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Abstract

We compare the genetic structuring and demographic history of two sympatric caridean

shrimp species with distinct life history traits, one amphidromous species Palaemon capen-

sis and one marine/estuarine species Palaemon peringueyi, in the historical biogeographical

context of South Africa. A total of 103 specimens of P. capensis collected from 12 localities

and 217 specimens of P. peringueyi collected from 24 localities were sequenced for the

mitochondrial cytochrome oxidase one (CO1) locus. Results from analyses of molecular

variance (AMOVA), pairwise ΦST comparisons and haplotype networks demonstrate weak

to moderate genetic differentiation in P. capensis and P. peringueyi respectively. P. peri-

ngueyi exhibits partial isolation between populations associated with distinct biogeographic

regions, likely driven by the region’s oceanography. However, there is minimal evidence for

the occurrence of discrete regional evolutionary lineages. This demonstrated lack of genetic

differentiation is consistent with a marine, highly dispersive planktonic phase in both the

amphidromous P. capensis and the marine/estuarine P. peringueyi. Bayesian skyline plots,

mismatch expansions and time since expansion indicate that both species maintained sta-

ble populations during the Last Glacial Maximum (LGM), unlike other southern African

aquatic species.

Introduction

An understanding of the genetic structuring of organisms is pivotal to a broad range of biological

disciplines, including species distribution studies [1], conservation management [2], invasion

biology [3], and the elucidation of evolutionary history [4]. In aquatic organisms, population

structuring and gene flow patterns are largely determined by the interaction between life history

traits such as type of development (direct vs. planktonic), duration of larval period [5], [6], or lar-

val behaviours [7], and historical processes and geographical or environmental barriers acting to
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either reduce or facilitate gene flow among localities [7]. One specialised life history strategy

which has evolved in several families of freshwater decapod crustaceans, gastropod molluscs and

teleost fishes inhabiting tropical and sub-tropical habitats is amphidromy [8], [9], [10]; a life his-

tory strategy characterised by an adult freshwater phase of growth and reproduction, and a

planktonic larval stage that requires a saline component for development [11], [12]. Amphidr-

omy is thought to have evolved in response to the instability of freshwater habitats, with the

marine dispersive phase enabling freshwater species to elude drought or cyclonic flood events

and recolonise areas following periods of disturbance or water scarcity over long time scales

[11]. The characteristic highly dispersive planktonic phase of amphidromous species is an essen-

tial factor determining the genetic structuring of populations at both local and regional scales

[13]. Marine and amphidromous species often exhibit comparable levels of genetic structuring

that is lower than in non-migrating freshwater species and/or marine species with direct devel-

opment [14]. A number of phylogeographic studies on amphidromous species have revealed a

lack of geographic structure and high levels of gene flow over scales from hundreds to thousands

of kilometres, e.g. neritid snails [14], [15], gobiid fish [16] as well as atyid and palaemonid

shrimps [17], although there are exceptions [18].

Nevertheless, life history strategy alone does not necessarily determine scales of connectivity

and population structure, as realized dispersal patterns are also influenced by physical connectivity

among coastal and riverine habitats [19]. This in turn may be governed by contemporary barriers

to gene flow, such as oceanographic frontal systems [1], [20], upwelling cells [21], environmental

characteristics at spawning grounds [22], geographical distances [23], and steep environmental

gradients [24], as well as physical historical processes, such as historical climate changes during

the Pleistocene which caused fluctuations to sea surface temperatures, sea level, oceanographic

circulation patterns and ice sheet coverage [25]. Life-history strategy may affect how species

respond to physical barriers [26]. In southern Africa, the population connectivity of marine spe-

cies is heavily influenced by the region’s oceanic current patterns [2], [27]. The coastline is influ-

enced by two divergent current systems; the cold, high productive Benguela current off the west

coast which transports cold water from the poles to the equator, and the warm fast-flowing Agul-

has current on the east and south coasts [28]. Along the south-eastern coast of South Africa the

currents mix to varying degrees to form discrete biogeographic provinces, with a number of highly

dispersive coastal species divided into regionally restricted genetic lineages that are often corre-

lated with these provinces [21], [29], [30], [31], [32], [33], [34], [35]. At least three marine biogeo-

graphic provinces are recognised; the cool-temperate Namaqua province on the western coastline

(Lüderitz, Namibia to Cape Point, South Africa), the warm-temperate Agulhas province on the

southern coastline (Cape Point to Algoa Bay, South Africa) and the sub-tropical East Coast Prov-

ince on the eastern side (Algoa Bay to the northern borders of the Kwazulu Natal coastline) [36],

see Fig 1. The exact spatial boundaries between these provinces are not strictly delineated, as barri-

ers vary across taxa and there are few congruent patterns [2], [32], even with closely related species

[37], which forms transition zones. For estuarine organisms an additional barrier to dispersal is

presented by South Africa’s highly dynamic estuarine system, whereby approximately 70% of all

estuaries are either permanently disconnected from the sea by the formation of sand bars at the

mouth (closed estuaries) or are only temporarily open [38]. Under these conditions, it is expected

that species with an estuarine phase of their lifecycle could exhibit higher levels of genetic structur-

ing than fully marine species, regardless of larval type or duration, as connectivity is lower [19],

[24].

