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Abstract

In this paper, a multifractal downscaling technique is applied to adequately transformed and

lag corrected normalized difference vegetation index (NDVI) in order to obtain daily esti-

mates of rainfall in an area of the Peruvian Andean high plateau. This downscaling proce-

dure is temporal in nature since the original NDVI information is provided at an irregular

temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The

spatial resolution of approximately 1 km remains the same throughout the downscaling pro-

cess. The results were validated against on-site measurements of meteorological stations

distributed in the area under study.

Introduction

Rainfall information is one of the most important inputs to agricultural models in areas of dif-

ficult accessibility such as the Andean high plateau. To obtain information at high spatial reso-

lution of phenomena such as rainfall and temperature variation, researchers employ indirect

forms of rainfall information. It is usually the case that several meteorological stations are

spread out to cover the study area, but only the data from meteorological stations is not

enough to amount for the spatial variability of rainfall, and keeping the stations running is

often expensive and unfeasible in certain regions, for example, of the Andes. One alternate

source of spatial variability is the so-called normalized difference vegetation index (NDVI). In

the range from 200 to 1200 mm per year, NDVI has been reported to show a linear relationship

with respect to rainfall [1, 2]. The limit for such linearity corresponds to areas with low annual

precipitations [3]. Above 1200 mm per year, NDVI appears to saturate. Therefore, the index

increases slowly when rainfall increases or reaches a constant plateau. However, NDVI corre-

spondence to rainfall only makes sense at a temporal resolution in the order of 8 to 10 days

periods due to its intrinsic smoothness [4]. Therefore, for agriculture applications NDVI

requires to be downscaled in time, so that intermittency (generation of zero rainfall values) is

added and a useful temporal resolution is achieved, say daily.
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To process NDVI information as an indirect measure of rainfall, it is necessary to overcome

several challenges. For example, NDVI does not provides clear information about rainfall

intermittency, its response is cumulative (amounting for its smoothness), its response is almost

always delayed many days after rainfall has fallen in the region, and there is a need for auxiliary

information about the long term statistics of rainfall in the regions where there are no meteo-

rological stations so that a proper transformation from NDVI measure to rainfall measure-

ments is performed.

The high variability of rainfall suggests statistical downscaling as an appropriate technique

for temporal downscaling of NDVI. In particular, it is desired to exploit the scaling behavior of

the phenomena, thus a multifractal technique is chosen for the task. Among multifractal tech-

niques, there are canonical and microcanonical procedures [5]. The cumulative nature of

NDVI suggests the use of a microcanonical approach since roughly speaking the dissagrega-

tion process preserves exactly the rainfall amount in every step of the dissagregation process

(mass/energy conservation). That is, the sum of weights of the random generator of the statisti-

cal microcanonical temporal downscaling procedure is exactly 1.

The goal of this manuscript is threefold. First, obtain rainfall from spatio-temporal NDVI

information with an 8 day period temporal resolution (because of the dyadic nature of the cas-

cading procedure). This requires using auxiliary information coming from some meteorologi-

cal stations in order to estimate the intermittency and scale factor for the NDVI

transformation. Then the time between rainfall and the NDVI response is computed and used

to translate the the NDVI time series. Finally, the multifractal temporal downscaling procedure

is applied to the transformed NDVI information in order to obtain an estimation of a 1 day

period rainfall information.

NDVI Data

The NDVI dataset (in S1 File) consists of 288 (dekad) composite images(225 × 225 pixels)with

an approximate resolution of 1km corresponding to the area shown in Fig 1. This NDVI is

derived from the vegetation instruments SPOT-4 and SPOT-5 over the 46 time period starting

in January 1999 and ending in December 2006. The period from 47 January 2007 to December

2007 is also considered in this work for correction 48 purposes [2]. The spectral and spatial res-

olution of the vegetation instruments is the 49 same. The spectral band 0:61-0:68 mm corre-

sponding red and the band 0:78-0:89 mm 50 corresponding to near-infrared (NIR) were used

to compute the NDVI index by employing the standard formula

NDVI ¼
NIR � RED
NIRþ RED

: ð1Þ

The final product has a spatial resolution of * 1 km. The above formula for the NDVI

index restricts the values to be in the interval [−1, 1]. In addition, the NDVI index is geometri-

cally and radiometrically corrected producing the S10 NDVI product [6]. The 288 days (dekad)

data set were defined according to the civil calendar. Every month was divided into 3 pieces:

from the 1st day to the 10th; from the 11th to the 20th; and from the 21st to the end of each

month. Each month therefore produces 3 NDVI data points per month. This NDVI informa-

tion, however, is not appropriate for downscaling purposes since the sampling period of the

time series is not uniform. Using the smoothness assumption on NDVI data [4], a simple spline

interpolation was applied to NDVI in order to standardize the time scale. In this manner,

NDVI becomes an evenly spaced (in time) signal. For the sake of simplicity, the time scale of 8

days was chosen so that a dyadic cascade procedure can be performed in subsequent sections.

