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Abstract

Estimates of the global economic impacts of observed climate change during the 20th cen-

tury obtained by applying five impact functions of different integrated assessment models

(IAMs) are separated into their main natural and anthropogenic components. The estimates

of the costs that can be attributed to natural variability factors and to the anthropogenic inter-

vention with the climate system in general tend to show that: 1) during the first half of the cen-

tury, the amplitude of the impacts associated with natural variability is considerably larger

than that produced by anthropogenic factors and the effects of natural variability fluctuated

between being negative and positive. These non-monotonic impacts are mostly determined

by the low-frequency variability and the persistence of the climate system; 2) IAMs do not

agree on the sign (nor on the magnitude) of the impacts of anthropogenic forcing but indicate

that they steadily grew over the first part of the century, rapidly accelerated since the mid

1970’s, and decelerated during the first decade of the 21st century. This deceleration is

accentuated by the existence of interaction effects between natural variability and natural

and anthropogenic forcing. The economic impacts of anthropogenic forcing range in the

tenths of percentage of the world GDP by the end of the 20th century; 3) the impacts of natu-

ral forcing are about one order of magnitude lower than those associated with anthropogenic

forcing and are dominated by the solar forcing; 4) the interaction effects between natural and

anthropogenic factors can importantly modulate how impacts actually occur, at least for mod-

erate increases in external forcing. Human activities became dominant drivers of the esti-

mated economic impacts at the end of the 20th century, producing larger impacts than those

of low-frequency natural variability. Some of the uses and limitations of IAMs are discussed.

Introduction

Integrated assessment models (IAMs) have been widely used for estimating the potential

costs of climate change over the 21st and later centuries and for advising policy regarding the
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desirability of alternative mitigation and adaptation portfolios. However, these models have

seldom been applied to the 20th century to examine the impacts of climate change which have

already occurred. An exception is Tol[1] who recently applied the FUND model in its national

version for estimating the impacts of climate change during the 20th century using observed

global temperatures averaged over 5-year periods. His main findings are that while the global

average impact over the century was positive, regional and temporal differences are important:

most countries benefited from climate change until 1980, but since then the impacts for poor

countries have been negative and positive for the rich. The largest negative impacts occur in

water and human health.

However, even when filtering out part of the high-frequency variability in observed global

temperatures (e.g., by averaging over periods as in Tol[1], running means or filters), the under-

lying climate change signal is still distorted by the intrinsic low-frequency variability of the cli-

mate system, such as long-term oscillations in global temperatures. Moreover, the different

contributions of natural and anthropogenic forcing factors to this signal cannot be identified

[2–4]. A better understanding of what the economic impacts of the observed climate during

the 20th century could have been and of the relative importance of their anthropogenic and

natural drivers can provide relevant information for policy-making, socioeconomic research

and the society at large. The results presented here are also of interest to the IAM community,

as they illustrate the importance of the interaction effects between different impact drivers

(i.e., natural variability, natural and anthropogenic forcings). In particular, low-frequency nat-

ural variability oscillations can significantly modulate the impacts that would correspond to

the observed increases in anthropogenic forcings alone. Depending on their phase and on

the magnitude of the interaction effects, the final impacts can be considerably damped or

amplified.

Furthermore, a large part of the recent discussion about IAMs has focused on the behavior

of their impact functions for large increases in warming and the possible occurrence of cata-

strophic events[5,6]. Much less attention has been devoted to the uncertainty of these impact

functions for small increases in global temperatures, such as observed temperatures in the 20th

century or those that are commonly projected to occur during the next few decades. Moreover,

the importance of interaction effects of impacts from natural and anthropogenic forcing pro-

duced by the nonlinearity of climate impacts has up to our knowledge not been studied yet.

Our time-horizon is especially suitable for examining climate change impacts with IAMs

impact functions since the observed changes in temperature during this period are well within

the limit of 3˚C for which these functions have been calibrated. The analyses presented here

contribute to the IAMs literature by exploring the multi-model uncertainty for small to mod-

erate increases in warming.

The structure of this paper is as follows. The next section describes the data, scenarios and

methods that are used in this study. The third section presents and discusses the estimated

costs of climate change over the 20th century and their decomposition in natural and anthro-

pogenic factors. Section four concludes.

