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Abstract

Marine science and numerical modeling (MASNUM) is widely used in forecasting ocean
wave movement, through simulating the variation tendency of the ocean wave. Although
efforts have been devoted to improve the performance of MASNUM from various aspects
by existing work, there is still large space unexplored for further performance improvement.
In this paper, we aim at improving the performance of propagation solver and data access
during the simulation, in addition to the efficiency of output /0 and load balance. Our optimi-
zations include several effective techniques such as the algorithm redesign, load distribution
optimization, parallel I/O and data access optimization. The experimental results demon-
strate that our approach achieves higher performance compared to the state-of-the-art
work, about 3.5x speedup without degrading the prediction accuracy. In addition, the param-
eter sensitivity analysis shows our optimizations are effective under various topography res-
olutions and output frequencies.

Introduction

The ability to understand the climate patterns and predict the climate changes is critical to
organize daily activities in human society. To study the complicated earth climate, various
models are proposed to represent different layers of the earth such as atmosphere model [1-3],
ocean model [4, 5], land model [6, 7] and sea ice model [8, 9]. These models are coupled [10,
11] together to simulate the climate phenomenon systematically. Since ocean takes three quar-
ters of the earth surface, it has been an essential task for climate researchers to study the ocean
activities in numerical models. MASNUM [12] is developed to simulate the progress of wave
growth and propagation, which is the most common phenomenon in the ocean. Due to its
advanced accuracy in both general and high sea state [13, 14], MASNUM is widely adopted in
forecasting products.

MASNUM utilizes a global wave numerical model in spherical coordinates solving several
important physical equations to simulate the wave activities. These equations [15] include
breaking dissipation source equations, wave energy spectrum balance equations and compli-
cated characteristic equations. Solving these equations in a reasonable time usually requires
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large amount of computing resources from a HPC cluster. Moreover, as the modern forecast-
ing products pushing in the direction of higher resolution, the computation need of MASNUM
grows significantly, which in turn generates increasing demand for HPC cluster.

In the meanwhile, the rapid development of high performance computers is pushing the
edge of the climate research. The massive computing resources and scalable design of HPC
cluster facilitate the demand for wave simulation with higher resolution. However, there is a
large obstacle for climate researchers to fully utilize the capability of HPC cluster due to its
underlying complexity. The massively parallel nature of HPC cluster requires a fundamental
re-design of the wave model from various aspects including algorithm, load balance, process
communication, I/O and etc.

Tremendous efforts have been devoted to the higher performance of ocean wave simula-
tion. In [16], a parallel version of MASNUM using MPI was developed, improving the perfor-
mance of the serial version. Later Zhang et al. [17] optimized the aggregation, data distribution
and local blocking method to achieve higher performance. In [18] Zhao et al. improved parallel
efficiency based on an irregular quasi-rectangular domain decomposition scheme in MAS-
NUM. Later, Zhang et al. [19] proposed a way to optimize the load balance by keeping the
amount of computation in each process close to the mean. In addition, they designed a new I/
O strategy to improve the I/O performance as well as MPI message packing method to reduce
the communication overhead. Inspired by [19], our work takes a deep dive to further optimize
the performance of MASNUM from multiple aspects such as the algorithms, communication
pattern, load balance and data accessing.

Although the performance of MASNUM has been improved by previous work, we find
there is still large space unexplored for further optimization. For example, redundant calcula-
tion and constrained I/O are all potential directions for performance optimization. To
improve the parallel efficiency as well as reduce the complexity of computation, we propose
several performance optimizations of MASNUM running on a cluster. Specifically, this paper
makes the following contributions:

« We develop two methods to accelerate the bottleneck functions through algorithm redesign
and redundant calculation elimination.

o We design a better strategy for process communication and load balance with improved
performance.

o We parallelize output I/O that significantly reduces the I/O delay at high output frequency.

o We enhance the data locality and alignment for improved cache hit ratio both temporally
and spatially.

o We demonstrate a 3.5x speedup of MASNUM in high topography resolution after applying
the proposed optimizations.

The remainder of this paper is organized as follows. Section “Bottleneck Analysis” analyzes
the bottlenecks of current MASNUM implementation. Section “Design Decisions for Optimi-
zations” discusses the design decisions for optimizing MASNUM from several aspects. Section
“Evaluation” presents the experimental results with comparison to the previous work. Finally,
related work and conclusions are presented in Section “Related Work” and “Conclusion”,
respectively.

