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Abstract

Quantum annealing is an experimental and potentially breakthrough computational technol-

ogy for handling hard optimization problems, including problems of computer vision. We

present a case study in training a production-scale classifier of tree cover in remote sensing

imagery, using early-generation quantum annealing hardware built by D-wave Systems,

Inc. Beginning within a known boosting framework, we train decision stumps on texture fea-

tures and vegetation indices extracted from four-band, one-meter-resolution aerial imagery

from the state of California. We then impose a regulated quadratic training objective to

select an optimal voting subset from among these stumps. The votes of the subset define

the classifier. For optimization, the logical variables in the objective function map to quantum

bits in the hardware device, while quadratic couplings encode as the strength of physical

interactions between the quantum bits. Hardware design limits the number of couplings

between these basic physical entities to five or six. To account for this limitation in mapping

large problems to the hardware architecture, we propose a truncation and rescaling of the

training objective through a trainable metaparameter. The boosting process on our basic

108- and 508-variable problems, thus constituted, returns classifiers that incorporate a

diverse range of color- and texture-based metrics and discriminate tree cover with accura-

cies as high as 92% in validation and 90% on a test scene encompassing the open space

preserves and dense suburban build of Mill Valley, CA.

Introduction

The proliferation of very high resolution (VHR) aerial and satellite imagery opens the way to

significant improvements in remote sensing data products. It is now possible to identify

structures at better than 1-meter resolution, down from 30 meters in existing Landsat-based
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solutions. Objects—individual sheds, tractors, streams, islands, rocks, trees, vines, and fur-

rows—come into focus from out of broad swaths of forest or field, allowing for detailed site-

specific studies as well as more accurate delineations of land cover in the large. VHR datasets

are rich in potentialities. At the same time, newly sophisticated computer algorithms are

required to parse the data.

Due to high variability within classes and in atmospheric, lighting, and photo-geometric

conditions, land-cover class cognition at very high resolution remains a difficult challenge. In

this realm, object-oriented techniques for integrated segmentation and classification have

shown great recent promise. They offer a richer semantics and more accurate classification

when compared to clustering of spectral and textural primitives alone. (See, for example, [1] in

the context of computer vision or [2] for a review in the context of remote sensing.) Object-

oriented appraoches put significant demands on computational infrastructure. The machine

learning algorithms lead to memory- and processor-intensive training (optimization) prob-

lems in which thousands of parameters must be determined, while the relevant VHR datasets

themselves extend to terabytes in size. Given these pressures, it is natural to ask what sorts of

breakthroughs, algorithmic or technological, may lie on the horizon.

Quantum computing (see, e.g., [3]) is one such possibility. Broadly defined, quantum com-

puting is an effort to encode hard computational problems in the dynamics of quantum physi-

cal systems. The state space of quantum systems is exponentially large in the number of basic

physical variables, and if tapped properly, can yield computational results exponentially faster

than the best available classical alternatives. This advantage has been demonstrated formally

for particular problems, integer factorization [4] being the example most often cited due to its

role in the widely-used RSA public-key cryptography scheme. The community is actively

working to characterize the scaling advantages we can expect for broader classes of problems.

Within the quantum computing paradigm, quantum annealing [5–7] is a computational

metaheuristic designed to solve optimization problems. Akin to simulated annealing, quantum

annealing seeks the minimum of a cost function in a complex configuration space. Physically,

the cost function encodes as the system’s energy. The algorithm proceeds by preparing the sys-

tem in a quantum superpostion of all possible configurations in the solution space, all equally

probable, thus initiating a uniquely quantum parallel processing. The system then is evolved in

time until the sought minimal energy configuration is overwhelmingly probable. In principle,

in the absence of thermal noise, it can be arranged so that the minimal energy configuration

will be measured on read-out with probability arbitrarily close to one. Rather than sampling,

physical interactions between quantum bits drive the system to the energy minimum. As part

of this process, the system has the possibility of quantum tunneling through tall, narrow barri-

ers in the energy landscape to escape local minima in less than exponential time.

A quantum annealing processor built by D-wave Systems, Inc., with 1152 quantum bits

(qubits) is now operating at NASA’s Ames Research Center. The deployment of the D-wave

2X follows earlier trials of 128-qubit and 512-qubit processors at Lockheed Martin and at

Ames. Much work has gone to characterize the performance of these machines. Evidence of

the persistence of quantum coherence during computation has been observed in subsystems of

eight qubits [8–10]. On the other hand, the processor has handily been beaten for speed by

desktop CPUs running optimized simulated annealing and/or more targeted sampling algo-

rithms [11–13]. In late 2015, a first set of problems were crafted on which the D-wave quantum

annealer runs significantly faster than classical simulated annealing [14].

Motivated to advance our remote sensing capabilities and to better understand the possibil-

ities of quantum annealing vision algorithms, we set out to train a production-scale classifier

of aerial imagery on the D-wave processor. We begin with an implementation of a boosting

algorithm known as QBoost, developed specifically for the D-wave architecture. It was
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employed in 2009 to identify cars in photographs of street scenes, having been trained on a

processor with 52 functioning qubits [15–17]. Unfortunately, QBoost, along with problems

from a common general class of quadratic training objectives, does not scale well on the D-

wave architecture or on any foreseeable quantum annealing processor. By truncating and

rescaling couplings in the QBoost training objective, with the introduction of an additional

trainable metaparameter, we are able to map problems of hundreds of variables to the D-wave

chip and to build the desired classifier of tree cover in aerial imagery.

This work is an offshoot of a prototype study [18] planned eventually to deliver tree cover

estimates for the continental United States via 1-meter-resolution VHR data from the National

Agriculture Imagery Program (NAIP) [19]. The object-oriented platform produces pixelwise

probabilistic maps for tree cover as the output of a conditional random field, which itself inte-

grates outputs from a region-merging segmentation routine and a neural network classifier. In

the prototype, tree cover maps were generated for 11,095 input NAIP tiles covering the state of

California, with correct detection rates of 85% in regions of fragmented forest and 70% for

urban areas. We have formulated the boosted classifier so that it can work in concert with or

stand in for the neural network in the larger object-oriented platform. Although this remains

work in progress, we are aiming at a viable scientific application of D-wave output in the near

term. Our contributions include the demonstration of tree cover classification, along with a

detailed analysis of training on our remote sensing data and a shortcut solution to embed this

class of problems into the D-wave architecture. Inter alia, we discovered some simple, classi-

cally fast-to-train quadratic decision stumps on derived image features that themselves pro-

duce surprisingly good classification of tree cover in California. For point of reference,

antecedent case studies of potential D-wave applications include [20–27], while [28] presents a

broad collection of potential applications of interest to NASA.