Data and methods

Climate and radiative forcing databases

We use the HadCRUT3 global surface temperature anomalies time series[7], available at https://

figshare.com/s/d8ed9e731989f819d828. We take into account the following indices which are

commonly considered to be the most important natural sources of inter-annual global and

hemispheric climate variability[8–11]: the Southern Oscillation Index (SOI) from the National

Center for Atmospheric Research (NCAR; https://figshare.com/s/d8ed9e731989f819d828) as a
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proxy for El Niño/Southern Oscillation; the North Atlantic Oscillation (NAO) from Climatic

Research Unit (CRU; https://figshare.com/s/d8ed9e731989f819d828); the Atlantic Multidecadal

Oscillation (AMO) from the National Oceanic and Atmospheric Administration (NOAA;

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/); and the Pacific Decadal Oscillation

(PDO) from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO; https://

figshare.com/s/d8ed9e731989f819d828).

The radiative forcing series used in this paper are from NASA[12]; available at http://data.

giss.nasa.gov/modelforce/). The initial year is 1880 and it is used to represent preindustrial cli-

mate forcing, which implies that the values of all radiative forcing variables in that year are

zero. We use the following variables (in W/m2): well mixed greenhouse gases (RFGHG; carbon

dioxide (CO2), methane (NH4), nitrous oxide (N2O); chlorofluorocarbons (CFCs)); tropo-

spheric ozone (O3); stratospheric water vapor; solar irradiance (SOLAR); land use change;

snow albedo; black carbon; reflective tropospheric aerosols (RAER) and; the indirect effect of

aerosols. As in previous studies[4,13] the total radiative forcing (TRF) is defined as the sum of

all the radiative forcing variables mentioned above (both natural and anthropogenic).

Global temperature scenarios generation

The detection and attribution of climate change has been an area of intense research that has

proven to be of interest for a wide range of applications including climate modeling, risk and

impact assessment, mitigation and adaptation studies, economics and policy making[14]. The

separation of the anthropogenic warming signal from the natural variability in global tempera-

tures has received significant attention during the last decades, leading to the development and

adaptation of a variety of statistical and physical modeling approaches to tackle this task[4,13–

18]. Although these studies are characterized by strong methodological differences[19], most

of them have concluded that global temperature and the total radiative forcing series share a

common secular trend. This trend is caused by anthropogenic forcing as a major contributor

to the observed warming, and natural variability is characterized as a stationary process.

The existence of this common secular trend allows separating this warming signal from

observed global temperature series. For constructing the scenarios used in this paper we apply

a simple regression model to detrend observed global temperatures as follows:

Tt ¼ aþ bTRFt þ ut ð1Þ

From which the following quantities can be obtained:

et t ¼ Tt � bTRFt ¼ aþ ut ð2Þ

et�t ¼ et t þ bðTRFt � RFGHG � RAERÞ ð3Þ

where Tt is the observed global temperature series, α is the intercept, β is an estimate of the

transient climate response[4,20], and ut are the regression residuals. The coefficients in all

three equations are the same and are estimated using the first regression. This simple regres-

sion-based method has shown to be adequate for decomposing global temperatures into

its anthropogenic and natural components[4,21], although other methods could be used

instead[15,22]. Eqs (2) and (3) are used to detrend and partially detrend observed global tem-

peratures, respectively. These time series, depicted in Fig 1, provide alternative climate sce-

narios as input for running the selected IAMs. The first scenario,et t from (Eq 2), represents

natural variability under a stationary climate where all external radiative forcings are held

constant at their preindustrial values (preindustrial scenario). This preindustrial scenario is

similar in concept to the preindustrial control run (piControl) in the Fifth Phase of the

Economic impacts of climate variability and change
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Climate Model Intercomparison Project (CMIP5; http://cmip-pcmdi.llnl.gov/cmip5/index.

html) conducted for the Fifth Assessment Report of the IPCC[14]. As described by Taylor

et al.[23], the climate responds not only to external forcing (attributable both to natural and

anthropogenic factors), but it also shows variations that are solely due to internal interactions

due to the complex nonlinear climate system. Control runs are carried out to explore this

natural “unforced” variability and, for this purpose, all external forcing factors are held at

their preindustrial values[14]. The preindustrial values of the external forcing factors are

commonly represented by their values on a particular year in the second half the 1800s or

some average over this period[23,24]. The second scenario,et �t from (Eq 3), represents the

evolution of global temperatures holding the main anthropogenic forcing factors (GHG and

RAER) constant at their preindustrial values, but allowing all other forcing factors to vary

according to the observed records (natural forcing scenario). Note that most of the time-

series based attribution studies include only GHG and RAER forcing to represent the

observed anthropogenic forcing[4,17,18]. In principle, this approximation could lead to an

overestimation of the natural forcing since it excludes only the main anthropogenic forcing.