Bottleneck Analysis

The whole MUSNUM program contains five critical functions such as propagat, implsch,
meanl, updatev and output, as shown in Fig 1. The purpose of each function is listed as follows:
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Fig 1. The simplified program structure and execution flow of MASNUM.
doi:10.1371/journal.pone.0169130.9001

« propagat is to solve the spread of wave equations.

« implsch is to solve the local changes caused by the source functions.
« meanl is to solve the characteristic of the wave equations.

o updatev is for the communication among adjacent blocks.

o output is to write the simulation results into files.

During the simulation, MASNUM divides the input matrix into small blocks, and then dis-
tributes them into different processes according to the theory of Jacobi matrix’s iteration (e.g.,
4 x 6 blocks with 24 processes). The process communication pattern of MASNUM is illus-
trated in Fig 2. There are halo regions (rectangles shown at the right side of Fig 2) at the block
boundary of each process, which buffer the data to exchange with its neighbor. Before each
iteration starts, the process in charge of a particular block sends the data in the halo region to
its neighbor, as well as fetches the data into the halo region from its neighbor. After the data
exchanges, each process computes the data in the assigned block and update the halo region
independently. The computation of Jacobi iteration in MASNUM is quite effective, especially
when the simulation is done in large scale.
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Fig 2. Process communication pattern. Process communication among adjacent matrixes to update data during MASNUM

simulation.

doi:10.1371/journal.pone.0169130.9002

To identify the bottleneck functions of MASNUM, we analyze the fraction of the execution
time that each critical function takes at one time step. The time fraction is shown in Fig 3, pro-
filed by Intel VTune Amplifier. The experiment simulates the western Pacific (100-150E, 10S-
60N) ocean surface wave. The simulation time is from 2009-01-01 to 2009-01-04, with the
time step of 5 minutes. The resolution is 1/2 degree and the output frequency is once per 24
hours. We allow each processor core in our experiment to run only one process. As seen in Fig
3, the bottleneck functions change as more processor core used. For instance, when the cores
number is 24, we observe that propagat (54.10%), implsch (22.54%) are the two major bottle-
neck functions. As the number of cores increases, the bottleneck of MASNUM shifts to I/O
function output. Generally, when the number of cores increases to 96, the percentage of the
total execution time due to I/O is nearly 50%. At the same time, the percentage of total execu-
tion time in communication stays around 20% across all core scales. Thus we treat the compu-
tation (propagat), 1/O (output) and communication (updatev) as the bottleneck functions of
current MASNUM implementation and provide detailed analysis accordingly to reveal the
opportunities for optimization.

Propagation Solver

The propagation subroutine calculates the location Xy, wave-number Kj of the wave packet at
time t — At which propagates to location X at time f and obtains wave-number K by solving the
complicated characteristic equations. Therefore we get the responding spectrum E(Ky, X,  — Af)
at time ¢ from interpolation in phase and physical space. The goal is to calculate the wave energy-
current spreading, and then to gather the effect of refraction caused by topography and current.
Eventually, the wave energy at the physical space point and the wave space point is determined.
The most time-consuming portion of the propagation subroutine is to solve the propagation
equation, and the solution is shown in Eqgs 1 and 2, where 4 is the longitude, ¢ is the latitude, ¢ is
the time step, R is the radius of the earth, C,; denotes the group velocity in the direction of
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Fig 3. Performance profiling. The time fraction of critical functions at each time step.

doi:10.1371/journal.pone.0169130.9003

longitude ¢, Cy, represents the group velocity in the direction of latitude A and U, denotes the
velocity in the direction of longitude ¢. For detailed proof, readers can refer to [15].

4 C,+U,

dr Rcos¢ (v
@ — Cg‘P + Uf/) (2)
dt R

Load Distribution and Communication

Considering the land-sea distribution, the original MASNUM implementation takes the fol-
lowing procedures to assign load across processes. First, dividing the whole input matrix into
Xproc cOlumns and then into y,,,. rows, where x,,,. is the number of processes along the longi-
tude and y,o is the number of processes along the latitude. The Algorithm 1 first distributes
all of the grids into x,,,. rows, and the total number of grids is no less than the average load.
Then the algorithm distributes all of the grid in each row into y,,. columns. This distribution
strategy leads imbalanced load of processes along the rows and columns. For instance, the load
of last column and last row is far less than the average. The imbalanced load distribution is also
illustrated in Fig 2, where the small cell in the grid represents less load for computation and
the large cell means the opposite.

