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Preface

The Department of Homeland Security, National Preparedness and Programs Directorate, 
Office of Infrastructure Protection, has asked the RAND Corporation to analyze exposures 
of national infrastructure systems to natural hazards and how these exposures are expected to 
evolve in response to climate change. RAND’s analysis, which is documented in additional 
forthcoming reports, takes into account 11 hazards and five infrastructure sectors. This report 
describes the data and methods used by the RAND team to complete the analysis.

The RAND Homeland Security and Defense Center

The research in this report was conducted in the Homeland Security and Defense Center 
(HSDC), which performs analysis to prepare and protect communities and critical infra-
structure from natural disasters and terrorism. HSDC projects examine a wide range of risk-
management problems, including coastal and border security, emergency preparedness and 
response, defense support to civil authorities, transportation security, domestic intelligence, 
and technology acquisition. HSDC clients include the U.S. Department of Homeland Secu-
rity, the U.S. Department of Defense, the U.S. Department of Justice, and other organizations 
charged with security and disaster preparedness, response, and recovery.

HSDC is a joint center of two research divisions: RAND Justice, Infrastructure, and 
Environment and the RAND National Security Research Division. RAND Justice, Infra-
structure, and Environment is dedicated to improving policy and decisionmaking in a wide 
range of policy domains, including civil and criminal justice, infrastructure protection and 
homeland security, transportation and energy policy, and environmental and natural resource 
policy. The RAND National Security Research Division conducts research and analysis for all 
national security sponsors other than the U.S. Air Force and the Army. The division includes 
the National Defense Research Institute, a federally funded research and development center 
whose sponsors include the Office of the Secretary of Defense, the Joint Staff, the Unified 
Combatant Commands, the defense agencies, and the U.S. Department of the Navy. The 
National Security Research Division also conducts research for the U.S. intelligence commu-
nity and the ministries of defense of U.S. allies and partners.

Questions or comments about this report should be sent to the project leader, Henry 
Willis (hwillis@rand.org). For more information about HSDC, see www.rand.org/hsdc or 
contact the director at hsdc@rand.org.

mailto:hwillis@rand.org
http://www.rand.org/hsdc
mailto:hsdc@rand.org
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Summary

The United States relies on a number of infrastructure systems—roads, the electric grid, ports, 
telecommunications networks, refineries, and the like—for carrying out basic social and eco-
nomic functions. Disruptions of these systems could impose potentially significant economic, 
social, environmental, and national security consequences. The U.S. Department of Homeland 
Security Office of Infrastructure Protection is charged with identifying and prioritizing strate-
gies and investments for improving the resilience of specific infrastructure systems in specific 
regions. A necessary first step in fulfilling this role is understanding how infrastructure is 
exposed to natural disasters. 

To support this work, the Department of Homeland Security, National Preparedness and 
Programs Directorate, Office of Infrastructure Protection, asked RAND to analyze national 
exposures to infrastructure from natural disasters. RAND’s analysis includes 11 natural haz-
ards and five infrastructure sectors. Tables S.1 and S.2 list the hazards, infrastructure sectors, 
and subsectors included in this analysis.

This report serves as the technical documentation and reference document for the data, 
methods, and analytic approach used for this study. The report also documents how each 
infrastructure type and hazard is represented in data sets to act as a reference for any use of the 

Table S.1
Hazards Included in Each Chapter

Chapter Two: Climate-Adjusted Hazardsa  Chapter Three: Climate-Unadjusted Hazards

Coastal flooding Earthquakes

Extreme temperature Hurricane winds

Meteorological drought Ice storms

Wildfires Riverine flooding

Tsunamis

Tornadoes

Landslides

a Climate-adjusted hazards refer to those hazards for which we have projected future trends based on credible 
relationships between climate projections and hazard effects. For these hazards, this analysis enables both 
present-day and future views of infrastructure exposure. For hazards without such data, this analysis only enables 
a present-day view. When hazards are climate-adjusted, this simply means that credible projections are available 
for the effect of climate on these hazards and enable the user to look ahead to how infrastructure exposure 
might look in the future. So the “adjustment” refers to an ability to project into the future. Climate data for two 
hazards at a given point in time are never considered together unless those data are available for both hazards.
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Table S.2
Infrastructure Sectors and Subsectors Included in Analysis

Infrastructure Sector Subsectors

Chemical industry Chemical manufacturing facilities

Communications Internet exchange points

Energy (including nuclear power) Electric power generation plants 

Electric power substations

Energy power transmission lines

Energy distribution and control facilities

Natural gas import/export points

Natural gas processing plants

Nuclear fuel facilities

Nuclear power plants

Oil and natural gas pipelines

Petroleum, oil, and lubricants storage facilities

Refineries 

Transportation Airports

Canals

DHS-identified railroad bridges

Railroad stations

Railroad transit lines

DHS-identified railroad tunnels

Railroad yards

DHS-identified road bridges and tunnels

Coastal, Great Lakes, and inland ports

FAA air route traffic control centers

Fixed-guideway transit systems, stations, and lines

Intermodal terminal facilities

Interstate highways

Locks

Water supply and  
wastewater treatment 

Damsa 

Wastewater treatment plants

a Dams serve multiple purposes depending on the structure and can sometimes be grouped with water or 
transportation.



Summary    xi

data. For each analyzed hazard, this report includes a brief background that describes poten-
tial infrastructure impacts, and relevant metrics; a list of sources used in compiling hazard 
data; and an overview of existing methods and applications or modifications used to analyze 
regional exposure to varying levels of hazard severity. When analyzing infrastructure expo-
sures with these data, it is important to understand this information to ensure that the analysis 
results reflect the scope, precision, and completeness of the data. Failure to appropriately use 
the data could result in analysis that misrepresents exposures.

Appendix A provides an overview of all hazard and infrastructure data used to com-
plete this analysis. Analytic findings about current and future exposures of infrastructure in 
the United States drawn from this data analysis are documented in a separate report.
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SREX Special Report on Managing Risks of Extreme Events
USACE U.S. Army Corps of Engineers
USGS U.S. Geological Survey
WFP Wildland Fire Potential
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CHAPTER ONE

Introduction

The United States relies on a number of infrastructure systems—roads, the electric grid, ports, 
telecommunications networks, refineries, and the like—for carrying out basic social and eco-
nomic functions.  Disruption of these systems could impose potentially significant economic 
consequences in the form of delays and increased costs.  To minimize such economic losses, 
it is important that critical infrastructure systems be resilient—that is, able to maintain and 
regain operational capacity in the aftermath of a major disruption, and to recover relatively 
quickly and at low cost following the disruption.

In recent years, debates on federal infrastructure investment policies have focused largely 
on the need to renew aging facilities nearing the end of their design life as well as to add new 
capacity to meet increased demand. With the severity of the recent economic recession, there 
has also been strong interest in the role of infrastructure investment as a near-term economic 
stimulus, and as a way to create the foundations for longer-term economic growth.  As shown 
by the significant damages and lasting disruptions caused by Hurricanes Katrina and Sandy, 
however, there can also be a significant federal interest in policies aimed at enhancing the resil-
ience of the nation’s critical infrastructure.  

The U.S. Department of Homeland Security (DHS) Office of Infrastructure Protection 
is charged with identifying and prioritizing strategies and investments for improving the resil-
ience of specific infrastructure systems in specific regions. A necessary step in fulfilling this role 
is understanding how infrastructure is exposed to natural disasters.  

To support this work, the DHS, National Preparedness and Programs Directorate 
(NPPD), Office of Infrastructure Protection asked RAND to analyze national exposures to 
infrastructure from natural disasters. The objective of the completed analysis is to help NPPD 
highlight patterns of exposure that exist both today and in the future when looking across 
multiple hazards and infrastructures. For instance, this analysis could help answer such ques-
tions as: Which areas of the country are currently exposed to more-intense or multiple hazards? 
How is the picture likely to change in the future? How might climate change alter exposure 
patterns? The main focus of this analysis is not on definitively answering all of these questions 
but rather to provide NPPD and DHS a way to begin to screen for regions and infrastructures 
within the United States that might be more susceptible to natural hazards today and in the 
future. 

Infrastructure data used in this analysis are drawn from the Homeland Infrastructure 
Foundation-Level Data Homeland Security Infrastructure Protection (HSIP) Gold data set.1 

1  For more information, see the Homeland Infrastructure Foundation-Level Data Subcommittee Online Community, 
undated.
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Because this data set contains proprietary commercial data sets, this analysis describes expo-
sure to infrastructure aggregated at the county level so as not to reveal any of the underlying 
proprietary databases. Because of the uncertainty in natural disaster events, natural hazards 
are described with measures of intensity and likelihood: for example, sustained wind speeds 
with a 100-year return interval or flood depths with a 500-year return interval, or peak ground 
acceleration from seismic activity with a 2,500-year return interval. The hazard data used in 
this analysis include information of this type compiled from a variety of sources described in 
the rest of the report.

The analytical steps involved in completing this work included: 

• Compiling present and future hazard data (from different sources, described in Chapters 
Two and Three)

• Identifying infrastructure asset types to include in the analysis (using HSIP Gold as the 
only source of infrastructure asset data) 

• Deciding whether a given asset is truly at risk of “exposure” to a given hazard based on 
inherent attributes of each asset,2 as well as whether exposure of the asset to a particular 
hazard is likely to have consequences. For instance, just existing in a region that is prone 
to wildfires does not actually expose an underground electrical distribution line to a wild-
fire.

• Overlaying infrastructure and hazard data to provide views of infrastructure exposure to 
one or more hazards, now and in the future

We note that the completed work is not a risk assessment, and focus solely on assessing 
whether different infrastructures are likely to be exposed to different hazard types. Conducting 
a complete risk assessment would require vulnerability and impact analyses for each consid-
ered infrastructure and hazard type. RAND’s analysis considers 11 natural hazards and five 
infrastructure sectors. Table 1.1 lists the hazards included in each chapter, Table 1.2 lists the 
return periods considered for each hazard,3 and Table 1.3 lists the infrastructure sectors and 
subsectors included in RAND’s analysis. We also note that of the several available data sets 
and methods for analyzing natural hazards, we necessarily had to choose one to carry out this 
analysis. Choosing one way to approach the analysis for a given hazard certainly introduces 
uncertainty in which elements of infrastructure are vulnerable to the different hazards. Given 
that the objective of this work is to provide a first look at infrastructure exposure to natural 
hazards from a screening perspective, we believe that the embedded uncertainties do not take 
away from the usefulness of the analysis.

2  See Chapter Four for a description of the dimensions used to decide whether an asset type would be included in this 
analysis.
3  The differences in return periods reflect the variability in the types of data we were able to acquire for the different haz-
ards. Other dimensions of the data used for each hazard are listed in a table in the corresponding section of this report. 
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The report documents how each infrastructure type and hazard is represented in data sets 
to act as a reference for any use of the data. For each analyzed hazard, this report includes a 
brief background that describes potential infrastructure impacts and relevant metrics; a list of 
sources used in compiling hazard data; and an overview of existing methods and applications 
or modifications used to analyze regional exposure to varying levels of hazard severity. When 

Table 1.1
Hazards Included in Each Chapter

Table 1.2
Return Periods Associated with Each Hazard

Hazard Return Periods

Coastal flooding 2/5/10/20/50/100 years

Extreme temperature 2/5/10/20/50/100 years

Drought 75th/95th percentile KBDI

Wildfires N/A

Earthquakes 500 and 2,500 years

Hurricane winds 10/20/50/100/200/500/1,000 years

Ice storms 50 years

Riverine flooding 100 years

Tsunamis ≤500 years 

Tornadoes 100,000 years

Landslides N/A

NOTE: KBDI = Keetch-Byram Drought Index. N/A = not available.

