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Abstract

Decompression sickness (DCS), which is caused by inert gas bubbles in tissues, is an injury

of concern for scuba divers, compressed air workers, astronauts, and aviators. Case reports

for 3322 air and N2-O2 dives, resulting in 190 DCS events, were retrospectively analyzed

and the outcomes were scored as (1) serious neurological, (2) cardiopulmonary, (3) mild

neurological, (4) pain, (5) lymphatic or skin, and (6) constitutional or nonspecific manifesta-

tions. Following standard U.S. Navy medical definitions, the data were grouped into mild—

Type I (manifestations 4–6)–and serious–Type II (manifestations 1–3). Additionally, we con-

sidered an alternative grouping of mild–Type A (manifestations 3–6)–and serious–Type B

(manifestations 1 and 2). The current U.S. Navy guidance allows for a 2% probability of mild

DCS and a 0.1% probability of serious DCS. We developed a hierarchical trinomial (3-state)

probabilistic DCS model that simultaneously predicts the probability of mild and serious

DCS given a dive exposure. Both the Type I/II and Type A/B discriminations of mild and seri-

ous DCS resulted in a highly significant (p << 0.01) improvement in trinomial model fit over

the binomial (2-state) model. With the Type I/II definition, we found that the predicted proba-

bility of ‘mild’ DCS resulted in a longer allowable bottom time for the same 2% limit. How-

ever, for the 0.1% serious DCS limit, we found a vastly decreased allowable bottom dive

time for all dive depths. If the Type A/B scoring was assigned to outcome severity, the no

decompression limits (NDL) for air dives were still controlled by the acceptable serious DCS

risk limit rather than the acceptable mild DCS risk limit. However, in this case, longer NDL

limits were allowed than with the Type I/II scoring. The trinomial model mild and serious

probabilities agree reasonably well with the current air NDL only with the Type A/B scoring

and when 0.2% risk of serious DCS is allowed.
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Introduction

Decompression sickness (DCS) is an injury that is a concern for scuba divers, compressed air

workers, astronauts, aviators and other personnel exposed to hyperbaric and/or hypobaric

environments. Although DCS can result from both hyper- and hypobaric exposures, we focus

only on hyperbaric exposures for the present work. The principal cause of DCS is supersatura-

tion of inert gas in the bloodstream and tissues leading to the formation of gas bubbles [1].

Symptoms of DCS can range from relatively harmless manifestations such as slight pains in

the joints to devastating symptoms such as paralysis and death. The evolution (especially as it

relates to hyper/hypobaric exposure) and treatment of DCS are still active areas of research.

Models which attempt to mitigate the occurrence of DCS have been in use for over a century.

The first known model to prescribe decompression schedules following hyperbaric exposures

was the Haldane decompression algorithm, which was introduced to the diving practice at the

beginning of the 20th Century [2]. Haldane’s decompression algorithm drastically reduced the

prevalence and severity of DCS by dictating the schedule by which a diver could safely return to

the surface after a given hyperbaric exposure. Although the Haldane model reduced the instances

of DCS in the field, it was not perfect, as some divers that followed “safe” recompression sched-

ules still experienced DCS.

DCS model improvement continued throughout the 20th Century and still continues today.

DCS models may be broken into two main categories, deterministic and probabilistic. Deter-

ministic models (such as the Haldane model) are binary in outcome and predict whether or

not a diver will experience DCS after a given dive profile. Deterministic models leave no mid-

dle ground when it comes to predicting DCS; the model prediction is that the diver will or will

not experience DCS. This is a problem because empirical data has shown that DCS may occur

for only a small percentage of many divers that all execute the exact same dive. Additionally,

the symptoms for the divers that experience DCS after executing the exact same dive may vary;

drastically in some cases [3–6].

Probabilistic DCS modeling, first introduced into the field by Weathersby et al. [4], assumes

a non-zero probability of experiencing DCS for a given dive. Probabilistic modeling is advanta-

geous because the parameters of the model may be calibrated from empirical data, and different

models may be compared (formally or informally) based on statistical tests. Decompression

models have evolved to the point that differences between decompression algorithms can no

longer be distinguished by casual observation. Differences can be distinguished, however, by

DCS probability estimation if adequate dive data are available [4].

DCS models in use today have the drawback that although they predict the occurrence and/

or probability of DCS, they do not predict the severity of the DCS manifestations. Predicting

the severity of DCS for a given dive would be advantageous because it would allow for safety

analysis to be conducted. Safety is defined as freedom from the risk of injury [7, 8]. However,

complete safety cannot always be guaranteed because risk is characteristic of many human

activities (including decompression), and many activities such as military diving must accept

some risk.

Both the probability and severity of injury are used to determine risk, and risk increases as

either the probability or severity rises [9]. A high-risk activity could have a low probability of

serious injury or a high probability of mild injury. Typically, a risk assessment matrix is used

in which the estimated probability appears vertically and the severity horizontally [10]. Each

matrix cell combines information about probability and severity and is assigned a risk assess-

ment code ranging from negligible to catastrophic. The U.S. Navy and Marine Corps, for

example, use a risk assessment matrix for managing operational risks [11]. Assigning risk

assessment codes and judging what constitutes acceptable risk are personal decisions for an
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individual and social or political decisions for an organization. Inherent in the definition of

safety is that if the severity of injury is not known to a high level of confidence, then conserva-

tive estimates of the severity of injury must be made, such as assuming all DCS events have a

high probability of serious injury, which may unnecessarily limit the level of activity.

Although no DCS models in use today predict the severity of DCS, the importance of cate-

gorizing the risk and severity of DCS and realizing its operational consequences has been pre-

viously considered in the diving community. The U.S. Navy adopted the approach that: “The

tolerable risk for a given dive is a matter of policy and may vary with the circumstances. Dis-

cussions at the Naval Sea Systems Command brought consensus that more than two cases of

Type I (pain-only) or minor Type II (neurological or cardiopulmonary) DCS per 100 dives in

routine U.S. Navy diving would hurt diver morale and would slow operational tempo; for seri-

ous neurological or cardiopulmonary DCS, the maximum acceptable incidence is one case per

1,000 dives (personal communication, Murray CA; 2000)” [12]. This statement makes two

very important points. The first is that DCS should be categorized by severity as opposed to a

simple binary (yes/no) occurrence. Type I DCS, also known as ‘mild’ DCS, was defined as

pain-only symptoms, whereas Type II DCS, also known as ‘serious’ DCS, was defined as neu-

rological or cardiopulmonary symptoms. The second point is that the U.S. Navy was willing to

accept a higher probability for ‘mild’ DCS (2%) than for ‘serious’ DCS (0.1%). Later in this

paper, we will examine the consequences of this 20:1 ratio with regards to the USN 2008 air no

decompression limit (NDL) tables.

Shields and Lee [13] also described the importance of distinguishing by severity when deter-

mining decompression safety: “In considering ‘acceptability,’ one must take into account not

only the overall incidence of DCS, but also its manifestations. Pain-only limb bends, although

not desirable, might be acceptable as an occupational hazard of diving; neurological DCS with

the possibility of cumulative and perhaps permanent damage, is not.” An overall DCS incidence

of less than 0.5% was acceptable for Shields and Lee while “the only acceptable incidence for

Type II DCS in an occupational situation. . .is zero.” Corresponding opinions by U.S. commer-

cial diving operators indicated that 0.02–0.1% was acceptable for Type I DCS while 0–0.025%

was acceptable for Type II DCS [14].