To improve the load imbalance of MASNUM, Zhang et al. [19] modified the load distribu-
tion strategy in step (4) and (10) of Algorithm 1, which makes N; close to N,,,. Their strategy
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for load distribution proceeds as follows. If N; is less than N,,,,, and N, equals o

Xalready—i~
Najready—i represents the total number of distributed grid so far, where X,jeqqy-; is the index of
matrix waiting for being distributed. The load distributed along the latitude is the same as
along the longitude. However, we find that keeping each process with approximately equal
load is not always the best strategy for MASNUM. The reason is that the root process always
does more work in reading and writing the data in the format of NetCDF file [20]. If the simu-
lation output frequency is high, it is better to keep the computation of the root process lower
than the average. Furthermore, we find that previous load distribution strategy neglects the
heterogeneous communication patterns in different directions, wasting the potential opportu-
nity for further optimization. For instance, along longitude direction the communication is
non-blocking while along latitude direction it is blocking.

Algorithm 1 The load distribution strategy of original MASNUM

1: //Ntora; is the total gridnumber of the input matrix. x,,o.is the number of
processesalong the longitudeand y,,.-is alongthe latitude
2: fori=0tox,,o.—2do

w

Navg: Niotal / Xproc

DistributesN; to theprocesseswith column index i, where N; isno less
than N,yg
: end for
: Distributes the remainingto the number of x,,,.— 1
:fori=0tox,,,.—1do
for j=0toyproc—2do

9: Nayg=N; /Yproc
10: DistributesN; to theprocesseswithrowindex j, N;isno less thanN,
11: endfor
12: Distributesthe remainingto the number of y, o~ 1
13: end for

sy

@ J o U

vg

I/O Strategy

After analyzing the I/O of MASNUM, we find the simulation output is written by the processes
sequentially, as shown in Fig 4(1). Only when the process ahead of the current one finishes its
output progress, could the current one begin to work. Therefore, as the number of the pro-
cesses scales, the program requires longer time to generate the output. Zhang et al. [19] pro-
posed to buffer the output from other processes into memory in parallel and then allow the
root process to write the buffer into disk, as shown in Fig 4(2). Although this technique allevi-
ates the sequential bottleneck, the I/O performance is still limited by a single write process. In
addition, buffering data into memory is not feasible when the input matrix is too large. More-
over, when the root process is writing data into disk, other processes stay idle. In contrast, we
advocate to eliminate the intrinsic serial I/O and enable each process to write the output con-
currently, which boosts the I/O performance fundamentally.

Cache Locality

During the performance profiling of MASNUM, we notice that the average cache miss rate is
high, with 32.72% of all cache references and 31.63% of last level cache (LLC), although the L1
data load miss is quite low of 0.24%. After analyzing the program, we find that some data struc-
tures such as ee (wave spectrum) and e (wave spectrum through propagation) arrays are visited
by line rather than by column. In addition, a large number of data is generated during the sim-
ulation, however not used until a long reuse distance, both of which results in the low cache hit
ratio.
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Fig 4. The I/O strategies when writing the output data. (1) sequential write: one process writes the output at a time, (2) parallel write:
multiple processes write the output concurrently, (3) parallel write + memory filesystem: store the output into memory filesystem
temporally to circumvent disk access.

doi:10.1371/journal.pone.0169130.9g004

Design Decisions for Optimizations

In this section, we focus on optimization techniques applied to MASNUM. Section “‘Algo-
rithm Optimization” presents the algorithm optimization to reduce the amount of computa-

tion. Section

Load Distribution Optimization” details the load distribution optimization.

Parallel I/O and data access improvement is presented in section ““Parallel I/O” and “Data
Access Optimization” respectively.

Algorithm Optimization

Optimizing Searching Method via Derivation Feature. The searching process within the
propagation function is to find the index of longitude in order to solve the Eqs 1 and 2.

Fig 5(1) illustrates how the original search algorithm finds the right position in each itera-
tion in the direction of longitude. The begin position of the original algorithm is zero as shown
in Fig 5(1) with the orange square. Assuming the length of the input grid is L, the time com-
plexity of propagat function is O(N - L), where N denotes the number of the grid. Fig 5(2)
shows our optimization, which finds the right position by leveraging the result of the last itera-
tion. For instance, the begin position, which is the orange square in Fig 5(2), is the position of
m after the last iteration.

