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Abstract

This paper proposes a new design strategy for optimizing MRI pulse sequences for T1

relaxometry. The design strategy optimizes the pulse sequence parameters to minimize

the maximum variance of unbiased T1 estimates over a range of T1 values using the Cra-

mér-Rao bound. In contrast to prior sequences optimized for a single nominal T1 value,

the optimized sequence using our bound-based strategy achieves improved precision and

accuracy for a broad range of T1 estimates within a clinically feasible scan time. The opti-

mization combines the downhill simplex method with a simulated annealing process. To

show the effectiveness of the proposed strategy, we optimize the tissue specific imaging

(TSI) sequence. Preliminary Monte Carlo simulations demonstrate that the optimized TSI

sequence yields improved precision and accuracy over the popular driven-equilibrium sin-

gle-pulse observation of T1 (DESPOT1) approach for normal brain tissues (estimated T1

700–2000 ms at 3.0T). The relative mean estimation error (MSE) for T1 estimation is less

than 1.7% using the optimized TSI sequence, as opposed to less than 7.0% using DES-

POT1 for normal brain tissues. The optimized TSI sequence achieves good stability by

keeping the MSE under 7.0% over larger T1 values corresponding to different lesion tis-

sues and the cerebrospinal fluid (up to 5000 ms). The T1 estimation accuracy using the

new pulse sequence also shows improvement, which is more pronounced in low SNR

scenarios.

Introduction

Quantitative estimation of longitudinal relaxation time, termed T1 relaxometry, offers a very

useful approach in magnetic resonance imaging (MRI) for enhancing tissue contrast,

improving tissue characterization, and evaluating neuro-degenerative pathologies, etc. [1–

3]. A T1 map shows more accurately the brain tissue characteristics when compared against

more commonly used contrast-based qualitative approaches, such as T1/T2-weighted
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images. T1 relaxometry enables better tissue classification and holds promise for improving

detection of early-stage tissue degeneration, as well as characterization of advanced tissue

destruction [3]. Therefore, a fast, accurate, and precise T1 relaxometry technique can poten-

tially be applicable in a variety of neuro-degenerative disorders, including multiple sclerosis

(MS) [4], Alzheimer’s disease [5] and Parkinson’s disease [6], as well as in assisting image-

guided surgeries.

T1 relaxometry techniques estimate T1 on a voxel-to-voxel basis using the magnetic sig-

nals acquired with specific MRI pulse sequences, which differ in their pulse times and flip

angles. The pulse sequence parameters directly affect the acquired MR signals and thereby

the performance of T1 relaxometry techniques. Estimating T1 by sampling the T1 relaxation

signals has a five decade history [7–10]. The conventional methods are based on inversion

recovery (IR) [7] and saturation recovery (SR) [8] due to their relatively large signal dynamic

ranges. However, the clinical applications of IR and SR sequences are severely hampered by

the considerable time required for the partial recovery of the longitudinal magnetization. To

achieve a reasonable scan time, Look and Locker proposed a “one-shot” method, which sam-

ples multiple points along the T1 relaxation curve by continuously tipping the longitudinal

magnetization with small flip angle pulses [9]. More recently, Deoni et al. presented a fast

and high-resolution T1 mapping approach, coined driven-equilibrium single-pulse observa-

tion of T1 (DESPOT1) [10]. It uses a pair of spoiled gradient recalled echo (SPGR) images

with different flip angles and achieves a shorter total scan time than other methods. How-

ever, researchers found that the T1 estimates using DESPOT1 are generally biased because

the data processing does not properly account for noise [11]. This bias can be significant,

such that T1 values are overestimated by as much as 10% to 20% for clinical SPGR images

with T1 of 800–1600 ms [11]. Moreover, DESPOT1 is limited in its ability to estimate large

T1 values corresponding to relatively advanced lesions and in its sensitivity to pulse flip angle

perturbations [10].

Neuro-degenerative diseases like MS exhibit a wide range of damage to the brain’s white

matter. Consequently, T1 relaxometry sequences must meet three requirements in order to

be clinically useful. First, the technique needs to provide precise and accurate measurements

in the range of T1s corresponding to normal white matter (WM, 800–900 ms at 3T) so as to

identify early changes from the ‘normal’ condition. Second, the technique needs to be stable

for measuring values up to those corresponding to cerebrospinal fluid (CSF, 4500–5500 ms

at 3T) in order to be able to characterize the degree of damage in more advanced lesions.

Third, the technique needs to do so within clinically acceptable scan times (of the order of

10–15 minutes) while being reasonably stable to variations of the radiofrequency (B1) field.

Currently, no existing technique fulfills all three requirements. These technological limita-

tions preclude the use of T1 relaxometry as a tool that may address both early white matter

degeneration as well as lesion evolution, which are both crucial markers for monitoring the

performance of neuroprotective drugs in treating dementia and progressive MS.

This paper proposes a new pulse sequence design framework for optimizing the T1

relaxometry performance for a broad range of T1 values. There are two major components

of the proposed framework that differ from previous ones. The first is to use the Cramér-

Rao bound (CRB) to design the pulse sequence. The CRB provides a lower bound on the

variance of any unbiased T1 estimate. This bound-based design allows us to predict the per-

formance of an MRI sequence based on its sequence parameters, and then to optimize the

performance of that sequence by adjusting these parameters. Our CRB derivation leads to a

geometric interpretation, which brings into sharper focus all of the factors that control the

precision of T1 relaxometry sequences. This differs from previous sequence design

approaches that merely focus on increasing the dynamic range and signal-to-noise ratio
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(SNR) to improve T1 mapping performance [10, 12, 13]. The second novel component of

our approach is to design the pulse sequence by optimizing its performance over a broad

range of T1 values. Previous sequence design algorithms optimized the signal dynamic

range or sensitivity for a single nominal T1 value, or a small range of T1 values [10–13].