Aside from the interplay between life-history strategy and contemporary barriers to con-

nectivity, long-term historical climatic and oceanographic change are often considered to be

drivers of population structuring and demographic changes [1], [22], [27], [30]. In southern

Africa, during the last glacial maximum (LGM), approximately 22,000 years ago, the southern
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coastal plain (Agulhas Bank) became exposed when sea levels dropped to 120m below current

levels and water temperatures decreased due to intensified upwelling on the west coast [39],

and a reduced influence of the Agulhas Current [40]. How these changes affect the genetic

structuring and demographic history of aquatic organisms remains poorly understood, with

some marine species maintaining demographically stable populations during the LGM [41],

and others showing population bottlenecks and post-LGM colonisation [42]. However, it is

hypothesised that the life-history strategy of the species is important in determining its

response to climate oscillations [43].

In this study population genetic structuring and past demographic history is explored in

species with distinct life history strategies within the context of South Africa’s dynamic biogeo-

graphic realm. The caridean shrimp genus Palaemon is ideally suited for the exploration of the

role of life history strategy on genetic structure and demography, as this genus represents a

complex array of life history strategies, from fully marine to fully freshwater with abbreviated

larval development, and with a high proportion of amphidromous species [44]. Here we com-

pare a marine/estuarine representative of the genus, Palaemon peringueyi (Stebbing, 1915),

with the amphidromous species Palaemon capensis (De Man in Weber, 1897). P. peringueyi
and P. capensis are suited to comparison since they are sympatric in estuarine areas during the

juvenile stage (Wood pers. obs.) where their distribution overlaps and both possess a more

saline planktonic larval phase [45], [46]. Nevertheless, they differ in terms of their adult habitat

preference, with adult P. peringueyi inhabiting the marine environment ([46], as P. pacificus;
see [47] for a discussion on the taxonomy of both species) in contrast to the upstream, fully

freshwater adult P. capensis [48]. Occasionally, however, some specimens of the latter species,

Fig 1. Map of South Africa showing sampling localities for Palaemon capensis and Palaemon peringueyi. The two major currents, the

Benguela and Agulhas currents are shown. P. capensis: 1, Swellendam; 2, Voorhuis; 3, Malgas; 4, Duiwenhoks; 5, Goukou; 6, Gourits; 7, Little

Brak; 8, Knysna; 9, Keurbooms; 10, Sundays; 11, Kowie; 12, Kieskamma. P. peringueyi 13, Olifants; 14, Berg; 15, Langebaan; 16, Rooiels; 17,

Palmiet; 18, Goukou; 19, Great Brak; 20, Touw; 21, Swartvlei; 22, Knysna; 23, Goukamma; 24, Gamtoos; 25, Sundays; 26, Bushmans; 27, Riet;

28, East Kleinmond; 29, Fish; 30, Old Woman’s; 31, Nahoon; 32, Chula; 33, Kei; 34, Qwaninga; 35, Mtata; 36, Umganzana.

doi:10.1371/journal.pone.0173356.g001
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including ovigerous females, have been recorded from the brackish lower reaches of estuaries

[48]. Palaemon peringueyi has a broad distribution, from Walvis Bay in Namibia [49] to Kosi

Bay along the east coast, which encompasses the three major biogeographic provinces and two

transition zones. In contrast, P. capensis is restricted to an area bounded by the Palmiet River

on the south coast and the Kieskamma River on the east coast [48], which comprises the

warm-temperate Agulhas province and south-east transition zone. Although no previous

genetic work has been carried out on P. capensis, an earlier study [50], indicated that P. peri-
ngueyi exhibited significant genetic structuring across its distribution, with distinct evolution-

ary lineages correlated with the three biogeographic provinces. Here we further this work by

sampling more intensely across and within putative biogeographic regions, with a focus on col-

lecting from both open and closed estuary systems. This study thus has two major aims: 1) to

compare the level of population genetic structuring in a marine and amphidromous species of

Palaemon according to biogeographic region, 2) to determine whether each of the species shows

similar patterns of demographic history. It is hypothesised that patterns of population sub-struc-

turing in both species will coincide with known biogeographic breaks in species distributions.

Specifically, populations of P. capensis will be genetically dissimilar across the south-east transi-

tion zone, and in P. peringueyi populations from the cool-temperate Namaqua province, warm-

temperate Agulhas province and sub-tropical East Coast Province will be genetically distinct.

The data presented here presents evidence that both species exist as single evolutionary lineages

across their South African distribution range, contrary to the findings in [50], and show similar

patterns of demographic stability during the LGM.

Materials and methods

Shrimp collection and sampling

Between 7–12 specimens of Palaemon capensis (n = 103) and P. peringueyi (n = 217) were col-

lected from 12 and 24 localities respectively along the South African coastline between 2015 and

2016, encompassing the entire distribution of each species in South Africa (Fig 1, Table 1). Spec-

imens were collected using handnets and anaesthetised using clove oil and preserved in the field

in 95% ethanol immediately after collection. Species were identified using [47], voucher speci-

mens were deposited in the collections of the South African Museum (SAM C, IZIKO Museums

of Cape Town South Africa), under accession numbers SAMC-A088831–40. Sampling was car-

ried out under permits from CapeNature and SanParks.