Chapter Two: Climate-Adjusted Hazardsa Chapter Three: Climate-Unadjusted Hazards

Coastal flooding Earthquakes

Extreme temperature Hurricane winds

Meteorological drought Ice storms

Wildfires Riverine flooding

Tsunamis

Tornadoes

Landslides

a Climate-adjusted hazards refer to those hazards for which we have projected future trends based on credible 
relationships between climate projections and hazard effects. For these hazards, this analysis enables both 
present-day and future views of infrastructure exposure. For hazards without such data, this analysis only enables 
a present-day view. When hazards are climate-adjusted, this simply means that credible projections are available 
for the effect of climate on these hazards and enable the user to look ahead to how infrastructure exposure 
might look in the future. So the “adjustment” refers to an ability to project into the future. Climate data for two 
hazards at a given point in time are never considered together unless those data are available for both hazards.
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Table 1.3
Infrastructure Sectors and Subsectors Included in Analysis

Infrastructure Sector Subsectors

Chemical industry Chemical manufacturing facilities

Communications Internet exchange points

Energy (including nuclear power) Electric power generation plants 

Electric power substations

Energy power transmission lines

Energy distribution and control facilities

Natural gas import/export points

Natural gas processing plants

Nuclear fuel facilities

Nuclear power plants

Oil and natural gas pipelines

Petroleum, oil, and lubricants storage facilities

Refineries 

Transportation Airports

Canals

DHS-identified railroad bridges

Railroad stations

Railroad transit lines

DHS-identified railroad tunnels

Railroad yards

DHS-identified road bridges and tunnels

Coastal, Great Lakes, and inland ports

FAA air route traffic control centers

Fixed-guideway transit systems, stations, and lines

Intermodal terminal facilities

Interstate highways

Locks

Water supply and  
wastewater treatment 

Damsa 

Wastewater treatment plants

a Dams serve multiple purposes depending on the structure and can sometimes be grouped with water or 
transportation.
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analyzing infrastructure exposures with this data, it is important to understand this informa-
tion to ensure that the results of analysis reflect the scope, precision, and completeness of the 
data. Failure to appropriately use the data could result in analysis that misrepresents exposures.

The analysis addresses infrastructure exposure to hazards in the continental United 
States, excluding Alaska, Hawaii, and other territories. Hazards are adjusted to reflect climate 
change when credible relationships between climate projections and hazard effects exist.4 These 
climate-adjusted hazards are described in Chapter Two. In the absence of such data and meth-
ods, hazards are treated as unchanging with climate change. Hazards not adjusted for climate 
change are described in Chapter Three. 

Adjustments to hazards reflect changes in frequency, severity, or impact area due to cli-
mate change. We include climate-adjusted hazards when possible in the interest of accounting 
for future climate change where possible. The lowest common denominator for all hazards is 
the present day snapshot, where no hazards are adjusted for future climate change. One limi-
tation of this approach is that when looking ahead at cross-hazard interactions, some hazards 
would be climate-adjusted and others would not. This does not mean in all cases that we think 
these climate-unadjusted hazards are insensitive to climate change. This simply means we were 
unable to capture how climate change would affect these hazards.

 For several of these hazards, possible climate change interactions are beyond those cap-
tured in this analysis. Changes in the intensity or frequency of hurricanes could change the 
distribution of hurricane-force winds along coasts and modify risks of coastal flooding beyond 
the effects of sea level rise (SLR). Changes in precipitation patterns could modify exposures 
to riverine flooding, landslides, and ice storms.  To the extent these effects amplify hazards, 
analysis using the data described in this report underestimates natural hazard exposures. To 
the extent these effects diminish hazards, such analysis overestimates natural hazard exposures.

 The report concludes by describing the process used to identify the specific infrastructure 
sectors to include in the analysis and by describing the approach used to assess interactions 
between infrastructure and hazards. 

Analytic findings about current and future exposures of infrastructure in the United 
States drawn from analysis of the data are documented in a separate report (Willis et al., 2016).

1.1. References
Homeland Infrastructure Foundation-Level Data Subcommittee Online Community, “Welcome to the 
HIFLD Subcommittee Home Page,” web page, undated. As of April 7, 2016: 
https://gii.dhs.gov/hifld

Willis, Henry H., Anu Narayanan, Jordan Fischbach, Edmundo Molina-Perez, Chuck Stelzner, Katie Loa, 
and Lauren Kendrick, Current and Future Exposure of Infrastructure in the United States to Natural Hazards, 
Santa Monica, Calif.: RAND Corporation, RR-1453-DHS, 2016. 

4  We searched for existing literature, methods, and data that could be used to describe the future probabilistic exposure 
or model the effect of climate change on the current probabilistic exposure. Where we found existing data and methods, we 
used them. Where we did not, we did not reflect climate change. 

https://gii.dhs.gov/hifld
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CHAPTER TWO

Climate-Adjusted Hazards

This chapter describes the data and methods used to analyze the following four climate-
adjusted hazards:

• coastal flooding
• extreme temperature
• meteorological drought
• wildfires.

For each hazard, we provide a brief overview of the significance of the hazard—both 
at present and in the future with climate change—and describe the data sets and analysis 
methods used to assess the likelihood of regional exposure to varying levels of hazard sever-
ity. Where future hazard projections are presented, data reflect hazards in three time periods: 
2040, 2065, and 2100. The first two of these periods represent common time horizons for 
infrastructure planning. The third represents a longer time horizon for which climate scenarios 
diverge significantly.

Two different types of climate projections are used to project future changes in these 
hazards as a response to climate change. For the drought, wildfire, and extreme temperature 
hazards, the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections are 
used for analysis. For the tidal flooding, storm surge, and permanent inundation, all grouped 
broadly under the coastal flooding hazard, National Oceanic and Atmospheric Administration 
(NOAA) year 2100 SLR projections were used as inputs. 

We combined these projections into a set of “aggregated climate change scenarios” that 
could be used across all four climate-adjusted hazards. These aggregated scenarios are listed in 
Table 2.1 and described in two dimensions: (1) emissions level and (2) percentile of the general 
circulation models (GCMs) considered. CMIP5 projections are classified in two dimensions: 
(1) representative concentration pathways (RCP) and (2) percentile of the GCMs considered. 
We first estimated the projected SLR values associated with each CMIP5 RCP and mapped 
these SLR values to the 2100 NOAA SLR scenarios: low SLR (low), low-to-intermediate SLR 
(int-low), intermediate-to-high SLR (int-high), and high SLR (high). Comparing the derived 
CMIP5 SLR values with the NOAA SLR values and using the model percentile information 
for each CMIP5 projection enabled us to create five aggregated climate scenarios: (1) Low 
Emissions–Median, (2) Low Emissions–High, (3) High Emissions–Median, (4) High Emis-
sions–High, and (5) Worst Case, which are mapped across both types of climate projections. 
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For instance, the aggregate Low Emissions–Median climate scenario corresponds in the 
CMIP5 projections to emissions scenario RCP 4.5 and the conditions described by the 50th 
percentile of the 22 GCMs considered. Table 2.2 lists these 22 GCM models, with the names 
denoting the author modeling group and the ensemble used for the projections. These models 
include the RCP 4.5 and 8.5 emissions scenarios and cover the 2006–2100 time period.1 

1  For extreme temperature, data were only available on the CMIP5 data set for 21 of the 22 models. Additionally, one of 
the models had no data for the time period 2100, so only 20 of the 22 models were run.

Table 2.1
Climate Scenario Mapping

Aggregated Climate  
Scenario RCP

Percentile of 
the 22 GCMs 
Considered

IPCC AR5  
SLR Value 

2100  
(approx. ft.)

Suggested  
Mapping to  

NOAA/NCA SLR

NOAA/NCA  
SLR Value 2100  

(approx. ft.)

Low Emissions–Median RCP 4.5 50 1.7 Low 1.44

Low Emissions–High RCP 4.5 95 2.3 Int-Low 2.43

High Emissions–Median RCP 8.5 50 2.4 Int-Low 2.43

High Emissions–High RCP 8.5 95 3.2 Int-High 4.63

Worst Casea RCP 8.5 Max N/A High 7.12

NOTE: IPCC, AR5 = Intergovernmental Panel on Climate Change, Fifth Annual Report.

NCA = National Climate Assessment. 
a Worst Case refers to the worst among our aggregated climate scenarios and not the absolute worst possible 
future.

Table 2.2
Climate Models Used in This Analysis

Climate Models

ACCESS1.0_r1i1p1

GFDL.ESM2G_r1i1p1

bcc.csm1.1_r1i1p1

CESM1.BCG_r1i1p1

CCSM4_r2i1p1

CanESM2_r2i1p1

CSIRO.Mk3.6.0_r1i1p1

MIROC.ESM_r1i1p1

inmcm4_r1i1p1

IPSL.CM5A.LR_r1i1p1

NorESM1.M_r1i1p1

CanESM2_r1i1p1
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2.1. Coastal Flooding

Coastal communities in the United States are exposed to a range of potential hazards, but the 
most concerning and damaging of these events are coastal floods caused by high tides and 
extreme storms. The latter—including both tropical depressions and extra-tropical storms that 
threaten the Eastern Seaboard and Gulf Coast of the United States—can produce storm surges 
and waves that can damage or destroy coastal property, threaten the health and wellbeing of 
residents, and degrade or destroy natural habitats (Burkett and Davidson, 2012). 

Natural and anthropogenic factors influence the frequency and severity of flooding from 
tidal flooding and coastal storms (Woodruff, Irish, and Camargo, 2013). For instance, poorly 
understood annual, interannual, and decadal natural climate variations influence the frequency 
and intensity of coastal storms, and there is a limited observed historical record from which to 
improve scientific understanding and make predictions.

A warming climate can further exacerbate the risks posed by coastal flooding, and also 
adds additional uncertainty to flood risk projections. Climate change is expected to increase 
the risk of flooding to coastal communities and assets through several pathways. Most signifi-
cant among these is SLR, which can impact tidal range, storm surge, and wave heights (Karl 
et al., 2008). In turn, SLR directly increases the frequency and severity of coastal flooding by 
increasing the depth of flooding when high tides and coastal storms occur. Global mean sea 
levels have risen approximately eight inches since 1900 (Church and White, 2011), which have 
exacerbated the damage caused by storms like Hurricane Sandy (Leifert, 2015). In some cases, 
SLR in the future could lead to land area becoming permanently inundated unless steps are 
taken to protect communities from flooding.

Climate factors influencing global and local sea level changes include thermal expan-
sion of ocean water, melting ice sheets, wind, atmospheric pressure, oceanic circulation vari-
ances, and water density differences. But projecting future SLR is challenging because of the 
uncertain rate of atmospheric warming and uncertainty in regard to the underlying physical 

Climate Models

CCSM4_r1i1p1

GFDL.ESM2M_r1i1p1

IPSL.CM5A.LR_r2i1p1

IPSL.CM5A.MR_r1i1p1

MIROC5_r1i1p1

MIROC5_r2i1p1

MIROC.ESM.CHEM_r1i1p1

MPI.ESM.LR_r1i1p1

MPI.ESM.MR_r1i1p1

MRI.CGCM3_r1i1p1

NOTE: Data were not available for analysis of extreme temperatures using the MIROC5_r2i1p1 model for any time 
periods or for the bcc.csm1.1_r1i1p1 model in the 2100 time period.

Table 2.2—Continued
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processes. Many previous studies, including the Intergovernmental Panel on Climate Change, 
Fourth Annual Report (IPCC AR4), have assumed that thermal expansion is the dominant 
contributor to SLR (Pachauri and Reisinger, 2007). But future SLR could be driven by the 
rate and magnitude of ice sheet melting from Greenland and West and East Antarctica. Since 
the full range of ice sheet melting scenarios were not considered, some scientists argue that 
the IPCC AR4 failed to estimate the full range of SLR possibilities (Horton et al., 2008). The 
Intergovernmental Panel on Climate Change, Fifth Annual Report (IPCC AR5), includes 
SLR projections based on ice sheet and ocean models, and as a result raises the 2081–2100 
global sea level projection compared with the IPCC AR4 (Miller et al., 2013). 