When the tissue relaxation times fell outside the narrow range of nominal values, the relaxo-

metry performance degraded rapidly. In contrast, our framework employs a min-max opti-

mization strategy, which designs the pulse sequence to minimize the maximum estimate

variance over a broad range of T1 values. This guarantees the overall optimality of the result-

ing sequence for all T1 values within the target region spanning thousands of milliseconds.

To demonstrate the effectiveness of the proposed sequence design framework, we opti-

mize the tissue specific imaging (TSI) sequence for T1 relaxometry. The proposed technique

is sufficiently general that it can optimize nearly any T1 relaxometry sequence. Optimizing

the TSI sequence provides a powerful example of the benefits of bound-based min-max opti-

mization because it yields three high-contrast images of WM, gray matter (GM) and CSF,

which are employable as anatomical references in clinical settings. The TSI sequence is a rel-

atively new imaging sequence and has been successfully applied for characterization of MS

lesions [14, 15]. The TSI pulse sequence includes three imaging pulses followed EPI acquisi-

tions, which are interleaved with two inversion pulses in each pulse repetition period. This

sequence was originally designed to acquire brain images for each of the two categories of

brain tissues (WM and GM), as well as the CSF, with optimal contrast. We address the poten-

tial applications of TSI for T1 relaxometry and optimize its sequence parameters to improve

the T1 estimate precision and accuracy while maintaining its total scan time. Another moti-

vation for applying the TSI-type sequences for T1 relaxometry is their improved precision

relative to DESPOT1 over the T1 range corresponding to normal brain tissues, and, more

importantly, their improved stability for larger T1 values corresponding to tissues such as

advanced MS lesions [16, 17].

Theory

MR signal model

T1 relaxometry approaches apply the RF pulse sequences repeatedly to initialize the magnetiza-

tion preparation. Denote the MR signal generated by a tissue voxel at time ti as xi = M0hi(T1),

i = 1, 2, . . ., n, where M0 is the equilibrium longitudinal magnetization and hi(T1) is the signal

weighting factor at time ti. The acquired signal at time ti follows

si ¼ M0hiðT1Þ þ wi; ð1Þ

with additive uncorrelated noise wi for each acquisition. The vector s = [s1, . . ., sn]T character-

izes the acquired signals at different times t1, . . ., tn, where (�)T denotes vector transpose. Eq (1)

is known as a universal MR signal acquisition model assuming additive noise [25]. Assuming

knowledge of the pulse sequence parameters (sequence repetition time TR, pulse times ti and

flip angles αi), the signal weighting factor as a function of T1 after the nth pulse can be derived

from the Bloch equations in Eq (2), where Meq
z is the steady state magnetization. To derive Meq

z ,

we assume that in each TR, the first imaging pulse is applied at the initial time t = 0 and there

is a delay of (TR − tn) after the nth pulse of one sequence and before the first pulse of the next

sequence.

hnðT1Þ ¼ sinan 1þ
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The MR signals are most commonly acquired through quadrature detector channels, each

of which typically suffer from independent additive zero mean, white and Gaussian noise.

Thus, the noise in the reconstructed magnitude MR images should follow a Rician distribution

[18]. Several references in the MRI literature use Rician distributed random noise in their sig-

nal models [19, 20]. When the signal-to-noise ratio (SNR) is high enough, the Rician distribu-

tion converges to the Gaussian distribution [21, 22]. For the convenience of the CRB

evaluation, we assume the SNR is sufficiently high to exploit the approximation of the noise as

additive zero mean, white and Gaussian noise in the signal model in Eq (1). As will be shown

later, this Gaussian model assumption leads to a readily-derived closed-form expression to

geometrically interpret the CRB, which provides insight into the factors controlling the T1 esti-

mate precision.

Cramér-Rao bound on joint M0 and T1 estimation

The CRB has been used as a quantitative tool for optimizing experimental MR protocols [20,

23, 24] and also evaluating the precision of specific relaxometry sequences [25–27]. The ana-

lytic expression for the CRB on the T1 estimate, when jointly estimating M0 and T1, is the foun-

dation for the sequence design framework. Letting the parameter vector θ = [M0, T1]T, the

covariance matrix CðŷÞ of the unbiased estimator ŷ satisfies

CðŷÞ � I� 1ðyÞ � 0; ð4Þ

where I(θ) is the 2 × 2 Fisher information matrix (FIM) [28]. As a consequence, the variance of

any unbiased estimation of T1 is bounded from below by the (2,2) entry of matrix I−1(θ). This

quantity is also known as the CRB of the T1 estimate

VarðT̂ 1Þ � I� 1ðyÞð Þ
22
¼ CRBðT1Þ: ð5Þ

The diagonal elements of the FIM represent the measured signals’ sensitivity to the parame-

ters in θ [28]. For joint estimation of M0 and T1, the derivation of the FIM is straightforward

following Eqs (6) and (7)

IðyÞ ¼ E ½ry ln pðs; yÞ�½ry lnpðs; yÞ�
T� �
; ð6Þ

where E(�) takes the expectation over the acquired signal s. Eq (6) has entries

I11 ¼
1

s2

Xn

i¼1

ðhiðT1ÞÞ
2
;

I12 ¼ I21 ¼
1

s2

Xn

i¼1
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@hiðT1Þ
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� �

;

I22 ¼
1

s2
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where σ is the standard deviation of the additive noise w. Note that the dependence of the FIM

on the pulse sequence parameters TR, t1, . . ., tN and α1, . . ., αN is suppressed here for brevity.
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Defining SNR = M0/σ yields the closed-form expression for the CRB on T1 estimate

CRBðT1Þ ¼
ðSNRÞ� 2
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To maximize the precision of the T1 estimate, we should choose the sequence parameters to

minimize Eq (8). The apparent complexity of Eq (8) can be simplified through a linear space

interpretation [29]. To achieve this, define the signal weighting vector as h(T1) = [h1(T1),

h2(T1), . . ., hn(T1)]T, and the sensitivity vector @h/@T1 as the derivative of h with respect to T1.