DNA extraction and sequence alignment

DNA was extracted from abdominal muscle or pleopods using the NucleoSpin1 Tissue extrac-

tion kit (Machery-Nagel, Germany) following the manufacturers’ protocol. Extracted DNA was

stored at -20˚C until required for polymerase chain reaction (PCR). The mitochondrial CO1

gene was selected for the current analysis as it is widely used in studies on palaemonid shrimp

[51], and is highly variable, facilitating comparison with previous work.

For P. peringueyi the CO1 region amplified with the primer pair LCO11490 and HCO2198

[52], however for P. capensis two species specific internal primers were designed for successful

amplification: Shrimp F (5’–CGTCACAGCCCATGCATTC-3’) and Shrimp R (5’–TAGAGAA
TCGGGTCTCCTCCT-3’). This latter set of primers amplified an approximately 500-bp frag-

ment of CO1. See S1 Table for the list of primer pair sequences and the PCR profile.

The PCR products were electrophoresed for four hours in a 1% agarose gel and subsequently

purified using the BioFlux purification kit (Bioer Technology Co., Ltd). Purified products were

cycle-sequenced using BigDye (Applied Biosystems [ABI]) and analyzed on a 3730 automated

sequencer (ABI).

Phylogeographic patterns of South African Palaemon
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Table 1. Sampling localities for the two shrimp species throughout their distribution in South Africa with the number of specimens collected with

genetic diversity indices at each locality based on mtDNA sequences.