The paper will proceed as follows. We first review the structure of problems amenable to

solutions on the D-wave quantum annealing processor. Mathematically, they are quadratic

unconstrained binary optimization (QUBO) problems, and in physics, they are generalized

Ising models of a spin glass. We discuss QBoost in this context, the problem of embedding

into the D-wave architecture, and our proposed modifications to QBoost. We present the

details of our implementation on the NAIP dataset, laying out the two problems, one on 108

qubits, another on 508 qubits, which are the focus of this study, along with our results. We

conclude with a discussion of challenges and possible improvements to this framework.

Quantum annealing on the D-wave processor

In quantum mechanics the energy function is known as the Hamiltonian, denoted H. It

encodes all dynamics of a system and will vary with time t along with ambient conditions. The

basic process of quantum annealing is to interpolate physically between an initial Hamilitonian

H0, with an easy-to-implement minimal energy configuration (or ground state), and a problem

Hamiltonian HP whose minimal configuration is sought. For instance, for a linear interpola-

tion schedule and computation time τ,

HðtÞ ¼ 1 �
t
t

� �
H0 þ

t
t
HP: ð1Þ

The interpolation is effected physically on the D-wave chip by adjusting currents that flow

to individual qubits, each of which is a tiny superconducting circuit. The system begins in the

ground state of H0 and ends, ideally, in the ground state of HP. For perfectly isolated quantum

systems, the ground state of HP can be attained for sufficiently large τ with probability arbi-

trarily close to one. In practice, due to thermal noise and loss of quantum coherence, optimal
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compute times in the D-wave device are actually less than its currently minimal allowable

time, τ = 20μs. [11] In this context, it should be noted that the parameter τ captures only the

actual annealing time and does not include times for cooling, initialization, and read out of the

device.

Because of the facility of physical control attainable with binary qubits and pairwise interac-

tions between them, the problem Hamiltonian takes the form:

HP ¼ �
X

i2V

hisi �
X

fi;jg2E

Jijsisj: ð2Þ

In physics this Hamiltonian was first studied as the Ising model of a magnet. The binary

variables si 2 {−1, +1} are thus called spins, fixed in a lattice graph G with vertices and edges

ðV; EÞ. The programmable elements are the local magnetic fields, hi, and the couplings

between spins, Jij. Both are in principle continuum real variables but are in practice limited to

a discretum by noise in the device. The optimization seeks the minimum of HP over all config-

urations of the spins {si}.
The intuition for the optimization is as follows: The negative sign in the first term indicates

that the energy is lower when a spin si aligns with (has the same sign as) the magnetic field hi at

lattice site i; this imperative competes with the demand that si align or anti-align with neighbor-

ing spins sj, according to the sign of the coupling Jij. If Jij> 0, the coupling between spins is fer-
romagnetic, driving them to align. If Jij< 0, the coupling is antiferromagnetic, driving them to

anti-align. The problem of minimizing the Ising energy function with antiferromagnetic cou-

plings is known to be NP-hard, meaning that the computational effort required for the hardest

instances scales exponentially with problem size for all known classical algorithms [29, 30].

Computation on the D-wave is first a process of mapping the problem to the Ising struc-

ture, binary and quadratic, then embedding it into the available qubit lattice. On the D-wave

the qubits are arranged according to a chimera graph, as illustrated in Fig 1. Each qubit couples

to five or six others, except where there are defects due to faulty qubits. If the problem doesn’t

Fig 1. Chimera structure of qubit connectivity on the D-wave 2X processor. The full 1152-qubit graph

extends to a 12x12 lattice of groups of eight qubits. Within the illustrated subset, currently inoperable qubits

are marked in red.

doi:10.1371/journal.pone.0172505.g001
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embed directly, auxiliary qubits can be introduced to augment the available couplings, at a sig-

nificant cost in qubits. Both mapping and embedding imply restrictions on the types of prob-

lems that can profitably be tackled with the D-wave processor. We will investigate these issues

in the context of the QBoost algorithm. For a thorough recent study, and for more details on

quantum annealing in the D-wave processor, see [22, 28].

Boosting

Boosting is the tactic of building a strong classifier as an optimally weighted combination of

weak classifiers, each of which may classify only moderately better than random guessing on

its own. If the weak classifiers are linear in the input features, the boosted classifier carves out a

piecewise-planar decision surface that is, if not to the same degree as that expressed by a neural

network, effectively nonlinear. In 2008 Neven, Denchev, Rose, and Macready proposed a

boosted classifier, christened QBoost, that could be trained on a D-wave processor [15]. Given

N binary weak classifiers ci, i = 1. . .N, each of which classifies a data sample t according to

ci(t) 2 {−1, +1}, they sought a strong classifier of form

CðtÞ ¼ sign
XN

i¼1

wiciðtÞ

 !

: ð3Þ

The authors achieved their best test results with binary weights, wi 2 {0, 1}, in which case

the strong classifier is simply an optimal voting subset of weak classifiers. The natural cost

function to mate with the D-wave architecture is a regulated quadratic loss. For a set T of train-

ing samples, with each element t having been assigned a training label y(t) 2 {±1}, a training

problem can be posed as follows:

Find : minfwi;lg
X

t2T

XN

i¼1

wiciðtÞ � yðtÞ

 !2

þ l
XN

i¼1

wi

( )

: ð4Þ

The regularization term governed by the parameter λ is intended to improve generalization

and speed in execution by keeping the final classifier compact. The normalization of the weak

classifiers is then adjusted so as not to unduly penalize large positive margins from the decision

hypersurface,

ciðtÞ 2 f� 1=N;þ1=Ng $ � 1 �
XN

i¼1

wiciðtÞ � 1: ð5Þ

The training problem thus formulated is one of quadratic unconstrained binary optimiza-

tion (QUBO). In their initial tests of the algorithm, Neven et al. optimized the QUBO problem

directly using classical heuristic solvers. Comparing with Adaboost, they found modest

improvements in classification accuracy and significant improvment (of order 50%) in com-

pactness of the boosted classifiers.