Moreover, define ϕ as the principal angle between the vectors h and @h/@T1 in the linear space

(see Fig 1). Note that the principal angle ϕ between two vectors x and y in the linear space is

defined as � ¼ arccos hx;yi
kxk�kyk, where h�i is the inner product operator and k�k is the Euclidean

norm (or length) of a vector. Therefore, Eq (8) can be rewritten as
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Fig 1. Geometric interpretation of the Cramér-Rao Bound (CRB) of T1 estimate in a linear space. h is

the signal weighting vector containing the measured signals at all acquisition times. @h/@T1 is the sensitivity

vector, calculated as the derivative of the signal weighting vector with respect to T1. Conceptually, increasing

the norm of the sensitivity term k@h/@T1k will increase the impact of small changes in T1 on the acquired

signals. The orthogonality term sin ϕ is a consequence of the joint estimation of T1 and M0. The observed

signal’s sensitivity for M0 is h, while that of T1 is @h/@T1. The more orthogonal these vectors are, the easier it

becomes to ascribe changes in the observed signal to M0 or T1 unambiguously.

doi:10.1371/journal.pone.0172573.g001
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Eq (9) makes clear that three factors control the CRB and thus there are three methods to

improve the T1 estimate precision. The first method is to increase the SNR, which is consistent

with previous sequence designs seeking to increase the signal dynamic range or reduce the

noise [10, 12]. These approaches would improve T1 estimate stability, but are not always the

most effective methods of reducing variance. The second term @h/@T1 in Eq (9) is the sensitiv-

ity of T1, which describes how sensitive the signal model is to T1 variation. Increasing the

norm of the sensitivity k@h/@T1k will increase the impact of small changes in T1 on the overall

signal weighting vector h. For example, a large sensitivity indicates that a small T1 variation

causes a large signal fluctuation. In this case, T1 can be estimated from the signal measure-

ments more precisely. In contrast, zero sensitivity indicates that the signal will remain constant

regardless of the T1 variation. In this case, the T1 value can never be estimated from the mea-

surements. Increasing the magnitude of the sensitivity vector can be an effective method of

improving T1 estimate precision. The third component in the CRB expression is the orthogo-

nality term sin ϕ, which results from jointly estimating T1 and M0. The observed signals’ sensi-

tivity for M0 is h, while that of T1 is @h/@T1. The more orthogonal these vectors are, the easier

it becomes to ascribe changes in the observed signal to M0 or T1 unambiguously. In terms of

T1 estimation, increasing the orthogonality of the signal weighting vector and the sensitivity

vector improves the T1 estimate precision. The second and third approaches are notable as

they can be exploited without requiring the costly hardware improvements usually needed to

increase signal strength or decrease measurement noise. To the best of our knowledge, no

prior MRI sequence design strategy has exploited these mechanisms simultaneously and ana-

lyzed these approaches explicitly for improving the precision of T1 relaxometry.

Methods

Sequence optimization methods

As Eq (8) shows, the CRB is a function of the true T1 value. Current publications suggest that

the variation of T1 within normal and diseased tissues scales with the mean of T1. For example,

clinical T1 measurements at 1.5T using histograms of normal-appearing white matter

(NAWM) showed T1 of 792 ms ± 36 for patients with secondary progressive MS. This repre-

sents a relative T1 variation of ± 4.5% around its mean. However, histograms for the cortical

normal-appearing gray matter (NAGM) showed T1 of 1355 ms ± 62 for patients with second-

ary progressive MS, which also represents a relative T1 variation of ± 4.5% around its mean

[30, 31]. In this example, the same stage of MS development corresponds to the same relative

T1 error for different tissue types. Therefore, rather than directly using the CRB, this paper

uses a relative error as the metric for optimizing the pulse sequence parameters. The relative

error is defined as the square root of the CRB normalized by the true T1 value. The sequence

parameters are optimized to minimize the maximum relative error over a broad range of T1

values. This guarantees the relative error to be reasonably robust to the T1 range of interest.

For a given set of pulse times t = [t1, t2, . . ., ti], sequence repetition time TR, pulse flip angles

α = [α1, α2, . . ., αi], and unknown parameters θ = [M0, T1]T, the maximum relative error over

the range of θ follows

Cmaxðt;TR;αÞ ¼ max
θlower�θ�θupper

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRBðt;TR;α; θÞ

p
=T1: ð10Þ

Fig 2 illustrates the structure of the TSI pulse sequence [14]. In each TR, there are three

imaging pulses each followed by EPI acquisitions and interleaved by two inversion pulses. The

sequence parameters were derived from a simulated annealing optimization process by maxi-

mizing the contrast-to-noise ratio (CNR) in the combined tissue-specific images. Using 3D

Generalized bound-based MRI pulse sequence design for T1 relaxometry
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sensitivity encoded (SENSE) EPI for data acquisition, the sequence achieves a 1.15 mm isotro-

pic resolution in a FOV of 220 × 165 × 110 mm3 within a scan time of 10 minutes. There are

eight pulse parameters to optimize in this sequence: times for the two inversion pulses t2, t4,

times for the second and third imaging pulse t3, t5, flip angles for the three imaging pulses α1,

α3, α5 and the sequence repetition time TR. The optimization process assumes the T1 interval

of interest to be 700–2000 ms for normal brain tissues at 3.0T [32]. However, the performance

of the optimized pulse sequence is evaluated over a broader T1 range of 700–5000 ms. This is

to observe the sequence’s robustness to larger T1 variations that characterize more advanced

lesions and the CSF region [3]. To achieve optimal sequence parameters that are practically

applicable, we constrain the optimization process following the discussions in [14]. Specifi-

cally, the maximum allowed TR is set as 6 seconds to limit the total scan time to under 10 min.

The inter-pulse interval needs at least 100 ms to allow enough time for the EPI acquisition.