NDVI Downscaling in the Andes Plateau
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NDVI information is such that its value at time t can be considered as the cumulated effect

of an “input process” in the time interval [t−T/2, t + T/2], where T is the size of the time inter-

val. In our case, the input process is rainfall. Therefore, its disaggregation preserves the total

NDVI measure value. That is,

NDVIð½t � T=2; t þ T=2�Þ ¼ NDVIð½t � T=2; t1�Þ þ NDVIð½t1; t þ T=2�Þ

for t−T/2< t1 < t + T/2. Since in our application T is fixed, then NDVI([t−T/2, t + T/2]) is

Fig 1. Study region.

doi:10.1371/journal.pone.0168982.g001
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denoted as NDVI(t). In addition, NDVI responds after rainfall has fallen [6]. This lag between

the NDVI signal and rainfall measurements can be better understood when considering that

one of the primordial uses of NDVI is estimating the biomass index in a region [7]. Thus, the

lag in the NDVI signal is the latency time that takes between rainfall reaching the ground and

the time changes in the biomass index are registered in the red and infrared frequencies,

which then are used to compute Eq (1). In addition, the rainfall information requires some

knowledge of the probability of zero rain, namely, the rainfall intermittency. Thus, the rainfall

measurements obtained from NDVI, say NDVIrain, values can be modeled as

NDVIrainðtÞ ¼ FðNDVIðtÞ; lag; vÞ; ð2Þ

where F is a function of the shift in time lag and the parameter v associated to the rainfall inter-

mittency [2]. We will see later that the function F amounts to a vertical traslation of NDVI as

well as a linear resizing coming from auxiliary information.

NDVI has high spatial resolution (*1 km) when compared to the usual satellite data (*30

km or more). Therefore, this fact makes NDVI a great source of spatial information if con-

verted to rainfall measurements. However, NDVI has a smooth response, and therefore it

dresses the intermittency of rainfall in time. It is thus that NDVI only makes sense as a source

of rainfall information at coarse temporal resolution, for example 8 or 10 day period temporal

resolution. Information about the intermittency probability is needed for downscaling NDVI

to a daily resolution, so an auxiliary source of information is needed for such task. Once this

intermittency probability is known, the downscaling process inherently generates zero value

measurements through a multiplicative cascade procedure as described in the next section.

Unfortunately, information at high resolutions is scarce or nonexistent in the Andean high pla-

teau, however on-site meteorological stations measurements (locations of such stations are

shown in Fig 1 and Table 1) can be used to generate an approximate rainfall field by employing

the relationship between rainfall and elevation [8]. The stations measurements are provided in

S1 Table and the corresponding locations in the 225 × 225 grid are given in S2 Table. For this

purpose, the thin-plate smoothing spline algorithm implemented in the ANUSPLIN 4.36 pack-

age [9, 10] is used to generate such rainfall fields, which consider in addition to measured rain-

fall the latitude, longitude, and elevation of the area [11]. The method was chosen due to its

higher accuracy compared to other methods in areas similar to the Andes high plateau [8, 12–

14]. Also, several climate products such as WorldClim ([8], http://www.worldclim.org) and

IWMI Climate Atlas/CRU gridded data ([15], http://www.iwmi.org, http://www.cru.uea.ac.uk)

have successfully applied the methodology that the ANUSPLIN package provides.

Downscaling Method

A multiplicative random cascade divides a seed rainfall measurement and probabilistically

assign to a subdivision of the seed area new rainfall measurements. the subdivisions are charac-

terized by the branching number b, which in the temporal case (one dimensional) is b = 2.

After n subdivision, one denotes the i-th interval (out of i = 1, . . ., bn intervals at level n) by D
i
n

and define λn = b−n as the dimensionless spatial scale. It then follows that the mass in subdivi-

sion D
i
n is:

rnðD
i
nÞ ¼ r0ln

Yn

j¼1

WjðiÞ ð3Þ

for i = 1, 2, . . ., bn, n> 0, ρ0 is the initial rainfall measurement at n = 0 and Wj is the cascade
generator at level j.
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Multifractal Cascade Model

The cascade is called microcanonical in that mass is preserved exactly at every level of the mul-

tiplicative cascade (in contrast the canonical model preserves means; see [5]). In this case, the

random variable Wn (the cascade generator at level n) is constrained to preserve exactly the

measurement in the previous cascade level. That is, every new level consisting on subdividing

every measurement into b new measurements satisfies

Xb

k¼1

Wnðbði � 1Þ þ kÞ ¼ 1 for i ¼ 1; 2; . . . ; bn� 1 ð4Þ

As in the β-lognormal model introduced in [16], intermittency (or zero values generation) in

the microcanonical model is introduced by allowing Wn(i) = 0 in a multiplicative manner. If

the random generator is symmetric then the microcanonical model disaggregates every non-

zero rainfall amount in the interval i at scale n−1 into b = 2 intervals at scale n. However, two

situations may occur: One is that intermittency can emerges in one interval only at the scale n
with probability p0, w, i.e.,