For the Third U.S. National Climate Assessment (Walsh et al., 2014), NOAA developed 
four global mean SLR scenarios by 2100, which we adopt in this study (Parris et al., 2012). 
These scenarios are shown in Figure 2.1, and summarized as follows:

• Lowest: derived from a linear extrapolation of the historical SLR rates from tide records. 
• Intermediate-Low: derived from upper end of the IPCC AR4 global SLR projection 

using the B1 emissions scenario.
• Intermediate-High: derived from the average of high-end semi-empirical, global SLR 

projections, which include recent ice sheet loss.
• Highest: derived from IPCC AR4 global SLR projections and maximum possible glacier 

and ice sheet loss.

SOURCE: Parris et al., 2012.
RAND RR1453/1-2.1
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Figure 2.1
Global Mean SLR Scenarios for the Third National Climate Assessment
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SLR can be further exacerbated by localized factors, including land sinking or subsid-
ence. When land subsides, the effect sums with eustatic SLR to create a relative sea level rise 
(RSLR) rate, which includes both processes. Subsidence rates vary across different U.S. coastal 
regions, with notably higher rates of subsidence in coastal Louisiana and the mid-Atlantic. 

Figure 2.2 shows relative sea level change in 2013 for tide gauge stations across U.S. 
coastal areas. Note that in some areas of the Pacific Coast and Canada, RSLR is decreasing—
this is due to land uplift in these areas that is sufficient to offset global eustatic SLR. 

In addition to SLR, there is a significant amount of literature describing the potential 
links between climate change and future increases in the frequency or severity of tropical 
depressions. These effects could modify exposures to coastal flooding and extreme winds (see 
the hurricane winds discussion later in this report). Though there is growing consensus that 
changes in climate will have effects on the intensity and frequency of storms, the literature does 
not describe how the distribution of exposure will be modified. Thus, these effects were not 
included in the climate scenarios described here. Depending on where exposures are occurring, 
the resulting analysis either under- or overestimates exposures.

Figure 2.2
RSLR at NOAA Tide Gauge Stations

RAND RR1453/1-2.2

Mean Sea Level Trends (2013)

Sea level trends
mm/yr (feet/century)

9 to 12 (3 to 4)
6 to 9 (2 to 3
3 to 6 (1 to 2)
0 to 3 (0 to 1)
–6 to 0 (–2 to 0)
–12 to –6 (–4 to –2)
–18 to –12 (–6 to –4)

SOURCE: NOAA/National Ocean Service (2013a). 
NOTE: Figure shows the location of each gauge station, along with an estimate of the sea level trend observed as 
of 2013.
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The primary metric for coastal flood hazard is expected flood depth (in feet), estimated 
at different annual exceedance probabilities (AEPs). The flood exposure analysis determines 
the flood depth for each facility location (infrastructure) or county centroid (population), and 
uses a simple binary assessment to determine if the depth exceeds a critical threshold. Criti-
cal thresholds were set at 1 foot and 6 feet of flood depth, representing low and high damage 
intensities, respectively. This exercise was repeated for all three coastal flood hazard types 
described below.

2.1.1. Data Sources

The coastal flood exposure analysis draws on existing federal data sources developed to support 
flood risk and climate resilience planning. The methods to incorporate these data are described 
in the next subsection.

Key coastal flooding data sources for this analysis include:

• Digital elevation model: We adapted a digital elevation model (DEM) from the U.S. 
Geological Survey (USGS) National Elevation Dataset (NED) (USGS, 2014) at a 1 arc-
second resolution. These ground elevations were used to calculate flood depths for each 
facility or county centroid.

• Coastal land subsidence rates: The source for coastal land subsidence rates is observed 
tidal gauge data, provided via NOAA’s Regional Mean Sea Level Trends data set, which 
covers the period from 1920 to 2006 (NOAA/National Ocean Service, 2013b). These 
data report sea level trends at NOAA coastal monitoring stations across the country, and 
they were used to identify locally varying land subsidence rates. These trends are adopted 
as-is and projected forward; no scenario adjustment is planned for these data due to lack 
of sources that provide a systematic nationwide assessment of future scenarios or changes.

• Permanent inundation SLR scenarios: SLR scenarios, ranging from 1 to 6 feet above 
current conditions, were also adapted from the NOAA Digital Coast (DC) analysis 
(2015). 

• NOAA global mean SLR scenarios: We adopted four consensus global SLR scenarios 
developed by NOAA to support the Third National Climate Assessment (Parris et al., 
2012; Burkett and Davidson, 2012). These scenarios reflect different assumptions about 
the future SLR acceleration rate (see above).

• Tidal flood projections with SLR: As discussed below, Kriebel and Geiman (2013) 
developed a method to project tidal flood stages (FSs) at a range of exceedance prob-
abilities with SLR incorporated. These data were obtained from the U.S. Army Corps of 
Engineers (USACE) and are applied for the higher-frequency flood analysis.

• Federal Emergency Management Agency (FEMA) base flood elevations: The pri-
mary data source for current low-frequency coastal flood risk is FEMA’s National Flood 
Hazard Layer, which provides FEMA’s estimate of the 1 percent AEP flood elevation. 
The 1 percent AEP elevation is used to identify special flood hazard areas (SFHA) for 
the National Flood Insurance Program’s (NFIP) Flood Insurance Rate Maps (FIRMs). 
Residents of the SFHA are required to purchase flood insurance via NFIP under most cir-
cumstances—including, for example, in order to qualify for a federally insured mortgage. 
The National Flood Hazard Layer includes flood maps that have been formally adopted 
and digitized. The actual flood elevation and flood depth data do not include all areas 
exposed to flood risk in the United States, however, with gaps from (1) paper maps that 
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have not yet been digitized and (2) a slow analytic update and approval process for new 
maps. As a result, not all coastal regions can be included in the analysis focused on the 
100-year floodplain.2 SLR and subsidence were added subsequently to FEMA’s 100-year 
elevations according to the methods described in the following section.

2.1.2. Analysis Methods

We divide the hazard analysis described in this section into three parts, roughly corresponding 
to differing likelihood ranges for coastal flooding. The first portion considers the possibility of 
permanent inundation due to future SLR. The second focuses on tidal or “nuisance” flooding, 
which occurs on a more-frequent basis (e.g., less-than-one-year, one-year, or two-year event) 
but typically produces only minor damage during each event (Spanger-Siegfried, Fitzpatrick, 
and Dahl, 2014). The final subsection considers flooding from extreme storm events and tropi-
cal depressions, which have lower annual likelihoods (e.g., 100-year event) but can cause exten-
sive damage and disruption. The frequency and damage from all three coastal flood types will 
be influenced by future SLR.

SLR and Permanent Inundation

The first hazard approach for coastal flooding was to consider areas that would be perma-
nently inundated by SLR in future climate scenarios. To estimate flood depths in this case, we 
adapted the NOAA DC analysis to directly consider the effects of a fixed level of SLR ranging 
from 1 foot to 6 feet above the current vertical datum (NAVD88). As DC data include flood 
depth DEMs for each of these SLR scenarios, the flood depth DEMs were left as-is to be run 
against relevant infrastructure. Specifically, flood elevations were compared with a 10-meter 
resolution DEM for each of the six cases, creating a depth layer for each case. These depth 
scenarios were later matched to the nearest NOAA SLR scenario at different points in time 
(see below) to develop a common set of future scenarios, though the DC analysis uses fixed 
thresholds at each foot and does not consider alternate pathways for SLR acceleration over 
time. Table 2.3 summarizes the data sources, scenarios, and procedure used to estimate flood 
depths from permanent inundation. The years 2040 and 2065 represent scenario projections 
25 years and 50 years into the future, which were intervals of interest for DHS. The year 2100 
is a commonly used end date for global and national climate projections, and is the furthest 
date for which downscaled future climate projections are typically available. 

Tidal Inundation and Higher-Frequency Coastal Flood Events

Historical coastal tide levels and flood data are collected from gauge stations on the Pacific, 
Atlantic, and Gulf Coasts (Figure 2.2). The short lengths of the historical record and distance 
between gauge stations, however, limit the data available from these stations. In addition, 
quantitative comparison between simulated extreme events and station data is often difficult 
because of variations in scale and trends (Osborn and Hulme, 1997).

To address these limitations, the Kriebel method describes an approach to determine 
major FS when no National Weather Service (NWS) FS data are available at these gauges. 
Using a generic FS allows for a reference comparison between different coastal areas within 
a given geographic region, with results that are consistent with moderate and major NWS 

2  As one notable example, updated flood risk information currently is not available from FEMA for coastal Louisiana.
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FS data. The Kriebel method uses observed monthly extreme water levels from NOAA tide 
gauges: A major storm is aligned with extreme high tide when it is within three standard devia-
tions of the mean, and moderate storm is aligned with extreme high tide when it is within two 
standard deviations of the mean (Kriebel and Geiman, 2013). 

Essentially, the Kriebel method provides a simplified way to estimate tidal flood elevations 
at different exceedance probabilities in a consistent way for all NOAA tide gauge stations. SLR 
scenarios can then be added to these estimates in order to project future tidal flooding. Data were 
provided for exceedances ranging from the two-year to the 100-year event, but we generally con-
sider the estimates from tidal flooding of this kind—which typically do not consider or include 
extreme storm surge events—to be more reliable in the two-year to the 20-year interval range. 

For this analysis, we directly adopted data produced by Kriebel and Geiman (2013) using 
this method described above and provided to the research team by the USACE Institute for 
Water Resources. The data set included tidal flood elevations ranging from the two-year to 100-
year event at each NOAA tide gauge station. We estimated RSLR by combining the NOAA 
global mean SLR scenarios (Figure 2.1) with local subsidence rates at each of these station loca-
tions, and then estimating the final RSLR for each year and scenario. These values were then 
summed with the Kriebel tidal flood elevations to produce scenario- and year-specific values 
for each gauge station and exceedance probability. Finally, we interpolated these values for 
points in-between the gauge stations, creating a data set filling the continental United States 
(CONUS) coastal counties. 

After interpolating, we used DC DEMs with USGS NED DEMs to fill CONUS coastal 
counties. The DC DEMs were coarsened to match the 1-arc-second resolution of the NED, 
and the two data sets were then combined, retaining the maximum ground elevation in areas 
of overlap. We used this combined DEM to estimate a tidal flood depth for each location of 
interest in the analysis, repeated for each exceedance probability and RSLR scenario.

Table 2.4 summarizes the data sources, scenarios, and procedure used to estimate flood 
depths from tidal flooding.

Table 2.3 
Estimation of Coastal Flood Risk from Future Permanent Inundation

Analysis Factor Description

Years 2040, 2065, 2100

Data Flood heights:
NOAA DC water elevations

Scenarios 1 foot to 6 feet of sea level above current mean higher high water, 
subsequently matched to the nearest NOAA SLR scenario in each time period:

• Lowest
• Intermediate-Low
• Intermediate-High
• Highest

Return periods N/A

Models N/A

Procedure Calculate depth of flooding with each additional foot of SLR from regional 
DEMs 
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Low-Frequency Storm Surge Events

Lastly, we developed coastal flood scenarios for low-frequency storm surge events (Table 2.5). 
This analysis builds on the most recent 100-year base flood elevations (BFEs) provided by 
FEMA as part of the National Flood Hazard Layer. As discussed above, these were only pro-
vided for certain coastal regions, so this analysis does not provide a complete picture of low-
frequency flooding in CONUS.

To estimate future flood depths under different SLR scenarios, we first made a simplify-
ing assumption that storm surge and wave flooding sum linearly with RSLR. This likely under-
estimates future flood depths in some areas, because it does not account for nonlinear effects 
from RSLR on storm surge propagation (e.g., RSLR leading to loss of coastal marsh that previ-
ously absorbed storm surge and wave energy). Nevertheless, such an assumption is necessary to 
conduct an assessment at this scale and level of resolution.