The flip angles of all imaging pulses are less than 90˚ for the convenience of practical imple-

mentation. More explicitly, the optimal pulse parameters are achieved by minimizing Cmax(t,

α) under the following constraints

ðt;αÞopt
¼ argmin

t;α
Cmaxðt;αÞ;

s:t: TR � 6 s;

ti � ti� 1 � 100 ms;

TR � t5 � 100 ms;

a1; a3; a5 2 ½0
�

; 90
�

�;

a2 ¼ a4 ¼ 180
�

:

ð11Þ

Due to the large number of parameters to optimize, classical optimization methods such as

exhaustive search can be too computationally burdensome and gradient search can fail to

Fig 2. The general pulse sequence scheme for tissue specific imaging (TSI). In each TR period, there are three imaging pulses (dark gray) followed

by EPI acquisitions and interleaved by two inversion pulses (light gray) (After Fig 1 from [14]). The three imaging pulses are characterized by their flip

angles α1, α3, α5. The dashed lines indicate the times t when each pulse is applied. The first imaging pulse is applied at the beginning of each TR (t1 = 0).

There are 8 pulse parameters to optimize for in the TSI sequence: times for the two inversion pulses t2, t4, times for the second and third imaging pulses t3,

t5, flip angles of the three imaging pulses α1, α3, α5 and the sequence repetition time TR.

doi:10.1371/journal.pone.0172573.g002
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converge to the globally optimal solution. To find the globally optimal sequence parameters,

we adopt a hybrid of the Nelder-Mead downhill simplex method [33] and the simulated

annealing approach [34]. The downhill simplex method finds the local minimum by expand-

ing, contracting, and reflecting the simplex constructed by a group of different initial points in

the N-dimensional hyperspace. With simulated annealing, the algorithm conditionally accepts

uphill movement (leading to worse performance) during the optimization process and there-

fore improves the probability of finding the global optimum. This hybrid approach [35] has

been proven successful in optimizing brain tissue contrast [14] and acquisition schemes for

quantitative magnetization transfer MRI [36].

The optimization process is initialized with a TR of 5500 ms, evenly spread-out pulse times

within TR, and a flip angle of 45˚ for each imaging pulse. For each temperature T, the simplex

routine iterates 2000 times to calculate the cost function in Eq (10). For each iteration, the rela-

tive error is calculated over the T1 range 700–2000 ms, where the worst cases of the relative

errors are compared and arranged in an ascending order for all simplex vertices. The relative

error is randomly perturbed by a quantity T � log(p), where p is a random variable uniformly

distributed within [0, 1], to allow for conditional acceptance of uphill movement [34]. The

temperature T and the simplex size D decrease according to the annealing schedule

Tðnþ 1Þ ¼ 0:985TðnÞ

Dðnþ 1Þ ¼ 0:998DðnÞ:
ð12Þ

The initial temperature is selected empirically as 0.8 and the initial simplex is constructed with

a simplex size of 100 ms for the pulse times and 30˚ for the flip angles. The overall simulated

annealing algorithm runs for 1000 iterations to locate a hopefully global optimum. During the

optimization process, a prohibitive penalty of 103 is added to the cost function whenever the

new pulse sequence violates the constraints in Eq (11). Repeating the optimization process

from several different initial sequence vectors allowed the pulse sequence to converge to a rela-

tively stable and hopefully globally optimal CRB.

T1 estimation methods

In general, there are two criteria to evaluate the performance of an estimator given an acquired

signal s: accuracy and precision [28]. The accuracy of a T1 estimator T̂ 1 ¼ f ðsÞ is measured by

the bias

BiasðT̂ 1Þ ¼ EðT̂ 1Þ � T1; ð13Þ

which is the difference between the mean of the T1 estimator EðT̂ 1Þ and the true T1. The

smaller the bias is, the more accurate the estimator T̂ 1 is. The precision is determined by the

variance of T̂ 1

Varð T̂ 1Þ ¼ E½ðT̂ 1 � EðT̂ 1ÞÞ
2
� ð14Þ

The smaller the variance is, the more precise the estimator T̂ 1 is. An ideal T1 estimator T̂ 1 is

unbiased, with its variance achieving the CRB of T1. For the signal model in Eq (1), the least

squared estimator (LSE) of T1 for joint M0 and T1 estimation is asymptotically optimal. For

infinitely high SNR, this estimator has its expected value achieve the true T1 and its variance

achieve the CRB(T1) [28]. Mathematically, the LSE of θ = [M0, T1] minimizes the squared

error

JðθÞ ¼ ðs � xðθÞÞTðs � xðθÞÞ; ð15Þ

Generalized bound-based MRI pulse sequence design for T1 relaxometry
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where x(θ) describes the noise-free signal. Specifically, when the signal model shows linearity

in one parameter M0 and non-linearity in T1, the LSE of T1 can be calculated in a more compu-

tationally efficient way by minimizing another version of squared error [28] following

JðT1Þ ¼ sT ½I � hðhThÞ� 1hT
�s; ð16Þ

where I is the identity matrix and h is the signal weighting vector defined in Eq (2). Since the

squared error in Eq (16) depends only on one parameter T1, it is easy to find the T1 value

which minimizes the squared error using a grid search of T1 in an appropriate range.