PðWnðjÞ ¼ 0 _Wnðjþ 1Þ ¼ 0Þ ¼ p0;w:

The other situation is that zero measurements do not occur, which imply that the new inter-

vals j and j + 1 have the value of the random generator in the open interval (0, 1). The reader is

referred to [17, 18] for continuous models recently proposed to address intermittency. In par-

ticular, one can characterize the random generator Wn by associating its probability distribu-

tion to that of the so-called breakdown coefficients [19–21].

Table 1. Weather station locations and altitudes.

Weather station Longitude (degrees) Latitude (degrees) Altitude (m.a.s.l.)

Arapa -70.12 -15.14 3920

Ayaviri 70.59 -14.88 3920

Azángaro -70.19 -14.91 3863

Cabanillas -70.35 -15.64 3890

Capachica -69.84 -15.62 3819

Chuquibambilla -70.73 -14.80 3910

Cojata -69.36 -15.02 4344

Crucero Alto -70.02 -14.36 4130

Huancané -69.76 -15.20 3860

Huaraya Moho -69.49 -15.39 3890

Lagunillas -70.66 -15.77 4250

Lampa -70.37 -15.36 3900

Llally -70.90 -14.95 4111

Mañazo -70.34 -15.81 3942

Muñani -69.97 -14.78 4119

Pampahuta -70.68 -15.49 4320

Progreso -70.36 -14.69 3965

Puno -70.02 -15.82 3840

Tambopata -69.15 -14.22 1340

doi:10.1371/journal.pone.0168982.t001
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Breakdown Coefficients

Let R be a D-dimensional random field. For a D-dimensional box ΔT of size TD, the breakdown

coefficient of a box Δτ of size τD inside ΔT is the ratio between the aggregated measure Rτ over

Δτ and the total rainfall RT over ΔT. That is,

Wðt;TÞ ¼
Rt

RT
for t < T: ð5Þ

Since in this paper D = 1 and the branching parameter in Eq (3) is b = 2, the interval ΔT cen-

tered at t is breakdown into two pieces with lengths τ and T−τ and respectively centered at t1
and t2 as shown in Fig 2. Therefore, for every interval of length T, one has the breakdown

parameters Wðt;TÞ ¼ Rtðt1Þ
RT ðtÞ

and WðT � t;TÞ ¼ Rtðt1Þ
RT ðtÞ

.

Note that 0�W(τ, T)� 1 and that it only depends on the branching parameter b. Picking

τ = T/2, the breakdown parameters are computed at different scales by including the aggrega-

tion of the random field at a scale λn = b−n. Hereafter, the ℓ-th breakdown coefficient at scale

λn is denoted as Wn(ℓ) for ℓ 2 {1, . . ., bn}. Therefore, at scale λn and using the indexation in

Eq (4), the ℓ = b(i−1) + k breakdown coefficient is

Wnðbði � 1Þ þ kÞ ¼
RT=2;ln

RT;ln

¼
rnðD

bði� 1Þþk
n Þ

rnðD
bði� 1Þþ1

n Þ þ rnðD
bði� 1Þþ2

n Þ
;

where i 2 {1, . . ., 2n−1}, k 2 {1, 2}, and the intervals D
bði� 1Þþ1

n and D
bði� 1Þþ2

n are subdivisions of an

interval D
i0

n� 1
for i0 2 {1, . . ., 2n−1}.

From the theory of self-similar fields in [20], one has that Eq (5) satisfies

E½Wðt;TÞq� / ðT=tÞ
KðqÞ

where K(0) = K(1) = 0 and K(q) is the moment scaling exponent function in [22, 23]. Note also

that Eq (5) have the property that

E½Wðt;TÞq� ¼ E½Wðt; nÞq�E½Wnðn;TÞ
q
�

with τ< ν< T. Taking the logarithm of the breakdown coefficients x(τ, T)≔ logW(τ, T), it

then follow for τ< τ1 < . . .< τs< T} that

xðt;TÞ ¼ xðt; t1Þ þ xðt1; t2Þ þ � � � þ xðts;TÞ:

If the terms in the right-hand-side of the above equation are i.i.d random variables whose

distribution depends only on (τ/T)1/s, then the p.d.f of the random variables p(x, (τ/T)1/s) is the

probability distribution of the logarithm of the breakdown parameters. The p.d.f. p(x, τ/T) is

the s-fold convolution of p(x, (τ/T)1/s), which characterizes the scaling behavior of the field in

terms of the parameters of p(x, τ/T) [19]. Furthermore, following [20 Section 2], the moment

generating function cðq; t=TÞ ¼ Lfpðx; t=TÞg ¼ ðt=TÞ� wðqÞ
, where Lf�g denotes the Laplace

transform in the variable q, is used to obtain the relation

KðqÞ ¼ qDþ wðqÞ:

Thus, the breakdown coefficients are a tool that can be employed to study the moment scal-

ing function that characterizes a random field since the breakdown coefficients density func-

tion does not vary through scale. This case is called self-similar. Nevertheless, it was observed

in [19] that the probability density of the breakdown coefficients of rainfall have the same

shape but their variance increases with the resolution. This is characteristic of self-affine

NDVI Downscaling in the Andes Plateau
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random fields. For these fields, the computation of the breakdown coefficients is exactly the

same, but the probability density function parameter follow a power law with respect to the

scale. For instance, if a is such a parameter, then

a ¼ að0Þ
t

T

� �� H
; ð6Þ

where a(0) and H are computed empirically from the breakdown coefficients histograms. This

case is thus called self-affine [19, 21].

The Beta Distributed Random Generator

Classically, rainfall time series have been fitted to Gamma distributions [24]. While any infi-

nitely divisible probability distribution can be used in the theory described in the previous sec-

tions (e.g., any α-stable distribution [23]), the generation of random numbers satisfying Eq (4)

is not straightforward. However, a pragmatic choice for a probability distribution of Wn is the

Beta distribution. This is due to its nice analytic properties. The Beta distribution is given by

pðrÞ ¼
1

Bða; cÞ
ra� 1ð1 � rÞc� 1

; ð7Þ

where Bða; cÞ ¼
R 1

0
xa� 1ð1 � xÞc� 1 dx is the well-known Beta function. For the random genera-

tor Wn probability distribution pWn
is given by the symmetric Beta distribution. That is, pWn

is

Eq (7) when a = c. Note that if a = 1, then it conveys a uniform distribution; on the other hand

if a> 1, then the distribution is located around E(W) and is bell shaped. Also, increasing or

Fig 2. Breakdown coefficient.

doi:10.1371/journal.pone.0168982.g002
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decreasing the only parameter a has an effect on the width of the distribution, which is desired

in the characterization of the breakdown coefficients distributions with respect to the scale.

Moreover, from the properties of the Beta function, the mean and variance of a Beta distribu-

tion with parameters a and c are

EðWÞ ¼
a

aþ c
and Var ðWÞ ¼

ac
ðaþ cþ 1Þðaþ cÞ2

;

respectively. If a = c, then

EðWÞ ¼
1

2
and Var ðWÞ ¼

1

4ð2aþ 1Þ
:

Thus,

a ¼
1

8Var ðWÞ
� 0:5;

which can be used directly to compute the generator Wn distribution parameter a straight

from the variance of the breakdown coefficient histograms. In this paper, a multifractal down-

scaling technique is applied to adequately transformed and lag corrected normalized difference

vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peru-

vian Andean high plateau. This downscaling procedure is temporal in nature since the original

NDVI information is provided at an irregular temporal sampling period between 8 and 11

days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains

the same throughout the downscaling process. The results were validated against on-site mea-

surements of meteorological stations distributed in the area under study.

When the branching number is b = 2, the two values w1 and w2, generated by Wn, must sat-

isfy Eq (4) and have to be distributed according to Eq (7). Computing constrained random

numbers is the main difficulty in the microcanonical downscaling formalism. Fortunately, as

pointed out in [5, 21], the generation of the generation of Beta distributed random numbers

satisfying Eq (4) is done by computing two Gamma distributed random numbers x1 and x2,

having the same parameter a as the objective symmetric Beta distribution, so that w1 = x1/

(x1 + x2) and w2 = x2/(x1 + x2) are Beta distributed random numbers satisfying the required

conditions.

Application to Data in the Andes

The microcanonical downscaling technique is first illustrated by applying the procedure to

an 8 day period rainfall (aggregated) at Chuquibambilla Station (see Fig 1 and Table 1 for

the exact location). That is, the rainfall time series at the station is aggregated from 1 day to 8

day period. In Fig 3, one can observe the aggregated series in the right and the correspond-

ing histogram of breakdown coefficients on the left. Note how the variance reduces when

the temporal resolution reduces (the day period augments and the distribution parameter

increases).

The parameter a is estimated directly from the variance of the weight distributions in the

above histograms of the breakdown coefficients; see Fig 4. Similarly, the intermittency parame-

ter p0, ω is computed from the original time series by counting the zero weights on the break-

down coefficients; see Fig 5. Here it is observed that the zero probability of the left intervals are

close to the one for the right intervals as expected. The downscaling of the aggregated time

series (3 levels) for both downscaling cases, the self-similar and self-affine, can now be per-

formed. The result of the downscaling procedure can be seen in Fig 6.