To convert the QUBO to Ising form, one makes the transformation si = 2wi − 1. The new

variables si take values si = ±1. Expanding the quadratic, the cost function becomes

X

i

l � 2
X

t2T

ciðtÞyðtÞ

 !

wi þ
X

i;j

X

t2T

ciðtÞcjðtÞ

 !

wiwj þ const

!
X

i

l

2
�
X

t2T

ciðtÞyðtÞ þ
1

2

X

j;t2T

ciðtÞcjðtÞ

 !

si þ
1

2

X

i>j

X

t2T

ciðtÞcjðtÞ

 !

sisj þ const0:

ð6Þ
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In the latter equation, an extra factor of two in the quadratic term compensates for rewrit-

ing the sum to pass over all index pairs (i, j) once only. We can then identify the magnetic fields

and couplings of the Ising frame Hamiltonian (Eq (2)),

hi ¼ �
l

2
þ
X

t2T

ciðtÞyðtÞ �
1

2

X

j;t2T

ciðtÞcjðtÞ ð7Þ

Jij ¼ �
1

2

X

t2T

ciðtÞcjðtÞ ð8Þ

The constants dropped from Eq (6) do not affect the optimization. One can readily inter-

pret how various terms influence the construction of the strong classifier. The contribution

∑t 2 T ci(t)y(t) to hi describes how well the output ci(t) of a weak classifier correlates to the

training labels y(t) over the training set T. If they correlate well, they give a strong positive

contribution to the magnetic field, driving the spin to be positive. A positive spin indicates

that the corresponding weight is equal to one: The weak classifier’s vote is tabulated in the

final strong classifier. The coupling Jij ¼ � 1

2

P
t2TciðtÞcjðtÞ likewise describes the correlation

of weak classifiers ci and cj over the training set. If the two weak classifiers correlate well,

Jij< 0. The spins si and sj tend to opposite values, meaning one and not the other would be

included in the final strong classifier. This is as it should be. To whatever extent they corre-

late, they supply redundant information on the data.

Embedding into the chimera graph

The QBoost procedure results in a fully-connected Ising problem, with each si coupled to every

other sj by a (generically) non-zero Jij. To run on the D-wave processor the problem needs to

be embedded into the chimera graph. The maximal degree of the chimera graph is six. The

fully connected Ising problem on N spins constitutes a graph of degree N − 1. Nonetheless the

latter can be embedded into the former by mapping each spin not to an individual qubit but to

a connected subgraph of qubits, such that every subgraph (corresponding to an si) is connected

by at least one chimera graph edge to every other subgraph (corresponding to an sj) [31]. The

graph edges bewteen subgraphs can be assigned the problem couplings Jij. Within a subgraph,

internal graph edges can be assigned large, ferromagnetic couplings JF to impose the condition

that all qubits associated to a given spin align, encoding one and the same spin state.

This embedding comes at a high cost in qubits. Since each auxiliary qubit in a chimera sub-

graph couples to at most d other qubits, the subgraph size must scale with N to provide suffi-

cient couplings to other subgraphs. As there are necessarily N subgraphs, the embedding

overhead in qubits scales quadratically with the number of spins N. For the explicit examples

studied recently in [32], N = 30 was the largest fully-connected problem embedable in a

512-qubit chimera graph. Much recent work [22, 24, 33–35] has gone into this and related

embedding schemes, examining mappings of logical qubits to physical qubit subgraphs, opti-

mal settings for the internal couplings JF, the distribution of problem couplings Jij among

graph edges, and more generally seeking problems that are less than fully connected and there-

fore more amenable to embedding in the chimera graph. Improving the connectivity of hard-

ware graphs will be critical to broadening the scope of problems solvable on future quantum

annealers.

In their 2009 demonstration of a QBoost classifier trained to detect cars in street scenes

[17], Neven et al. embedded via a different approach. They mapped each Ising spin to a single

qubit and discarded values Jij that didn’t embed into the chimera graph. To this purpose they

Deploying a quantum annealing processor to detect tree cover in aerial imagery of California

PLOS ONE | DOI:10.1371/journal.pone.0172505 February 27, 2017 6 / 22



designed a greedy heuristic that assigns spins to qubits in succession, each spin to the qubit

which will maximize the edge weight retained (the sum of the magnitudes of the embedded Jij)
with respect to the previously embedded spins. Under this scheme they retained 11% of total

edge weight on a 52-qubit embedding. (Only 52 qubits were functioning on the available D-

wave processor, and they iterated training steps to grow a larger classifier.)

This strategy does not scale. Dropping too high a proportion of couplings leads to a sce-

nario in which each spin variable can be optimized independent of the others. If, for a given

spin sa, the magnetic field ha is bigger than the sum of couplings to other spins j retained in the

embedded lattice graph, i.e.,

if jhaj >
X

fa;jg2E

jJajj; ð9Þ

the value of sa in the optimal solution is determined simply by the sign of ha. This can be seen

by considering the total contribution to the energy due to spin sa, namely,

Ea ¼ � hasa �
X

fa;jg2E

Jajsasj: ð10Þ

As in the preceeding equation, the sum here runs over the coupled spins j. If the spin sa is

anti-aligned with its magnetic field, the first term contributes −ha sa = +|ha| to the energy. Flip-

ping the sign of sa will decrease the contribution from that term by −2|ha|. At the same time,

the second term is bounded,

�
X

fa;jg2E

jJajj � �
X

fa;jg2E

Jajsasj �
X

fa;jg2E

jJajj; ð11Þ

and so flipping the sign of sa, regardless of the configuration of the other spins {sj}, imposes an

energy cost of at mostþ2
P
fa;jg2EjJajj. When the condition (9) holds, flipping the spin leads to

a net decerease of energy, and so the spin necessarily aligns with its magnetic field.

The consequences are two-fold. First, one can determine the optimal configuration of such

spins simply by checking the signs of their magnetic fields. This is not a task that calls for a

quantum computer. The implication for the classifier is the loss of fine balance that was to be

achieved among all possible weak classifiers. We seek to retain only the minimal set of weak

classifiers that captures the important features of the data, but weak classifiers whose spins sat-

isfy condition (9) will be included or excluded irrespective of the inclusion of others.