Locality Map reference N Coordinates Nh Nph Np h πn Ar

Palaemon capensis

South Coast

Malgas 1 9 S 34˚18.274’ E 20˚37.047’ 4 0 (0%) 3 0.810 0.0024

Swellendam 2 7 S 34˚04.174’ E 20˚24.898’ 6 3 (50%) 6 0.833 0.0038

Voorhuis 3 9 S 34˚04.170’ E 20˚23.378’ 4 1 (25%) 5 0.583 0.0033

Duiwenhoks 4 10 S 34˚15.089’ E 20˚59.501’ 7 2 (29%) 6 0.867 0.0038

Goukou 5 10 S 34˚16.279’ E 21˚18.020’ 6 2 (33%) 5 0.844 0.0034

Gourits 6 8 S 34˚17.201’ E 21˚47.555’ 4 2 (50%) 4 0.643 0.0025

Little Brak 7 10 S 34˚02.377’ E 22˚07.953’ 7 3 (43%) 7 0.933 0.0042

Knysna 8 1 S 33˚59.894’ E 23˚00.181’ 1 0 (0%) 0 1.000 0.0000

Keurbooms 9 10 S 33˚56.326’ E 23˚21.967’ 2 1 (50%) 3 0.250 0.0016

Pooled South Coast 74 21 14 (66%) 21 0.748 0.0027 N/A

South-East Coast

Sundays 10 10 S 33˚36.911’ E 25˚40.008’ 1 0 (0%) 0 0.000 0.0000

Kowie 11 10 S 33˚32.753’ E 26˚47.184’ 2 1 (50%) 1 0.200 0.0004

Kieskamma 12 9 S 33˚11’057’ E 27˚23’257’ 1 0 (0%) 0 0.000 0.0000

Pooled South-East Coast 29 2 1 (50%) 1 0.069 0.0001 N/A

Overall P. capensis 103 22 15 (68%) 22 0.607 0.0024 N/A

Palaemon peringueyi

West Coast

Olifants 13 10 S 31˚42’136’ E 18˚11’574’ 5 1 (20%) 5 0.844 0.0026

Berg 14 12 S 32˚47.213’ E 18˚08.627’ 4 0 (0%) 4 0.742 0.0023

Langebaan 15 10 S 33˚07.082’ E 18˚00.467’ 2 0 (0%) 1 0.356 0.0006

Pooled West Coast 32 5 1 (20%) 5 0.685 0.0019 3.194

South-West Coast

Rooiels 16 10 S 34˚17.968’ E 18˚49.415’ 4 0 (0%) 3 0.822 0.0020

Palmiet 17 10 S 34˚20.396’ E 18˚59.508’ 4 0 (0%) 3 0.800 0.0022

South-Coast

Goukou 18 8 S 34˚17.939’ E 21˚18.826’ 3 0 (0%) 2 0.714 0.0017

Great Brak 19 10 S 34˚03.135’ E 22˚13.157’ 5 1 (20%) 3 0.800 0.0020

Touw 20 9 S 33˚59.549’ E 22˚35.276’ 4 0 (0%) 3 0.750 0.0019

Swartvlei 21 10 S 34˚01.354’ E 22˚46.552’ 5 1 (20%) 4 0.756 0.0025

Knysna 22 10 S 34˚01.284’ E 22˚59.540’ 5 0 (0%) 3 0.844 0.0022

Goukamma 23 8 S 34˚04.001’ E 22˚56.702’ 4 0 (0%) 4 0.786 0.0030

Gamtoos 24 10 S 33˚54.985’ E 25˚01.591’ 4 0 (0%) 3 0.778 0.0019

South-East Coast

Sundays 25 9 S 33˚41.185’ E 25˚46.394’ 4 0 (0%) 3 0.750 0.0019

Bushmans 26 10 S 33˚38.497’ E 26˚34.519’ 2 0 (0%) 1 0.533 0.0009

Riet 27 7 S 133˚33.280’ E 27˚00.380’ 5 1 (20%) 7 0.857 0.0040

East Kleinmond 28 7 S 33˚32.042’ E 27˚02.510’ 4 0 (0%) 3 0.857 0.0021

Fish 29 9 S 33˚29.200’ E 27˚07.390’ 6 1 (16%) 5 0.889 0.0028

Old Woman’s 30 10 S 33˚28.539’ E 27˚08.425’ 3 0 (0%) 2 0.511 0.0010

Nahoon 31 9 S 32˚57.972’ E 27˚55.147’ 5 0 (0%) 4 0.861 0.0024

Chula 32 7 S 32˚50.141’ E 28˚06.760’ 3 0 (0%) 5 0.667 0.0033

Kei 33 10 S 32˚40.587’ E 28˚22.774’ 5 0 (0%) 3 0.822 0.0021

Qwaninga 34 7 S 32˚26.283’ E 28˚40.039’ 4 1 (25%) 5 0.857 0.0041

(Continued )
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Data analysis

Sequences were visualised using BioEdit v7.1.3.0 [53], and checked for ambiguities. Align-

ments were performed in BioEdit’s ClustalW Multiple Alignment tool [54]. To check for stop

codons, CO1 sequences were translated to amino acids using the online programme EMBOS-

S-Transeq (http://www.ebi.ac.uk/emboss/transeq/). No stop codons were detected.

Population genetic analysis

The software ARLEQUIN version 3.5.1.2 [55], was used to analyse population genetic struc-

ture of each species. The standard diversity indices calculated for each sampling location and

across each biogeographic region were number of haplotypes (H), haplotypic diversity (h),

number of private haplotypes (Nph), number of polymorphic sites (Np), and nucleotide diver-

sity (πn). In addition allelic richness (haplotype richness) was estimated by rarefaction using

CONTRIB v 1.02 for each biogeographic region, where possible [56]. The rarefaction method

was used to standardise the allelic richness across biogeographic regions by correcting varia-

tion in sample sizes, ensuring that the rarefaction size was not larger than the smallest sample

size [56].

Estimation of genetic differentiation within and among sample localities was conducted

using different approaches. Firstly pairwise FST values were estimated between all sampled

localities in ARLEQUIN, with significance at the 0.05 level determined by 10,000 permuta-

tions. Secondly, evidence of population genetic differentiation within each CO1 dataset was

assessed using a one-level global analysis of molecular variance (AMOVA) in ARLEQUIN.

The programme jMODELTEST 2 [57], was used to obtain the best-fit substitution model for

each species using the Akaike information criterion (AIC) [58], with the HKY + I model selected

for P. capensis and the TIM2 + G model selected for P. peringueyi. However, as neither model

is implemented in ARLEQUIN, distances were estimated using the most similar substitution

model, Tamura–Nei. In addition, hierarchical analysis of molecular variance was carried out to

evaluate population sub-structuring hypotheses of differentiation between biogeographic regions

by identifying groups of sites that maximised the statistic FCT. AMOVA tests were conducted to

investigate: i) the influence of the south-east coast transition zone (e.g. Algoa Bay) on the genetic

structuring of P. capensis; ii) the separation between the sub-tropical east coast population, warm-

temperate south coast population and cool-temperate west coast population of P. peringueyi; iii)

the separation between the sub-tropical east coast population and the warm-temperate south/

cool-temperate west coast population of P. peringueyi. In all analyses 10,000 permutations were

specified to test for significance. In order to test for possible isolation by distance (IBD), pairwise

FST values among localities [59], and corresponding pairwise geographic distances were tested by

Table 1. (Continued)

Locality Map reference N Coordinates Nh Nph Np h πn Ar

Pooled South Coast 170 12 5 (42%) 10 0.793 0.0024 4.451

East-Coast

Mtata 35 7 S 31˚56.632’ E 29˚11.038’ 2 0 (0%) 1 0.476 0.0008

Umganzana 36 8 S 31˚41.373’ E 29˚22.994’ 4 2 (50%) 4 0.750 0.0025

Pooled East Coast 15 4 2 (50%) 4 0.600 0.0017 3.000

Overall P. peringueyi 217 16 8 (50%) 13 0.795 0.0025 N/A

N number of samples, Nh haplotype number, Nph number of private haplotypes, Np number of polymorphic sites, h haplotype diversity, πn nucleotide

diversity, Ar allelic richness after rarefaction to 15 individuals.

doi:10.1371/journal.pone.0173356.t001
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performing Mantel tests in XLSTAT v.5.1 software (http://www.xlstat.com: Addinsoft, New

York) using 10000 permutations. Geographic distances between localities were determined using

GoogleEarth as the shortest along-coast distance between sites but excluding bays.