The acceptable percentages of mild and serious DCS described by the U.S. Navy and others

may apply to either the actual incidences of mild and serious DCS during unrestricted diving

operations or to the maximum probabilities of mild and serious DCS predicted by a decom-

pression model for a specific dive profile. In either case, exceeding the acceptable incidences or

probabilities would be undesirable. If separate acceptable risks are to pertain to mild and seri-

ous DCS, probabilistic decompression models must be calibrated accordingly and appropriate

diving procedures selected. This can be accomplished by applying multinomial probability

models to empirical calibration data as opposed to the binomial probability models in use

today. “Multinomial” means that more than one probability is predicted simultaneously; for

example, a trinomial model may simultaneously predict the probabilities of mild DCS, serious

DCS and no DCS.

Deciding what constitutes mild and serious DCS and how they are to be measured are

greater challenges. When a diving physician assigns a diagnosis of DCS to a diver, serious

manifestations (usually designated as "Type II”) take precedence over mild manifestations

(usually designated as “Type I”). If an individual should have both Type I and II manifesta-

tions, the case is reported as Type II. We refer to this as a “hierarchical” classification. To deter-

mine if Type I manifestations were also present, it is necessary to consult the clinical case

descriptions that list all manifestations found during clinical examination. With this informa-

tion, the probabilities of mild (Pm) and serious (Ps) DCS can be estimated. We refer to Pm and

Ps as “competitive” rather than as hierarchical probabilities.
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In the present work, we explore two definitions of mild and serious DCS that were based

upon clinical judgment. We have also previously investigated a method for discriminating

between definitions of DCS severity based on survival analysis [15]. Ultimately, these are judg-

ments that must be made by the developers and users of the decompression procedures, as

each organization will define different levels of acceptable risk according to their operational

requirements.

One approach in developing a DCS modeling system that predicts the probability of DCS

occurrence for events with differing severity would be to separately fit models to the different

DCS types present in the calibration data. The attraction of this approach is that different phys-

iological models could be used for different severity types. A drawback of this approach is that

event types with sparse representation in the calibration data set (for example, cardiopulmo-

nary manifestations) might not possess a sufficient number of events to justify the number of

free parameters in the model, resulting in over-fitting. In addition, this approach does not

allow for the interplay between the probabilities (i.e., competitive vs. hierarchical) of different

DCS types which results from measurement bias.

For the present work, we take a simpler approach to the problem of modeling DCS severity

by developing a framework that can be applied to many DCS models already in existence. This

will allow for the model to be fit to DCS events of differing severity simultaneously. The attrac-

tion of this approach is that only a single additional free parameter is needed for each addi-

tional type of DCS severity. In constructing this framework, it is necessary to develop the

connection between the model’s competing (predicted) and hierarchical (observed) probabili-

ties. While this approach does not, in the present work, allow for the model dynamics to vary

between the events of different severity, it does allow for the fitting to rare DCS events and

allows for a rigorous study of fit improvement with the added parameters.

Methods

In the Methods subsections to follow, we discuss the data set used for model calibration, pres-

ent our rationale for discriminating the event severity, briefly discuss the DCS model used for

this work, and develop our trinomial (3-state) model. This is followed by a derivation of the

link between the model competing and hierarchical probabilities, presentation of the multino-

mial likelihood function used to fit the probabilistic DCS model to the empirical dive data, and

a derivation of equivalent likelihoods. For optimizing the DCS model, we derive exact expres-

sions for model gain and scaling parameters so that these parameters are removed from the

optimization space. Our final two Methods subsections discuss the model optimization system

and the statistical methods used for this work.

Calibration data set

For all of the model fitting in this work, we used the BIG292 standard DCS data set available in

two NMRI reports [5, 6]. This data set contains the dive profiles and diver outcome informa-

tion (i.e., whether or not DCS occurred) for 3322 Air and N2-O2 exposures that cover depths

ranging from 20 to 602.4 feet of seawater (fsw) and durations ranging from 0.64 to 12,960 min

(including surface intervals for repetitive dives). The dive trials included in this data set were

conducted by the U.S., U.K., and Canadian militaries between 1944 and 1997. The data set

contains 190 cases of decompression sickness, and 110 cases of marginal decompression sick-

ness. Outcomes were considered marginal (or “niggles”) when symptoms were mild, short

duration (<60 min for 1 joint, <30 min for multiple joints) aches, pains, or fatigue that spon-

taneously resolved without recompression treatment [5, 6]. The use of marginal DCS events in

the fitting of probabilistic DCS models is discussed in detail elsewhere [16].
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Symptom case histories for the full and marginal DCS cases are presented in the reports

along with symptom onset times for all of the DCS cases and for 68/110 of the marginal DCS

cases. The symptom onset times are given as T1, the last time the diver was known to definitely

be asymptomatic, and T2, the first time the diver was definitely known to be symptomatic. For

all of the models in this paper, we used the symptom onset times when calculating the proba-

bilities of suffering DCS as detailed elsewhere [17]. As uncertainty could be associated with the

determination of T1 and T2, rules were established so they could be assigned consistently [18],

but assigned onset times might be minutes to hours different from the actual onset time.

Because all of the data used in this study are anonymized and de-identified and are available

to the public without restriction in two official Government reports, no IRB approval was

required for the present work.

Discrimination by DCS event severity

Descriptions of the DCS cases and marginal events were published in the NMRI reports so

investigators could make independent judgments of diagnoses [5, 6]. We transformed the

symptom descriptions into a numerical value using the empirical six category scale shown in

Table 1. We refer to this scale as the “Perceived Severity Index” (PSI) as the categories are in

the order of what is generally perceived to be of decreasing severity [19, 20]. Marginal inci-

dents (niggles) were not assigned a PSI. The PSI indices have the following definitions:

1. Serious Neurological: dysfunction involving bladder, bowel, gait, or coordination (ataxia),

reflexes, mental status (dysphasia, mood, memory, orientation, personality), vision, hearing

(tinnitus), consciousness, strength, vertigo.

2. Cardiopulmonary: cough, hemoptysis, dyspnea, voice change.

3. Mild Neurological: paresthesia, numbness, tingling, altered sensation.

4. Pain: ache, cramps, discomfort, joint pain, pressure, spasm, stiffness.

5. Lymphatic or Skin: edema, itching, rash, burning sensation, marbling.

6. Constitutional or Nonspecific: dizziness, fatigue, headache, nausea, vomiting, chills, dia-

phoresis, malaise, restlessness.

Several PSI categories could be assigned to a given DCS case, but as the categories were

hierarchical, cases could also be described by the category of greatest severity. Thus, a case

with serious neurological manifestations (PSI = 1) could also have pain (PSI = 4) but would be

assigned a hierarchical category of PSI = 1. Conversely, a case categorized as PSI = 4 due to

pain could not have serious neurological manifestations. The PSI system collapses into the

Table 1. Distribution of Perceived Severity Index (PSI) in the BIG292 data set with corresponding Type I/II and Type A/B classifications [19, 20].