Unfortunately, this scenario is to be expected as the total number N of input weak classifiers

grows large. The base motivation for quantum computing is the hope that run times will scale

better than for classical alternatives with the number of input variables. The effort only

becomes justified on problems with thousands or tens of thousands of binary variables. At the

same time, the number of connections between qubits (five or six in the case of the D-wave

chimera graph) is likely to remain small, due to the challenge of building and controlling inter-

actions between more than a few basic physical entities. For a problem with an initially fully

connected graph, a simple one-variable-to-one-qubit embedding will discard thousands or

tens of thousands of couplings against some some small finite number retained. Any computa-

tional problem that begins by imposing a quadratic loss function on a linear combination of

binary variables, as in Eq (4), results in a fully connected graph. While some couplings may

turn out to be zero, generically every spin couples to every other spin.

We can make these considerations more explicit by considering the scaling with N of the

various terms in Ising Hamiltonian. Except in the case that the accuracy of weak classifiers is

tuned close to 50%, the correlations ∑t 2 T ci(t)y(t) will be O(|T|/N), with |T| the size of the
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training set. For instance, in our implementation for tree cover classification, the average train-

ing error of the linear weak classifiers is 25%. A weak classifier with 25% training error would

have

X

t2T

ciðtÞyðtÞ ¼ :25jTjð� 1=NÞ þ :75jTjðþ1=NÞ ¼ :5jTj=N: ð12Þ

The N appears here through the normalization given in Eq (5). This level of training accu-

racy implies also that the weak classifiers are well correlated among themselves, with correla-

tions that scale as

X

t2T

caðtÞcjðtÞ � O
jTj
N2

� �

: ð13Þ

Letting k be the maximum number of couplings between qubits in the graph G ¼ ðV; EÞ,
for large N we have the overall scaling rules:

jhaj ¼ �
l

2
þ
X

t2T

ciðtÞyðtÞ �
1

2

X

j;t2T

ciðtÞcjðtÞ

�
�
�
�
�

�
�
�
�
�
� O

jTj
N

� �

�
l

2
ð14Þ

X

fa;jg2E

jJajj ¼
X

fa;jg2E

�
1

2

X

t2T

caðtÞcjðtÞ

�
�
�
�
�

�
�
�
�
�
� O

kjTj
N2

� �

: ð15Þ

Since the regulator is fixed once for all spins and k is finite, a generic spin will satisfy the

decoupling condition (9),

jhaj >
X

fa;jg2E

jJajj;

as N grows large.

We circumvented these difficulties, in the heuristic embedding scheme of Neven et al., by

rescaling the retained couplings Jij to compensate for those lost. The dynamics of Ising ferro-

magnets, in which long-range order appears in systems with only limited, local interactions,

gave us reason to hope that a subset of five or six of N − 1 couplings, if appropriately rescaled,

would be sufficient to maintain the characteristic balance sought between the weak classifiers.

Absent a principled way to compute a rescaling on a spin-by-spin basis, we rescaled all cou-

plings by a constant factor α which we treated as a new variational metaparameter. Intuitively,

α should work out to be the ratio of lost to retained couplings, α* N/5. (The current proces-

sor is constructed on an 1152-vertex chimera graph, with 55 currently inoperable qubits, mak-

ing the average number of viable edges 5.6. Because the embedding heuristic maximizes the

sum of magnitudes of retained couplings in preference to their number, the resulting embed-

dings are not maximally dense. Our embeddings typically retain an average of between four

and five couplings per qubit.) A plot of validation error against the metaparameters of our

108-qubit problem, defined below in the section “Tree Cover Classification,” is shown in Fig 2.

Stepping α by factors of
ffiffiffi
2
p

from N/64 to N, we find the solution of overall lowest validation

error for a 2 fN
ffiffiffi
2
p

=8;N=4;N
ffiffiffi
2
p

=4g. This matches well with our expectations for α and situ-

ates the optimal classifier in the regime where the couplings and magnetic fields should have

comparable, competing influence on the optimization. Moreover, we can see in the returned

classifiers the increasing influence of the couplings with increasing α. When α is very small,

the optimization is governed by the magnetic fields and the resulting classifiers consist
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predominantly of those weak classifiers which individually have lowest training error. To wit,

the classifiers returned at the four smallest values of α share in common the twelve weak

classifiers with the twelve lowest training errors; whereas, the optimal classifier realized for

a 2 fN
ffiffiffi
2
p

=8;N=4;N
ffiffiffi
2
p

=4g includes only two of those twelve; and the classifier at α = N
includes one of the twelve. When we come to our results, we will explore these effects and the

properties of the optimal classifier in more detail.

Incorporating the new rescaling factor, the energy function to be minimized across vari-

ables {si, α, λ}, becomes, finally,

HP ¼ �
X

i2V

hisi � a
X

fi;jg2E

Jijsisj;

hi ¼ �
l

2
þ
X

t2T

ciðtÞyðtÞ �
1

2

X

j;t2T

ciðtÞcjðtÞ

Jij ¼ �
1

2

X

t2T

ciðtÞcjðtÞ:

ð16Þ

We will refer to the process of truncation and rescaling of the problem Hamiltonian as a

renormalization, an abuse of a suggestive term from statistical physics. In thinking through

this approach, it is worth remembering that we had already deviated from the most natural

definition of the training problem at the point of imposing a quadratic objective function in

place of the total number of misclassified training samples (L2 vs. L0 norm). We deviated again

when we regularized the quadratic function. The choice of L2 over L0 norm is made habitually

on grounds of computational tractability and justified ex post facto by the utility of the solu-

tions that result. Likewise here, we look to the accuracy of the resulting classifiers to justify this

reformulation of the original optimization problem. The most accurate classifier found for our

108-qubit problem using the renormalized Hamiltonian Eq (16) has a validation error rate of

Fig 2. Validation error as a function of the coupling rescaling factor and regulator for the 108-qubit

problem. The regulator is expressed in terms of a new parameter f: λ = 2f|T|/N. For each pair (α, f), the

problem was optimized with 1000 calls to the D-wave processor and the classifier of minimal validation error

recorded. The overall minimal error of 9%, in deepest blue, is attained for a 2 fN
ffiffi
2
p

8
; N

4
; N
ffiffi
2
p

4
g.

doi:10.1371/journal.pone.0172505.g002
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9.00%. This compares to an error rate of 10.13% for the best solution found via simulated

annealing on the original QBoost cost function. We have found that the final classifier can be

improved if selected by validation in post-processing from among the outputs returned by the

annealing process, and we do so as matter of course, although our results indicate that the

effect diminishes for classifiers of larger cardinality.