In the search algorithm, x is the array of longitude (from 180° W to 180°E) in ascending
order. Based on the integral Eqs 1 and 2, the changes of A and ¢ are usually small when the two
points are adjacent, unless the topography and the wind change radically. Thus we leverage
this specific feature to approximate adjacent points with the same value, reducing the complex-
ity of computation. With this optimization, the algorithm complexity tends to O(1), although
the worst case is O(L), which is the same as the original algorithm. Therefore, the time com-
plexity of propagat function tends to O(N). The same optimization is applied to array y, which

stores the input data along the latitude (from 90°S to 90°N).

Store the Intermediate Results in Inner Loop. As Algorithm 2 shows, the variables of ia
and ic share the same value between loop j and k. Therefore we store the value of these two
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doi:10.1371/journal.pone.0169130.g005

variables in the inner loop whenever they are calculated, which is reused for further computa-
tion. Storing the intermediate results is able to reduce the amount of computation effectively
and thus speedup the performance of the algorithm. Moreover, the trigonometric function
within loop k is time-consuming and do not need to be calculated repeatedly. Therefore, we
store the result of the trigonometric function whenever it is calculated and return the result
directly when it is accessed afterward.

Algorithm 2 Store the Calculated Results

1: //Rrepresentsthe sizeof eachblock, Qisgridindexes inwave-number

9:
10:
11:
12:
13:
14:

2
3
4
5:
6
7
8

space, j iswave-number spectrumand k is wave-numberof Q
: forall point (ia, ic) € Rdo
loop j

if Jri.0==0 then > Loop j
Data dependent of (ia, ic)
Store thosedata into temporarymatrix Ty

Jr1ag=1
else
Read the temporarymatrix Ty
endif
look k
if Krj.g==0 then > Loop k

Data dependent of (ia, ic) and loop j
Storedatainto temporarymatrix T,
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15: Kerag=1

16: else

17: Read the temporarymatrix T,
18: endif

19: end loop

20: Kr1ag=0

21: endloop
22: Jflag:O
23: end for

Load Distribution Optimization

Let X,roc and y,,,c denote the number of processes along the longitude and latitude direction
respectively. The relationship between x,,,c and y,, is depicted in Eq 3, where # is the total
number of processes. Since for each pair of layout, there are always two options for x,,,. and
Yproc- For instance, if the total number of processes is 24, we could set the layout to be 4 x 6 or
the other way around.
nx=,/n x 3
y (3)

To better understand how different process layouts affect the performance, we experiment
with several different layouts (4 x 6,6 x 4,3 x 8,8 % 3,2x 12,12 % 2,1 x 24 and 24 x 1) on 24
processor cores regarding the same input and simulation settings. The performance variance
is shown in Fig 6. The result is normalized to the layout in its counterpart. For instance, com-
pared to the layout of 4 x 6, the opposite layout improves the performance by almost 8%. The
same tendency is observed across all possible layouts in Fig 6, that assigning more processes
along the x direction than y direction always leads to better performance. Especially, the per-
formance benefit becomes larger as the numerical difference between x and y increases.

Based on the above observation, we propose to use more processes along the longitude than
latitude direction in order to improve the performance. In addition, the MASNUM program is
implemented using fortran language, with which the arrays are accessed by column first
instead of row. Therefore, the proposed optimization also increases the cache hit ratio since
more processes are accessing data in the longitude (column) direction. Moreover, for each
grid block, it is easier to communicate with grid blocks in the longitude direction than the
ones in the latitude direction. As shown in Fig 7, this is because the data transferring is non-
blocking in the longitude direction, whereas blocking in the latitude direction. Thus assigning
more processes in the latitude direction reduces the waiting time during the data transferring.

Considering that root process performs more work than other processes, specifically gener-
ating the NetCDF files and initiating the attributes. We improve the load distribution algo-
rithm in previous work [19] through incorporating a control parameter & as shown in
Algorithm 3. In the meanwhile, based on the observations in Fig 6, we assign more processes
along the longitude (x,,,) than latitude (y,.) direction, optimizing the communication
between adjacent grid blocks.

