concentration of 1 ppm or higher. Lighter

elements and lower concentrations cause reduced repeatability of the quantification of μXRF

results. Results of stable oxygen isotope ratios indicate that seasonal changes in temperature

and consequently in the oxygen isotope ratio of precipitation are faithfully recorded in this

modern horse molars and premolars. This relationship can be used together with eruption pat-

terns to construct an age model allowing the creation of a composite multi-year record from

multiple teeth of the same individual. Such a composite record shows that records of Sr/Ca,

Zn/Ca, K/Ca, Fe/Ca and S/Ca in all teeth reflect the same seasonal pattern. This seasonal fluc-

tuation in elemental abundance records seems to be in phase for all elements and shows a

slight phase lag of approximately 2–3 months with respect to oxygen isotopes and temperature

seasonality. Carbon isotopes from the same teeth exhibit seasonality in approximate antiphase

with respect to oxygen and trace elements and are related to diet.

Two possible mechanisms for the seasonality in trace elements are proposed. On the one

hand, seasonal fluctuations in the composition of the horse’s diet can influence the amount of

trace elements taken up by the animal on a seasonal scale. One the other hand, a seasonal fluc-

tuation in the amount of available dust and the concentration of trace elements in dust parti-

cles could be incorporated into the animal either through direct dust intake, as suggested by

[83] or indirectly through leaching of trace elements from dust into the local environment and

incorporation into the animal’s diet (e.g. through consumed grass). This external forcing of
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trace element composition in mammal tooth enamel implies that trace element ratios may be

used as proxies for seasonal changes in paleo-environment and paleo-diet. This discovery

potentially opens up a whole set of new proxies in bioapatite that are relatively easy and rapid

to measure and yield information that is complementary to conventional isotope proxies. Fur-

ther research is recommended to determine the dominant pathway of trace element incorpo-

ration into mammal tooth enamel and to determine whether the same seasonal patterns in

trace element concentrations can be found in archaeological or fossil tooth samples.
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