However, the combined radiative forcing of all the other anthropogenic factors (i.e., O3,

stratospheric water vapor, land use change, snow albedo, black carbon, and the indirect effect

of aerosols) is very small (average value of -0.07W/m2) and has practically no effect in the

resulting estimated temperatures (the largest difference is -0.05˚C). The third scenario, rep-

resented by (Eq 1), corresponds to the observed temperature records.

Fig 1. Global temperature scenarios. Observed global temperatures (blue),et�t (preindustrial anthropogenic

forcing; red) andett (preindustrial forcing; green) for the period 1880–2010.

doi:10.1371/journal.pone.0172201.g001
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Impact functions

IAMs are frequently used for advising climate policy and are one of the few available methods

for analyzing the economic impacts of climate change at the global level in an internally consis-

tent manner[25,26]. As described below, here we use five impact functions from different

IAMs in order to explore the potential consequences that climate change could have already

had during the 20th century and to decompose these impacts into their natural and anthropo-

genic components. Estimating the potential costs of climate change is a challenging task for

several reasons. Among the most important are: the wide range of activities, natural and

human systems that can be affected by climate change and that need to be included in the

assessment of its potential costs[27]; the existence of significant gaps in information, knowl-

edge and methodologies[6,28,29] and; the limited understanding and capacity to model

human anticipation and reaction to climate change impacts, such as investments in adaptation

[30]. In general, adaptation has been modelled implicitly through the calibration of the impact

functions included in the model. Very few exceptions explicitly model adaptation (i.e., AD-

DICE[31]). In both cases, adaptation measures are aggregated at the regional level and no

explicit microeconomic modeling to represent investment dynamics, and decision making of

economic actors is included. As has been shown in the literature, the impacts of climate change

can be modified by the agent actions at the micro scale[32–34]. This is one of the most chal-

lenging aspects to include in the impact functions of IAMs and contributes to the large uncer-

tainty that characterizes the estimates of the costs of climate change[30]. Given the large

complexity of the systems and interactions these models are designed to represent, IAMs are

inevitably related with epistemic uncertainty, simplifications and omissions as well as some ad
hoc and subjective constructs[6,27,29,35–37]. At best, these models can approximate a repre-

sentation of the current fragmented and incomplete knowledge regarding climate change sci-

ence and economic impacts from climate change. Furthermore, as has been discussed in the

literature, validation and verification of models of complex open systems is problematic and

in general model validation and verification can create the misleading illusion that a model

is appropriate to support decision-making if its performance for reproducing current observa-

tions is deemed to be acceptable[38,39]. Good performance in reproducing the current state of

a complex open system is, at best, weakly correlated with better or more reliable projections

[40–43]. The economics of climate change, including IAM, faces the additional problem that

there is no recorded data regarding the observed welfare impacts of climate change to compare

with model outcomes. In fact, if such data would exist then there is no need to estimate past

climate impacts using IAMs as we do here. As such, what can be demanded of IAMs is not a

model that can reproduce current or past economic states, but that they reasonably represent

the state of the knowledge (and uncertainties) about estimating economic impacts of climate

change. In the light of these difficulties and those expressed in recent papers[6,29,37], it is

important to recall that the primary value of IAMs and other models of complex, open systems

is heuristic: they are useful for learning and exploring possible scenarios of how systems can

respond to different conditions, but not for producing predictions and, in a strict sense, cannot

be validated[38]. Therefore, caution should be exerted when interpreting numerical results of

IAMs, as they can give the impression of precision when they are only approximations of how

the economic system might respond to climate change that are conditional on a large set of fac-

tors and limitations as have been discussed in more detail by other studies[6,27,29].