For this analysis, FEMA Flood Hazard Zones (FHZs) were divided into coastal and non-
coastal (riverine) areas. Investigation of the literature revealed that a previous study used FHZ 
classifications for this purpose, taking FHZs of type V as a distinguishing feature of coastal 

Table 2.4
Estimation of Coastal Flood Risk from Higher-Frequency Tidal Flood Events

Analysis Factor Description

Years 2015 (current conditions) 
2040 (25 years in the future)
2065 (50 years in the future)
2100 (end of the century)

Data Flood elevations
Kriebel tidal flood estimates (Kriebel and Geiman, 2013)

Ground elevation
NOAA DC ground elevations coarsened to 30-meter DEM 
USGS NED

30-meter DEM 

Land subsidence rates
NOAA regional mean sea level trends (1920–2006)

Scenarios NOAA global mean SLR scenarios, combined with local observed land subsidence rates to 
create RSLR scenarios:

• Lowest
• Intermediate-Low
• Intermediate-High
• Highest

Return periods 2/5/10/20/50/100 years

Models N/A

Procedure For each exceedance probability and RSLR scenario:
1. Estimate RSLR (SLR + subsidence) at each gauge station
2. Sum RSLR with Kriebel tidal flood estimate for each exceedance probability
3. Interpolate tidal flood scenarios for areas in between gauge stations
4. Combine DC and DEM data to create overall DEM
5. Subtract ground elevation (DEM) from flood elevation to estimate depth at each  

location of interest.
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areas (Crowell et al., 2010).3 Therefore, we retained all FHZs of type V as coastal, retaining 
additional adjacent FHZs of type A as determined by a local inspection of inland FHZ extent. 
Once complete, all noncoastal FHZs were removed from the analysis.

FEMA BFE lines represent absolute flood depth for a 100-year flood. As delivered, the 
BFEs contained depths in a number of different formats, each measured with respect to a dif-
ferent model of sea level. After converting the disparate depths into a single sea level model, the 
BFEs were used to dice the coastal FHZs into smaller areas. Each new FHZ area was assigned 
the maximum flood depth of the BFE lines it touched.

To complete the analysis, a modified “bathtub” approach was used. For each RSLR sce-
nario, the scenario’s relative flood depths were added to the BFE absolute flood depths. The 
summed flood depths at the outer edges of the FHZs were then extrapolated outward, and 
surrounding ground topography, using the same DEM as in the Kriebel method, was sub-

3  FEMA classifies SFHAs into several zones, of which Zone V marks an area inundated by 100-year flooding with velocity 
hazard.

Table 2.5 
Estimation of Coastal Flood Damage from Low-Frequency Events

Analysis Factor Description

Years 2015 (current conditions) 
2040 (25 years in the future)
2065 (50 years in the future)
2100 (end of the century)

Data Flood depths
FEMA National Flood Hazard Layer coastal base flood elevations

Ground elevation
NOAA DC ground elevations coarsened to 30-meter DEM 
USGS NED

30-meter DEM 

Land subsidence rates
NOAA regional mean sea level trends (1920–2006)

Scenarios NOAA global mean SLR scenarios, combined with local observed land subsidence 
rates to create RSLR scenarios:

• Lowest
• Intermediate-Low
• Intermediate-High
• Highest

Return periods 2/5/10/20/50/100 years

Models N/A

Procedure Baseline
• Using ArcGIS, calculate flood depths for all FHZs with BFEs by subtracting 

ground elevation from FEMA flood elevations.

Climate projections (SLR)
• Calculate RSLR = SLR + subsidence for selected time slices
• Add RSLR to FEMA BFEs
• Calculate extent of future floodplain and resulting depths using “bathtub” 

approach.
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tracted in the areas outside of the FHZs, resulting in relative flood depths. All areas outside of 
and directly adjacent to the FHZs, which contained positive relative flood depths, were then 
retained, adding to the FHZs to create an extended FHZ area. Finally, a script added any out-
lying areas with positive relative flooding that were within one raster cell of the extended FHZ 
area, building the extended FHZ area out until all relevant additional areas had been added, 
yielding the final flooded area. 

This analysis makes use of the best-available national data from federal agencies for 
coastal flood risk, both in current conditions and projected forward into a climate-altered 
future. But notable gaps remain. First, higher-resolution, localized SLR scenario projections 
might be needed for some areas of the country, because local conditions could lead to sea levels 
well above the global mean projections. For example, the New York Panel on Climate Change 
(NPCC) recently noted that the average rate SLR over the last century in New York City has 
been twice the rate observed globally, leading to a 1-foot increase in mean sea level for this area. 
NPCC also developed new SLR projections out to 2100 for New York and the mid-Atlantic 
region that are higher than the consensus IPCC AR5 scenarios (Horton et al., 2015). Similar 
high-resolution projections might be necessary to better assess exposure in other key coastal 
areas, including the Gulf Coast.

Second, as noted earlier, the FEMA flood maps applied in this analysis are incomplete, 
with some coastal areas lacking digitized BFEs and others working with maps updated in pre-
vious decades. FEMA’s FIRMs are also limited in that their design is mainly for regulatory 
assessments versus risk analysis, and only include information at two exceedance probability 
intervals (100-year and 500-year). A systematic reassessment of coastal storm flood risk nation-
wide using updated methods would substantially improve upon the information available at 
present, but at present the only possible improvement would be a site-by-site, state-by-state 
review to identify the best available and most recent coastal flood risk estimates produced by 
local or state governments or through the academic and consulting community. 

Finally, this assessment uses a simple “bathtub” assumption that applies RSLR rates lin-
early to FEMA BFE estimates. In practice, SLR and subsidence can actually produce storm 
surge and wave effects that increase non-linearly due to changes in surface friction and energy 
dissipation as coastal marshes and other natural barriers are submerged. As a result, the esti-
mates here likely underestimate the potential storm surge flood risk with RSLR included for 
some coastal areas considered.
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2.2. Extreme Temperature

Temperature extremes often are based either on the probability of occurrence or on a threshold 
value. In general, extreme temperature is defined as the number, percentage, or fraction of days 
with a maximum (or minimum) temperature, below (or above) the 1st, 5th, or 10th percen-
tile or the 90th, 95th, or 99th percentile, for a given timespan (days, month, season, annual) 
with respect to a reference time frame. For the purposes of this analysis, we are concerned only 
with extreme heat. Specifically, we estimate from climate data the highest temperature a loca-
tion is expected to experience every T years (T is the return period). We chose this metric to 
conduct our analysis for two reasons. First, this maximum temperature seems most likely to 
impact infrastructure, while measures of temperature over time and measures of nighttime low 
temperatures are geared toward assessing human health impacts.4 Second, this measure is typi-
cally established using monthly temperature projections, which are much less computationally 
intensive to analyze than daily projections.

NOAA classifies U.S. temperature rankings as near normal (within the middle third of 
all periods on record), above normal (within top third), below normal (within bottom third), 
much-above (within the top tenth), or much-below (within the bottom tenth). Percentile rank-
ings allow accounting for regional differences. 

The impacts of increases in extreme temperature for infrastructure systems are primarily 
understood anecdotally. RÜbbelke and VÖgele (2011), for example, noted that a summer 2009 
heat wave in France coupled with a drought resulted in cooling water shortages that put one-
third of France’s nuclear power plants out of service. The authors modeled how decreased water 
supply and warmer cooling water could limit nuclear power plant capacity to cool during peak 
summer periods. Smoyer-Tomic, Kuhn, and Hudson (2003) conducted a literature review to 
outline a list of the impacts of heat waves. Of relevance to this study are the potential impacts 
of heat waves on infrastructure assets, including 

• increased damage to roads, railroad tracks, and bridges
• decreased efficiency in power transmission
• decreased power from hydropower and dams.

Smoyer-Tomic, Kuhn, and Hudson (2003) noted that most of the impacts of heat are 
relative to typical temperatures because people, plants, and animals adapt to changes in cli-
mate. On the other hand, impacts to infrastructure are absolute—they depend on the design 
of the infrastructure. Adaptation is probably most feasible with short-lived equipment needing 
replacement often (e.g., higher-capacity air conditioners that result in higher energy costs—
and potentially higher risk if power grids cannot keep up with increasing temperatures). Such 
adaptations are more difficult with relatively long-lived infrastructure, but modifications and 
retrofits might be possible at some cost. Therefore, the adaptability of infrastructure over time 
is a major uncertainty. This study, with its focus on identifying regions and infrastructures to 
target for investments that can fund these infrastructure adaptations, will assume that infra-
structure does not adapt from its current state.

4  Long-lasting heat is primarily a worry for health, but it could also impact infrastructure that is slow to absorb heat. 
Given the lack of research on the infrastructure impacts of heat, we have elected to use a simple metric.
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Of all hazards, the IPCC has found the most support for climate change increasing 
the likelihood and severity of extreme temperature. The IPCC’s Special Report on Managing 
Risks of Extreme Events (SREX) states that since 1950 it is very likely that temperatures have 
increased on a global scale and with medium confidence finds that the length and number of 
warm spells have increased globally (Seneviratne et al., 2012, p. 111). The SREX finds that it 
is “virtually certain” that “the frequency and magnitude of warm daily temperature extremes” 
will occur in the future and very likely that the frequency, length, and intensity of heat waves 
will increase (Seneviratne et al., 2012, p. 112). For example, the once-in-20-year high tempera-
ture is likely to become a once-in-two-year high temperature across most areas (Seneviratne  
et al., 2012, p. 112).

But the various and complex mechanisms underlying increases in extreme temperatures 
make projections uncertain. Mechanisms leading to extreme temperature include atmospheric 
blocking, land-atmosphere feedbacks, soil moisture memory, snow feedbacks, and aerosols 
(Murray and Ebi, 2012). Drought conditions (and drier soil, which is a contributing factor to 
drought) can exacerbate temperature extremes (Andersen et al., 2005). Significantly, soil mois-
ture and surface heating factors lead to changing mean temperature not always scaling with 
changes in temperature extremes (Haarsma, 2009; Murray and Ebi, 2012). 

2.2.1. Data Sources

We use CMIP5 projections in our analysis of extreme temperature. One potential disadvantage 
of the CMIP5 projections is that they do not include measures of humidity. While humidity 
is a key component of apparent temperatures and hence a driver of mortality, in the context 
of this analysis infrastructure humidity is of less importance since most infrastructures are 
directly impacted by temperature only. Humidity can have important effects (for example, 
demand for electric power will increase with humidity and evaporative cooling of power plants 
will be less effective with higher levels of humidity), but high temperatures will primarily drive 
damage to infrastructure.

2.2.2. Analysis Methods

We use extreme value analysis software called extRemes for R to estimate extreme value models 
(The Weather and Climate Impact Assessment Science Program, 2014). We use the block max-
imum approach to estimate the model. This approach looks at each year (the block) and selects 
the highest temperature (the maximum) to estimate the extreme value models.5 We estimate 
the default generalized extreme value (GEV) distribution, which is theoretically justified to fit 
the block maxima of data (see Gilleland and Katz, 2014, for an in-depth explanation).

Of the two methods generally used to estimate extreme value models, namely maximum 
likelihood and likelihood-moments estimation, we use the latter, less computationally inten-
sive option because we are calculating tens of thousands of these models. 

We project the potential vulnerabilities from climate-induced increases in extreme heat 
by applying a range of temperature thresholds to climate projections and identifying when 

5  An alternative is the Peak-over-Threshold Approach, which uses any peaks over a certain threshold. The advantage of 
this method is that it produces smaller confidence intervals. One disadvantage is that estimation of extreme-value models 
requires independent events, but consecutive days of high temperature are really a single event; thus preparing the data 
for analysis can be difficult. The other disadvantage is that this estimation would require daily data, which would increase 
computational demands tremendously.