To depict the evolutionary relationships among the mtDNA haplotypes, a haplotype net-

work was constructed using TCS 1.21 set at 95% confidence [60]. The shortest tree was chosen

on the basis of a coalescent theory approach, whereby haplotypes are linked to the most abun-

dant and/or geographically closest occurring haplotype [61].

Demographic history

To further investigate the underlying demography of both species Tajima’s D [62], and Fu’s

F [63], statistics were first calculated in ARLEQUIN to test for deviations from neutrality with

significance determined using 10,000 permutations. Pairwise mismatch distributions [64],

were calculated in ARLEQUIN to test for population expansion using 10,000 permutations.

The Sum of Squared deviations and Harpening’s Raggedness Index were calculated to test for

the goodness of fit of the data in the mismatch analysis. If significant population growth was

detected, the time of expansion was calculated with the formula T = τ/2 μ, where μ = genera-

tion time × number of base pairs per sequence × mutation rate for the marker used, and τ was

calculated in ARLEQUIN. A mutation rate of 1.4% per million years [65], and a generation

time of 1.5 years were used for the calculations. This generation time was used as the average of

that reported for other Palaemonidae [66], [67]. To provide a temporal perspective on demo-

graphic events, Bayesian Skyline Plots [68], were constructed in BEAST 1.7.5 [69], and Tracer

1.5 for each identified genetic cluster [70]. Analyses were run using a strict molecular clock,

implementing a mutation rate of 1.4% per million years [65], and assuming an HKY + I or

TIM2 + G model of evolution for P. capensis and P. peringueyi respectively. Two independent

runs were performed for 100 million MCMC generations, sampling every 1,000 generations.

Runs were evaluated in Tracer 1.5 [70] to assess convergence and visualisation of median and

95% highest posterior probability density intervals (HPD), using the effective sample size (ESS

> 200) as an indicator.

Results

In total 103 specimens of Palaemon capensis and 217 specimens of Palaemon peringueyi were

sequenced for the CO1 locus. Sequences were deposited in GenBank (accession numbers

KY660277 –KY660314). After editing and alignment in CLUSTAL X, 477 bp and 578 bp of the

CO1 fragment were used in the analysis for P. capensis and P. peringueyi respectively. For P.

capensis there were 22 polymorphic sites, seven of which were parsimony informative, whilst

for P. peringueyi there were a total of 13 polymorphic sites, eight of which were parsimony

informative.

Population genetic analysis

The parsimony haplotype networks constructed recovered no clear phylogeographic struc-

ture for either species (Fig 2A and 2B). Within P. capensis haplotype diversity was lower

(0.607) than within P. peringueyi (0.795) with 22 haplotypes (seven shared and 15 unique)

and 16 haplotypes (eight shared and eight unique) detected respectively. The nucleotide

diversity of both P. capensis and P. peringueyi was low at 0.00237 and 0.00247 (Table 1),

reflecting the fact that in both species most individuals shared a low number of common

haplotypes. In P. capensis one dominant haplotype (H3) occurred in 62% of individuals

whilst in P. peringueyi three dominant haplotypes (H2, H3, H9) were present in 19%, 31%

and 24% of individuals respectively.

Phylogeographic patterns of South African Palaemon
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Fig 2. A) Haplotype networks for Palaemon capensis. Size of the circles are representative of the number of individuals with that

haplotype. The smallest circles represent a haplotype frequency of one. Each connecting line represents one mutation step between

haplotypes and black circles are representative of an additional mutational change. In i) the numbers within circles represent the

haplotype number and correspond to S2 Table; ii) the colours represent biogeographic region and correspond to the south coast

populations (green) and south-east coast populations (yellow). B) Haplotype network for Palaemon peringueyi. Size of the circles

are representative of the number of individuals with that haplotype. The smallest circles represent a haplotype frequency of one. Each

connecting line represents one mutation step between haplotypes and black circles are representative of an additional mutational

change. In i) the numbers within circles represent the haplotype number and correspond to S3 Table; ii) the colours correspond to

biogeographic region and represent east-coast populations (red); south-coast populations (green) and west-coast populations (blue).

doi:10.1371/journal.pone.0173356.g002

Table 2. Analysis of molecular variance (AMOVA) results based on COI data, for the five population differentiation scenarios tested.

One-level P.

capensis

One-level P.

peringueyi

Warm-temperate vs south-

east transition zone P.

capensis

Sub-tropical east vs. warm-

temperate/cold P.

peringueyi

Sub-tropical east vs warm-

temperate vs cold P.

peringueyi

Among groups %

variation

2.77 13.35 9.61 34.22 18.29

Within groups %

variation

N/A N/A -1.70 4.80 4.95

Within populations

% variation

97.23 86.65 92.09 60.99 76.76

Fixation index ΦST = 0.028 ΦST = 0.133 ΦCT = 0.096 ΦCT = 0.342 ΦCT = 0.183

Statistically significant results (p<0.05) in bold.

doi:10.1371/journal.pone.0173356.t002
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Within P. capensis, mtDNA genetic diversity was higher on the south coast than on the

south-east coast, with the highest haplotype diversity i.e. highest percentage of unique haplo-

types also found in south coast populations (Table 1).