Two final details of the implementation bear mention in the context of the embedding, for

both of which we take cues from the original report on QBoost [15]. Along with the rescaling

factor α, the regulator λmust be determined in training. Before submitting a problem for opti-

mization, we specify the regulator in terms of a new parameter f,

l

2
¼
f jTj
N

: ð17Þ

Here, again, |T| is the number of training samples and N the number of input weak classifi-

ers. The metaparameters (α, f) are chosen by acting the output strong classifiers on a

3000-sample validation set. (This step is coincident with the post-validation step mentioned in

the previous paragraph.) Our practice has been to determine the fraction f initially by a coarse

parameter scan and then to retest with finer step sizes around the minimum in f. The cardinal-

ity of weak classifiers in the strong classifier and its error rate depend strongly on f, as shown

in Fig 3 with α fixed at N/4. The effect of the regulator for general α can be seen in Fig 2.

Beyond enforcing compactness, the regulator evidently plays an important role in minimizing

classifier training or validation error. With weak classifiers normalized so that ci(t) 2 {−1/N,

+1/N}, the quadratic loss,

L ¼
XN

i¼1

wiciðtÞ � yðtÞ

 !2

; ð18Þ

Fig 3. Minimum validation error and weak classifiers retained as a function of the regulator λ = 2f|T|/N.

For each f the problem was optimized with 500 calls to the D-wave processor, and subsequently (inset), with

1000 calls in resolving the minimum, with α fixed at N/4.

doi:10.1371/journal.pone.0172505.g003
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favors margins (∑wi ci) approaching values y(t) = ±1. It can work out that the average loss

over the training set decreases as more weights are set to one, even as more samples are mis-

classified. This effect can clearly be seen in the optimization of the unregulated QBoost prob-

lem, in the “Results” section below. A finely-tuned regulator can neutralize this propensity to

mostly non-zero weights. Alternatively, the tuning may be ameliorated and the problem

given a more natural definition were the weak classifiers to be normalized such that

ciðtÞ 2 f� 1=
ffiffiffiffi
N
p

;þ1=
ffiffiffiffi
N
p
g. This would result in couplings Jij suppressed by 1=

ffiffiffiffi
N
p

relative

to the magnetic fields hi (cf. Eqs (14) and (15) where the factor is 1/N). This is the appropriate

relative scaling for a fully-connected antiferromagnetic problem, such as we encounter prior

to embedding.

Selection by validation entails significant processing overhead, and one would prefer to

train the regulator online, with the weights. If it is to regulate all of the weights on equal foot-

ing, however, it must necessarily couple to all of them in the embedded problem. This would

require a nontrivial but plausible investment of auxiliary qubits. It is only one parameter, and

at four-bit depth it could be determined with necessary precision after a coarse scan. This

seems to be worth exploring.

Similar considerations hold with respect to a training a bias shift for the decision hypersur-

face. The strong classifier can be improved by introducing a bias B, so that

CðtÞ ¼ sign
XN

i¼1

wiciðtÞ � B

 !

: ð19Þ

We set B in post-processing as the average of the unbiased strong classifier on an additional

3000-sample class-balanced dataset.

Tree cover classification

We have framed the problem of identifying tree cover in remote sensing imagery as a problem

in machine learning. Given an ensemble of simple, and not necessarily very accurate, metrics

on the image data that offer hypotheses as to whether pixels are covered or not covered by

trees, the computer is to learn an optimal subensemble whose aggregated assignments identify

tree cover more accurately than any of the metrics on its own. One of the advantages of this

boosting approach, in principle, is that it can profitably be employed with any weak classifiers

that perform better than random guessing. Insofar as the work reported on here is to function

within a larger framework to delineate tree cover in 1-m-resolution NAIP aerial imagery, it

inhereted a natural set of weak classifiers on the derived color and texture features employed

therein.

In that framework [18], binary classification is performed by a fully-connected feed-for-

ward neural network, namely, a multilayer perceptron. (An improved deep belief network for

multiple-class cognition was studied in [36].) The inputs to the network are color and texture

features extracted from eight-pixel-by-eight-pixel squares. These include standard statistical

moments and Haralick features [37, 38] built on hue, saturation, intensity, and near infrared

(NIR) bands, along with derived vegetation indices. The top 22 features, as ranked by a distri-

bution separability criterion, are fed into the input layer of the network. There follow two hid-

den layers of ten neurons each and a single output neuron, which signals the probability that

the land corresponding to the input image region is covered by trees. It is the functionality of

this neural network, as abstracted from the larger processing pipeline developed in [18], that

we are seeking to compliment and compare with the renormalized QBoost classifier.
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We built weak classifiers as trained linear decision stumps on the inherited color and tex-

ture features. Explicitly, the stumps take the form

ðxi � bþi Þ � 0

ð� xi � b�i Þ � 0:
ð20Þ

Here xi and xj are the ith and jth components of the raw feature vector, and the b± are

trained thresholds. The training of each stump runs in time O(|T|log|T|), requiring a sort and

two passes over the dataset of size |T|.

Training data were drawn from 537 of the 11,095 NAIP image tiles covering the state of

California, roughly 5% of the whole, exhibiting dense tree cover, sparse tree cover, urban

space, and barren lands. NAIP imagery is subject to stringent compliance guidelines and

comes radiometrically corrected, which allowed us to assume a consistent calibration within

the year-2012 dataset. We avoided clouds but admitted shadows as a source of error in the

data. At eight-by-eight meters in size, a tree-labeled datum typically represents a contiguous

grouping of trees, but may equally represent small trees or shrubs, given the lack of canopy

height data for the bulk of our study region. Labelings were generated via an interactive seg-

mentation tool based on a Random Walk algorithm [39], in which segments were seeded,

labeled, and in some cases overdrawn by a user with expert domain knowledge. Within the

protocol of [18], the training database was updated on the fly: For every hundred tree maps

generated, ten tiles were selected at random and the interactive labeling tool applied to relabel

misclassified examples, which were then incorporated into the training set with the correct

labeling. This led to a training corpus weighted toward latitude 41˚N, in the far-northern,

densely tree-covered regions where class discrimination is most straightforward for human

experts, but sampled from the entirety of the state. Further details on the development of the

training data are given in [18].

For the tests reported on here, we extracted a total of 112 features from 30,000 labeled

8pixel × 8pixel squares, of which 24,000 were designated as training data points. Of these,

10,199 were positive class instances and 13,801 were negative class instances (tree covered or

not, respectively). Two remaining 3000-sample sets were reserved for validation and bias

determination. In limited testing with an additional 74,000 training samples drawn from the

same 537 NAIP tiles, we found no improvement in validation and a slight degredation in per-

formance on our test dataset.