22    Characterizing National Exposures to Infrastructure from Natural Disasters: Data and Documentation

and where temperatures exceed those thresholds. For example, we might be interested in flag-
ging infrastructure where the 50-year exceedance temperature—that is, the temperature that 
is likely to be exceeded on average only once in 50 years—was 130 degrees or higher if a 
2 percent AEP of reaching temperatures higher than 130 degrees was deemed an unacceptable 
risk. Our analysis examines where extreme temperatures are expected to exceed two thresh-
olds—120 degrees and 130 degrees. The data used could be adapted to analyze other tempera-
ture thresholds.

Table 2.6 outlines the procedure we use to estimate climate-induced changes to extreme 
heat.

Figures 2.3 and 2.4 conclude this section of the chapter on extreme temperature by show-
ing example calculations of the 100-year extreme temperatures forecast for 2100, and the 

Table 2.6
Estimation of Climate-Induced Changes to Extreme Heat

Analysis Factor Description

Years 2005–2015 (to represent current conditions, i.e., 2010)
2035–2045 (to represent conditions in 2040)
2060–2070 (to represent conditions in 2065)
2090–2099 (to represent the end of the century, i.e., 2100)

Data CMIP5 Climate Data, 1/8 degree
• Monthly maximum temperature

Scenarios • RCP 4.5
• RCP 8.5

Return periods 2/5/10/20/50/100 years

Models Projections performed using ensemble estimates of all models combined together. 
Ensemble estimates will be used because climate models are relatively consistent in 
their projections of temperature, whereas projections of precipitation are highly varied. 
Combining all the data into an ensemble is advantageous because it increases the sample 
size from which to estimate extreme value models. If the data were not combined, there 
would be relatively little data on which to estimate models since there are only ten years 
of data, and most places in the United States will experience their maximum temperatures 
only during the summer, hence months in other seasons should have little effect on 
extreme values.

• RCP 4.5: 21 models
• RCP 8.5: 21 models

Note: GCM data was not available for analysis of extreme temperature using the MIROC5_
r2i1p1 model for any time periods or for the bcc.csm1.1_r1i1p1 model in the 2100 time 
period.

Thresholds • 120 degrees 
• 130 degrees 

Procedure For each combination of 1/8 degree cell and scenario, the following procedures were 
performed:

• Combine the maximum monthly temperature for the full ensemble of models. For 
example, combining data from the 22 models in RCP 4.5 creates a time series that is 
220 years long.

• Estimate an extreme value model. Modeling was conducted with extreme value 
analysis software called extRemes (The Weather and Climate Impact Assessment Sci-
ence Program, 2014).

• Using the estimated model, calculate the temperature for each of the exceedance 
periods

• Compare exceedance temperatures with vulnerability thresholds and locations of 
infrastructure.
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change in these extreme temperatures from the present day. Areas with a high-forecast tem-
perature in Figure 2.3 will have the most temperature stress on infrastructure, but many of 
those areas are already hot. Areas with the biggest changes in Figure 2.4 are likely to have the 
most difficulty adapting to higher temperatures.

Figure 2.3
Extreme Temperature for 100-Year Return, RCP 8.5, 2100

Figure 2.4
Change from 2010 to 2100 of Extreme Temperature for 100-Year Return, RCP 8.5

SOURCE: RAND analysis of ensemble of all CMIP5 models.
RAND RR1453/1-2.3

2100 Extreme
Degrees C

High: 54

Low: 26

SOURCE: RAND analysis of ensemble of all CMIP5 models.
RAND RR1453/1-2.4

Change,
2010 to 2100

Degrees C
High: 12

Low: 3
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2.3. Meteorological Drought

Drought is usually defined relative to a region’s historical climate using one of several metrics, 
some of which are outlined in the analysis section of this report. Meteorological drought refers 
to conditions when dry weather patterns dominate an area. This type of drought is in contrast 
to hydrological drought (i.e., when low water supply becomes evident), agricultural drought 
(i.e., when crops are affected), or socioeconomic drought (i.e., when the supply and demand of 
commodities are affected).

Because human activities across geographies have evolved under pressure from climate 
conditions, infrastructure has been adapted to meet local climate conditions. The specific con-
ditions for drought (e.g., rainfall and temperature) will vary across geography because of differ-
ences in climate. For example, a wet year in a typically arid desert could be a year of extreme 
drought for a region along the Gulf Coast.

Drought can have an especially large impact on agriculture. For example, Backus, Lowry, 
and Warren (2013) estimated the potential economic impacts from climate–change-induced 
drought through 2050. In these models, decreases in agricultural productivity from water 
deficiencies resulted in some of the largest economic losses from climate-induced drought in 
the U.S. economy due to higher transportation costs to agriculture-demanding industries 
(see Warren et al., 2010). But beyond the agricultural sector, drought could also have notable 
impacts for electric power generation and transmission systems. In 2007, drought in the south-
eastern U.S. caused nuclear and coal-fired plants in the Tennessee Valley Authority system to 
curtail operations. In 2006, nuclear plants in Illinois and Minnesota were affected by drought 
affecting water levels in the Mississippi River (Argonne National Laboratory, 2012).

Because drought is so closely linked to climate, changes in drought brought about by cli-
mate change can be more worrying than typical climatic variability because infrastructure has 
evolved under the pressures of the typical variability. For example, the Drought Severity Index 
in Aqueduct Global Maps 2.0 (Gassert et al., 2013) considers a drought to be any time soil 
moisture dips below the 20th percentile of observed soil moisture observations from 1901 to 
2008. By this definition of drought, all regions have historically been in a drought 20 percent 
of the time in that period. These droughts vary by severity (the length of time soil moisture is 
below the 20th percentile before it increases, and the relative dryness of the drought relative to 
average conditions), but they have occurred everywhere with the same frequency. As climate 
changes, what used to be the 20th percentile for soil moisture can change. Given this historical 
definition of a drought, some regions can be in drought more frequently than others as climate 
changes. Furthermore, the relative severity of those droughts might change.

2.3.1. Data Sources

The primary source of data for the future climate-influenced changes to dryness is CMIP5 pro-
jections (Lawrence Livermore National Laboratories, 2013). These data contain various models 
of future climate that simulate future daily temperature and precipitation across various IPCC 
climate scenarios. 

Each climate projection is a result of combining a GCM with a forcing emissions scenario. 
CMIP5 projections used the latest version of the GCMs and an updated set of emissions sce-
narios. In this analysis, 22 different GCMs covering the period from 2006 to 2100 and two 
emissions scenarios (RCP 4.5 and RCP 8.5) are considered. The RCPs reflect advancements in 
integrated assessment modeling to characterize future developments in global greenhouse gas 
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emissions. The data considered in the study for these projections cover the time period from 
2006 to 2100. 

2.3.2. Analysis Methods 

This study’s projections of soil dryness use CMIP5 data. CMIP5 projections consider soil 
moisture and net surface water changes (defined as the precipitation minus evapotranspiration 
[P-ET]) (Wuebbles et al., 2013). Critical to modeling drought risk, the CMIP5 simulations 
of the North American monsoon are an improvement over previous versions that failed to 
adequately simulate all circulation patterns (Wuebbles et al., 2013). Despite large inter-model 
variations, CMIP5 comparisons are consistent with offline hydrology models (Wuebbles et al., 
2013). 

We use the KBDI to measure projected changes in dryness. Calculation of projections 
for this index requires measures of daily maximum temperature and daily precipitation—
measures that can be calculated with data available from CMIP5 for all of CONUS. KBDI 
estimates for the water content of soil/duff are based on daily temperature and precipitation 
observations over time. Originally developed to estimate the likelihood of forest fires in the 
southeastern United States, KBDI is more generally applicable to measuring dryness. KBDI 
values range from 0 (completely saturated soil) to 800 (completely dry soil), scaled to assume 
that soil can hold from 0 to 8 inches of water (Keetch and Byram, 1968).

A number of other measures are used in the literature to measure lack of precipitation and 
soil dryness. These measures can be broken into those that only require data about temperature 
and precipitation (of which KBDI is one) and those that require other data, such as evapotrans-
piration, soil moisture, and runoff. Tables 2.7 and 2.8 provide a list and brief descriptions of 
some of these other methods.

Table 2.7 
Drought Indexes: Measures of Dryness Using Temperature or Precipitation

Standard Precipitation Index Based on standardized precipitation data to a normal distribution N(0,1) and 
calculated on the number of selected time periods (1–48 months):

• –3 (extreme droughts)
• –1.5 to –2 (severe droughts)
• –1 to –1.5 (moderate droughts)
• –0.5 to –1 (mild droughts)
• 0 to +2 (mild or severely wet)
• +3 (extremely wet)

(Edwards, 1997; Lloyd‐Hughes and Saunders, 2002)

Consecutive dry days (CDD) Based on the maximum consecutive number of days of no rain, below a 
given threshold (e.g., <1 mm per day) within a considered period (e.g.,  
1 year) (Tebaldi et al., 2006)

Crop Moisture Index (CMI) Based on mean temperature and total precipitation, from the existing and 
previous week, to measure short-term conditions:

• –3 (severely dry)
• +3 (excessively wet)

(Palmer, 1968)

No-rain episodes Duration of no-rain periods (e.g., >20, 30, or 60 days)
(Groisman and Knight, 2008)
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We use frequency statistics instead of exceedance metrics because exceedance metrics are 
not compatible with the way that KBDI is scaled. According to the U.S. Forest Service’s Wild-
land Fire Assessment System (2014), KBDI has four categories: typical early spring (KBDI of 0 
to 200), typical late spring (KBDI of 200 to 400), typical late summer (KBDI of 400 to 600), 
and severe drought (KBDI of 600 to 800). In other words, most of the KBDI scale typically 
will be reached during a year somewhere in the United States because of seasonal variation. 
KBDI is not a distribution with a long tail like many of the other hazards—it has a fixed maxi-
mum that is often reached. Therefore, we calculate frequency statistics, which will be impacted 
by changes in the length of dry spells (e.g., longer dry spells will increase the frequency of high 
values of KBDI) and the severity of dry spells (e.g., more severe dry spells will increase KBDI). 
The 75th percentile will be driven by dryness during the dry season. The 95th percentile will be 
driven by the most extreme dryness events.6 The procedure to model climate-induced changes 
in dryness is outlined in Table 2.9.

Figure 2.5 shows the calculations for the 75th percentile KDBI value for one model 
for the RCP 8.5 scenario for 2090 to 2099, i.e., the scenario and time period expected to be 
most impacted by climate change. The 75th percentile is roughly the average minimum KBDI 
during the dry season. Figure 2.6 clarifies the 400 and 600 cutoff points; on average, areas in 
yellow are in a severe drought for at least three months of the year, while areas in red are in an 
extreme drought for at least three months of the year.

6  We also calculated the average and 50th percentile, but we do not plan to use them as thresholds.

Table 2.8 
Drought Indexes: Measures of Dryness Using Temperature, Precipitation, Evapotranspiration, Soil 
Moisture, or Runoff

Palmer Drought Severity Index 
(PDSI)

Based on precipitation and potential evapotranspiration, measures the 
difference of moisture balance from normal conditions using a simple water 
balance model:

• –4 (extreme drought)
• +4 (extreme wet)

(Palmer, 1965)

Precipitation Potential 
Evaporation Anomaly

Based on precipitation and potential evapotranspiration, looks at the 
cumulative difference between precipitation and potential evapotranspiration
(Burke, Perry, and Brown, 2010)

Standardized Precipitation-
Evapotranspiration Index  
(SPEI)

Based on cumulated anomalies of precipitation and potential 
evapotranspiration (Vicente-Serrano, Begueria, and Lopez-Moreno, 2010)

Simulated Soil Moisture
Anomalies

Integrated effects of precipitation forcing, simulated actual 
evapotranspiration, and simulated soil moisture persistence
(Murray and Ebi, 2012)

Soil Moisture and Runoff Index Based on normalized model-derived soil moisture and runoff:
• 0 (dry)
• 1 (wet) 
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Analysis Factor Description

Years 2006–2020 (to represent current conditions)
2035–2045 (to represent conditions 25 years in the future, i.e., 2040)
2060–2070 (to represent conditions 50 years in the future, i.e., 2065)
2090–2100 (to represent the end of the century, i.e., 2100)

Data CMIP5 climate data, 1/8 degree
• Daily maximum temperature
• Daily precipitation

Scenarios • RCP 4.5
• RCP 8.5

Models Projections will be performed for each model separately because of the variance in 
precipitation projections across models:

• RCP 4.5: 22 models
• RCP 8.5: 22 models

Return periods • 75th percentile (which corresponds to the minimum KBDI for the driest three months 
of the year)

• 95th percentile (which is a measure of the most-extreme drought events)

Thresholds • Severe drought (KBDI of 600 to 800)
• Dry or severe drought (KBDI of 400 to 800) 

Model  
aggregation

• 25th percentile of KBDIs across model runs
• Median (50th percentile) of KBDIs across model runs
• 75th percentile of KBDIs across model runs
• 95th percentile of KBDIs across model runs
• Mean KBDIs across model runs
• Maximum KBDIs across model runs

Procedure For each combination of 1/8 degree cell and scenario/model, the following procedures were 
performed:

1. Calculate the daily KBDI
• Assume a starting KBDI of zeroa

• Use the “Fire Danger Index Functions in R” software to calculate KDBI (Williamson, 
2010).