Within P. peringueyi, mtDNA genetic diversity was generally highest on the south and

south-east coast, with lower values recorded on the east and west coasts (Table 1). Broadly

speaking haplotype diversity was highest on the south and east coast, with the lowest number

of private haplotypes being found on the west coast (Table 1). Allelic richness was higher for

the southern biogeographic region, than for the eastern and western biogeographic region.

For P. capensis the one-level overall AMOVA results suggests shallow, but significant

genetic differentiation among the 12 sampled localities (FST = 0.02, p< 0.05) (Table 2). Pair-

wise FST values were mostly not significant, except in the case of localities at the periphery of

the distribution, i.e. on the extreme west coast locations (Swellendam/Voorhuis) versus east

coast locations (Sundays/Kowie/Kieskamma) (see S4 Table). When sampling localities were

partitioned into south coast and south-west populations in accordance with the positioning of

the proposed south-east transition zone, AMOVA results indicated low but significant differ-

entiation among groups (FCT = 0.096, p< 0.05), suggesting that the hypothesis that gene flow

restrictions occur around the south-west transition zone i.e. Algoa Bay cannot be rejected.

However this apparent population genetic structure could be caused by the significant correla-

tion between linearised genetic and geographic distances (i.e. Mantel test r = 0.391, p< 0.05).

The one-level AMOVA results for P. peringueyi indicated a mean overall FST = 0.133

(p< 0.05) (Table 2). Pairwise ФST analysis showed that significant FST values were between

the sub-tropical east coast and all other sample localities and ranged from 0.16 < FST < 0.73,

suggesting the presence of a gene flow barrier between Qwaninga and Mtata (S5 Table). Less

pronounced, but significant structure can also be observed within the Goukamma (0.21< FST

< 0.57) and Bushmans (0.19< FST < 0.47) river basins. Hierarchical analysis of the distribu-

tion of genetic variance corroborated the pairwise ФST tests, in finding that an eastern versus

west/southern subsystem population structure was the best explanation of the distribution of

genetic variance (FCT = 0.34, p< 0.05). The Mantel test indicated a significant relationship

between linear genetic and geographic distances for P. peringueyi (r = 0.163, p< 0.05).

Demographic history

Due to the shallow population structure indicated by AMOVA for P. capensis and the limited

sample size obtained for the eastern sub-population (n = 15) for P. peringueyi, demographic

analyses were performed only on the pooled datasets across all locations for both species. The

CO1 data for P. capensis revealed significant departures from neutrality expectation with Taji-

ma’s D and Fu’s Fs for the complete dataset (Tajima’s D -2.16, p< 0.01; Fu’s F -22.06,

p< 0.01). A pattern of population expansion for P. capensis was supported by the unimodal

mismatch analysis, as well as by the sum of squared deviations (SSD) and the Raggedness

Index which were not statistically different at the 95% confidence level from model predicted

frequency (SSD 0.0015, p> 0.05; Raggedness Index 0.0447, p> 0.05) (Fig 3). These results are

consistent with a recent demographic expansion after a bottleneck or selective sweep event.

The value of τ for the entire dataset was 2.0234, corresponding to an initiation of demographic

expansion of approximately 101,000 years before present for P. capensis in South Africa.

For P. peringueyi Fu’s F for all localities combined was negative and significant (Fu’s F

-6.29, p< 0.05), but Tajima’s D was non-significant (Tajima’s D -0.849, p> 0.05). The com-

bined dataset had a unimodal distribution, and the SSD value did not differ statistically from

that expected for populations experiencing a population expansion (SSD 0.0028, p> 0.05) (Fig

3). The value of τ for the entire dataset was 1.469, corresponding to an initiation of

Phylogeographic patterns of South African Palaemon
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demographic expansion of approximately 60,512 years before present for P. peringueyi in

South Africa.

Bayesian Skyline Plot analyses support mismatch analyses in indicating that both P. capensis
and P. peringueyi populations remained stable during the last glacial maximum approximately

18,000 years ago (Fig 4). In both species the slope of the line indicates a gradual expansion,

although the effective population size has remained fairly constant, at least for the last 25,000

(P. peringueyi) to 35,000 (P. capensis) years.

Discussion

Population structure and phylogeographic study

Understanding the population structure of a species in relation to its distribution can help in

the identification of biogeographical barriers and filters to gene flow or ‘genetic breaks’ and

provide key insights into the evolutionary history and life history strategy of the species. In

contrast to previous work on one of the species [50], our results present evidence that both P.

Fig 3. Mismatch distributions for P. capensis and P. peringueyi with the line showing model

distribution under the sudden population expansion model; x axis = pairwise differences and y

axis = frequency.

doi:10.1371/journal.pone.0173356.g003
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capensis and P. peringueyi exist as single evolutionary lineages throughout their South African

range.