Working with 112 features, one has a priori 224 linear decision stumps. Many of these per-

form no better than random guessing. These we discarded to save qubit resources. Ranked by

training error, the eleven most accurate weak classifiers are stumps trained on various statistics

of hue, with training error rates between 17.75% and 19.85%. The first several are given in

Table 1. The effectiveness of hue in discriminating between trees and other types of land cover

may reflect the arid conditions in California, with its extensive deserts and dry grasslands,

when the data were captured. The next best weak classifier was the postive stump for the

Atmospherically Resistant Vegetation Index (ARVI), with an error rate of 19.97%. These initial

training steps provided an ensemble of 108 weak classifiers for input to the boosting algorithm

for optimization on 108 qubits.

Results

We focus on the 108-qubit problem problem because it clearly illustrates the mechanisms of

the the algorithm, even though this particular instance exhibits fine-tuning effects. The best

solution found misclassifies 270 samples from the 3000-sample validation set, an error rate of

9.00%. The errors are balanced between false positives and false negatives within half a

Deploying a quantum annealing processor to detect tree cover in aerial imagery of California

PLOS ONE | DOI:10.1371/journal.pone.0172505 February 27, 2017 12 / 22



percentage point. Since the 3000-sample validation set was used to select the classifier from

among the solutions returned in annealing, we checked its performance on an additional

10,000-sample set, in no way used in the training but drawn from the same NAIP tiles as the

training data. The performance on this set degrades slightly, to an error rate of 9.38%. The

overall error rate is roughly half that of the best weak classifier alone, and further, the strong

classifier is quite compact. Nine of 108 weak classifiers are retained. They are listed in Table 2.

While all nine of the retained weak classifiers classify more accurately than the average

weak classifier, only two, ARVI and the autocorrelation of the hue color co-occurance matrix

(CCM), figure in the list of top-ranked weak classifiers in Table 1. The most accurate weak

classifiers on this dataset are all derived from hue, and therefore they are fairly redundant dis-

criminants of tree cover. The nine weak classifiers selected, on the other hand, are built on

hue, saturation, and near-infrared bands, along with three vegetation indices. This is precisely

the desired effect of boosting. The goal is to have the computer select a minimal subset of weak

classifiers that together capture the diverse important dependencies in the data. A simple mea-

sure of the similarity of weak classifiers is their correlation on the training dataset,

Corrði; jÞ ¼
N2

jTj

X

t2T

ciðtÞcjðtÞ; ð21Þ

normalized so that Corr(i, i) = 1. Among the nine most accurate weak classifiers the median

correlation is.86, while among the nine classifiers selected in the boosted solution, the median

Table 2. Linear decision stumps retained in solution to the 108-qubit problem.

Underlying feature Training error rate

Hue CCM autocorrelation .1985

Atmospherically Resistant Vegetation Index (ARVI) .1997

Hue CCM sum of squares variance .2085

NIR CCM sum entropy .2094

Normalized Difference Vegetation Index (NDVI) .2142

Simple Ratio (SR) .2142

Saturation CCM homogeneity .2196

Hue CCM contrast .2251

Hue standard deviation .2293

doi:10.1371/journal.pone.0172505.t002

Table 1. Linear decision stumps with training error rates under 20%.

Underlying feature Training error rate

Hue CCM† entropy .1775

Hue CCM 2nd Moment .1788

Hue CCM energy .1788

. . .

[7 more derived from hue]

. . .

Hue CCM autocorrelation .1985

Atmospherically Resistant Vegetation Index (ARVI) .1997

mean (108 stumps) .2545

†CCM stands for Color Co-ocurrance Matrix.

doi:10.1371/journal.pone.0172505.t001
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correlation is .44. A median of .44 is not exceptionally low, rather, it is precisely the median

correlation across all pairs drawn from the 108 weak classifiers.

To compare the performance of the D-wave processor with simulated annealing, we fixed

the embedding and fixed the regulator fraction (cf. Eq (17)) corresponding to the minimum

validation error in Fig 3. The problems submitted to each optimization method were thus

identical, the only variability arising from randomness within the optimization methods them-

selves. For simulated annealing, we instantiated a random initial configuration of spins and

used a linear annealing schedule with up to two thousand temperature steps, N spin flips per

step. The starting temperature was chosen as the maximum change in energy associated with

any single spin flip from the initial configuration. The annealing stopped when the two thou-

sand steps were exhausted or after there was no change in energy at three distinct tempera-

tures. In settling on this program we took our cues from [40]. We did not endeavor to

replicate the nuanced experiments performed elsewhere [11–13] comparing processing times

for simulated annealing against the those for the D-wave processor, rather wanting to compare

the distributions of returned results. It is probably of interest to note, however, that all anneals

on the D-wave machine were performed in the default time of 30μs, not including cooling, ini-

tialization, and read out times. Because of queuing for the machine and extensive classical pro-

cessing pre- and post-anneal, the wall times for the tests reported on here were on the order of

hours.

Scatter plots of results from two thousand anneals with each method are shown in Fig 4,

repeated with slight adjustment to the regulator to indicate the shifting quality of the solutions.

The stochastic nature of both optimization methods is clearly visible in the results. In the case

of the D-wave processor, randomness enters both through the finite precision with which

magnetic fields and couplings can be applied to the qubits as well as thermal noise in the

device. There is significantly more variance in the results returned by the quantum annealer,

although both methods find the same compliment of the few lowest energy states. The two

methods return the solution of lowest validation error at comparable rates.

By simulated annealing, it is also possible to optimize the original QBoost cost function

without embedding into the chimera graph, and without having to prune and rescale couplings

as a consequence. For this problem the regulator fraction selected was f = .44, which admits

Fig 4. Quantum vs. simulated annealing on our 108-qubit problem, with α = N/4. Plots show two thousand anneals

with each method for each of two regulators (f = .76, left, and f = .77, right). The area of each marker is proportional to the

number of times the given solution occurs.

doi:10.1371/journal.pone.0172505.g004
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solutions in the range of 26-29 weak classifiers. Results from two thousand anneals are shown

in Fig 5. The solution with minimal error on the validation set included 28 weak classifiers and

yielded an error rate of 10.12%. Looking for the best known solution, we also artificially forced

the regulator into the range that would allow solutions with nine weak classifiers. Across many

thousands of anneals, no solution was returned with validation error less than 14%. For com-

parison, we also include results for the QBoost objective with zero regulator in Fig 5.