Numerical simulation methods

The accuracy and precision of T1 estimates are evaluated in Monte Carlo simulations. The sim-

ulations consider four different T1 estimation approaches: nonlinear least square estimation

(NLSE) using the optimized TSI sequence, NLSE using the original TSI sequence [14], linear

LSE using the SPGR sequence (also coined DESPOT1 [10]), and NLSE using the SPGR

sequence [11]. The observed magnetic signals were simulated for an equilibrium longitudinal

magnetization value of M0 = 3000 a.u and a range of T1 within 700–5000 ms covering almost

all brain tissues and CSF at 3.0T [32]. The different structures of the TSI and SPGR sequences

require different approaches to simulate the observed noise-free signals. For the TSI signals,

the steady state magnetizations in Eq (3) are first evaluated based on different choices of TSI

sequence parameters. The signal weighting factor in Eq (2) is then evaluated at different pulse

times and scaled by M0 as the raw noise-free magnetic signals. In contrast, the raw SPGR sig-

nals are simulated by evaluating

SSPGR ¼
M0ð1 � E1Þ sina

1 � E1 cosa
ð17Þ

with E1 ¼ e� TR=T1 at a given constant TR and varying flip angles [10]. For both TSI and SPGR,

the simulated magnetic signals are then generated by adding varying levels of white Gaussian

noise.

To accurately simulate and compare the performance of TSI and SPGR sequences on the

same MRI machine with the same magnet and sensing coils, the SNR levels must be adjusted

between the two sequences to account for the differences in their physical scan parameters.

The simulated SNR is calculated as the ratio between M0 and the noise standard deviation σ.

To enable a fair comparison, we assume the B0 strength, the voxel size, and the number of data

measurements to be the same between TSI and SPGR. This assumption leaves out three factors

for calibration: receiver bandwidth BW, T�
2

relaxation time decay, and sensitivity encoded

(SENSE) EPI for TSI. A larger BW incorporates more noise in the acquired signals and there-

fore decreases the SNR by a relative factor of
ffiffiffiffiffiffiffiffi
BW
p

[37]. A longer echo time TE in gradient

echo imaging decreases the acquired signal amplitude and therefore decreases the SNR

through e� TE=T�
2 . For SPGR, the chosen pulse parameters are TR = 7.8 ms, TE = 2.4 ms and

receiver BW of ±31.3KHZ [38]. For TSI, the chosen pulse parameters are TR = 6 s, TE = 35 ms

and readout time of 2.048 μs/sample (equivalent to receiver BW of ±244.1KHZ) [14]. The BW

of TSI is eight times larger than that of SPGR, resulting in a SNR for TSI of
ffiffiffi
8
p

lower than

SPGR. Assuming an average T�
2

value of 48.9 ms for brain parenchyma [39], the relative T�
2

decay gives TSI a lower SNR than SPGR by a factor of e� ðTETSI� TESPGRÞ=T�
2 ¼ e� ð35� 2:4Þ=48:9 � 0:5.

The SENSE EPI rate of 2 will further decrease the SNR of TSI by a factor of
ffiffiffi
2
p

due to fewer

phase encoding (PE) steps during signal acquisitions [37]. Combining all these factors, the

Generalized bound-based MRI pulse sequence design for T1 relaxometry
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simulations of SPGR signals must have a SNR level 8 times greater than TSI to match the simu-

lated performances with practical experiments.

Results

Pulse sequence optimization results

The main result of applying the proposed sequence design framework is that the optimized

TSI pulse parameters achieve improved precision and accuracy over both the original TSI

sequence [14] and the DESPOT1 sequence [10]. Table 1 shows the optimized TSI sequence

parameters (TSInew) obtained by the optimization algorithm in the Methods section, compared

against the original TSI sequence from [14]. The original TSI sequence was obtained assuming

nominal tissue T1 values for WM of 800 ms, GM of 1550 ms and CSF of 3700 ms. In contrast,

the optimization process assumes a range of T1 values 700–2000 ms for the normal brain tis-

sues. Table 1 shows that the parameters of TSInew differ from the TSIoriginal in the pulse times

and flip angles. For TSInew, all pulses occur in the first 3655 ms over a TR of 6 seconds, leaving

a relatively longer time for the longitudinal magnetization to relax after the third imaging

pulse. In contrast, the pulses in the original TSI sequence are more spread out over TR. More-

over, the flip angles of TSInew increase across the sequence, while the flip angles of TSIoriginal

first decrease then increase.

T1 estimation performances: Precision and accuracy

To evaluate and compare the T1 estimate precision and accuracy, we designed two Monte

Carlo simulation experiments involving four estimators: NLSE with the new TSI sequence,

NLSE with the original TSI sequence, DESPOT1, and NLSE with the SPGR sequence used by

DESPOT1. The precision is compared in terms of the relative mean estimation error: the stan-

dard deviation of the estimated T1 over the true T1. Five thousand Monte Carlo trials are

repeated for each set of pulse parameters for each value of T1. Equivalent SNR levels are cali-

brated as SNR = 125 for the TSI sequences and SNR = 1000 for the SPGR sequence. For both

TSI methods and SPGR methods, the relative mean estimation errors are compared against

their own theoretical lower bounds, or relative errors, calculated as the square root of the CRB

over the true T1.

Fig 3 compares the T1 estimate precision in terms of the relative mean estimation errors for

the four different estimators. For the evaluated T1 range of 700–5000 ms, the TSI sequences

show overall improvement over the SPGR sequence. The new TSI sequence achieves mean

estimation error less than 1.7% for normal brain tissues (T1 700–2000 ms). The new TSI

sequence also maintains the best robustness to T1 variation, with mean estimation error less

than 6.5% when T1 reaches 5000 ms. In the SPGR family, DESPOT1 and SPGR NLSE provide

similar errors: less than 7.0% for T1 of 700–2000 ms (agreeing with the findings in [10, 11])

and less than 10.5% when T1 reaches 5000 ms. Both SPGR NLSE and TSInew NLSE achieve

their theoretical lower bounds for all tested T1 values. This implies that the CRB provides a reli-

able prediction of the precision performance for different pulse sequences.

Table 1. Optimized TSI pulse sequence parameters (TSInew), compared against the original TSI pulse parameters from Table 2 of [14].