As noted by several other studies[6,28–30,36], impact functions of IAMs are uncertain

because their empirical basis is small. These functions that estimate the GDP consequences for

temperature rise are based on statistical and modelling approaches that estimate relations

between climate conditions and impacts on a variety of sectors, including: the agricultural
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sector, coastal areas caused by sea level rise, other market sectors (especially energy use), health

risks, immaterial goods (recreation), cities, and ecosystems[44–48]. Moreover, recent literature

has focused on estimating the impacts of weather on the economy[49–51] and these results

could help providing an empirical foundation for better calibrating and specifying the impact

functions in IAMs. However, the impacts from weather shocks and climate change need not

be similar and can differ importantly[49,52]. Although some general ideas have been proposed

on how to bring climate and weather impacts together, no formal method has been devised to

do so. In the present paper, we contribute to this discussion by stressing the existence and

importance of interaction effects between natural variability oscillations and the long-term cli-

mate signal, which is one aspect needed to estimate the consequences of different changes in

climate variables. Moreover, we account for the uncertainty of the impact function by con-

ducting our estimations with a broad range of main impact functions from the IAM literature.

The damage functions of IAMs used in this paper come from the most widely used IAMs for

estimating the economic costs of climate change[44,47,53–55] and from a meta-analysis

review[28,56] that summarizes 21 of such estimates (see S1 Text, section 1). These impact

functions are global and no regional versions of impact functions are considered in this study.

In what follows the damage functions are denoted as DICE99 and DICE2007, the FUNDn3.6,

PAGE2002 and MA (for meta-analysis).

Results and discussion

In this section we present estimates of the contributions of natural and anthropogenic factors

to the estimated costs of observed global temperature during a period comprising the 20th cen-

tury. Based on the three aforementioned temperature scenarios, five economic impact scenar-

ios are defined:

1. S_OBS: The expected economic costs given the observed global temperature evolution,

obtained using Tt.

2. S_NV: The expected costs associated with natural variability under a stationary climate

holding all external forcing factors constant at their preindustrial levels, obtained usinget t.

3. S_NVF: The expected costs associated with the observed natural external forcing and inter-

nal variability, obtained usinget�t . This scenario is used only for estimating S_AF and S_NF

described below.

4. S_AF: The expected costs associated with the anthropogenic radiative forcing, obtained as

the difference of S_OBS and S_NVF.

5. S_NF: The expected costs associated with the natural radiative forcing, obtained as the dif-

ference of S_NVF and S_NV.

Note that the impact scenarios above are composed of the combination of the contributions

of natural and anthropogenic factors. Given the nonlinear functional forms in the impact func-

tions used, interaction effects between the different components are produced. Consider as an

illustration D = f(a + b), where f is, for example, a quadratic function. In this case, D would be

equal to the sum of a2+b2, plus the interaction term 2ab. The approach for separating the con-

tributions of internal variability and anthropogenic and natural forcing described in steps 1 to

5 above preserves their interaction effects (e.g., the effects of natural variability under a station-

ary climate are not the same than under an externally forced climate due to the nonlinearities

in the damage functions).

Economic impacts of climate variability and change
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Estimates of costs from observed global temperatures

Panel a) of Fig 2 shows the estimated impacts of the observed climate during the 20th century

obtained from the 5 different IAMs impact functions. According to PAGE2002, MA and

DICE2007, by the end of the century the observed global temperature had a negative effect on

welfare. For DICE99 and FUNDn3.6 the effect was positive. While DICE99, DICE2007, MA

and PAGE2002 suggest that the economic impacts during the last decade are small (about

-0.26% to 0.14% of global GDP), FUNDn3.6 shows considerably larger (positive) impacts

reaching about 0.8% of GDP in 2000. FUNDn3.6 equity weighting results show the highest

benefits: 1.19% in 2000 and a maximum of 1.61% in the mid-1970s. According to the FUND

model during the 20th century the poorer countries experienced greater benefits, primarily

from CO2 fertilization, than the richer countries and therefore the equity weighted impacts

Fig 2. Economic effects over the 20th century according to different damage functions. Panels show (a) the economic impacts of observed

temperature (S_OBS), (b) the economic impacts associated with the effects of anthropogenic radiative forcing (S_AF), (c) the economic impacts

associated with the effects of natural radiative forcing (S_NF) and (d) the economic impacts associated with the effects of natural variability (S_NV).

doi:10.1371/journal.pone.0172201.g002
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are more positive than the non-weighted average[28]. The differences in the projected impacts

mainly arise from small differences in included climate impact categories[28,56] and from dif-

ferences in how the impact functions are specified. In particular, the chosen functional form

for the impact functions has an important effect over the projected impacts and these can vary

greatly from model to model: while the functional form in DICE1999, DICE2007 and MA is

quadratic, in PAGE2002 the functional form goes from linear to cubic, and in FUND each sec-

tor has specific functional forms.