One striking feature of the scatter plots is the wide range of validation errors among solu-

tions returned at energies differing by only a fraction of a percent. The range of validation

errors is broader for the renormalized problem, but the issue exists also for the original. It may

simply be an artifact of the small number of weak classifiers retained in this case. For instance,

the two lowest-energy solutions at right in Fig 4, with validation errors 16.80% and 9.50%,

respectively, share an identical compliment of seven weak classifiers, to which the former but

not the latter adds an eighth. One vote added to seven can significantly impact the result. In

the tests that have returned larger numbers of weak classifiers (cf. Fig 5, right), the variance in

validation errors among the low energy states is much reduced. Still, it must be noted that the

L2 norm is not always a reliable proxy for L0 norm, and selection of an optimal classifier in

post-validation is recommended by the distribution of results. This is not an entirely satisfac-

tory state of affairs. In effect, the quantum or simulated annealing is serving to sample the low-

lying energy states of the problem Hamiltonian rather than to find a unique minimal energy

state. At least at the optimal value of the coupling rescaling α, the solution of lowest validation

error is near enough to minimum energy that it is returned reliably among the solutions: The

solution with 9% validation error appears some twenty to thirty times per two thousand

anneals (Fig 4). As actualized in this instance, the algorithm relies on the stochastic nature of

the quantum and simulated annealing solvers to find the best possible classifier.

Feature expansion

By expanding the feature set to include quadratic products of the input features, one can add a

measure of nonlinearity to the classifier. This possibility was explored already in the original

Fig 5. Results for the 108-variable problem using the original QBoost objective function. At left, with selected

regulator fraction f = .44, the solutions include 26 to 29 weak classifiers. At right, for comparison, the solutions with f = 0

include 93 to 96 weak classifiers and demonstrate (by its absence) the essential role played by the regulator in minimizing

classifier error. Note the differences in vertical scale, here and with respect to Fig 4. The horizontal axes are proportionally

scaled.

doi:10.1371/journal.pone.0172505.g005
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work on QBoost [15]. For pairs of input features xi, xj, the quadratic decision stumps are

defined by

ðxixj � bþij Þ � 0

ð� xixj � b�ij Þ � 0;
ð22Þ

for trained thresholds b�ij . Many of these quadratic stumps are quite accurate in and of them-

selves. The product of ARVI with a mid-frequency discrete cosine transform (DCT) returns

error rates of 9.8% in training and 10.9% on the validation set. The product of ARVI with the

standard deviation of the NIR band yields training and validation errors of 10.6% and 10.9%.

Ten of the twelve most accurate quadratic stumps pair a vegetation index with a Haralick fea-

ture or statistical moment. It is well known that using vegetation indices in combination with

another feature on the data can improve classification accuracy significantly over the vegeta-

tion index alone. The quadratic stumps used here are a particularly simple execution of this

idea. Training a stump requires a sort and two passes over the training data and can be exe-

cuted in some ten or tens of lines of code. Where speed and simplicity are a priority, the qua-

dratic stumps may serve as creditable stand-alone classifiers.

Inputting 112 features to Eqs (20) and (22), one has a priori

2 112þ
112

2

 ! !

¼ 12656

linear plus quadratic decision stumps. In order to train on a D-wave processor with 1097 func-

tioning qubits, one needs either to train iteratively or to reduce the number of input features.

We pursued the latter option. We selected a combination of thirty features whose quadratic

stumps yielded the lowest training error rates, the highest training error rates (after discarding

random guessers), and pairs with lowest mutual correlation in the sense of Eq (21), hoping by

this minimal artistry to begin with a set of weak classifiers that express a wide range of opin-

ions on the data. Along these lines, Pudenz and Lidar [41] formalize criteria under which a

strong classifier with bounded error may be constructed from pairs of weak classifiers that dis-

agree in their classification on all but small subsets of feature space. Minimal correlation

between weak classifiers, in the sense we are using it, is a rough practical proxy for their more

formal criteria. The thirty features thus chosen include a range of derivatives of hue, saturation,

intensity, and NIR bands, along with ARVI, the Normalized Difference Vegetation Index

(NDVI), Simple Ratio (SR), and Enhanced Vegetation Index (EVI). With random guessers dis-

carded, the linear and quadratic stumps on these features yield a compliment of 508 weak

classifiers.

The optimal solution found to the 508-qubit problem has rescaling factor α = N/5, regulator

fraction f = .70, and retains 52 of 508 input weak classifiers. It yields an error on the 3,000-sam-

ple validation set of 8.27%, improving fractionally to 8.25% on the longer, independent

10,000-sample set. With the larger set of weak classifiers, the results are much less sensitive to

small variations in the metaparameters and in the weak classifiers included in the boosted clas-

sifier, as can be seen by comparing Fig 6 with the corresponding output for the 108-qubit prob-

lem (Figs 3 and 4). Though we continued to extract the best solution by post-validation, the

lowest-energy metric now yields near-lowest validation errors. In this instance the lowest

energy solution has a validation error of 8.80%. The modest improvement of these solutions

over the individual quadratic decision stumps and the boosted linear stumps suggests a limit

to the gains achievable with piecewise, low-polynomial-degree nonlinearity.
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Applying the optimal solution to an area of broken tree cover near the town of Blocksburg

in northwest California, and then to the surburban and ranch lands around Saint Mary’s Col-

lege, yields the output classifications shown in Fig 7, left and middle. In the second scene,

coarse graining due to feature extraction on eight-by-eight pixel squares causes the tree cover

to be overestimated in regions where trees are interspersed among buildings. The classifier is

largely successful in discriminating between the green lawns and playing fields of the college

and the textured tree cover of the hillsides. The third panel shows a densely built area in the

San Francisco Bay Area city of Mill Valley.