Imaging pulse 1 Inversion pulse 1 Imaging pulse 2 Inversion pulse 2 Imaging pulse 3

TSInew 0 ms/ 24˚ 1804 ms 2751 ms/ 68˚ 3555 ms 3655 ms/ 87˚

TSIoriginal 0 ms/ 46˚ 3020 ms 3573 ms/ 23˚ 5112 ms 5575 ms/ 83˚

doi:10.1371/journal.pone.0172573.t001
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A second Monte Carlo experiment compares the accuracy of T1 estimates among the four

approaches over a broad range of SNRs. The accuracy is measured in terms of the

relative bias : jðMean of T̂ 1 � True T1Þ=True T1j. This experiment uses a nominal T1 value of

1500 ms, which is a typical T1 value for brain GM at 3.0T. Five thousand Monte Carlo trials are

repeated for each set of pulse parameters for each SNR level. Again, to calibrate for the SNR

equivalence between the TSI sequences and the SPGR sequence, simulated SNRs are selected

with 5� SNR� 60 for TSI sequences and 40� SNR� 480 for both DESPOT1 and SPGR

NLSE.

Fig 4 compares the accuracy of T1 estimates in terms of the relative bias for the four differ-

ent estimation approaches. We can see that the T1 estimates using the SPGR methods are

biased, with the biases getting more pronounced as SNR decreases. Specifically, at the highest

tested SNR level of 480, DESPOT1 has a relative bias of 0.58% and SPGR NLSE of 0.66%. At

the lowest tested SNR level of 40, DESPOT1 reaches a relative bias of 53.03% and SPGR NLSE

reaches 22.87%. For the same SPGR data, using NLSE to estimate the T1 value has a lower bias

than using the linear data fitting process in DESPOT1. In general, SPGR signals have a rela-

tively high SNR due to short TR. For example, the SNR ranges from 100–200 in brain tissues

for the clinical whole-brain SPGR data acquired at 1.5T with a single channel receiver coil

(with TR = 8 ms and flip angles of 2˚, 3˚, 14˚, 17˚) [11]. As shown in Fig 4, in this SNR region,

the SPGR approaches have a relative bias between 4–16%. Note that for a nominal T1 of

1500 ms, this range of relative bias corresponds to an absolute bias of 60–240 ms. Bias of this

Fig 3. Comparing T1 estimates’ precision for four different approaches: NLSE with the new TSI sequence (blue) against its

theoretical lower bound (red solid), NLSE with the original TSI sequence (cyan), DESPOT1 (green), and NLSE with the SPGR

sequence (black) against its theoretical lower bound (magenta dashed). The precision is measured in terms of the relative mean

estimation error, calculated as the standard deviation of T1 estimates normalized by the true T1. The theoretical lower bound of the

relative mean estimation error is the relative error, calculated as the square root of the CRB on T1 estimates normalized by the true T1.

SNR levels equalizing for both receiver bandwidths and echo times are calibrated as SNR = 125 for the TSI sequences and

SNR = 1000 for the SPGR sequence. The new TSI sequence achieves the lowest mean estimation error and therefore highest

precision for tested T1 values.

doi:10.1371/journal.pone.0172573.g003
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range is significant and can severely ambiguate the detection of T1 changes in NAGM, which

was recently shown to be associated with cortical lesions and cognitive dysfunction for patients

with long-standing MS [40, 41]. The average T1 values for normal frontal GM, per the studies

in [42], are in the range of 1322ms ± 34 at 3.0T. A T1 estimate bias on the order of 60–240 ms

would imply tissue abnormalities, which actually results from the T1 relaxometry approach

inaccuracies. This finding agrees with the results in [11] that the T1 values for brain tissues esti-

mated using DESPOT1 can be overestimated by 10–20% in the clinical SPGR images.

In contrast, using the TSI sequences for T1 relaxometry virtually eliminates the T1 estimate

bias for a broad range of simulated SNRs. At the highest tested SNR level of 60, the original

TSI sequence achieves a relative bias of 0.56% and the new TSI sequence of 0.05%. Even at the

lowest tested SNR level of 5, the original TSI sequence produces a relative bias of 8.17%, and

the new TSI sequence of 4.19%. The clinical SNR of 100–200 for the SPGR sequences translates

to an SNR of 12.5–25 after compensating for the SNR equivalence calibration. Fig 4 shows in

the SNR range between 12.5–25, the T1 estimates using the new TSI sequence have a relative

bias between 0.25–0.88%. Again, for a nominal T1 of 1500 ms, this range of relative bias corre-

sponds to an absolute bias of 4–13 ms. Bias of this range may or may not have any clinical sig-

nificance, given that recent studies showing for NAWM and NAGM, the relevant early T1

changes are on the order of 10–20 ms for MS patients [30, 31]. However, for clinically realistic

SNR levels, the new TSI sequence improves the T1 estimation accuracy by a factor of 16 times

over DESPOT1 for the tested nominal T1 of 1500 ms. This improvement would greatly allevi-

ate the ambiguities of T1 variation caused either by the T1 relaxometry inaccuracies or the

underlying pathological conditions of the patients.

Fig 4. Comparing the T1 estimates’ accuracy for four different approaches: NLSE with the new TSI sequence (blue), NLSE with the

original TSI sequence (cyan), DESPOT1 (green), and NLSE with the SPGR sequence (black). The accuracy is measured in terms of the

relative bias %, calculated as jðMean of T̂ 1 � True T1Þ=True T1j. This experiment uses a nominal T1 value of 1500 ms. Simulated SNR levels

are calibrated equivalently as 5� SNR� 60 for the TSI sequences and 40� SNR� 480 for the SPGR sequence. The new TSI sequence

achieves the lowest overall relative bias and therefore highest accuracy among the four approaches.

doi:10.1371/journal.pone.0172573.g004
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Comparing T1 sensitivity and orthogonality

As described in the Theory section, the CRB provides a more complete model for the factors

controlling T1 estimate precision. There are three factors contributing to CRB improvement:

SNR M0/σ, sensitivity jj @h
@T1
jj, and orthogonality sin ϕ. Improving SNR often requires increas-

ing the B0 field strength, employing lower noise receiver coils, or increasing the number of sig-

nals averaged, all of which increase hardware costs or scan time. Therefore, redesigning pulse

sequences to increase the measurement sensitivity jj @h
@T1
jj and orthogonality sin ϕ can improve

the T1 estimate precision without requiring improved hardware or additional scan time. Here

we evaluate and compare the sensitivity and orthogonality terms separately for each pulse

sequence and investigate how the different terms contribute to the CRB as T1 varies.