Nevertheless, analysis of within population genetic differentiation does suggest that there is

a limited degree of population sub-structuring in P. capensis and P. peringueyi. The observed

population structure in both shrimp species is intermediate in degree between two extremes

previously reported for the South African biogeographic region, which range from species

occurring in a single, highly connected, panmictic population, e.g. the goby Psammogobius
knysnaensis (see [71]), to others with strong genetic differentiation over short distances, e.g.

the mudprawn Upogebia africana (see [29]), the sciaenid fishes Atractoscion aequidens (see
[21]) and Argyrosomus inodorus (see [33]), as well as the clinid fish Clinus cottoiides (see [31])

and the mussels Perna perna and Mytilus galloprovincialis (see [30]).

For the amphidromous prawn, P. capensis, the low level of population differentiation pre-

sented by the AMOVA results indicates wide ranging marine dispersal and high connectivity

across sampling localities. As such, none of the oceanographic features which characterise the

southern to south-western coastline, such as the fragmentation of freshwater habitat, the

dynamic nature of estuarine systems (i.e. open and closed) nor oceanic currents have created

significant barriers or filters to gene flow. This shallow population structuring likely reflects

Fig 4. Bayesian Skyline Plots (BSPs) for a) P. capensis and b) P. peringueyi across their South African

distribution range. The solid line indicates the median estimate, and the 95% HPD interval is depicted in blue.

doi:10.1371/journal.pone.0173356.g004
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the biological characteristics of P. capensis. Although the maximal larval dispersal range of P.

capensis remains unknown, on the basis of the present results it can be postulated to be rela-

tively high, as the life cycle of this species is characterized by non-abbreviated planktonic larval

stages [49], typical of the majority of coastal and amphidromous Palaemonidae [72]. The dura-

tion of the life-cycle is unknown, but is very likely to be in the range delineated by 5–16 days in

freshwater restricted Palaemon species [73], [74], to 29 days in P. peringueyi [46]. Analysing

samples of P. capensis across its entire 700 km distribution range showed that genetic structure

was only observed at the extremities of the range. Pairwise ФST comparisons indicated signifi-

cant genetic differentiation between Swellendam and Voorhuis on the south coast versus

Kowie, Sundays and Kieskamma on the east coast, with isolation by distance confirmed by the

Mantel test. This result correlates with the general notion that genetic differentiation of popu-

lations of amphidromous shrimp is rare or at most weakly expressed over larger scales (> 1000

km) [75]. A similar result was encountered in the distantly related palaemonid species, Cry-
phiops caementarius (see [76]), as well as in amphidromous representatives of the Atyidae [17],

the other main family of freshwater shrimps. Interestingly, the hierarchical AMOVA suggests

that genetic differentiation does fall within a widely discussed biogeographic barrier between

the southern populations and the south-east transition zone in the proximity of Algoa Bay

[27]. Here, both oceanographic dispersal limits as well as increased genetic drift within a

peripheral population may cause genetic structuring at the limits of P. capensis geographic

range.

Contrary to predictions, the broadly distributed estuarine/marine shrimp species P. peri-
ngueyi shows only weak genetic structuring across its range, somewhat coinciding with known

biogeographic boundaries. Whilst the shared haplotypes found for the entire CO1 dataset indi-

cate that this shrimp species can disperse over long distances, suggestive of long planktonic larval

duration, P. peringueyi does not form a true panmitic population as several sampled localities are

differentiated. Pairwise ФST analysis indicated that populations from the sub-tropical east coast

of South Africa were genetically dissimilar to populations from the cold west/ temperate south

coast with the location of the genetic break occurring between Qwaninga and Mtata. This find-

ing is concordant with previous studies on marine invertebrates which found similarly located

phylogeographic breaks at the boundary between the warm-temperate Agulhas province and the

sub-tropical east coast province [30], [35]. The exact location of the phylogeographic break is

typically species-specific, with the northernmost breaks having been identified on the Central

Wild Coast (Transkei region) [29], and the southernmost breaks near Algoa Bay [31]. Genetic

discontinuity at the warm-temperate to sub-tropical transition zone has been attributed to the

offshore deflection of the Agulhas current, which potentially carries entrained larvae away from

the intertidal zone [27] or by selection pressure created by a sudden drop in temperature in this

region [77]. The significant genetic differentiation of Mtata and Umganzana may suggest that on

a finer geographic scale, dispersal of P. peringueyi is limited by regional currents patterns or by

the local retention of larvae in the water column. Alternatively, genetic differentiation may reflect

thermal adaptation of larvae across adjacent, temperature-defined biogeographic regions [77].

It is evident from the present study that P. peringueyi does not show the deeply divergent

lineages that were resolved in [50]. Estimates of genetic divergence between the CO1 haplo-

types in [50], and those of the current study indicated that whilst two of the 12 haplotypes in

[50], fell within species limits at 0.3–1.1% divergence, for ten haplotypes divergence ranged

from 5.2% to 11%. This was supported by the topologies obtained by a further maximum likeli-

hood analysis (see S1 Fig) in which the 12 CO1 haplotype sequences generated in [50], on Gen-