We selected the NAIP tile containing the Mill Valley scene to develop a dataset for addi-

tional testing, seeking the challenge of its highly spatially mixed land-cover classes. Further,

Fig 6. Results on the 508-quibt problem, with α = N/5. Left: A coarse scan for the regulator fraction f. Right: Output from

two thousand anneals with f = .70.

doi:10.1371/journal.pone.0172505.g006

Fig 7. Classification of tree cover by boosted linear-plus-quadratic stumps, from the 508-qubit

problem. Left: A region of broken tree cover outside the town of Blocksburg, CA. Middle: Saint Mary’s College

of California. Right: The city of Mill Valley, CA.

doi:10.1371/journal.pone.0172505.g007
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densely built areas constitute a relatively small proportion of total land area in the state, and

thus, of the training data. Of 24,610 labeled data points from the Mill Valley tile, 5,176 were

identified as tree cover and 19,434 as other forms of land cover. We benchmarked perfor-

mance of the two boosted classifiers (solutions to the 108- and 508-qubit problems) against the

two most accurate linear decision stumps, the two most accurate quadratic decision stumps,

and a neural network. The neural network was a fully-connected multilayer perceptron taking

as input the same thirty features used to generate the 508-qubit problem, with two hidden lay-

ers of ten neurons each. The results appear in Fig 8. The gains from boosting over individual

weak classifiers are clear in validation, where at the same time the neural network far and away

outperforms. On the Mill Valley scene, the results for the neural network demonstrate a dis-

tinct tradeoff between fit to the training data and generalization to this test data. The boosted

classifier built on linear-plus-quadratic stumps, and to a lesser extent the individual quadratic

stumps, perform moderately well on both datasets.

Vegetation indices have long served as the operative standard for detecting photosynthetic

activity in remote sensing imagery. Our platform includes four indices (NDVI, SR, EVI,

ARVI) as base features, made weak classifiers with trained thresholds. The boosted classifiers

handily outperform these indices. On the validation set, the linear-plus-quadratic boosted clas-

sifier has an error rate of 8.27%, against 20.5% for ARVI. On the Mill Valley test set its error

rate is 10.00% vs. 26.56% for ARVI. The comparisons are less favorable for the other vegetation

indices, with the exception of a test set error of 25.83% for EVI. At the same time, the data sug-

gest that one can capture much of this advantage by combining ARVI with one other feature.

To wit, in a quadratic stump with a discrete cosine transform its validation and test set errors

Fig 8. Error rates for the boosted classifiers vs. individual weak classifiers and a 30x10x10x1 neural

network.

doi:10.1371/journal.pone.0172505.g008
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are 10.5% and 11.13%, or with NIR standard deviation, 10.9% and 10.25%. As we noted above,

these quadratic stumps are nearly as simple to deploy as the vegetation indices themselves and

on this evidence merit further testing.

Discussion and conclusions

This work began as an attempt to envision the possibilities and challenges that may be encoun-

tered in future applications of quantum annealing to environmental remote sensing. We set

for ourselves a case study, to leverage available quantum annealing hardware manufactured by

D-wave Systems to identify tree cover in very high resolution aerial imagery. The constraints

dictated by the hardware are significant. To formulate a problem for optimization on the cur-

rent D-wave processor, one must consider that:

1. The programmable variables are binary and finite in number.

2. The programmable objective functions are quadratic in the binary variables.

3. The number of non-zero quadratic coefficients for any variable is limited to six. These coef-

ficients, along with the variables themselves, must be mapped (embedded) into the edges

and vertices of a degree-six chimera graph.

While it is possible to encode floating point numbers in binary digits (point 1) and, using

auxiliary variables, to reduce higher-order polynomials to quadratic (point 2), these work-

arounds exacerbate the embedding problem (point 3). These issues stand quite apart from

questions surrounding the performance of the hardware, and in particular the extent to which

quantum coherence is maintained among qubits. As hardware matures, we may very well see

more robust quantum coherence among larger sets of qubits. Unless the graph connectivity

increases as well, large and largely connected problem instances, as are generated by the broad

class of quadratic training objectives of the form given in Eq (4), will continue to be difficult to

embed and therefore optimize directly in quantum annealing. It may indeed be some time

before the community identifies the class of problems which best leverage the unique capabili-

ties of a quantum annealing processor.

Nonetheless, by truncating and rescaling the couplings in a regulated quadatic training

objective, we were able to train on the D-wave processor a binary tree-cover classifier. We

offered intuition for the modifications to the objective function, but in the end, we had to rely

for justification on the efficacy of the results. The argument for the approach would be stronger

if the lowest energy were a more reliable predictor of lowest validation error, thus obviating

the need to select among solutions by post-validation; but then, the same critique can be lev-

eled at the original regulated quadratic QBoost objective. It stands to reason that a non-convex

loss function more nearly approximating 0-1 loss would help. In seeking a loss function robust

to label noise, [42] considered a doubly-truncated quadratic loss which can be approximated,

in upper bound, by a family of quadratic functions. This truncated quadratic loss is therefore

trainable on the D-wave processor, with an additional metaparameter to complicate the

embedding, and might serve as a more suitable starting point. If the training penalty tapers off

with distance from the decision hypersurface, this would also relieve the problem of fine-tun-

ing the regulator, noted above. Another immediate improvement to the training scheme

would be to employ auxiliary qubits to embed and train online important metaparameters,

such as the regulator and coupling rescaling factor.

For our prototype 108-qubit problem, the trained classifier incorporates an array of metrics

based on hue, saturation, and NIR bands, along with vegetation indices, which together dis-

criminate tree cover with accuracies of 91% in validation and 84% on the Mill Valley test set. A
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validation error rate of 9% cuts by half the error rate from the best of the weak classifiers on

their own. The boosted classifier is compact, relatively robust in generalization, and fast in exe-

cution: After feature extraction, a sample datum can be classified by tabulating nine less than /

greater than comparisons. By feature expansion, the accuracy can be improved to 92% in vali-

dation and 90% on the Mill Valley test set. The performance of the classifier likely could be

improved further by incorporating a broader set of weak classifiers, in hopes of better captur-

ing the multivalent dependencies of the data, and by increasing the nonlinearity available to

the system as expressed in the weak classifiers. The piecewise-polynomial nonlinearity avail-

able to boosted decision stumps will never achieve the complex transformations of the input

data space that are possible in a deep neural network, and a multilayer perceptron already fits

our training data better than does the boosted classifier. As deep learning frameworks grow in

complexity, boosting may prove useful to preselect features to input to such networks. [43]

In sum, we were able with some effort to construct a viable classifier of tree cover, despite

the restrictions posed by the hardware architecture. Whether this framework proves compel-

ling in the long run will depend on the maturation of quantum annealing hardware, the gains

to be found in larger ensembles of input metrics, and the relative challenge of training compet-

ing frameworks at similar scale.
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