Fig 5 compares the T1 sensitivity and orthogonality for the new TSI sequence, the original

TSI sequence, and the SPGR sequence as a function of T1 over the range of 700–5000 ms. The

top panel shows the new TSI sequence exhibits the highest sensitivity among the three

sequences, especially for the T1 range of 700–2000 ms corresponding to normal brain tissues.

This high sensitivity of the new TSI sequence explains its low mean T1 estimation error shown

in Fig 3. For the original TSI sequence, the sensitivity decreases sharply for T1 within 700–1500

ms, which implies this sequence is relatively unstable for T1 relaxometry within the WM and

GM regions. For all tested T1 values, the SPGR sequence has the lowest T1 sensitivity. The bot-

tom panel in Fig 5 shows the TSI sequences have greater orthogonality than the SPGR

sequence. Specifically, within the tested T1 range, the new TSI sequence has an average orthog-

onality value of 0.88, compared with the original TSI sequence of 0.92 and the SPGR sequence

of 0.57. Comparing the sensitivity, orthogonality, and the equivalent TSI-SPGR SNR factor, we

find that the optimized TSI sequence owes its improved T1 estimation capability to its high T1

sensitivity and orthogonality of the TSI-family sequences. In contrast, the DESPOT1 sequence

owes much of its T1 estimation capability to its inherently high SNR, largely due to very short

TR intervals. The dramatic improved sensitivity and modest improved orthogonality explain

the superior performance of the new TSI sequence over DESPOT1 in spite of a conceding fac-

tor of 8 in SNR.

Discussion

Sequence design approach

Prior to any validation from phantom or in vivo experiments, the Monte Carlo simulation

results show that the new TSI sequence achieves improved T1 precision and accuracy over the

popular SPGR approaches. This improvement in precision is prominent for a broad range of

brain T1 values, not only the ones corresponding to normal brain parenchyma, but also to

more advanced lesioned tissues and the CSF region. Both T1 precision and accuracy show

desirable stability to T1 variation and varying SNR levels. The relative mean T1 estimation

errors using NLSE for both the new TSI sequence and the SPGR sequence confirm that the

CRB is a reliable approach to predict the performance of a T1 relaxometry approach.

This work uses a qualitatively new approach in the MRI pulse sequence design, which

exploits the Cramér-Rao Bound (CRB) on the variance (stability) achievable by any estimator

[28]. This bound-based design allows us to predict the performance of an MRI relaxometry

approach based on the pulse sequence parameters, and then optimize the performance of that

sequence by adjusting these parameters. We optimized the stability of a T1 image by finding

the pulse times and flip angles that produce the smallest variance for all T1s within a range of

interest. This differs from prior pulse sequence design approaches that either presumed nomi-

nal tissue T1 values a priori [14] or focused on improving the signal dynamic range [10, 13]

Generalized bound-based MRI pulse sequence design for T1 relaxometry
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Fig 5. Comparison of sensitivity (top panel) and orthogonality sin ϕ (bottom panel) of T1 estimation for the new TSI sequence

(blue), the original TSI sequence (cyan), and the SPGR sequence (black). The norm of T1 sensitivity jj @h
@T1
jj is calculated as the

Euclidean norm of the derivative of the signal weighting vector with respect to T1. Increasing the norm of the sensitivity will increase the

impact of small changes in T1 on the overall signal weighting vector h. sin ϕ is the orthogonality term defined in Fig 1. The more

orthogonal these vectors are, the easier it becomes to ascribe changes in the observed signal to M0 or T1 unambiguously. The top panel

shows the new TSI sequence has the best sensitivity among the three sequences and SPGR has very poor sensitivity for T1 estimation.

The bottom panel shows the TSI-family sequences have greater orthogonality (above 0.7) than the SPGR sequence (equal to 0.58) for

the tested T1 range.

doi:10.1371/journal.pone.0172573.g005
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without assessing the implications for the T1 map stability. Another advantage of the proposed

pulse design approach is considering a range of nominal T1 values in the pulse optimization

process. For prior approaches [10, 14], the optimized pulse times and flip angles have strong

dependence on the assumed tissue T1 values. Although T1 measurements for brain tissues are

widely available [32], the inherent T1 variation within the target tissue degrades the perfor-

mance of the sequences designed assuming a specific T1 value for each tissue type. In contrast,

the min-max approach provides the best worst case performance, resulting in robust stability

for T1 throughout the region of interest and not just estimates in the neighborhoods of the

nominal T1 values.

From the pulse sequence design perspective, the proposed bound-based framework was

derived assuming a general signal model under additive white Gaussian noise. This framework

is illustrated with a case study for the TSI sequence to show the effectiveness of the CRB-based

framework in optimizing sequence parameters for T1 relaxometry. However, the proposed

framework is readily extendible to other MRI relaxometry sequence designs and sequence

parameter optimizations. For example, the proposed framework can be applied to optimize

the inversion time and number of data measurements when using the inversion recovery (IR)

sequence for T1 relaxometry. Another example is using the proposed framework to optimize

the number of excitation pulses and their inter-pulse times and flip angles when using the

Look-Locker (LL) sequence for fast T1 relaxometry. Alternatively, the proposed framework is

also extendible for designing new MRI sequences and optimizing their parameters to simulta-

neously extract T1 and T2 information from the signal measurements. One such example is the

DESPOT approach that jointly uses the SPGR and steady state free precession sequences

(SSFP) to collect a series of steady state images over a range of flip angles for fast T1 and T2

mappings [10]. The proposed framework can be adapted to optimize the flip angles and pulse

repetition times for the SPGR and SSFP sequences for optimal precision of joint T1/T2 estima-

tion. We believe our pulse design framework is promising for producing sequences with

improved stability, precision, and accuracy over a wide range of T1/T2 values corresponding to

normal tissue and advanced pathologies as well.