PSI Manifestation Occurrences Type I/II Type A/B

1 Serious neurological 18 38 Type II 20 Type B

2 Cardiopulmonary 2

3 Mild neurological 18 170 Type A

4 Pain 150 152 Type I

5 Skin 1

6 Constitutional 1

Total 190 190 190

https://doi.org/10.1371/journal.pone.0172665.t001
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traditional DCS severity categories of Type I (PSI = 4–6) for ‘mild’ and Type II (PSI = 1–3) for

‘serious’ as indicated in Table 1. When applied to the 190 DCS cases in BIG292, 152 were of

Type I and 38 were of Type II. The Type I & II classification of DCS severity is not the only

classification system currently in use. In the workshop Describing Decompression Illness, Fran-

cis and Smith reported that, “It was agreed that patients who had only sensory changes had

sustained a less severe injury than those in which there is also motor involvement” [21]. Simi-

larly, the workshop on theManagement of Mild or Marginal Decompression Illness in Remote
Locations offered the following definition of “mild” symptoms and signs [22]:

• Limb pain where: (a) the severity of pain has little prognostic significance, but may influence

management decisions independent of the classification of pain as a “mild” symptom; and

(b) classical girdle pain syndromes are suggestive of spinal involvement and do not fall

under the classification of “limb pain.”

• Some cutaneous sensory changes that include subjective cutaneous sensory phenomena

such as paraesthesiae that are present in patchy or non-dermatomal distributions suggestive

of non-spinal, non-specific, and benign processes. Subjective sensory changes in clear der-

matomal distributions or in certain characteristic patterns such as in both feet, may predict

evolution of spinal symptoms and should not be considered “mild.”

• Constitutional symptoms or rash

• Objective neurological dysfunction must be excluded by medical examination. The procla-

mation of “mild” cannot be made where symptoms are progressive. The “mild” designation

must be repeatedly reviewed over at least 24 hours following diving or the most recent

recompression if there was ascent to altitude.

These workshops suggest an alternative approach to DCS severity in which mild neurologi-

cal symptoms (PSI = 3) would be classified as Type I rather than Type II DCS. For clarity, we

refer to this classification scheme as Type A & B rather than Type I & II. BIG292 contains 170

Type A and 20 Type B DCS cases (Table 1). In the discussion below, we treat DCS severity as

‘Mild’ or ‘Serious’ where these are defined as in Table 1 by Type I or Type II and by Type A or

Type B. To develop our concepts and procedures, most of our work defined ‘mild’ as Type A

DCS and ‘serious’ as Type B DCS. However, because Type I & II definitions are in common

use, we also explored the consequences of defining Type I as mild and Type II as serious. As

we will demonstrate in the results section, the classification of severity by Types I/II or Types

A/B has important implications for operational diving exposure limits.

DCS model

Although the methodology we present for constructing hierarchical probabilities is general

and can be applied to many existing probabilistic decompression models, we chose the LE1nt

model for this work [23, 24]. This model employs three parallel, perfusion-limited compart-

ments, each with a unique half-time, and allows for a switch between exponential and linear

gas kinetics in the intermediate compartment. The “nt” designation indicates that this particu-

lar model does not use a threshold term in the slow compartment as do some variants of this

model class. A detailed derivation of this model and the exact solution for the exponential-to-

linear gas kinetics cross-over conditions is available in our previous work [25]. In addition to

our having experience with this model, it serves as the basis for several other DCS models,

such as the NMRI98 model [26]. The particular variant of LE1nt that we use for this work has

three parallel, well-perfused tissue compartments, does not use pressure thresholds in the defi-

nition of the risk function and only uses an exponential to linear cross-over pressure in the
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intermediate tissue compartment. Additionally, this variant of the LE1nt model contains 7

adjustable parameters (3 gains, 3 tissue time-constants, 1 cross-over pressure). The exact gains

can be found implicitly and eliminated from the optimization so that only 4 adjustable param-

eters remain for the binomial (2-state) model [27]. The trinomial (3-state) model adds one

additional adjustable parameter to the binomial model.

Trinomial model

Weathersby et al. [4], Thalmann et al. [23], and others treated DCS as a binomial process (no

DCS, DCS) with the probability of developing DCS defined as

PDCS ¼ 1 � e� ~g�~R ð1Þ

with the probability of not developing DCS defined as

P0 ¼ 1 � PDCS ¼ e
� ~g�~R : ð2Þ

In Eqs (1) and (2),~g is a vector of gain parameters and~R is a hazard vector containing the

compartmental risk information. Our trinomial model definition scales the probability of seri-

ous DCS from that of mild DCS using a scale factor, a, so that

Pcs ¼ 1 � e� að~g�~RÞ

Pcm ¼ 1 � e� ~g�~R :
ð3Þ

In Eq (3), the subscript indicates the mild or serious state and the superscript indicates

that these expressions are competitive probabilities. The choice of which event is scaled by

the additional parameter, a, is arbitrary. However, we expect that the convergence of the

model parameters will be improved if we do not add the additional parameter to the most

frequently occurring event. Therefore, we elected to add the additional parameter to the

less frequently occurring serious DCS event. Note that other definitions for the competitive

probabilities are possible. The definitions we use offer the advantage that one additional

parameter allows the same DCS model to distinguish between mild and serious DCS. Note

that this formulation does not allow for the time of symptom onset to vary between the dif-

ferent events, although we expect that this method could be extended to allow different

dynamics for different event severities.

Competitive and hierarchical probabilities

The DCS outcomes are graded with priority given to the most serious DCS manifestations.

This reporting of a single outcome from a multinomial process removes the joint probability

that a diver experiences multiple symptoms from the observations, creating a hierarchical sys-

tem. For example, serious DCS takes precedence over mild DCS which takes precedence over

marginal DCS. As a result, the hierarchical probability of mild DCS must be multiplied by the

probability of the diver not experiencing serious DCS and so on. In order to write the hierar-

chical probabilities compactly, we will use the notation

e� ~g�~R ¼ x ð4Þ

so that

e� að~g�~RÞ ¼ x
a

ð5Þ

and the mathematics of exponents and logarithms apply as usual. The hierarchical probabilities,
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in terms of the competitive probabilities, are then

Phs ¼ P
c
s ¼ 1 � x

a

Phm ¼ P
c
mð1 � P

h
s Þ ¼ x

a
� x

aþ1
ð6Þ

The probability of the non-event state for the trinomial models is

Ph
0;tri ¼ 1 � Phs � P

h
m ¼ x

aþ1
ð7Þ

For both the binomial and trinomial models, the sum of the probabilities of the events and

the non-events equals 1, as is required by the law of total probability.

The distinction between the competitive and hierarchical probabilities is subtle but impor-

tant. The hierarchical probabilities are reported (observed) and the competitive probabilities are

computed by Eq (3). A plot of the hierarchical probabilities as a function of the hazard function

for a single tissue is shown in Fig 1 for a = 0.25. This value of scale parameter is reasonably real-

istic for the Type I/II splitting of mild and serious events. As the figure indicates, all event prob-

abilities first increase. Then, the hierarchical probability of mild DCS diminishes as the

probability of serious DCS increases making it less likely for a diver to suffer mild DCS only.