With the exception of PAGE, all other impact functions used in this paper are deterministic

and do not provide information regarding the uncertainty in the estimated costs. Nevertheless,

by using all the estimates produced by the individual impact functions a general uncertainty

interval can be calculated. Fig 3 panel a) shows the multimodel mean of S_OBS and the corre-

sponding two standard deviation intervals representing the uncertainty in this estimate. The

multimodel mean in Fig 3 panel a) shows a steady positive trend that leads to net benefits of

Fig 3. Multimodel mean of the estimated economic effects over the 20th century. Multimodel estimates of the economic impacts of observed

global temperature (S_OBS), (b) the economic impacts associated with the effects of anthropogenic radiative forcing (S_AF), (c) the economic

impacts associated with the effects of natural radiative forcing (S_NF) and (d) the economic impacts associated with the effects of natural variability

(S_NV).

doi:10.1371/journal.pone.0172201.g003
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about 0.30% of GDP in 2000. Note however that throughout the 20th century, the multimodel

mean value is always smaller than the standard deviation of the models’ outcomes, underlying

the very large uncertainty in these estimates (e.g., the standard deviation in 2000 was 0.56%).

For the estimates in Fig 3 all IAMs are weighted equally, implying that all of them produce

equally credible estimates.

Contributions of the natural and anthropogenic radiative forcing to the

estimated impacts

Panels a), b) and c) of Fig 2 show that the trending behavior of the estimated global economic

impacts S_OBS can only be produced by S_AF and S_NF which share a somewhat similar

nonlinear trend. However, the magnitude of the impacts produced S_NF is, for most models,

about one order of magnitude lower than those associated with anthropogenic forcing. As

clearly shown in panel d), the costs associated with natural variability describe oscillatory pat-

terns around a fixed mean that cannot account for the trend in global impacts.

According to PAGE2002, MA, DICE99 and DICE2007, the welfare impacts of anthropo-

genic forcing lie in the range of a few tenths of percent of the world GDP by the end of the

20th century (from -0.23% in PAGE2002 to 0.24% in DICE99). This figure is considerably

larger for FUNDn3.6 which indicates benefits in the range of about 0.60% to 1.37%. It is also

worth noting that DICE2007 provides the smallest estimates of impacts, reaching only about

-0.1% at the end of the century.

It is of particular interest to quantify the interaction effects produced by the different com-

ponents of global temperatures. The implicit assumption in IAM applications is that the

estimation of the economic costs of climate change can be based on stylized temperature pro-

jections based only on anthropogenic forcing; i.e., economic impacts are linearly separable

into their components caused by different kinds of forcing. As illustrated below, this assump-

tion does not hold and can considerably bias the impact estimates. Fig 4 shows the interaction

effects, obtained as the difference of S_AF and the costs estimated using the temperature based

on anthropogenic forcing only (S4 Fig). These interaction effects are characterized by a nonlin-

ear trend that depends on the magnitude of anthropogenic forcing, natural forcing and vari-

ability and on the particular specification of the impact function. These synergistic impacts

have non-negligible magnitudes, get larger as the observed anthropogenic forcing increases

and can significantly change the evolution of impacts. The amplitudes of the interaction effects

ranges from 0.07% (MA) to 0.16% (DICE99) of GDP, and in the case of FUND the amplitudes

are 0.55% (average) and 0.73% (equity) of GDP. For all of the impact functions, the magnitude

of the interaction effects is comparable to, or are larger than, those of S_NF. The slowdown in

the anthropogenic radiative forcing experienced since the early 1990’s provides an illustration

of how much these interaction effects can modify the estimated impacts. Since the last years of

the 1990s, the estimated impacts decreased in magnitude which is in part due to the aforemen-

tioned slowdown. However, as shown by S4 Fig, this reduction was heavily reinforced by the

interaction effects, leading to a significant drop in the magnitude of the estimated impacts

since the late 1990s.

The multimodel mean of S_AF indicates that the human contribution to the observed

warming during the 20th century produced net benefits in the world average. The benefits

increased from about 0.08% at the beginning of the century to about 0.19% of GDP in 2000

after reaching about 0.33% in the 1990’s (Fig 3 panel b). As before, the uncertainty is quite

large: the multimodel mean is always smaller than the standard deviation of the models’

outcomes.