• Use the “index_KBDI” function, which requires temperature, precipitation, and the 
mean annual precipitation (calculated from baseline data)b

2. Calculate frequency statistics
3. Compare KBDI statistics with thresholds and locations of infrastructure

a A KBDI of zero assumes that the soil is saturated at the beginning of the period. Ideally, KBDI would be 
calculated across all years—including historical years—for each model to assure that KBDI always reflects 
historical conditions. However, we assume a starting KBDI of zero to compensate for high computational 
requirements of calculating KBDI across all years. We believe this assumption has minimal impact on calculations 
of the 75th and 95th percentile because the soil in most U.S. locations is relatively saturated on January 1 and 
generally becomes more saturated over the winter because there is little evaporation.
b When implementing this modeling, we discovered that the code was extremely slow, so it could not be used 
to do a large number of calculations as would be needed in our modeling. Therefore, we rewrote a table lookup 
function to make it faster and we changed how some of the calculations were using memory, but we did not 
make any material changes in the calculations.

Table 2.9
Estimation of Climate-Induced Changes to Soil Dryness
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Figure 2.5
Minimum KBDI for Driest Three Months of the Year (75th percentile) Using the CanESM2 r2i1p1 
Model, RCP 8.5 Scenario, for 2090–2099

RAND RR1453/1-2.5

2100
KBDI value

800

0

Figure 2.6
Severe and Extreme Drought Cutoffs Using the CanESM2 r2i1p1 Model, RCP 8.5 Scenario, for 2090–
2099

RAND RR1453/1-2.6

2100 KBDI
75th percentile

400 to 600

> 600

NOTE: Areas in orange are in a typical late-summer drought, and areas in red are in a severe drought, for at 
least three months of the year. There is stronger agreement between models on long-term drought and large
spatial resolution, while there is more variability of shorter-term drought on a regional scale (Blenkinsop and 
Fowler, 2007).  Two important uncertainties concerning future drought trends include ocean circulation and 
land-atmosphere feedback interactions (e.g., drought impacts on vegetation physiology) (Murray and Ebi, 2012).  
Lack of observations and full representation of soil moisture-evapotranspiration factor into climate models and
to existing uncertainties (Seneviratne et al., 2010).
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2.4. Wildfires

Wildfire impacts range from property damage, to physical and psychological harm. Economic 
costs include property damage, reduction in tourism, and timber losses (Morton et al., 2003). 
Forest fires impact mortality and increase the incidence of respiratory and cardiac illnesses 
(Gamble et al., 2008). Indirect health impacts can further occur from increased risk of land-
slides or soil erosion (McMichael et al., 2003). At the same time, there are often resources, such 
as insurance and private donations, made available to recover from this hazard (Banks et al., 
2012).

Fire risk can be measured by length, frequency, and severity, as well as by a decrease in fire 
extinguishment and faster fire spread (Murray and Ebi, 2012). Fire risk can increase because 
of changes in climate extremes, including drought, low humidity, and high temperatures. For 
example, droughts can turn vegetation into wildfire fuel. Combined with human sources of 
ignition (i.e., deforestation), these variables simultaneously can change fire risk levels from low 
risk to medium risk and medium risk to high risk (Murray and Ebi, 2012). However, no one 
process directly describes an increase in fire occurrence. 

The SREX cites studies that show drought and increased temperatures in North America 
are linked to increased risk of wildfires, and that wildfire activity has increased substantially 
since 1950 (Handmer et al., 2012, pp. 252, 259). For example, some research shows that higher 
temperatures lead to earlier snowmelt, which increases the length of the fire season. The SREX 
finds that people and infrastructure have been moving into more vulnerable areas. For exam-
ple, the movement of urban areas into the bush exacerbated the impact of the 2009 Australian 
fires (Handmer et al., 2012, p. 239).

2.4.1. Data Sources

We use CMIP5 climate data to adjust the Wildland Fire Potential (now called Wildfire Hazard 
Potential) (USDA, 2012) based on projected changes in the KBDI index calculated for drought 
as described in the previous section.

2.4.2. Analysis Methods 

Current, steady-state (i.e., not accounting for present year-to-year changes in drought condi-
tions) wildfire risk for the United States is estimated by the Wildland Fire Potential from the 
U.S. Department of Agriculture, Forest Service, Fire Modeling Institute. The methodology 
for creating the Wildland Fire Potential map is described in Dillon, Menakis, and Fay (2013). 
To create the map, the researchers estimated the likelihood of wildfires and wildfire intensity 
using the Large Fire Simulator (FSim) (Finney et al., 2011). FSim simulates wildfires using a 
10,000- to 50,000-year simulation driven by simulated weather. Many areas of the country 
have a relatively high annual probability of burning (up to 10 percent), but many of the fires 
would be small and relatively easy to control, thus not a major threat to infrastructure. The 
Wildland Fire Potential map calculates the risk of combining the likelihood of any wildland 
fire starting with the likelihood that long flame lengths would result in a crown fire that burns 
the entire forest (rather than only material on the ground or at low heights). To account for 
the consequences, the researchers weigh crown fires and surface fires based on fire intensity. 
Finally, the researchers adjust these consequences to account for the ease of controlling fires, 
which varies across different fuel types.
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The Wildland Fire Potential and FSim projections do not account for short-term vari-
ations in weather or fuel moisture, thus they are long-term projections based on historical 
weather observations measured over the past 10 years to 30 years by the National Fire Danger 
Rating System (NFDRS) Remote Automated Weather Stations. Therefore, the projections are 
long term—when moisture content and weather conditions are more favorable for fires, true 
fire risk will exceed the projections; and when moisture content and weather conditions are less 
favorable for fires, true fire risk will be below the projections.

Thompson et al. (2011) offer a similar, but more complex methodology for calculating 
wildfire risk. As in the Wildland Fire Potential projections, they use the FSim projections of 
likelihood and intensity. Rather than integrating these projections into a measurement of risk, 
such as the Wildland Fire Potential, they apply a set of weights that measure the damage that 
different flame lengths cause to various types of infrastructure to estimate the average annual 
loss from wildfires.7

Liu, Stanturf, and Goodrick (2010) forecast climate-induced changes in future Wildland 
Fire Potential indexes using the KBDI index. They use four IPCC scenarios (A1, A2, B1, and 
B2) and the results for four GCMs to forecast worldwide changes in KBDI indexes. Because 

7  Subject-matter experts determined the weights of eight different types of infrastructures or environmental amenities. 
Low-intensity fires were assumed to benefit some infrastructures and environmental amenities (e.g., ski areas), while having 
little effect on most infrastructure and environmental amenities (e.g., energy infrastructure), and having a near total loss 
for residential housing. High-intensity fires were assumed to be very destructive to most infrastructures and environmental 
amenities.

Figure 2.7
Wildland Fire Potential Risk Map

SOURCE: USDA, 2012. 
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the GCM models are coarse, the projections of the indexes are coarse, too. The authors sum-
marize the results for four regions of the United States (southwest, northwest, southeast, and 
northeast). Average projected increases in KBDI range from 60 (northeast, B1 scenario) to 
240 (northwest, A1 scenario). Liu, Goodrick, and Stanturf (2013) builds on Liu Stanturf, 
and Goodrick (2010) by focusing on the United States and looking at a more-detailed set 
of regions. This follow-on study also looks at two weather factors—wind speed and relative 
humidity—that are not accounted for by the KBDI index. The study calculates KBDI sepa-
rately for four seasons.

The Wildland Fire Potential (WFP) is an index that is calculated by integrating measures 
of severity (the occurrence of various intensities of flame and crown fires) with likelihood. 
Therefore, it accounts for both likelihood and consequence, so index cutoffs and thresholds are 
for overall wildfire risk.

Table 2.10 shows the cutoffs that were used to classify WFP values. WFP values are 
approximately distributed log-normally, and the cutoffs for the levels are approximately one 
log-unit above each other (i.e., a factor of 2.7 more than the previous threshold). Dillon et al. 
(2013) detail the procedure for setting the classification cutoffs.

To identify infrastructure at risk of wildland fires, we choose a threshold in the risk index 
(e.g., 401, which represents the cutoff for “moderate” risk) and identify all infrastructure that 
touches a cell in the Wildland Fire Potential map above that risk index.8 This cutoff can vary 
by type of infrastructure; for example, a type of infrastructure that is more vulnerable to fire 
could have a lower cutoff.

The climate projections in this analysis estimate changes in wildfire risk by adjusting the 
Wildland Fire Potential (or the FSim likelihood) by a factor based on projections of the KBDI 
(as computed in the climate projections of meteorological and agricultural drought). KBDI can 
be interpreted as a measure of wildfire potential based upon temperature and precipitation over 
time that ranges from 0 (representing fully saturated soil) to 800 (representing total moisture 
deficiency). 

A fundamental difficulty in applying these changes to fire potential to the present-day 
WFP index is that there is no direct link between KBDI and either the likelihood of a fire 

8  Each cell, or pixel, in the Wildland Fire Potential map is approximately 270 meters by 270 meters. 

Table 2.10
Categorization Thresholds for Wildland Fire Potential

WFP Classification Max WFP log(Max WFP)

Nonburnable lands/water N/A N/A

Very Low 51 3.9

Low 155 5.0

Moderate 401 6.0

High 1,935 7.6

Very High (Max) 98,080 11.5

NOTE: WFP = Wildland Fire Potential.
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occurring or the intensity of fires increasing. The research from Liu, Stanturf, and Goodrick 
(2010) and Liu, Goodrick, and Stanturf (2013) make clear that conditions are expected to 
become more favorable for wildfires with climate change. Furthermore, wildfire seasons are 
expected to lengthen, which would further increase the likelihood of wildfires. Given the limi-
tations of these data, we use the simple assumption that the projected change in KBDI scales 
to increase the Wildland Fire Potential index (Keetch and George, 1968).9

Ideally, we would want to calculate the likelihood and intensity of wildfires as a func-
tion of weather inputs, such as temperature and precipitation and the changes in each. How-
ever, literature explaining these relationships does not exist. The KBDI index indicates the 
state of meteorological drought, which is one factor that is associated with increased wildfire 
risk. However, until research is available to connect weather factors directly to wildfire indexes, 
we are left to rely on observations that correlate the KBDI index to wildfire indexes. 

Figure 2.8 shows the change in the 75th percentile KBDI from present day to about 2100 
that is forecast by the CanESM2 r2i1p1 model for the RCP 8.5 scenario. (This is the same 
example used in the agricultural drought section.) The model forecasts increased drought in 
most of the country. These changes are most extreme in the northeast and northwest—as well 
as scattered other areas—where they exceed a one-level increase in fire risk (i.e., an increase in 
KBDI of 200, as used in Liu, Stanturf, and Goodrick, 2010). This particular model forecasts 
moderate decreases in KBDI for much of the interior western United States. 