NDVI Downscaling in the Andes Plateau
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A comparison between exceedance probability plots of the observed rainfall and the

downscaled rainfall is given in Fig 7. It means that the underlying probability behavior of

both time series, observed and generated, are similar to each other as expected. In this case,

the breakdown coefficients were computed directly from the observed rainfall, which also

allowed obtaining the rainfall intermittency. This is not the case for locations in the Andes

high plateau where there are no meteorological stations. In this manuscript, the same proce-

dure will be applied to locations having only NDVI information. The auxiliary information

will be obtained from a mesh of meteorological stations in the area under study. It is impor-

tant to remark that the multifractality in the method lies in the characterization of the Beta

distribution parameter a. In this case, a self-similar case will have a constant a for all scales

(H = 0 in Eq (6)), and a self-affine case will have a non zero exponent H in the power law

Eq (6). As shown by the breakdown coefficients histograms, the distribution appears to be

self-affine from Fig 4. However, both self-similar and self-affine cases are applied in this

manuscript.

Correspondence Between NDVI and Rainfall Values

As mentioned in the previous section, the only information available in the area under study is

NDVI. To be able to use NDVI as a measure of rainfall, one need to apply a suitable transfor-

mation. This transformation consists of two steps

Fig 3. Histograms and their corresponding aggregation of the breakdown coefficients at different temporal

resolutions (2, 4, 8, 16 and 32 days).

doi:10.1371/journal.pone.0168982.g003
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1. Lag correction,

2. NDVI scale factor.

Both procedures require auxiliary information since NDVI needs a reference signal, in

order to compute its lag with respect to rainfall, and to obtain an estimate of the intermittency

and some simple statistics of rainfall at any location of the area under study. Here is where the

ANUSPLINE estimates play a crucial role. That is, the ANUSPLINE time series will serve as

the reference signal for the lag computation, and its mean and standard deviation at each point

of the grid will be employed for the scaling of NDVI.

Lag Correction. Lag correction consists on calculating the lag time between the moment

rainfall occurs and the time in which NDVI responds to it. For this one relies on harmonic

analysis using a Fourier series decomposition of NDVI and the auxiliary ANUSPLINE infor-

mation at a fixed point.

Fourier or harmonic analysis is a technique that decomposes a complex static signal into a

summation of sines and cosines, where each wave is characterized by its corresponding ampli-

tude and phase angle. Fourier analysis has been used successfully in the analysis of NDVI time

series [6]. Assuming that the NDVI time series is described by a function S, then since the pro-

cess is evidently periodic it can be described by the so-called Fourier series. That is, it can be

described bu the following series

SðtÞ ¼
A0

2
þ
X1

n¼1

An cos ðnotÞ þ
X1

n¼1

Bn sin ðnotÞ;

where An and Bn are the usual Fourier coefficients.

Fig 4. Beta p.d.f. parameter estimation from original time series.

doi:10.1371/journal.pone.0168982.g004
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The term
A0

2
is always equal to the mean value of S(t), and ω = 2πf0, where f0 is the character-

izing frequency for all the waves in the decomposition. Since every cosine can be written as a

phased sine the Fourier series, then a little algebra allows to write S(t) as

SðtÞ ¼
A0

2

X1

n¼1

Cn sin ðnot þ ynÞ: ð8Þ

For a discrete time signal as the one obtained from the NDVI index, the coefficients Cn can

be obtained by using the Fast Fourier Transform (FFT). In our case, the FFT is used estimate

the Cn coefficients of a signal comprised of 366 discrete NDVI data points corresponding to a

temporal resolution of 8 days, which was obtained after resampling the original 288 NDVI

data points. The FFT provides a complex vector having An coefficients in its real part and Bn

coefficients in its imaginary part. Thus, the coefficients Cn of Eq (8) are derived from An and

Bn by calculating the length of the vectors. The two main assumptions in order to use the FFT

are: the signal must be sampled with a frequency of at least twice its bandwidth (Nyquist fre-

quency), and both amplitude and phase of the signal should not vary significantly over time.

Both requirements are satisfied by the resampled NDVI time series.

Once NDVI and ANUSPLINE time series are represented by their Fourier series (truncated

to 10 harmonics in this paper). The lag is simply computed taking the average of the day differ-

ence between peaks of NDVI and ANUSPLINE; see Fig 8.

Fig 5. Intermittency parameter estimation from original time series (includes left and right interval

intermittency probabilities).

doi:10.1371/journal.pone.0168982.g005
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The procedure is repeated at all points in the study region. That is, the lag is computed for

225 × 225 locations. This gives the map of lags in Fig 9. The reader should notice that there are

some areas in the region in which either there is a water body or rainforest in which the thresh-

old for the linearity between NDVI and rainfall is exceeded (recall that such threshold is about

1200 mm in a year), and the computed lag is unreliable or simply makes no sense at all on

those locations due to saturation.