Multinomial likelihood functions

The adjustable parameters for the binomial and trinomial models are optimized through the

method of log likelihood maximization [4], although the statements of log likelihood are dif-

ferent for the different models. For the binomial problem, the log likelihood is

LL2 ¼
XN

i¼1

ln½ð1 � PD;iÞ
1� dPD;i

d� ð8Þ

where PD,i is the probability of DCS on dive profile i of the data set and δ = 1 if the dive resulted

in DCS and δ = 0 otherwise. We do not consider fractional weighting of marginal DCS events

for either the binomial or trinomial models. This function has been examined in detail in the

context of probabilistic modeling of DCS elsewhere [15]. For the trinomial model, the appro-

priate log likelihood expression is

LL3 ¼
XN

i¼1

ln½ð1 � Phm;i � P
h
s;iÞ

1� m� s
ðPhm;iÞ

m
ðPhs;iÞ

s
� ð9Þ

where μ = σ = 0 for no DCS, μ = 1, σ = 0 for mild DCS and μ = 0, σ = 1 for serious DCS. As a

result of our previous study on the use of marginal events in fitting DCS models [16], we

group the marginal DCS profiles with the non-event profiles. We will return to these expres-

sions during our derivation of optimal gain and scaling parameters.

Equivalent log likelihoods

In order to compare the relative performance of nested models, the log likelihood difference

test is useful [28]. We would like to design a test to see whether adding an additional adjustable

parameter to step from the binomial to the trinomial model is justified by an appropriate

change in log likelihood. A direct comparison between LL2 and LL3 is meaningless because the

data are graded differently. However, we can deflate LL3 to generate the equivalent LL2 via:

LL32 ¼
XN

i¼1

ln½ð1 � Phm;i � P
h
s;iÞ

1� m� s
ðPhm;i þ P

h
s;iÞ

mþs
� ð10Þ
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In this last expression, the subscripts LLxy denote the x state model deflated to the y state

problem and the bit-field rules of Eq (9) still apply. Now, Eq (10) can be directly compared to

Eq (8) for log likelihood difference hypotheses testing.

We will now construct a simple example that illustrates the role of competitive probabilities,

hierarchical probabilities, and deflated (equivalent) log likelihoods. Consider a simple process

that selects a pair of independent random numbers, each with uniform probability, on a unit

interval. If the first random number is less than 0.2, event A occurs and if the second random

number is less than 0.2, event B occurs. However, the first number is observed before the sec-

ond, and if the first is found to be less than 0.2, event A is recorded and that trial halts. This

adds a bias into the observation by masking the joint probability of events A and B (PAPB)

from being recorded. The conditional probabilities of events A and B are PcA ¼ P
c
B ¼ 0:2. The

hierarchical (biased, recorded) probabilities of events A and B are

PhA ¼ P
c
A ¼ 0:2

PhB ¼ P
c
Bð1 � P

h
AÞ ¼ 0:2ð1 � 0:2Þ ¼ 0:16:

ð11Þ

The hierarchical probabilities of events A and B are shown in Fig 2 as the shaded regions.

Note from the figure that event A masks the joint probability of events A and B. The probability

of neither events A nor B occurring for the hierarchical system is

Fig 1. Probabilities of DCS events of differing severity with increasing value of the hazard function in the

hierarchical model. Because serious DCS masks mild DCS, as the probability of serious DCS increases, the probability

of observing mild DCS decreases. A scale factor of a = 0.25 was used to generate these results.

https://doi.org/10.1371/journal.pone.0172665.g001
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Ph
0
¼ 1 � PhA � P

h
B ¼ 1 � 0:2 � 0:16 ¼ 0:64 ð12Þ

which corresponds to the unshaded region in Fig 2.

Now, consider a naive model that simply returns the empirical, hierarchical probabilities of

the non-events and the total events (binomial version) which may be broken down by A, B

events (trinomial version). The same model will be applied in the binomial and trinomial ver-

sions to a test of 100 trials that also returns the expected results. That is, the test returns 64

non-events and 36 total events containing 20 A events and 16 B events. The LL2 for the bino-

mial version of the model is

LL2 ¼ 64 lnð0:64Þ þ 36 lnð0:36Þ ¼ � 65:34: ð13Þ

The trinomial log likelihood is

LL3 ¼ 64 lnð0:64Þ þ 20 lnð0:20Þ þ 16 lnð0:16Þ ¼ � 90:07 ð14Þ

Fig 2. Example random process in which a pair of independent uniform numbers trigger event A if RA

< 0.2 and event B if RB < 0.2. If RA is observed before RB and event A masks event B, then the hierarchical

probability of observing event A is Ph(A) = 0.2 and the hierarchical probability of observing event B is Ph(B) =

0.16.

https://doi.org/10.1371/journal.pone.0172665.g002
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whereas the deflated version of the trinomial log likelihood is

LL32 ¼ 64 lnð0:64Þ þ ð20þ 16Þ lnð0:20þ 0:16Þ ¼ � 65:34: ð15Þ

We see that the deflated trinomial log likelihood is equivalent to the binomial log likeli-

hood. This is as anticipated, since the same model was applied in binomial and trinomial

versions to the same data set, so we would not expect one version of the model to be better

than the other. In the results section below, we will use the deflated log likelihood in a stan-

dard χ2 test (see Eq (20)) to investigate whether adding the additional parameters to our tri-

nomial DCS model (Eq (3)) improves the overall model fit when compared to the binomial

model.

Exact model gain and scaling parameters

In fitting probabilistic DCS models to empirical dive data, optimizing the adjustable param-

eters to maximize the log likelihood can be a compute-intensive and time-consuming task.

Often, many initial parameter sets must be used in multiple optimizations to have some

degree of confidence that the best values of the parameters are found. One of the difficulties

that can arise in optimizing a model is that nearly-collinear parameters make the Hessian

matrix ill-conditioned, resulting in slow convergence, poor accuracy, and creating other

numerical problems [16, 25]. This is especially true of the model gain vector,~g , which has

near collinearity with the tissue time parameters. This is also true of the near collinearity

between the trinomal scale parameter, a, the gain vector, and the tissue time constants. In

our previous work, we were able to find exact, although nonlinear and implicit, solutions

for the optimal gain values for a simpler binomial problem [27]. The resulting exact solution

gives the scientist the capability to remove the gain parameters from the optimization

parameter space, which greatly improves the speed of optimization and the solution quality.