The procedure to model climate-induced changes in wildfire is outlined in Table 2.11.

9 For this adjustment, we assume that multiplication factors can be calculated by equating levels of the log-normally distrib-
uted Wildland Fire Potential to levels of the KBDI, where each level of KBDI is assumed to be 200 units as in Liu, Stanturf, 
and Goodrick (2010). More precisely, an adjustment factor to the Wildland Fire Potential is calculated based on the change 
of KBDI as:

 
 

Figure 2.8
Projected Change in KBDI; CanESM2 r2i1p1 Model

NOTE: Calculated as change in 75th percentile KBDI values for RCP 8.5 between 2006–2020 and 2090–2099. 
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Table 2.11
Estimation of Climate-Induced Changes to Wildfire Fire Potential

Analysis Factor Description

Years 2006–2020 (to represent current conditions)
2035–2045 (to represent conditions in 2040)
2060–2070 (to represent conditions in 2065)
2090–2100 (to represent the end of the century, i.e., 2100)

Data CMIP5 Climate Data, 1/8 degree
• Daily maximum temperature
• Daily precipitation

Scenarios • RCP 4.5
• RCP 8.5

Return periods N/A

Models Projections will be performed for each model separately because of the variance in 
temperature projections across models:

• RCP 4.5: 22 models
• RCP 8.5: 22 models

Frequency 
(of drought 
adjustment)

• 25th percentile
• 50th percentile (median)
• 75th percentile
• 95th percentile 
• Mean
• Max

Risk thresholds • High (adjusted WFP above 401)
• Very High (adjusted WFP above 1935)

Model  
aggregation

• 25th percentile of updated wildfire index across model runs
• Median (50th percentile) of updated wildfire index across model runs
• 75th percentile of updated wildfire index across model runs
• 95th percentile of updated wildfire index across model runs
• Mean of updated wildfire index across model runs
• Maximum of updated wildfire index across model runs

Procedure For each combination of 1/8 degree cell and scenario/model, the following procedures were 
performed:

1. Use the KBDI statistics produced in steps 1 and 2 of the dryness  
climate modeling. 

2. Adjust the Wildland Fire Potential map using the following equation:   

3.	 ΛΚΒDΙ is calculated as = the difference between time periods and the baseline (e.g., 
2100–2015) for each individual climate model (e.g., CanESM2_r1i1p1), for each emis-
sions scenario (e.g., RCP 4.5), and for each frequency metric (e.g., Q75 ) compare 
future Wildland Fire Potential with risk thresholds and locations of infrastructure.

NOTE: Frequency of drought adjustment reflects the percentage of time in a year the KBDI would be expected to 
be at or lower than the stated percentile.

e
ΔΚΒDI
200 .



Climate-Adjusted Hazards    37

Figure 2.9 shows the Wildland Fire Potential adjusted for 2100 based on the changes 
in the KBDI projected by the CanESM2 r2i1p1 model. Comparing Figure 2.7 reveals many 
places where fire potential increases significantly. The biggest increases are in the Northwest, 
the Southeast, and around Texas, but many other areas also increase significantly. Very few 
areas show a noticeable decrease in fire potential. 
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Figure 2.9
Wildland Fire Potential Adjusted with CanESM2 r2i1p1 Model

NOTE: Adjustment based on change in 75th percentile KBDI values for RCP 8.5 between
2005–2015 and 2090–2099.
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CHAPTER THREE

Hazards Without Climate Adjustment

This chapter describes the data and methods used to analyze the following five hazards that are 
not adjusted for climate change:

• earthquakes
• hurricane winds
• ice storms
• riverine flooding
• tsunamis
• tornadoes
• landslides.

As described previously, climate change could affect the distribution of exposure to sev-
eral of these hazards. For example, patterns of occurrence for hurricane winds, ice storms, 
riverine flooding, tornadoes, and landslides could all be influenced by changes in weather and 
climate. However, these effects are not included in this analysis because literature on these haz-
ards does not conclusively describe how these distributions would change.

As in Chapter Two, for each hazard, we provide a brief overview of the significance of the 
hazard and describe the specific data sets and analysis methods used to assess the likelihood of 
regional exposure to varying levels of hazard severity.

3.1. Earthquakes

Earthquakes can have serious economic, social, and environmental impacts. Several factors, 
including characteristics of the earthquake itself (e.g., where it falls on the Richter scale) and 
characteristics of the affected region (e.g., population density and infrastructure clustering), 
govern the impact of an earthquake. From an infrastructure standpoint, in the short term, 
earthquakes could destroy infrastructure above and below the ground. Buildings and transit 
systems could be destroyed. Underground gas pipelines could explode, leading to fires and 
related secondary effects. In the longer term, the economic and social costs of rebuilding infra-
structure following an earthquake could be enormous (American Society of Civil Engineers, 
2007).

An understanding of the expected likelihood and severity of earthquakes affecting the 
region informs investments targeted at boosting the resilience of a community or area to seis-
mic activity.
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3.1.1. Data Sources

Data for seismic hazards are taken from the USGS Seismic Hazards layer contained in the 
HSIP Gold data set. Associated with the data are 500- and 2,500-year return periods.

3.1.2. Analysis Methods

The USGS National Seismic Hazard Mapping Project creates earthquake hazard maps for the 
United States intended to guide building codes (USGS, undated). The USGS and its partners 
create the maps using knowledge of historical earthquakes and geology. The current maps were 
made in 2008, but periodic updates occur as building codes are revised, and updates incorpo-
rate new research results (USGS, 2008). 

The USGS maps include two levels of likelihood (–2-percent or 10-percent chance of 
being exceeded in a 50-year period) and three types of consequences (peak ground accel-
eration [PGA], peak ground velocity, and spectral acceleration). The likelihood percentages 
correspond roughly to a 0.04-percent AEP (or a return period of about 2,500 years) and a  
0.2-percent AEP (or a return period of around 500 years).1 

In this analysis, we use PGA because it is a standard determinant of infrastructure damage. 
USGS maps bin PGA into seven ranges: 0–4 percent, 4–8 percent, 8–16 percent, 16–32 per-
cent, 32–48 percent, 48–64 percent, and 64 percent plus gravitational acceleration (g).

Our analysis sets thresholds on PGA and return periods to classify earthquakes by inten-
sity. Earthquakes are classified according to their severity corresponding to the Modified Mer-
calli Intensity Scale in the following way: 

• low severity–observed damage: PGA above 0.1 g 
• high severity–severe shaking: PGA above 0.5 g.

These maps are available for the entire United States, but they are relatively coarse. 
Detailed studies—for example, of specific metro areas—can account for more detailed spatial 
differences, such as soil types. However, such maps are not available for the entire country. 
Figures 3.1 and 3.2 show sample maps for the Los Angeles area and CONUS, respectively, 
indicating the PGA associated with a 2,500-return period (or 0.0-percent AEP).

Climate change is not expected to increase earthquake risk significantly, so we do not 
include it in our climate-adjusted hazards. The SREX does cite instances where climate change 
can be expected to increase the frequency of small earthquakes, for example, as glaciers recede 
(Seneviratne et al., 2012, p. 188), but these earthquakes are small and tend to be in isolated 
regions.

1  Exact return periods are 2,475.9 years and 474.6 years, respectively (USGS, 2016).
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Figure 3.1
2-Percent PGA for the 0.04 Percent AEP in the Los Angeles Area

Figure 3.2
2-Percent PGA for the 0.04 Percent AEP in CONUS
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3.2. Hurricane Winds

Hurricane winds can topple power lines, destroy buildings, bring down trees, and create 
dangerous flying debris. The higher the wind speeds associated with a hurricane, the greater 
the potential for property damage. Tropical cyclones are commonly associated with extreme 
winds; the extent of a tropical cyclone’s wind field can play a significant role in determining 
the impacts from storm surge. Like other extreme phenomena, wind extremes can by defined 
by percentiles, maximums over a stated time period, or a threshold value (e.g., 99th percen-
tile 10-meter hourly wind). Wind gusts are measured by the highest winds during a short 
time period. However, extreme wind is often not characterized from its own observations, but 
rather defined by the hazard phenomena that generated it (including tropical and extratropical 
cyclones and thunderstorms). In turn, wind speed can influence additional climate stressors 
including SLR, wildfires and droughts. 

Extreme wind changes need to be distinguished from natural wind variability flows. For 
example, there is substantial tropical cyclone frequency variability based on different regions 
and ocean basins (Karl et al., 2008; Murray and Ebi, 2012). In this analysis we focus on the 
effects of high wind speeds that typically accompany hurricanes. 

The IPCC’s SREX reviewed literature on historical tropical cyclones and found that there 
is low confidence in trends in historical frequency (Seneviratne et al., 2012, p. 163). The SREX 
also concluded that there is low confidence in how the geography of tropic cyclones (i.e., the 
tracks and areas of impact) will change in the future. The SREX states that it is likely that the 
frequency of tropical cyclones will not increase globally, even though it is likely that rainfall 
rates and maximum wind speeds will increase in tropical cyclones. The SREX states with high 
confidence that the damages from tropical cyclones will increase from increases in exposure 
(Handmer et al., 2012, p. 271), but that the main driver for increasing losses in many regions 
will likely be socioeconomic factors rather than climate change–related factors (Handmer  
et al., 2012, p. 273). Still, these effects could modify exposures to extreme winds. These effects 
were not considered in the climate scenarios described here. However, this literature does not 
describe how the distribution of exposure will be modified. Depending on where exposures are 
occurring, the resulting analysis either underestimates or overestimates exposures. 

3.2.1. Data Sources

We use hurricane wind speed data included in the HAZUS Hurricane Model (MH 2.1) that 
contain return periods of 20, 50, 100, 200, 500 and 1,000 years.

3.2.2. Analysis Methods

The data used in this study consider different wind-speed return periods: 10, 20, 50, 100, 200, 
500 and 1,000 years. We use two maximum wind-speed thresholds to classify the severity of 
different hurricane scenarios. Hurricane scenarios in which maximum wind speeds exceed  
96 miles per hour are classified as low-severity hurricanes; wind speeds above 130 miles per 
hour represent high-severity hurricanes. These cut points are in agreement with the HAZUS 
scale, as shown in Figure 3.3 for a sample return period of 100 years.



44    Characterizing National Exposures to Infrastructure from Natural Disasters: Data and Documentation

3.2.3. References
Federal Emergency Management Agency, “Hazus-MH 2.1, Hurricane Model, Technical Manual,” 2013. As of 
April 14, 2016: 
http://www.fema.gov/media-library-data/20130726-1820-25045-9850/hzmh2_1_hr_tm.pdf

FEMA—See Federal Emergency Management Agency.

Handmer, John, Yasushi Honda, Zbigniew W. Kundzewicz, Nigel Arnell, Gerardo Benito, Jerry Hatfield, 
Ismail Fadl Mohamed, Pascal Peduzzi, Shaohong Wu, Boris Sherstyukov, Kiyoshi Takahashi, and Zheng 
Yan, “Changes in Impacts of Climate Extremes: Human Systems and Ecosystems,” in Intergovernmental 
Panel on Climate Change, eds., Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX), New York: Cambridge University Press, 2012, pp. 231–290.

Karl, Thomas, Gerald A. Meehl, Christopher D. Miller, Susan J. Hassol, Anne M. Waple, and William L. 
Murray, Weather and Climate Extremes in a Changing Climate—Regions of Focus: North America, Hawaii, 
Caribbean, and U.S. Pacific Islands, Synthesis and Assessment Product 3.3, U.S. Climate Change Science 
Program, June 2008.

Murray, Virginia, and Kristie L. Ebi, “IPCC Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (SREX),” Journal of Epidemiology and Community Health, 
Vol. 66, No. 9, September 2012, pp. 759–760.