Practical considerations

A dominant practical error impacting the T1 estimation performance of a pulse sequence is

the pulse flip angle perturbations. In practice, the flip angle perturbations are mainly caused

by patient-induced B1 inhomogeneities due to distortions of the radio-frequency field gener-

ated by the transmit coils. Although the use of B1-insensitive adiabatic pulses can result in

accurate inversions, the B1 inhomogeneities could affect the imaging pulses with the flip

angles perturbations up to ±20% of their nominal values [14]. Observing how the relative

error
ffiffiffiffiffiffiffiffiffi
CRB
p

=T1 degrades due to the flip angle perturbations quantifies how B1 field inhomo-

geneities affect T1 estimate precision. Fig 6 demonstrates the degradation of the relative

errors due to flip angle perturbations up to ±20% of their nominal values for the new TSI

sequence at SNR = 125 (top panel), the original TSI sequence at SNR = 125 (middle panel),

and the SPGR sequence at SNR = 1000 (bottom panel). The top panel shows the new TSI

sequence is robust to the B1 field inhomogeneities for a wide T1 range within 700–5000 ms.

The flip angle perturbations alter the relative error curve, but not dramatically. Specifically,

the relative errors fall within ±0.1% of the unperturbed nominal values for the normal brain

tissue range (T1 700–2000 ms). For T1 up to 5000 ms, the relative error still falls within

±0.4% of the unperturbed value of 6.5%. Compared against the new TSI sequence, the flip

angle perturbations affect the original TSI sequence more severely. As shown in the middle

panel, the relative errors fall within ±0.9% of the unperturbed nominal values for the normal
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Fig 6. Degradation of the T1 estimates’ precision in terms of relative errors due to flip angle

perturbations using the new TSI sequence at SNR = 125 (top panel), the original TSI sequence at

SNR = 125 (middle panel), and the SPGR sequence at SNR = 1000 (bottom panel). The relative error is

calculated as the square root of the CRB on T1 estimates normalized by the true T1 value. All curves are

generated keeping the flip angle of the inversion pulse as 180˚ and simultaneously varying the flip angles of

Generalized bound-based MRI pulse sequence design for T1 relaxometry
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brain tissue range (T1 700–2000 ms). The relative error is most sensitive to flip angle pertur-

bations for T1 of 1300–2100 ms, where most brain GM resides. Compared against the TSI-

family sequences, the bottom panel shows that the flip angle perturbations affect the SPGR

sequence more severely for all T1s within 700–5000 ms. This result agrees with the earlier

findings on the SPGR-based techniques’ sensitivity to B1 variations [10]. Specifically, for the

normal brain tissue range (700–2000 ms), the relative errors fall within ±0.4% of the unper-

turbed nominal values. As T1 increases, the relative error degrades more severely (off the

chart) and falls within ±0.65% of the unperturbed value of 10.5% for T1 = 5000 ms. The rela-

tive robustness to B1 inhomogeneities and stability to T1 variation make the new TSI

sequence appropriate for studying the effect of diseases such as MS, where the presence of

lesions at different degrees of severity may lead to T1 variations in the order of thousands of

milliseconds, rendering measurements by other techniques unreliable.

Regarding the underlying MR physics for different imaging sequences, we assume that the

same physical object is scanned by the same MRI scanner under the same physical conditions.

The B0 field strength, the voxel volume size, and the number of data measurements are

assumed the same between TSI and DESPOT1. The simulations adjust the distinct SNR levels

between TSI and DESPOT1 for different echo times during T�
2

decay and different receiver

bandwidths. However, we ignore several MR physical factors which might affect the perfor-

mance of the optimized pulse sequence in practice. For example, TSI usually requires about

three additional repetitions of the five-pulse sequence before the start of data acquisition to

allow magnetization to reach equilibrium condition [14]. Similarly, for the DESPOT1, we have

not considered either the time required to reach steady state for each acquisition or the wait

time between different sub-sequences in the actual acquisitions. Therefore, a natural next step

is to confirm the improved performance of the new TSI sequence in actual MRI experiments.

As a first validation, our next effort will focus on phantom experiments with known T1 values

to demonstrate the reliability of the proposed technique.

Conclusion

This paper designed a new TSI T1 relaxometry MRI sequence that achieves improved precision

and accuracy over a broad range of T1 values, covering both healthy and lesioned brain tissues.

The new sequence demonstrates robustness to B1 inhomogeneity and stability over the wide

range of T1 variations encountered in neuro-degenerative diseases under clinically feasible

scan time. This suggests that the improved TSI sequence may be helpful in the study of neuro-

degenerative diseases such as multiple sclerosis. The improved performance of the new

sequence illustrates the value of the min-max design strategy minimizing the Cramér-Rao

bound on T1 estimation. The geometric interpretation of the Cramér-Rao bound developed

here illuminates three factors controlling relaxometry performance: improving the SNR (or

signal dynamic range), increasing the signal’s sensitivity to T1 variation, and increasing the

orthogonality between the signal vector and the sensitivity vector. The second and third

approaches can be implemented on existing systems to improve the T1 relaxometry perfor-

mance without requiring hardware improvements to magnets or measurement coils. The

improved relaxometry performance predicted by the Cramér-Rao bound and demonstrated in

Monte-Carlo simulations suggests that the proposed benefits of the design strategy may prove

portable to other relaxometry sequences.

the imaging pulses within ±20% of their nominal values. Among the three pulse sequences, TSInew is the most

robust to flip angle variations for T1 estimation.

doi:10.1371/journal.pone.0172573.g006
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