This method for finding the exact gains can also be applied to the trinomial problem. In

writing the exact gain and scale parameter equations, we will extend the shorthand notation

of Eqs (4) and (5) and include time-of-symptom onset [17] in the formulation of exact

gains. An overscript notation will now be used to show the integration interval for the haz-

ard function as

e� ~g�~R
01

¼ e

� ~g�

ZT1

0

~rdt

¼ x
01

e� ~g�~R
12

¼ e

� ~g�

ZT2

T1

~rdt

¼ x
12

e� ~g�~R
03

¼ e

� ~g�

Z1

0

~rdt

¼ x
03

e� ~g�~R
02

¼ e

� ~g�

ZT1

0

~rdt

e

� ~g�

ZT2

T1

~rdt

¼ e

� ~g�

ZT2

0

~rdt

¼ x
01

x
12

¼ x
02

ð16Þ

where the scale parameter of Eq (5) still applies and the integration limits T1 and T2 were

previously discussed. Now, let a dive data set contain Z zero (non) events, D cases of DCS

(binary model), M cases of mild DCS (trinomial model), and S cases of serious DCS
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(trinomial model) counted by the respective indices z,d,m, and s. Also, let a DCS model con-

sist of C parallel tissue compartments. For the binary problem, the cth optimal component,

gc, of the gain vector is given by the simultaneous solution of the C equations

XD

d¼1

Rcd
12

x
� 1
12

� 1

� Rcd
01

2

6
6
4

3

7
7
5 ¼

XZ

z¼1

Rcz
03

ð17Þ

where Rcp denotes the integrated hazard function for the cth tissue compartment on the pth

dive profile of the data subset (D or Z). The optimal cth compartmental gain, gc, for the tri-

nomial DCS model is given by the simultaneous solution of the C equations

XS

s¼1

a Rcs
12

x
� a
12

� 1

� ð1þ aÞR
01

cs

2

6
6
4

3

7
7
5þ

XM

m¼1

Rcm
12

x
� 1
12

� 1

� R
01

cm � aR
02

cm

2

6
6
4

3

7
7
5 ¼ ðaþ 1Þ

XZ

z¼1

R
03

cz ð18Þ

together with the solution of the equation for the optimal scale parameter, a

XS

s¼1

ln xs

01
� �

�

ln xs

12
� �

x
� a
s

12

� 1

2

6
6
6
4

3

7
7
7
5
¼ �

XM

m¼1

ln xm

02
� �

�
XZ

z¼1

ln xz

03
� �

: ð19Þ

In finding the optimal gain components for the binary problem (solutions of Eq (17)) or

the optimal gain components and scale parameter for the trinomial problem (solutions of Eqs

(18) and (19)), the integrated hazard functions, R, are constant and need only be evaluated

once for each optimal gain set. A proof of gain vector optimality for the binomial model may

be found in our previous work [27] while a similar proof for the trinomial model is presented

in the Appendix.

DCS model optimization system and statistical methods

Our previously-developed probabilistic DCS optimization and modeling system [25] was used

to generate the results for this work. We extended the previous capabilities of this system by

adding the trinomial model and by adding the exact gain and scale parameter solutions. For

calculation of 95% confidence limits on model parameters, we used our software and standard

calculation methods [28]. To assign 95% confidence limits and 95% prediction limits on

model fits to the data, we used SigmaPlot v11 [29]. For a test of model improvement, we used

the log likelihood difference test [28]. A value of p< 0.05 was considered significant and a

value of p< 0.01 was considered highly significant.

Results

In the results subsections to follow, an examination will be made of the changes in model fit

and prediction between the trinomial and binomial models. We will then compare the bino-

mial model to the trinomial model. The comparison will include parameter values with confi-

dence intervals, changes in model prediction vs. observed DCS incidences, a study of DCS

event probability shifts between the models, and DCS cumulative density functions.
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Trinomial model vs. binomial model

We will first examine the change in model fit between the binomial and trinomial models

using DCS severity defined as Types A and B (Table 1). In order to do this, the log likelihood

difference test [28] will be used together with our deflated log likelihood (Eq (10)). The model

parameter values, 95% confidence intervals on the parameter values, and log likelihood values

are shown for all models in Table 2. In comparing the binomial and trinomial models, we can

directly compare LL2 with LL32 as shown in the methods section. This comparison results in

the log likelihood difference value

DLL ¼ w2 ¼ � 2½LL2 � LL32� ¼ 182:28 ð20Þ

whereas the critical χ2 value for significance (p< 0.05) for the single additional degree of free-

dom added to the binomial model to generate our trinomial model is 3.841 and the critical χ2

for high significance (p< 0.01) is 6.635. Therefore, the trinomial model offers a highly signifi-

cant improvement over the binomial model (p� 0.01). This highly significant improvement

in model performance of the trinomial system over the binomial system may be understood by

examining the empirical event probabilities. There is a far lower incidence of serious DCS (20/

3322) than mild DCS (170/3322) in the BIG292 data set. The trinomial model predicts a lower

probability of occurrence for these serious events as well as for the mild events than does the

binomial model. The lowered probability increases the deflated log likelihood, thus improving

the model fit.

The model parameters for all models are also shown in Table 2. The compartmental tissue

time constants, k1–3, are nearly identical between the optimized binomial and optimized trino-

mial models. As a result, the compartmental gain parameters, g1–3, are driven to smaller values

by this optimization process because there are fewer events in the mild DCS category with the

trinomial model. This may be understood by realizing that the probabilities of each event type,

mild DCS and serious DCS, must both diminish when the separate events are not lumped into

a single event category.

In Fig 3, the predicted probability of DCS is plotted against the observed probability of DCS

for the trinomial model. These results were generated by sorting the entire dive data set by pre-

dicted DCS probability into ten (mild) or five (serious) bins with each bin containing an equal

Table 2. Parameter values and 95% confidence intervals for the binomial and trinomial (Type A/B clas-

sification) variants of the LE1nt model. For the log likelihood values, the underlined results can be directly

compared. The trinomial model offers a highly significant improvement over the binomial model.

Binomial Trinomial

k1 (min) 1.593 ± 0.280 1.593 ± 0.284

k2 (min) 184.1 ± 21.37 184.7 ± 21.84

k3 (min) 535.7 ± 94.14 535.5 ± 94.36

g1 (min-1) 3.290E-3 ± 1.275E-3 2.947E-3 ± 1.150E-3

g2 (min-1) 3.908E-4 ± 9.733E-5 3.508E-4 ± 8.959E-5

g3 (min-1) 2.727E-4 ± 9.767E-5 2.443E-4 ± 8.808E-5

PXO1 (fsw) 1 1

PXO2 (fsw) 0.259 ± 0.054 0.260 ± 0.064

PXO3 (fsw) 1 1

a - 0.116 ± 0.0275

LL2 -978.76 -

LL3 - -1042.66

LL32 - -887.62

https://doi.org/10.1371/journal.pone.0172665.t002
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number of observed DCS events. The data points shown in Fig 3 are the number of serious

DCS cases (triangles) and mild DCS cases (circles), expressed as a probability, for all of the

dive profiles in that bin. Also shown in the figure is the line of identity. For a perfect model, all

data points would fall on the line of identity. The gray dashed lines correspond to linear fits of

the observed DCS to predicted DCS (r2
mild ¼ 0:69; r2

serious ¼ 0:37). The 95% confidence bands

are shown by long-dashed lines while the 95% prediction bands are shown by short-dashed

lines. As indicated by the figure, the trinomial version of the LE1nt model reasonably predicts

both the serious and mild DCS trends but there remains considerable opportunity for improve-

ment in the predictive performance of the underlying DCS model. Further modeling improve-

ments could include the use of mixed pharmacokinetic models and more physiologically-based

models. Certainly, additional human dive trials would be helpful. One of the issues that we (and

others) are currently attempting to address is how to best model heterogenous data sets such as

BIG292 that include such diverse dives as 600 fsw dives lasting less than one minute with satura-

tion dives; for example, 20 fsw dives lasting more than 10,000 minutes.