Bank were added to the sequences generated in the current dataset. Although P. peringueyi
formed a monophyletic clade, at least three clades were observed within a broader P. peringueyi
taxon with the inclusion of the additional sequences. All P. peringueyi sequences generated in
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this study, sampled from localities across the three biogeographical provinces, formed a well-

supported clade with two haplotypes generated in [50], from the cold western lineage only,

with the remaining 10 haplotypes (from [50]) forming two separate groupings. The mean CO1

genetic divergence between clades was comparable to that reported for cryptic species in

related species of Palaemonidae (e.g. Macrobrachium potiuna [78]). However, given the inten-

sive sampling effort of the present study with 217 specimens collected herein compared to 42

specimens in [50], and the complete spatial overlap between the sample localities in both stud-

ies, it would be surprising if such cryptic variation, if indeed present, would not be recovered

in the current dataset. It is possible, although very unlikely given the general conservative ecol-

ogy of Palaemon species, that these supposed cryptic species exhibit seasonal variation in their

abundance or habitat preference and lifestyle, and thus were simply not sampled herein, as

sampling was largely (but not exclusively) restricted to summer months with the majority of

samples obtained from either Zostera capensis beds in estuaries, or reed beds in the lower

reaches of rivers.

Demographic history

For both shrimp species the combination of high haplotypic diversity and low nucleotide

diversity is typical of a population that has undergone relatively recent population expansion

after a bottleneck or founder event and is often associated with negligible population structure.

Similarly, the typical ‘star-like’ haplotype network for P. capensis and the more complex ‘star-

like’ type haplotype network for P. peringueyi, showing several common haplotypes are indica-

tive of growing populations. Based on mismatch distribution estimates and BSP plots the tim-

ing of the expansion pre-dates the LGM and is indicative of an expanding population since the

Pleistocene, approximately 100,000 and 60,000 years ago for P. capensis and P. peringueyi
respectively. Both methodologies have limitations, for example with mismatch distribution

parameters being susceptible to early branching in the gene tree [4], and BSP plots being lim-

ited by the over-interpretation of BSP curves [79]. However, the concordant estimates suggest

that both P. capensis and P. peringueyi retained demographically stable populations through

the LGM, with the frequent and dramatic climatic changes of the Pleistocene having a stronger

impact in shaping the biogeographic and demographic history of both species. Similar Pleisto-

cene population expansion estimates have been reported for other South African coastal

organisms, including the Cape sea urchin Parechinus angulosus [32], the clinid species Clinus
cottoides, C. superciliosus and Muraenoclinus dorsalis [37], and the southern African barnacle

Tetraclita serrata [41].

Analysis of genetic diversity metrics across the sampled biogeographic regions indicates

that genetic diversity varies across regions, with diversity typically being highest on the

south coast in both P. capensis and P. peringueyi; a pattern that is typical within other south-

ern African coastal organisms [32], [41]. One explanation for this pattern of higher genetic

diversity in the south is that in both species large populations have been maintained on the

south coast over evolutionary time, potentially due to the stability of the habitat [80]. Both

species have been shown to maintain large contemporary population sizes ([46], Wood

pers. obs.), thus if contemporary patterns are reflective of evolutionary history, large popu-

lation sizes are likely to have contributed to high levels of genetic diversity. Alternatively,

this region of higher genetic diversity could also signal a refugium during glacial low sea-

level stands. This scenario is supported by the occurrence of the highest number of private

haplotypes on the south coast for both species, which is indicative of higher genetic hetero-

zygosity in refugia. In contrast, south-east coast populations in P. capensis and west coast

populations in P. peringueyi are characterised by only a few common haplotypes, a pattern
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that reflects a more recent founder event than when compared to the southern biogeo-

graphic region.

However, it is important is note that the demographic signals exhibited by P. capensis and P.

peringueyi do differ to some degree, which is likely a reflection of species specific life history strat-

egies. The star-burst like network of P. capensis and lower level of haplotypic diversity observed

in this species can potentially be explained by environmental tolerance. Whilst P. peringueyi is a

generalist and thus able to survive in greater portions of available habitat during periods of cli-

matic change, P. capensis is far more specialist and thus far more susceptible to environmental

disturbance.

Supporting information

S1 Fig. A bayesian phylogram for the CO1 haplotypes in [50] and CO1 haplotypes herein.

Statistical values above the nodes represent the posterior probablity (pP) values for the Bayes-

ian analyses. Values below each node represent the bootstrapping values for maximum likeli-

hood. Only bootstrap values>75% and pP values > 0.95 are shown. An asterisk (�) indicate

clades that were not statistically supported.

(TIF)

S1 Table. The molecular markers and primer pairs used in this study with their respective

polymerase chain reaction conditions. Temperatures in bold under PCR profile indicate the

annealing temperatures. The final extension was at 72˚C for 10 minutes. � Protein coding.

(DOCX)

S2 Table. Haplotype table showing the distribution of haplotypes across sampling locali-

ties for Palaemon capensis.

(DOCX)

S3 Table. Haplotype table showing the distribution of haplotypes across sampling locali-

ties for Palaemon peringueyi.
(DOCX)

S4 Table. Pairwise FST values for the CO1 locus in across all 12 of the different sample

localities for Palaemon capensis.

(DOCX)

S5 Table. Pairwise FST values for the CO1 locus in across all 24 of the different sample

localities for Palaemon peringueyi.
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