Economic impacts of climate variability and change
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Fig 4. Interaction effects for the economic impacts of anthropogenic forcing. (a) interaction effects for

PAGE, DICE2007, DICE99 and MA. (b) interaction effects for FUNDn3.6 average and FUNDn3.6 equity. NI

denotes that interaction effects are not included.

doi:10.1371/journal.pone.0172201.g004
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The contribution of S_NF to the overall impacts is depicted in panel c) of Fig 2. The magni-

tude of the impacts is considerably lower than that of S_AF, amounting to at most 0.1% during

the century, with the exception of FUNDn3.6 in which the highest values of S_NF are in the

range of 0.3% to 0.5%. With the exception of DICE2007, the increases in natural forcing

observed since the mid-20th century make S_NF contribute in the same direction as S_AF to

the estimated total costs. This is consistent with climate physics: irrespective of their origin,

increases in radiative forcing simply add up, leading to larger climate transient response and

equilibrium temperatures[20]. The effects of natural forcing are dominated by the eleven-year

cycle in solar forcing. The correlation between the impacts attributed to natural forcing factors

with solar forcing is very large and positive for DICE99, DICE2007, MA and FUNDn3.6 rang-

ing from 0.62 to 0.91, while for PAGE2002 this correlation is -0.84.

The multimodel mean shows that the impacts of S_NF where practically zero until the

1940s. In the second half of the century natural forcing (mainly solar) produced small but

increasing benefits reaching around 0.04% of GDP in 2000 (Fig 3c).

Estimates of costs obtained from the preindustrial scenario

All of the impact functions indicate that the natural variability alone can lead to impacts that

are comparable in magnitude to those that can be attributed to anthropogenic factors until the

last three decades of the 20th century, and are much larger than those that can be associated

with the observed natural forcing (Fig 2d). The main difference is that the natural variability

impacts follow low-frequency oscillations instead of sustained trends. The impacts under the

preindustrial scenario can be associated with some of the main modes of interannual climate

variability. As shown in S3 Table, S_NV is highly and significantly correlated with AMO and

to a lesser extent with SOI, PDO and NAO. The magnitude of these correlations is broadly

similar for the estimates obtained using the PAGE2002, MA, DICE99 and DICE2007 impact

functions (about 0.70, 0.30, 0.20 and 0.24 in absolute value for AMO, SOI, PDO and NAO,

respectively), although the signs are different depending on the specification of the impact

functions. Only in the case of DICE2007 the impacts of natural variability are strictly negative,

while for DICE99 they are mostly negative and for PAGE2002 and MA they are mainly posi-

tive. These non-monotonic impacts are dominated by the low-frequency variability and large

persistence of the climate system.

Linear regression models using AMO, SOI, PDO and NAO as explanatory variables were

estimated, but only the first two (AMO and SOI) were found to significantly contribute to

explain the variability of the estimated costs. The following specification was found to be statis-

tically adequate for most of the IAMs estimates (see S4 and S5 Tables for parameter estimates

and misspecification tests):

S NVit ¼ cþ aS NVit� 1 þ d1AMOt þ d2AMOt� 1 þ gSOIt þ εt ð4Þ

where S_NVit are the estimated costs for model i = 1,. . .,5. This regression model has a similar

specification to those in previous studies[4] for global temperature series. In all cases AMO

and SOI are highly significant, except for the estimates obtained with FUNDn3.6 where only

AMO is significant.

For most IAMs, the estimated regressions explain about 60% of the variance of the impacts

associated with natural variability. Furthermore, AMO and SOI generate important fluctua-

tions from the mean of S_NVit: a one standard deviation shock to AMO produces a cumulative

long-run response of about 0.60 times the standard deviation of S_NVit (positive for DICE99

and DICE2007, negative for PAGE2002 and MA) while a shock of one standard deviation to

SOI generates a long-term response 0.45 times the standard deviation of S_NVit (negative for

Economic impacts of climate variability and change
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DICE99 and DICE2007, the opposite occurs with PAGE2002. See S6 Table). For FUNDn3.6 a

one standard deviation shock in AMO produces a response of 0.39 (average) and 0.77 (equity)

times the standard deviation of S_NVit. These long-run responses are calculated by scaling the

coefficients of the explanatory variables in (Eq 4) by 1/(1-α).