Predictions on data

n Table 3, we show the number of observed DCS cases along with the number of predicted DCS

cases for each sub-set that makes up the entire BIG292 data set. The data consist of single air,

Fig 3. Trinomial model predicted probability of DCS versus observed probability of DCS. These points were generated

by sorting the mild (serious) profiles into ten (five) bins, each bin containing the same number of observed DCS cases. The

predicted and observed probabilities of DCS were then calculated for each bin. The data are shown together with a linear fit

(gray, long dash r2mild ¼ 0:69; r2serious ¼ 0:37) and the 95% confidence (black, long dash) and 95% prediction (black, short dash)

bands.

https://doi.org/10.1371/journal.pone.0172665.g003
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repetitive and multilevel air, single non-air, repetitive and multilevel non-air, and saturation

dives. The data show the number of mild and serious DCS cases contained in each data set.

Note that the total does not include any fractionally-weighted marginal cases. That is, only mild

and serious cases are included in the total. For each data set, we also show the number of cases

as predicted by the binomial and trinomial models. The 95% confidence band in the total num-

ber of predicted cases in the BIG292 dataset is also shown in this table. In comparing the predic-

tions of the binomial to the trinomial model, we see that the number of predicted cases for the

binomial model is equal to the number of mild plus serious cases for the trinomial model.

Binomial to trinomial probability shift

The shift in the predicted probabilities of the DCS events between the binomial and trinomial

models is shown in Fig 4 for both the I/II and A/B classifications of the events. This shift-plot

shows the probabilities of no DCS, mild DCS, and serious DCS as calculated by the binomial

and trinomial models along with the line of identity. The probability of DCS under the bino-

mial model is plotted on the abscissa and the probability of DCS or no DCS under the trino-

mial model for that same dive profile is plotted on the ordinate. Thus, a point that falls below

Table 3. DCS occurrences and binomial and trinomial model (Type A/B classification) predictions for the BIG292 data set.

Predicted DCS

Observed DCS Binomial Trinomial

Exposures Mild Serious Total Total Mild Serious

Single Air

EDU885A 483 27 3 30 25.6 22.9 2.7

DC4W 244 7 1 8 5.4 4.9 0.6

SUBX87 58 0 2 2 0.6 0.5 0.1

NMRNSW 91 4 1 5 6.2 5.5 0.7

PASA 72 4 1 5 3.1 2.8 0.3

NSM6HR 57 3 0 3 4.7 4.2 0.5

Repet & Multilevel Air

EDU885AR 182 11 0 11 10.8 9.7 1.2

DC4WR 12 3 0 3 0.8 0.7 0.1

PARA 135 6 1 7 9.8 8.7 1.1

PAMLA 236 9 4 13 19.2 17.1 2.1

Single Non Air

NMR8697 477 9 2 11 18.5 16.5 2.0

EDU885M 81 4 0 4 3.4 3.0 0.4

EDU1180S 120 9 1 10 7.5 6.7 0.8

Repet & Multilevel Non Air

EDU184 239 11 0 11 14.3 12.7 1.5

PAMLOAD 134 5 1 6 8.0 7.2 0.9

PAMLOAS 140 5 0 5 7.1 6.3 0.8

EDU885S 94 4 0 4 4.6 4.2 0.5

Saturation

ASATEDU 120 11 2 13 10.4 9.3 1.1

ASATNMR 50 1 0 1 3.6 3.2 0.4

ASATNSM 132 18 0 18 14.2 12.7 1.6

ASATARE 165 19 1 20 12.6 11.2 1.4

Total 3322 170 20 190 190.4 ± 28.4 169.9 ± 23.6 20.5 ± 8.9

https://doi.org/10.1371/journal.pone.0172665.t003
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the line of identity has a lower probability of the predicted event under the trinomial model

than under the binomial model. We show the model-predicted probability of both mild and

serious DCS in the lower left region of the plot using both the I/II and A/B classifications. In

the upper right region of this same plot, we show the probability of DCS not occurring. It is

worth noting that the trinomial model negligibly affects the prediction of no-DCS. This is indi-

cated on the plot by the fact that the no-DCS predictions fall so closely to the line of identity.

Additionally, the no DCS events shown in Fig 4 fall on top of one another so the A/B no DCS

profiles obscure the I/II DCS profiles. As the figure shows, both the mild and serious DCS event

types have a lower predicted probability under the trinomial model than under the binomial

model, the I/II mild DCS probabilities are somewhat less than the A/B mild DCS probabilities,

and the I/II serious probabilities are somewhat greater than the A/B serious probabilities. These

observations are consistent with what should be expected from the trinomial grading of the dive

data and an examination of the data bulk probabilities.

Another feature of the predicted probabilities, shown in Fig 4, is the tight correlation of the

predicted probabilities as indicated by the lack of scatter about a straight line that could be

drawn through the points for each event type. This could be anticipated by the fact that the

Fig 4. Binomial to trinomial probability shift plot for the I/II (unfilled symbols) and A/B (filled symbols) predictions.

For the dive profiles that result in DCS, the binomial predicted probability is compared to the predicted DCS probability from the

trinomial model. Profiles resulting in serious DCS are shown by triangles and profiles resulting in mild DCS are shown by

circles. For dive profiles that did not produce DCS, the probability of no DCS is shown by squares. If a point falls below the line

of identity, the trinomial model predicts a lower probability of the corresponding event on that dive profile. The probabilities of

mild and serious DCS under the trinomial model with either I/II or A/B classifications are smaller than the probability of DCS

under the binomial model while the probability of no DCS is nearly the same for both models with either classification. Note that

the A/B no DCS outcomes obscure the I/II no DCS outcomes.

https://doi.org/10.1371/journal.pone.0172665.g004
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optimized model parameters, reported in Table 2, are nearly identical for both the binomial

and trinomial models. If we fit a straight line to the mild and serious event predicted probabil-

ity points shown in the figure, the straight lines have the respective slopes of 0.894 (r2 > 0.999)

and 0.109 (r2 > 0.999). The slopes are useful as a basic “rule of thumb” for understanding the

probability reduction in going from the binomial to the trinomial model. For example, given a

predicted probability of binomial DCS, P2, the probabilities of trinomial mild DCS and trino-

mial serious DCS are Pm� 0.894P2 and Ps� 0.109P2 respectively.

The cumulative density function (CDF) is a useful tool that allows for comparison of DCS

symptom onset times. Due to the fact that our present hierarchical models simply scale the

event probabilities and do not allow the dynamics of DCS to vary from one severity category

to the next, the CDF shown in Fig 5 indicates that all model predictions collapse onto the same

curve (dashed black line). This contrasts with the observed mild (solid black line) and serious

(solid gray line) DCS cumulative probabilities, which are shown to be different from approxi-

mately 15 to 3 hours before surfacing and also from approximately 3 hours after surfacing

onward. In both cases, the observed cumulative probability of serious DCS is less than that of

mild DCS. The model does the best job of predicting cumulative probability from the time of

surfacing to approximately 3 hours after surfacing. Before surfacing, the model is seen to sig-

nificantly under-predict the cumulative probability of DCS; whereas after approximately 3

hours after surfacing, the model is seen to over-predict the cumulative probability of DCS. In

Fig 5. Trinomial cumulative density function for the serious DCS cases (grey, solid curve) and mild DCS cases

(black, solid curve). The cumulative density function for predicted mild and serious DCS fall on the same curve (black,

dashed curve).

https://doi.org/10.1371/journal.pone.0172665.g005
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other words, the model predicts that more of the DCS events of all types occur after surfacing

than the data indicates.