NDVI scale factor. The second step corresponds to the resizing of NDVI to a size appro-

priate for rainfall. As mentioned in the previous section, the ANUSPLINE outcomes are used

as auxiliary data for converting NDVI into rainfall measurements. The first step in the resizing

process is the standardization of both NDVI and ANUSPLINE time series at the same location.

As an illustration, let us standardize the time series at Chuquibambilla station. Recall that the

standardized values or z-score values of a time series ρ are obtained by the relation

rstandardðtÞ :¼
rðtÞ � mean

standard deviation
:

for all times. The result is presented in Fig 10 before and after correcting the time series hori-

zontally to amount for NDVI lag (for Chuquibambilla the lag is approximately 52.5 days).

For completeness, Fig 11 show the variability of the mean and standard deviation of ANUS-

PLINE time series over the study area. It is worth reminding the reader that the ANUSPLINE

time series only represents auxiliary information, therefore, it only provides the means and

standard deviations for resizing NDVI to an appropriate size.

Observe that in Fig 10 the minimum value of the standardized ANUSPLINE corresponds

to zero rainfall. For NDVI, it is unclear what values of NDVI correspond to zero rainfall. A

pragmatic choice is to consider everything below the ANUSPLINE minimum as a value

Fig 6. Downscaling comparison of the original rainfall series, the 3 level aggregated time series, and the downscaled

rainfall for the self-similar and self-affine cases.

doi:10.1371/journal.pone.0168982.g006
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corresponding to zero rainfall. However, the cutoff value after which all values correspond to

zero rain is related to the probability of zero rainfall in the NDVI time series. This zero proba-

bility can be estimated for all grid locations of the ANUSPLINE information. Therefore, the

idea is to match the probability of zero rain obtained from the ANUSPLINE time series with

the zero rain probability of the NDVI time series by translating the series up or down with

respect to the ANUSPLINE minimum value. In this manner, one obtains the cutoff value at

which NDVI corresponds to zero rainfall measurements. Fig 12 shows the zero probability on

the study region. For Chuquibambilla the ANUSPLINE probability of zero is 0.1066, which is

equivalent to a traslation of approximately v = 0.95 standardized units.

Fig 7. Exceedance probability of Chuquibambilla rainfall time series.

doi:10.1371/journal.pone.0168982.g007

Fig 8. Harmonic comparison of NDVI and ANUSPLINE time series at Munani station.

doi:10.1371/journal.pone.0168982.g008
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The lag corrected and vertically traslated standardized NDVI time series is transformed as

NDVIcorrectedðtÞ :¼ NDVIstandardðt þ lagÞ þ v:

The last step involves resizing NDVIcorrected using the maximum value of the corresponding

ANUSPLINE time series. Fig 13, shows the maximums of ANUSPLINE time series over the

Fig 9. Mapping of lags for the region under study. The colorbar indicates lag in day units.

doi:10.1371/journal.pone.0168982.g009

Fig 10. Standardized lag correction of NDVI with respect to ANUSPLINE at Chuquibambilla station.

doi:10.1371/journal.pone.0168982.g010
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Fig 11. ANUSPLINE means (a) and standard deviation (b) in the area of study.

doi:10.1371/journal.pone.0168982.g011

Fig 12. Zero probabilities of ANUSPLINE time series in the study area.

doi:10.1371/journal.pone.0168982.g012
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study region. Since the minimum value corresponds to the value zero, the resizing procedure

is equivalent to the a linear correspondence between NDVI and ANUSPLINE values.

Thus, the final equation to transform NDVIcorrected into rainfall measurements is

NDVIrainðtÞ :¼ K � NDVIcorrectedðtÞ;

where the scale factor is defined as K = max(ANUSPLINE)/max(NDVIcorrected). From Eq (2),

Fig 13. ANUSPLINE maximums in the study area.

doi:10.1371/journal.pone.0168982.g013

Fig 14. NDVIrain for Chuquibambilla station.

doi:10.1371/journal.pone.0168982.g014
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one can observe that the overall NDVI transformation map is

FðNDVIðtÞ; lag; vÞ ¼ K � ðNDVIstandardðt þ lagÞ þ vÞ;

where lag is an horizontal translation corresponding to the time between rainfall and the

NDVI response, and v is the vertical translation of NDVI in order to match the zero probabil-

ity of the auxiliary data. The time series NDVIrain for Chuquibambilla station is given in Fig 14.

After the correction the probability of zero rainfall in NDVIcorrected is 0.1093, which is close

to the desired 0.1066 probability of zero rainfall of the corresponding ANUSPLINE time series

at the same location. It is clear from Fig 14 that NDVI is unable to detect high peaks or deep

valleys of the time series corresponding to 8-day period ANUSPLINE. However, the intermit-

tency to be introduced by the downscaling procedure will amount for sudden variations of

rainfall by generating similar peaks and valleys but at the daily temporal scale as shown in the

next section.