The multimodel mean of S_NV is mainly negative and shows a low-frequency oscillatory

pattern similar to AMO (correlation coefficient of 0.60) varying in a range of -0.08% to 0.17%

of GDP during the 20th century. It is worth noticing that the standard deviation of the models’

outcome is on average almost 3 times larger than the multimodel mean, indicating the large

uncertainty in this estimate. Furthermore, S_NV shows that until the last three decades of the

20th century, natural variability was the main source of economic impacts. Since then, the

main driver of impacts is anthropogenic forcing.

Sectoral decomposition of impacts

According to the sectoral decomposition of the estimated impacts obtained by FUNDn3.6 (S1

Text, section 2), anthropogenic forcing in agriculture accounts for most of the economic bene-

fit in the past century (S1 Fig). Benefits attributable to the anthropogenic forcing are also

found for the energy sector, while this forcing imparted a trend in the economic losses in

human health and water resources. The model strongly suggests that the contribution of

anthropogenic forcing to the estimated number of deaths per thousand people is dominant in

the case of diarrhoea, respiratory diseases and malaria (S2 Fig).

Discussion

This paper adds to the recent discussion regarding IAMs by investigating the differences in the

estimates obtained from model to model for small increases in temperatures. Even though the

estimates of the global economic impacts of climate change used as benchmarks to calibrate

IAMs are in broad agreement[28,56], IAMs impact functions do not agree in the sign nor the

magnitude of the impacts for small changes in temperature (S3 Fig). These differences are

largely due to how the impact function is specified, in particular the functional form that is

chosen and if the dynamics of impacts are modeled[5,30]. In the case of FUNDn3.6 and

DICE99 the observed warming has brought benefits to global welfare, while according to

DICE2007, MA and PAGE2002 the opposite is true. With the exception of FUNDn3.6, which

estimates the magnitude of the impacts in about 1% of GDP at the end of the 20th century, the

rest of the IAMs considered value the impacts in only a few tenths of percent.

Despite the uncertainty in impact functions estimates, some robust results are obtained.

First, the magnitude of the impacts over the last three decades is unprecedented over the last

century. Only in the case of DICE99 the magnitude of the impacts attributable to natural vari-

ability are larger than those of the anthropogenic forcing at end of the 20th century. Second,

the decomposition of the estimated impacts of observed global temperature reveals that at the

end of the 20th century anthropogenic forcing became the dominant driver of the estimated

economic impacts, producing similar or larger impacts than those of low-frequency natural

variability. Anthropogenic impacts increased over the period of analysis in a non-monotonic

way, slowly for the first part of the 20th century, accelerating significantly after the 1970s and

reducing their rate of increase after the 1990s when a slowdown in global warming started

[4,13,57,58]. Third, it is shown that the interaction effects can notably modulate the estimates

of the economic impacts of climate change. If these effects are not considered as is common

practice, the estimated costs of climate change can be biased. Fourth, the contribution of natu-

ral forcing to the total estimated impacts is about one order of magnitude lower than that of

the anthropogenic forcing or that of the internal interannual variability. The main driver of
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the impacts associated with natural factors is solar forcing, which imprinted its 11-year cycle

and a slight positive trend. Fifth, in the intra- and inter-decadal scales the amplitude of the

impacts associated with natural variability is considerably larger than that produced by anthro-

pogenic factors during the first half of the century. These non-monotonic impacts are mostly

determined by the low-frequency variability modes and persistence of the climate system.

Conclusion

As is common in climate change science and modeling, IAMs have important limitations and

are fraught with uncertainty. Nevertheless, these models are valuable tools for supporting deci-

sion making and for exploring the potential economic consequences of climate change. This

paper illustrates the large uncertainty in the impact functions projections for small increases in

warming, such as that of the observed warming period and those that are projected to occur in

the short- and medium-terms. Given the common use of positive discount rates, the impacts

in the near and medium future can have a significant weight on the present value estimates of

climate change costs. Investigating the differences in IAMs impact functions and improving

their calibration for small increases in warming would help providing better estimates of the

economic costs of climate change. The results of this paper point to the importance of interac-

tion effects which are currently ignored in IAMs projections of the costs of future climate

change. Most IAMs produce temperature projections based exclusively on anthropogenic forc-

ing, implicitly assuming that the different natural and anthropogenic contributions to the cli-

mate change costs are linearly separable. Given the nonlinearity of impact functions this is not

the case and as is shown in this paper the interaction effects can be large, potentially biasing

the estimates if ignored. The consequences of this assumption for the estimates of future cli-

mate change costs will be addressed by the authors in a forthcoming paper.
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