Series expansion on the probability of mild DCS

After the model optimization is complete and the scale parameter is found, it is no longer nec-

essary to separately evaluate a dive profile for the hierarchical probabilities of the differing

event types. With the optimized scale parameter, a, the hierarchical probability of serious DCS

may be calculated directly from the hierarchical probability of mild DCS. To demonstrate this,

we begin with the hierarchical probabilities of serious and mild DCS written in terms of Eqs

(4) and (5) as

Ps ¼ 1 � x
a
; Pm ¼ x

a
� x

aþ1
: ð21Þ

Next, we can eliminate ξ between the two Eq (21) to get

Pm ¼ ð1 � PsÞ � ð1 � PsÞ
1þ1

a: ð22Þ

While this is a useful equation, a second order series expansion of Eq (22) for small event

probabilities provides a more insightful result. The series expansion is

Pm ¼
1

a
Ps �

aþ 1

2a2
P2

s þ OðP
3

s Þ: ð23Þ

The first term on the right hand side of Eq (23) is a simple scaling of the event probability

while the second term reduces the probability of mild DCS with increasing probability of seri-

ous DCS due to the hierarchical connection between the two event types. A more useful ver-

sion of Eq (23) is

Ps ¼
a

aþ 1
ð1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2Pmðaþ 1Þ

p
Þ 8 Pm < 0:18 ð24Þ

which expresses the lower probability of serious DCS as a function of the greater mild DCS

probability. Eq (24) is accurate to within 1% of the probability as calculated by Eq (6) (first

line) for dive profiles whose probability of mild DCS is less than approximately 0.18. Given the

DCS probabilities displayed in Fig 4, Eq (24) is appropriate for all dives in the BIG292 dataset.

It is important to note that Eqs (22–24) cannot be used without first optimizing the model

parameters with the trinomial DCS model.

Discussion

From the log likelihood comparisons between the binomial and trinomial models, we can con-

clude that there is a highly significant improvement in the fit made by the simple hierarchical

scaling we develop in this paper. We will now return to an observation made earlier in this

paper that the current U.S. Navy guidance for acceptable risk of DCS occurrence for any given

dive is 2% for ‘mild’ DCS and 0.1% for ‘serious’ DCS, a 20:1 ratio. This contrasts with the prev-

alence of ‘mild’ and ‘serious’ DCS events in the BIG292 dataset as summarized in Table 1. To

elaborate, the Type I/II definition of severity gives 152 ‘mild’ DCS events and 38 ‘serious’ DCS

events for a 4:1 ratio while the Type A/B definition of severity gives 170 ‘mild’ events and 20

‘serious’ DCS events for an 8.5:1 ratio. The disparity between the 20:1 ratio stated in U.S. Navy

guidance and the 4:1 or 8.5:1 ratios in the dive data has implications for establishing dive pro-

cedures according to ‘mild’ and ‘serious’ DCS.
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We can demonstrate these implications by considering the air no-decompression limits

(NDL) in the USN 2008 Dive Manual [30]. In Fig 6, we show the published U.S. Navy air no-

decompression limits as a function of depth using filled hexagons. For comparison, we also

show the French Navy NM90 table air no-decompression limit using unfilled triangles. Also

shown on this plot, by the solid black line, is the 2% DCS probability line for the binomial

model as predicted by the LE1nt model using the optimized parameters listed in Table 2. Note

that the 2% binomial limit over-predicts the available bottom time for the deeper dives and

under-predicts the available bottom time for the shallower dives when compared to the NDL.

If we plot the output from the trinomial model for the Type I/II definition of DCS severity, we

find that the reduced probability of predicted ‘mild’ DCS results in a longer allowable bottom

time for the same 2% probability limit. This is indicated by the black curve in Fig 6. However,

when we plot the 0.1% limit for ‘serious’ DCS, we find a vastly decreased allowable bottom

time for all depths. Interestingly, the French NM90 air no-decompression times correspond

well with the 0.1% serious DCS limit in the range 80–120 fsw and result in a relatively low inci-

dence of serious DCS [31]. The take-home message is that if a given dive must be within

Fig 6. Air no-decompression limit and model predictions. The filled hexagonal symbols indicate the bottom depth in

feet of seawater (fws) versus the air no-decompression limit in minutes according to the 2008 US Navy Diving Manual (rev

6). The unfilled triangles indicate the air no-decompression limits according to the French Navy NM90 tables. The solid

black curve shows the 2% limit as predicted by the binomial LE1nt model. The black dashed curve is the corresponding

2% limit for mild DCS as predicted by the trinomial model. The medium dashed grey curve shows the 0.1% limit for serious

DCS as predicted by the trinomial LE1nt model, while the short dashed grey curve shows the operationally consistent

0.2% limit for serious DCS as predicted by the trinomial LE1nt model. The grey dotted curve shows the 0.1% serious limit

as predicted by using the Type I/II definition. Note that the predicted 0.1% serious DCS limit is well below the established

U.S. Navy air no-decompression limit but corresponds well with the French NM90 limit in the range of 80–120 fsw.

https://doi.org/10.1371/journal.pone.0172665.g006
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acceptable risk limits for both ‘mild’ (2%) and ‘serious’ (0.1%) DCS in accordance with the pre-

vious analysis, the NDL exposures will be restricted to the limits for ‘serious’ DCS.The previous

analysis identified Type II DCS as ‘serious’ and Type I DCS as ‘mild’ with a 4:1 ratio of Type I

to Type II cases. Since some Type II cases only have subjective manifestations (Table 1), how-

ever, defining Type II as ‘serious’ does not appear to meet the U.S. Navy definition of accept-

able ‘serious’ DCS as discussed in the Introduction. Type B DCS, which does not include

subjective manifestations, may be a more reasonable definition of ‘serious’ DCS (Table 1) with

a ratio of Type A to Type B cases of 8.5:1 rather than 4:1 as for Type I and II. One must be cer-

tain that ‘serious’ DCS cases in the calibration data are truly ‘serious’ to avoid overly restrictive

diving limits as in Fig 6. While Type B DCS meets this requirement better than Type II DCS,

the case descriptions provided by Temple [5, 6], from which Table 1 was derived, do not pro-

vide sufficient information about therapy that might reject some of the 20 Type B cases as

‘mild’ rather than ‘serious.’ Differentiation of ‘mild’ from ‘serious’ DCS is a challenge that we

discuss elsewhere [15]. Only when the A/B severity scoring is used and the acceptable limit of

serous DCS is increased from 0.1% to 0.2% is the trinomial model operationally consistent

with the air NDLs. This is shown in Fig 6 by the near correspondence of the 2.0% mild DCS

limiting curve (black dashed line) and the 0.2% serious limiting curve (gray short dashed

curve) and the reasonable agreement of these curves with the U.S. Navy no decompression

limits.The practical importance of inaccurate identification of ‘serious’ cases can be illustrated

by comparing the 60 fsw NDL bottom times for ‘mild’ and ‘serious’ DCS based on Type I/II

(Fig 6) as opposed to Type A/B cases. For Type I/II, the dive times are 61 min for the 2% ‘mild’

limit and 14 min for the 0.1% ‘serious’ limit. In contrast, Type A/B requires dive times of 56

min for the 2% limit and 30 min for the 0.1% limit. Knowledge of the true ratio of ‘mild’ to

‘serious’ cases is essential for application of different acceptable DCS limits according to sever-

ity. This will require a larger dataset than BIG292 that we used here and more complete DCS

case descriptions to facilitate accurate selection of ‘serious’ cases.