Algorithm 3 Load Distribution Algorithm

:// Xprocisnoless than yyroc

: Navg: Ntotal / (Xproc * _Yproc)

: No = 6%Navg

: Nall_avg: (Ntotal - NO) / (Xproc * _Yproc - l)
:fori=0tox,,oc—2do

N,vqis theaverageof distributeddots

o U W N
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7: DistributesN; tothe columnof processeswithcolumnindex i, N; isnot
lessthan N,ygif Nayg < Naii avgr Ornotmore than Nayvgif Navg> Nagi avg
8: end for N -
9: Distributesthe remainingto the number of x,,,c— 1
10: for i=0to xpr0oc— 1do
11: forj=0toyproc—2do

12: ifi==06& j==0 then

13: continue:

14: endif

15: N,vqis theaverageof distributeddotsinN;

16: Distributes Nj to the columnof processeswithcolumnindex j, Njis

not less than Nayg 1f Navg < Naij avgr Or notmore than Nayg if Navg > Nazg avg
17: endfor N N
18: Distributesthe remainingto the numberof y ,,.—1
19: end for

Parallel I/O

As illustrated in section “‘Bottleneck Analysis”, sequential I/O becomes a bottleneck as the
number of processes increases. The more processes there are, the longer time it takes for the

«c
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doi:10.1371/journal.pone.0169130.g007

processes to write the output file sequentially. Although Zhang et al. [19] proposed to buffer
the output and use the root process to write into the disk on behavior of all processes, the per-
formance is still limited by the I/O especially when the volume of output becomes large.
Instead, we replace the sequential I/O by leveraging the library of parallel NetCDF [21], which
allows multiple processes to perform I/O simultaneously. In addition, to further speedup the
performance during the output stage, we use an in-memory file system called tmpFS [22] that
eliminates the access to hard disk as shown in Fig 4(3).

Data Access Optimization

Data locality. Due to the cache effect, accessing data in near locations improves the cache
hit ratio. Therefore, we optimize the MASNUM program so that the variables calculated in
each time step would be accessed in the near future as much as possible. Since the array in For-
tran is organized in column major order, it leads to higher cache hit ratio if the array is visited
by column. We changed the data access pattern in several functions such as the propagat,
implsch, meanl and readwi_mpi, so that the data locality is improved during the computaion.

Data alignment. Data alignment is important especially when leveraging the compiler
techniques such as auto-vectorization (with -xhost option). Unaligned accesses lead to ineffec-
tive load and store operations in memory. Thus, we align the data accesses for better perfor-
mance by using pragmas and directives. In MASNUM, most data is stored in the form of
multi-dimension arrays. We set the multi-dimension arrays with 64-byte boundary to perform
memory accesses more efficiently on Intel Xeon processor.

PLOS ONE | DOI:10.1371/journal.pone.0169130 January 3,2017 11/23
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Table 1. Node Configuration of the Experiment Cluster.

Configuration Setting
CPU 2 x Intel Xeon E5-2680v3@2.5 GHz(12 cores)
Memory 128GB DDR4
Hard Disk 2 x 300GB SSD
MPI Intel MPI Version 5.0.3
Network Mellanox InfiniBand
Parallel NetCDF Version 1.7.0
Operation System CentOS 7.2 x86_64
MASNUM Version 2.2

doi:10.1371/journal.pone.0169130.t001

Evaluation
Experimental Setup

The node configuration of our experiment cluster is shown in Table 1. The cluster is composed
of 8 homogenous nodes. We evaluate the performance of MASNUM at different scales when
applying the optimizations we proposed. The performance is measured as execution time.
According to our knowledge, [19] proposed the most recent performance optimization on
MASNUM. Therefore, we use [19] as our baseline throughout the evaluation. For the ease of
comparison, we provide the percent of improvement over [19]. The simulation is setup to pre-
dict the ocean surface wave of the western Pacific. The simulation time is four days long with
the time step of five minutes. The topography resolution is 0.2 degree. The rest of the simula-
tion parameters keep the default. All the following experiments use the same simulation setup
unless specifically mentioned.

Overall Performance Improvement

First, we evaluate the overall performance improvement of MASNUM after applying all the
optimizations we proposed. As shown in Fig 8, the overall performance improvement is quite
significant in all scales, ranging from 49% to 68%. It is also noticed the performance improve-
ment scales linearly as the number of cores increases from 24 to 72. Although when the num-
ber of cores goes beyond 72, the performance improvement stays almost constant around
67.6%. The experiments demonstrate the effectiveness of our proposed optimization in
improving the performance of MASNUM. In addition, we show in Fig 9 the breakdown of
performance improvement that each proposed optimization contributes to. The algorithm
optimization contributes most to the overall performance improvement when running MAS-
NUM at small scale, by 43.9% at 24 cores. However, I/O optimization becomes dominate
when the number of cores scales, by 51.7% at 96 cores. We also notice that data access optimi-
zation including data locality and data alignment optimizations takes an important portion of
the overall performance improvement, ranging from 33.3% to 20.7%. The detailed evaluation
of each optimization is provided in the following sections.