Downscaling of NDVIrain and Validation

In this section, the downscaling procedure is applied to the NDVIrain data that is at 8 day tem-

poral resolution. The resulting 1 day resolution data is then validated against on-site measure-

ments provided by meteorological stations in the area of study. The validation consists on a

direct comparison of the statistics of the corresponding time series as well as the goodness of

fit of their exceedance probabilities. In particular, the downscaling results of the NDVIrain time

series corresponding to the locations of 4 stations (Capachica, Chuquibambilla, Cojata and

Mañazo) are presented and compared against the actual on-site rainfall values of the meteoro-

logical stations. These stations were chosen so that they are representative of the precipitation

heterogeneity in the Andean plateau. Specifically, Capachica station is located in a humid area

due to its influence and proximity to the Titicaca Lake. Chuquibambilla station was picked

because of its surroundings semi-arid characteristics. A station in abrupt mountain terrain is

Fig 15. NDVIrain for the self-fimilar and self-affine downscaling cases.

doi:10.1371/journal.pone.0168982.g015
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Cojata station, and Mañazo station is located in a slightly mountainous arid zone. For instance,

Fig 15 shows the time series for the on-site measurements, the self-similar downscaling and

self-affine downscaling at Chuquibambilla station.

The statistics comparison of the on-site and generated rainfall for the self-similar and self-

affine cases are given in Tables 2 and 3 for the four chosen locations, respectively.

Observe that the statistics of the self-affine case are closer to the statistics of the on-site mea-

surements when compared to those of the self-similar case in the sense that they have on aver-

age an error of about 10%. For example, the Hurst exponents for the time series of on-site

measurements are accurate in both self-similar and self-affine cases. However, Mañazo station

improves significantly in the self-affine case with respect to the self-similar case. That is, the

index moves from 0.53 to 0.72 in comparison to the 0.77 value of the on-site measurements.

Similar improvements can be observed in the other statistics, where the more significant

improvements are the maximums and the variances. The Hurst exponent was computed using

the R/S analysis in [25–30]. Hurst exponents in the range 0.5 <H< 1 indicate a long-term

positive autocorrelation, which implies the tendency of a high value to be followed by another

high value. Also, it could indicate that the multifractal field is not conservative, which is usually

handled by studying the field fluctuations [23]. Fluctuation analysis would be the concern of

future research and it is outside the scope of this manuscript.

The exceedance probability plots of the stations under study are also a good tool for assess-

ing the validity of the generated rainfall from NDVI information. The plots for the four sta-

tions are shown in Figs 16 and 17 for the self-similar and self-affine cases, respectively.

It is clear from these plots that the self-affine case produces a much better match with

respect to the on-site measurements. This is corroborated by Tables 4 and 5. The godness of fit

indicators, for the exceedance probability plots, given in the tables are: MAE (mean average

Table 2. Statistics of temporal information for the self-similar case.

Station H Mean Max Skew Q50 Q75 Var

Capachica Obs 0.75 2.32 45.60 2.86 0.00 2.10 24.23

Gen 0.77 2.15 55.73 4.19 0.00 0.73 37.38

Chuquibambilla Obs 0.75 2.15 52.70 3.68 0.00 2.00 23.45

Gen 0.68 2.07 38.97 3.61 0.12 1.75 21.33

Cojata Obs 0.68 2.04 61.10 3.79 0.00 2.70 17.29

Gen 0.72 2.22 56.89 4.26 0.00 0.79 40.61

Mañazo Obs 0.77 1.93 54.00 4.05 0.00 1.50 21.64

Gen 0.53 3.74 123.19 4.59 0.00 0.05 167.01

doi:10.1371/journal.pone.0168982.t002

Table 3. Statistics of temporal information for the self-affine case.

Station H Mean Max Skew Q50 Q75 Var

Capachica Obs 0.75 2.32 45.60 2.86 0.00 2.10 24.23

Gen 0.71 2.39 61.42 4.28 0.02 1.29 39.77

Chuquibambilla Obs 0.75 2.15 52.70 3.68 0.00 2.00 23.45

Gen 0.77 2.23 52.70 4.04 0.00 0.77 37.96

Cojata Obs 0.68 2.04 61.10 3.79 0.00 2.70 17.29

Gen 0.78 2.59 52.48 3.65 0.02 1.71 38.27

Mañazo Obs 0.77 1.93 54.00 4.05 0.00 1.50 21.64

Gen 0.72 2.19 62.74 4.61 0.00 0.62 46.06

doi:10.1371/journal.pone.0168982.t003
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error), RMSE (root mean square error), CORR (correlation coefficient), PBIAS (Percent Bias),

NSE (Nash-Sutcliffe Efficiency) and RSR (ratio of RMSE to the standard deviation of the

observations). These are standard indicators as described in [31]. In particular, NSE and RSR

indicators are satisfactory when NSE is greater than 0.50 and the indicator RSR is around 0.80

or below, respectively.