It is worthwhile pointing out the possibility that the “PFO effect” might lead to an increased

risk of serious DCS. While U.S. Navy divers are not screened for a patent foramen ovale (right-

to-left shunt), one case control study found and increased presence of PFOs in civilian divers

treated for DCS [32]. The study, which screened 101 divers treated for DCS and had a control

group of 101 healthy divers, found that the prevalence of PFO in the group undergoing treat-

ment was 58.4% while the prevalence was 24.8% in the control group (odds ratio, 4.3; p = 0.09).

The investigators concluded that an increased incidence of cerebral and cochleovestibular mani-

festations were associated with major right-to-left shunting. Another avenue for further research

relates to the different T1 and T2 times that were observed for ‘mild’ and ‘serious’ DCS (Fig 5).

In developing our hierarchical DCS models we added a simple scale parameter to distinguish

between events of differing severity and, in this work, did not add any adjustable parameters that

would allow the dynamics of the various event types to change. This last point is made clear by

examining the occurrence density functions (ODF) for the trinomial model. The ODF curves for

this model show that the predicted event onset occurring at the same time regardless of the event

severity. We expect that adding one or more free parameters that could be adjusted during the

fitting process would result in better predictive capability of the DCS models. Even when this is

accomplished, we will not be able to escape the underlying empirical probabilities of mild and

serious DCS which give us a 4:1 ratio of the event types—at least for the BIG292 dataset.

Conclusion

In this work, we have presented a rigorous approach for simultaneously predicting multino-

mial outcomes from a single probabilistic DCS model. In developing the trinomial (3 state–no
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DCS, mild DCS, serious DCS) model, we demonstrated the connection between hierarchical

(observed) and competitive (predicted) probabilities. Using these hierarchical and competitive

probabilities, we developed the binomial and trinomial log likelihood functions. Further, we

were able to derive a deflated likelihood that collapses the trinomial log likelihood onto a

2-state equivalent which allowed for a direct log likelihood comparison between the binomial

and trinomial models.

The retrospectively-categorized data used for model calibration and analysis contained

3322 air and N2-O2 dives covering depth ranges of 20 to 602.4 feet of seawater and durations

of 0.4 to 12,960 minutes resulting in 190 cases of DCS and 110 marginal DCS cases. Following

our previous work, we scored the marginal DCS cases as non-events. For the trinomial model,

we considered two different scorings of mild and serious DCS. The first of these two scorings,

Type I/II, considered mild DCS (type I) as composed of pain, lymphatic or skin, and constitu-

tional or nonspecific manifestations while serious DCS (type II) as composed of serious neuro-

logical, cardiopulmonary, and mild neurological manifestations. This Type I/II scoring was

consistent with current U.S. Navy definitions of mild and serious DCS. The second type of

severity scoring, Type A/B, considered mild DCS (type A) as composed of mild neurological,

pain, lymphatic or skin, and constitutional or nonspecific manifestations while serious DCS

(type B) as composed of serious neurological, and cardiopulmonary manifestations.

Using a previously-developed and validated DCS model, the LE1nt model, we optimized

the model parameters for the 2-state binomial and 3-state trinomial models using both the

Type I/II and A/B data scoring. We used the deflated log likelihood to demonstrate that the tri-

nomial model offers a highly significant improvement in model fit to the data when compared

to the binomial model. The hierarchical framework we developed in this paper is not specific

to the particular DCS model we used for this work but is general and may be used with any of

the current U.S. Navy operational and experimental DCS models as well as many of the

recently-published probabilistic models from the scientific and medical literature.

Using U.S. Navy guidance of a 2.0% acceptable risk of mild DCS and a 0.1% acceptable risk

of serious DCS, we explored the binomial and trinomial model predictions for the current U.S.

Navy air no-decompression limits. For the binomial model, the air NDLs are inside the 2.0%

DCS limit (incidence only) for depths greater than approximately 80 fsw and slightly outside

of this limit for shallower depths. For the trinomial model with the I/II scoring of DCS severity,

the 0.1% serious limit controls the allowable bottom time and would severely restrict current

NDLs. With the A/B scoring of DCS severity, the 0.1% serious limit still set the allowable bot-

tom time but did not limit the bottom time as severely as did the I/II scoring. The trinomial

model only agreed with the U.S. Navy air no decompression limits when the A/B severity scor-

ing was used and the acceptable risk of serious DCS was increased to 0.2%. We conclude by

strongly cautioning that the results presented in this paper should not be used for dive plan-

ning until this work has been rigorously validated by human dive trials.

Appendix

Claim: The optimal tissue compartment gains, gc, and scale parameter, a, for the trinomial

model using DCS symptom onset times are given by the simultaneous solution of the equa-

tions
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Proof: Let a trinomial decompression model be described by the hierarchical probability

functions listed in Eq (6). Let the trinomial log likelihood be given as Eq (9). Further, let the

time of onset be described by the risk function integrals as specified in Eq (16). Additionally,

let a dive data set consist of the respective Z profiles that did not result in DCS,M profiles that

resulted in mild DCS, and S profiles that resulted in serious DCS. Let these dive profiles be

counted by the respective indices z,m, and s. Begin by substituting the definitions for mild,

serious, and no DCS for the hierarchical trinomial probabilities into the trinomial log likeli-

hood function. This results in the equation
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To find the optimal gain, we take the derivative of LL3 with respect to (w.r.t.) gc to write the

equation
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Similarly, the optimal scale parameter, a, may be found by taking the derivative of LL3 w.r.t

parameter a; resulting in
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of the right-hand-sides of Eqs (28) and (29) to produce
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Finally, we use the relationship R
02

¼ R
01

þR
12

to rewrite Eqs (30) and (31) as
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We find the stationary gains and scale factor by equating Eqs (32) and (33) to zero to give

Eqs (25) and (26) and solving these simultaneous equations.

The next step in the proof of optimality is to show that the second derivatives of LL3 w.r.t. gc
and a are negative so that we know the stationary point given by the simultaneous solutions of

the C Eq (32) together with the solution of Eq (33) corresponds to a maximum. These second

derivatives are
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Since the quantities a, R, and ξ are nonnegative, inspection of Eqs (34) and (35) reveals that

the second derivatives are negative and the stationary point given by the simultaneous solution

of Eqs (32) and (33) is a maximum.

QED.
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