Algorithm Optimization

In Fig 10, the performance of propagation function is improved by more than 44% at all scales.
The best performance improvement is achieved with 24 cores by 60%. In fact, our optimization
for the searching method is more effective than binary search. For binary search, the time
complexity is O(logL), where L is the length of the array of longitude or latitude. The drawback
of binary search is that it fails to leverage the ordered elements in the arrays, which our
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optimization takes advantage of. Thus our optimization on searching algorithm always per-
forms better than binary search. The slowed down performance improvement as the number
of cores increases is because as more processes are launched, the less amount of work is
assigned to the propagation function in each process, which diminishes the improvement of
our algorithm optimization. In general, our algorithm optimization is quite effective to
improve the performance of propagation function.

Load Distribution and Data Access Optimization

As shown in Fig 11, after applying the load balance optimization (LB), we achieve 8% to 13%
performance improvement as the number of cores scales from 24 to 72. In addition to LB opti-
mization, data alignment optimization (DA) gives another 5% performance improvement at
all scales. The best performance improvement is achieved when combining the algorithm opti-
mization (AO) from previous section, which increases the performance by 25% at 24 cores in
addition to the former two optimizations. Furthermore, data locality optimization (DL) boosts
the performance by additional 10% at all scales over the combination of LB, DA and AO. It is
noticed that after the number of cores increases beyond 72, the percentage of performance
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improvement decreases apparently. The reason can be explained as the number of cores
increases, the amount of work assigned to each core becomes less, which undermines the effec-
tiveness of all optimizations. With all optimizations, the percentage of performance improve-
ment ranges from 43% to 52%.

I/O Optimization

The performance improvement through I/O optimization is shown in Fig 12. As the number of
cores increases from 24 to 96, the performance improvement scales linearly from 5.6% to 45.9%.
The linear scaling property of I/O optimization is due to the private MPI communication field
we create each time to receive the output data. In addition, to avoid the overhead of initialization
by multiple processes, only one process takes charge of creating the output file and setting up
initial attributes. Thus with more processes created, the performance improves accordingly.

Parameter Sensitivity

To investigate the sensitivity of our optimizations under different parameter settings, we design
experiments to evaluate the performance improvement by changing one parameter at a time
while keeping the rest constant. Identified by our empirical study, two parameters including
topography resolution and output frequency show strong impact on the performance of MAS-
NUM simulation. During the sensitivity experiment of topography resolution, we change the
resolution to be 0.125, 0.2, 0.4 and 0.5 degrees respectively. The smaller degree means higher
resolution. Similarly, to evaluate the sensitivity of the output frequency, it is set to one hour, two
hours, six hours and 24 hours respectively. The longer hours means lower output frequency.

Topography Resolution. As Fig 13 shows, the performance improvement increases when
the input resolution becomes higher. This tendency scales as more cores are used in the
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simulation. The most performance improvement is 71.6% (3.5x speedup), which is achieved at
96 cores with the input resolution of 0.125 degree. The reason for the higher performance at
higher resolution can be attributed to I/O optimization we proposed. At high resolution, each
process needs to generate more data for the output, deteriorating the performance of previous
work with serial I/O. In our I/O optimization, the serial I/O is eliminated by using the library
of PnetCDF, which allows multiple processes to write the output file simultaneously. The
experiments demonstrate our optimizations are capable of improving the performance with
increasing topography resolution.

Output Frequency. The sensitivity analysis on output frequency is illustrated in Fig 14.
Due to the extremely long execution time with the original implementation, we only include
the performance comparison at the output frequency of one per 24 hours. In the comparison,
the performance is improved by 47.8% under all scales. As the output frequency increases
from one per 24 hours to one per hour, the execution time increases by 30% universally. The
prolonged execution time can be attributed to the larger amount of I/O under higher output
frequency. With the core number increasing from 24 to 96, the performance is improved by
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Fig 11. Performance improvement from load distribution and data access optimization. The performance improvement of
MASNUM using different optimization methods, where LB stands for load balance, DA stands for data alignment, AO stands for
algorithm optimization and DL stands for data locality.
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63.6% at all output frequencies. This demonstrates that our optimizations achieve significant
performance improvement under various output frequencies.