We want to remark that there are many locations in the area under study where the

exceedance probability plots show better agreement between the observed and generated

rainfall, but as mentioned before, the four chosen stations characterize the more representa-

tive regions of the Andes high plateau. As an example, the exceedance plot for Arapa station

is shown in Fig 18.

The final validation tool for microcanonical downscaling in the Andes high plateau is the

quantile-quantile plot (Q-Q plot). Figs 19 and 20 show such Q-Q plots for the four stations

used for validation. The distributions of the observed and generated rainfall time series sub-

stantially agree in both self-similar and self-affine cases. Cojata station in particular show the

largest deviation between the 99% and 100% quantile, which could be very well due to the aux-

iliary information provided by ANUSPLINE outcomes or the fact that Cojata is the farthest

station to the east of the region of study, which amount to the rain forest influence on the area.

Fig 16. Exceedance plots for self-similar downscaling.

doi:10.1371/journal.pone.0168982.g016
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Fig 17. Exceedance plots for self-affine downscaling.

doi:10.1371/journal.pone.0168982.g017

Table 4. Goodness of fit for exceedance probability plots for the self-affine case.

Station MAE RMSE CORR PBIAS NSE RSR

Capachica 0.03 0.04 0.95 28.53 0.83 0.41

Chuquibambilla 0.01 0.03 0.97 12.74 0.92 0.28

Cojata 0.04 0.05 0.95 33.33 0.81 0.43

Mañazo 0.05 0.06 0.97 41.72 0.67 0.57

doi:10.1371/journal.pone.0168982.t004

Table 5. Goodness of fit for exceedance probability plots for the self-affine case.

Station MAE RMSE CORR PBIAS NSE RSR

Capachica 0.02 0.03 0.95 24.32 0.87 0.36

Chuquibambilla 0.03 0.03 0.96 26.71 0.89 0.33

Cojata 0.02 0.03 0.99 26.77 0.87 0.36

Mañazo 0.02 0.03 0.97 15.11 0.92 0.28

doi:10.1371/journal.pone.0168982.t005
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Fig 18. Exceedance plots for Arapa station (a) self-similar and (b) self-affine.

doi:10.1371/journal.pone.0168982.g018

Fig 19. Q-Q plots for the self-similar downscaling.

doi:10.1371/journal.pone.0168982.g019
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Conclusion

A microcanonical downscaling technique was tested on a region of the Peruvian Andes high

plateau. To amount for the lack of information in the region, NDVI informations was trans-

formed into a 8-day period rainfall using ANUSPLINE outcomes obtained from an array of

stations and an elevation map of the study area. Then, the transformed NDVI information was

downscaled to a daily temporal scale. In particular, for locations representative of the heteroge-

neities in the area were chosen: Capachica, Chuquibambilla, Cojata and Mañazo. The gener-

ated information at these locations was then validated against on-site rainfall measurements of

the corresponding meteorological stations at the same location. The generated rainfall was suc-

cessfully validated even though it is known that the Andes high plateau region is challenging

for such procedures due to the area’s terrain heterogeneities.

Although the procedure was successfully performed, some considerations must be taken

for its application: First, the procedure is sensitive to the auxiliary information. More precisely,

this auxiliary information was used for the purpose of shaping and resizing the NDVI informa-

tion so that it gives an 8-day period estimation of rainfall, so wrong or altered data will affect

the overall result. Second, it is clear that NDVI can only be used as a source of rainfall informa-

tion in regions where the correspondence between rainfall and NDVI is valid. That is, it can

Fig 20. Q-Q plots for the self-affine downscaling.

doi:10.1371/journal.pone.0168982.g020
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only be applied in regions having precipitation ranging from 200mm to 1200mm a year.

Therefore, the rainforest region (North-East corner in Fig 1) of the area under study, for exam-

ple, can not be studied accurately by the procedure presented in this paper. Another limitation

is that NDVI represents an aggregated measure, therefore it carries a temporal dressing of the

rainfall information when downscaled to a daily scale. This of course can amount to discrepan-

cies in the comparison of observed and generated rainfall measurements. Finally, it may be the

case that a Beta distribution does not characterize the locations time series probability distribu-

tion. The case for other distributions in the α-stable family remains an important aspect of the

downscaling procedures, however, it is outside of the scope of this manuscript.

Future work includes exploring transforming NDVI into rainfall using wavelet multi-reso-

lution analysis, and then using temporal microcanonical downscaling to obtain daily rainfall.

Also, the same methodology presented in this paper can be used for completing missing data

on rainfall time series. Here the statistics and intermittency comes from the same time series

(instead of auxiliary information). Therefore NDVI (through downscaling) can be employed

to fill the missing data points only if the area under study is in the range allowed by the corre-

spondence of NDVI and rainfall.
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