Prediction Accuracy

Due to the round-off difference from the calculation of wave energy spreading and the chaotic
nature of the wave dynamics, it is infeasible to provide bit-for-bit (BFB) identical results in
wave simulations. To verify the accuracy of the MASNUM simulation after applying our opti-
mizations, we calculate the root-mean-square deviation (RMSD) [23] of the results given
before and after the optimizations. The equation of RMSD is defined in Eq 4, where X, and X
represent the results before and after optimizations, #n represents the number of sampling. At a
given point 7, there are series of observations for each variable and k defines the number of var-
iables under observation. Inspired by [24], we validate six representative variables such as
zonal wind velocity (windx), meridional wind velocity (windy), significant wave height (hs),
mean wave direction (th), spectrum peak wave period (¢p) and zero-crossing wave period (tz).
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Thus k ranges from 1 to 6.

1 n
RMSD(X, X, k) = ZZ(Xik - XOik)2 (4)

i=1

In Fig 15, we simulate 38 weeks to verify the accuracy of the above six variables across the
time-line. The rest of the simulation parameters are the same as those in section ““Experimen-
tal Setup”. As shown, the RMSD across all six variables is lower than 0.012 during the whole
simulation, which indicates the proposed optimizations do not introduce additional inaccu-
racy to the simulation. For instance, the variable hs representing the significant wave height
exhibits the smallest RDSM of less than 0.005.

Related Work

We briefly review the related work from two categories: general efforts to improve the ocean
modeling performance and specific ones on the wave modeling. In the first category, for
reducing the communication overhead, OpenMP is demonstrated to be effective in improving
modeling performance at large core count [25]. Land elimination is another approach to
reducing the communication overhead and in [26, 27], space-filling curves are used to improve
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load balance as well as to reduce the amount of communication. Additionally, in [28], the
authors proposed to overlap the global communication with the matrix-vector product via a
pipelined method that improved the performance of conjugate gradient. In [29], Hu et al.
implemented a new solver that reduced the communication overhead as the core count
increased, which lead to higher speedup at large scale. Although previous work is able to effec-
tively improve the performance of ocean modeling, they cannot be directly applied to the opti-
mization of wave modeling.

For the wave modeling, most of the existing work is developed from third generation
numerical wave model [15, 30]. Specifically, the marine science and wave numerical model
(MASNUM) was proposed and developed in spherical coordinates in theory [12, 31]. After
that, several optimization work is proposed to wave modeling. In [16], the parallel version of
MASNUM based on MPI was developed. Later, Zhang et al. [17] optimized the aggregation,
data distribution and local blocking method to get higher performance. Since the matrix seg-
mentation leads to poor load balance, Alamos National Laboratory introduced the notion of

the smallest fundamental block [32, 33]. In their work, the size of the smallest block is
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determined first, and then each block is distributed into different regions. Each process is
assigned an equal number of computation regions in order to achieve better load balance.
Later in [18], Zhao et al. developed a highly efficient parallel numerical surface wave model
based on an irregular quasi-rectangular domain decomposition.

Our work is closely related to Zhang et al. [19] which focused on load balance, communica-
tion and I/O optimization. In their load balance optimization, the amount of computation in
each process was maintained close to the mean. They also proposed new I/O strategy to
improve the I/O performance as well as a message packeting method to reduce the communi-
cation overhead. In comparison, our work optimizes MASNUM program from multiple
aspects such as the algorithm, communication, parallel I/O and data locality, which provides
us more opportunities to boost the performance further. We also notice that parallel frame-
work MapReduce [34] has been applied to address the massive I/O problem in scientific com-
putation such as multiple sequence alignment [35, 36].

Conclusion

The demand of high-resolution MASNUM wave simulations has been driven the optimization
work from different directions. This paper improves the performance of the propagation
solver via reducing the redundant computations. In addition, we improve the efficiency of
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communication among processes during the computation. Furthermore, we eliminate the bot-
tleneck of serial I/O during the output stage using parallel NetCDF. Finally, we enhance the
data locality during the calculation for better cache hit ratio. Our proposed optimizations
achieve 3.5x speedup compared to the state-of-the-art work, without degrading the prediction
accuracy. The parameter sensitivity experiments demonstrate our optimizations are effective
under various parameter settings.
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