Seneviratne, Sonia, Neville Nicholls, David Easterling, Clare M. Goodess, Shinjiro Kanae, James Kossin, 
Yali Luo, Jose Marengo, Kathleen McInnes, Mohammad Rahimi, Markus Reichstein, Asgeir Sorteberg, 
Carolina Vera, and Xuebin Zhang, “Changes in Climate Extremes and Their Impacts on the Natural Physical 
Environment,” in Intergovernmental Panel on Climate Change, eds., Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (SREX), New York: Cambridge University Press, 2012,  
pp. 109–230.

 

Figure 3.3
Hurricane Winds, Present-Day 100-Year Return Wind Speeds
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3.3. Ice Storms

Following an extreme ice storm in 1998 that led to widespread, long-term power outages in 
Quebec, Canada, and adjacent U.S. states, there was an increased recognition of the potential 
damage from winter ice storms to infrastructure. In response, FEMA formed the American 
Lifelines Alliance, which in 2004 released a study that estimated the likelihood and magnitude 
of winter storms (American Lifeline Alliance, 2004). Deposits of heavy amounts of ice from ice 
storms can damage infrastructure. Wind further exacerbates the force of the ice, thus the esti-
mates look at both ice thickness and the winds that would accompany or follow the ice storm. 
To produce these estimates, the researchers used their expert judgment along with newspaper 
and weather reports since 1950.

Ice storms likely will be impacted by climate change, but not much research exists on 
what these changes will be. Historically in the United States, there has been a trend for more 
extreme snowstorms—even in warm years—but no trends in ice storms have been observed 
over the past century (Kunkel et al., 2013). Our inclusion of ice storms, but not snowstorms, 
reflects the fact that ice storms can damage infrastructure, whereas snowstorms are more likely 
to merely disrupt infrastructure.

3.3.1. Data Sources

Ice storm data were taken from the digitized data available from the American Lifelines Alli-
ance’s Extreme Ice Thickness from Freezing Rain hazard assessment (American Lifelines Alli-
ance, 2004). We consider a 50-year return period for ice storms.

3.3.2. Analysis Methods

The American Lifelines Alliance study estimated four return periods for ice storms (50, 100, 
200, and 400 years). A parallel, ongoing effort estimates the occurrence of extreme ice storms 
for use in building codes, contained in ASCE 7-10 (American Society of Civil Engineers, 
2013). ASCE 7-10 uses the 50-year return maps. We obtained a digitized version of the 50-year 
return maps directly from the USACE, Cold Regions Research and Engineering Laboratory 
(Jones, 2014).2 Other returns could be used, but they would require digitizing maps from the 
2004 American Lifelines Alliance study.

We used cutoffs for estimating potential ice damage using the ice thickness and wind 
speed projections defined by the Sperry-Piltz Ice Accumulation (SPIA) Index (see Figure 3.4). 
The index ranges from 0 to 5, with higher levels indicating larger ice loads, higher wind speeds, 
and greater potential for damage to electrical power systems. 

Figure 3.5 shows the SPIA index that is calculated for a 50-year return period for CONUS. 
Note that a large portion of the country is in the most severe category (5), meaning that a cata-
strophic ice storm is expected at least once every 50 years. Additionally, the hatching in the 
figure indicates mountainous areas with topography that could lead to more severe ice than is 
predicted by the lower-fidelity analysis used to create the projections. This means that small 
areas can have a more severe SPIA index for the 50-year return period than designated by the 
index value for the surrounding area.

2  The digital maps we obtained were publication quality, but they needed some additional adjustments to be used in our 
analysis. We adjusted the lines so that they were continuous and complete, which required minor shifts in the lines we 
received from the Cold Regions Research and Engineering Laboratory.
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Figure 3.4
The Sperry-Piltz Ice Accumulation Index

Figure 3.5
The Sperry-Piltz Ice Accumulation Index Applied to CONUS
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SOURCE: Sperry-Piltz Ice Accumulation Index, web page, February 2009.
NOTE: Categories of damage are based upon combinations of precipitation totals, temperatures, and wind speeds/directions.
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Because so much of the country has a relatively high likelihood (2 percent or more each 
year) of catastrophic ice damage, more-refined modeling can focus only on areas with an index 
of 5 and differentiate those areas by ice thickness, see Figure 3.6. 
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Figure 3.6
Ice Thickness for 50-Year Return Period for Areas with a Sperry-Piltz Ice Accumulation Index of 5

SOURCE: RAND calculations applying the SPIA index to the 50-year return ice thickness and wind from
American Lifelines Alliance, 2004.   
RAND RR1453/1-3.6
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3.4. Riverine Flooding

Riverine flooding is an extremely relevant natural hazard, as many population centers have 
developed around rivers and communities have been established inside floodplains that are 
currently dry but could be reclaimed by water in future. As a result, riverine flooding can be 
a costly natural hazard (Olsen, 2006). For instance, the 1993 summer riverine flooding in the 
upper Mississippi river was a devastating flood event that affected nine states with estimated 
economic losses up to $20 billion (Kunkel, Changnon, and Angel, 1993). 

Riverine flooding occurs when flows going into natural water bodies, such as rivers, 
streams, and lakes exceed the capacity of these banks, causing overflows to adjacent areas. Riv-
erine flooding can be induced by excessive runoff from intense rainfall, channel erosion, and 
infrastructure failure (i.e., dams and levees).

There are two main types of riverine flooding (Emergency Management Institute, 2007): 

1. Overbank flooding: This is the overflow of water from river channels and stream flows 
into adjacent areas. The magnitude and consequences of these events vary considerably. 
In the United States, hundreds of events are registered annually. 

2. Flash floods: These types of riverine flood events are characterized by a sudden rise in 
water, high flow velocities, and large volumes of debris. This type of riverine flooding 
occurs across the entire United States, but most commonly in mountainous regions. 
The damage from this type of riverine flooding can be quite severe on infrastructures 
or populations in the vicinity of rivers. Streamflow velocities of 9 feet per second are 
commonly registered in these types of events. However, streamflow velocities can be as 
high as 30 feet per second. Water moving at these velocities can have enormous impacts 
on infrastructures and populations. For instance, water bodies moving at speeds of  
15 feet per second are capable of washing out access roads, which can have severe nega-
tive effects on the authorities’ capacities to respond to an emergency, putting human 
lives at risk. The NWS has identified approximately 2,000 communities across CONUS 
in which flash floods are a risk.

FEMA classifies areas at risk of riverine flooding using the SFHA classification system. 
SFHAs are areas subject to a 100-year return period flooding. Riverine flooding falls mainly 
into two categories: A or AE zones. FEMA defines A zones as “areas subject to inundation by 
the 1-percent-annual-chance flood event generally determined using approximate methodolo-
gies” and AE zones as “areas subject to inundation by the 1-percent-annual-chance flood event 
determined by detailed methods” (FEMA, 2015a). The difference between these zones is that 
the chance and impact of flooding are estimated using different methods. For AE areas, pre-
cise flood levels are determined, while only approximate levels of flooding are provided for 
A zones. Regardless, these classifications are determined using numerical models for riverine 
flood analyses. These methods include the Hydrologic Engineering Center Modeling System 
(HEC-HMS) and the U.S. Geological Survey National Flood Frequency program (Crowell  
et al., 2010). 

Climate change is expected to influence the frequency and intensity of riverine floods 
because of changes in precipitation patterns and other climate-influenced factors (Walsh et al., 
2014). We are aware of at least one preliminary study looking at the potential effects of climate 
change on future riverine flooding across the United States (AECOM, Michael Baker Jr. Inc. 
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and LLP Deloitte Consulting, 2013), and recently routed CMIP5 river flows could be adapted 
for a future national assessment of climate-influenced riverine flood exposure. 

At present, however, there are no data sets that systematically describe potential changes 
in riverine flood depths across the United States as a result of climate change, and it was deter-
mined to be beyond the scope of this analysis to develop and apply such an analysis. As a result, 
we consider riverine flood exposure in a simplistic manner only, and do not consider potential 
future changes for this hazard. 

3.4.1. Data Sources

Riverine flooding data are derived from the FEMA SFHAs (100-year return period), provided 
in the National Flood Hazard Layer (FEMA, 2015b). 

3.4.2. Analysis Methods

The primary data source for riverine flooding is FEMA’s National Flood Hazard Layer, which 
provides FEMA’s estimate of the 1 percent AEP flood elevation. As with areas exposed to 
coastal flooding, described in Section 2.1.2, the 1-percent AEP elevation is used to identify 
riverine flooding SFHAs for the NFIP’s FIRMs. Residents of the SFHA are required to pur-
chase flood insurance via NFIP under most circumstances—in order to qualify for a federally 
insured mortgage, for example. 

The National Flood Hazard Layer includes flood maps that have been formally adopted 
and digitized. The actual flood elevation and flood depth data do not include all areas exposed 
to flood risk in the United States, however, with gaps from (a) paper maps that have not yet 
been digitized and (b) a slow analytic update and approval process for new maps. As a result, 
not all regions can be included in the analysis focused on the 100-year floodplain.

Data available to support nationwide assessments of riverine flooding are limited. In 
many riverine flood areas, FEMA provides the boundaries of the SFHA, but it does not pro-
vide estimates of BFEs or flood depths within these areas. 

As a result, this analysis uses a very simple binary assessment to assess riverine flood expo-
sure. Using a simple geospatial comparison, any facilities within a noncoastal SFHA polygon 
are counted as exposed to riverine flooding, whereas those outside the polygons boundaries are 
not considered. This assessment was made using a snapshot of the SFHAs obtained in 2014, 
and assumes no future change. 
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3.5. Tsunamis

Tsunamis can have a range of impacts from barely being noticed to causing widespread and 
devastating damage. As with earthquakes, the extent of a tsunami’s impact depends on several 
factors including its distance from the point of origin, its magnitude, and ocean depth in the 
affected coastal areas. In extreme cases, tsunamis can destroy buildings, bridges, transit sys-
tems, power lines, and most structures on their path. Again, as with earthquakes, the period of 
recovery and rebuilding following a tsunami can be extremely taxing both economically and 
socially. 

Another mechanism through which tsunamis can damage infrastructure is run-up, i.e., 
water from the force of tsunami waves pushed inland and to higher elevations. These effects are 
extremely dependent upon the directionality and force of waves, geography of coasts, and ele-
vations of land. These effects are not represented in the tsunami hazard data, because detailed 
modeling of tsunami run-up is not available for CONUS. Thus, the exposures to tsunami haz-
ards are likely an underestimate of exposure.

The cause of most tsunamis is not related to climate, thus they are not studied in depth 
by the climate literature. Climate change is likely to have some impact on tsunamis because 
of increases in sea level, but these are relatively small compared with the size of a tsunami. 
Furthermore, much of the coast in the Pacific Northwest is rising, thus mitigating some of the 
impact of SLR (U.S. Army Corps of Engineers, 2014).

Overall, the quality of tsunami hazard data for the United States is relatively poor. Even 
for regions that have studied these hazards in depth, such as Oregon (Priest, 1995), the hazard 
maps tend to be scenario-based instead of likelihood-based, so it is difficult to understand tsu-
nami risk.

3.5.1. Data Sources

Tsunami exposure is derived from the Risk Management Solutions (RMS) Tsunami Report 
and USGS NED. The associated return period is ≤ 500 years.

3.5.2. Analysis Methods

Data supporting the assessment of tsunami risks are generally sparse and of poor quality. Better 
data would help strengthen the associated analysis. Recent efforts are attempting to engage in 
more comprehensive modeling of tsunami hazards across the United States. NOAA is develop-
ing DEMs of the ocean floor and shoreline to model tsunamis on U.S. coasts (NOAA National 
Geophysical Data Center, undated). These DEMs are highly detailed and can be fed into a 
NOAA tsunami simulator called the Method of Splitting Tsunami (MOST), which performs 
scenario-based simulations of tsunamis, including inundation of small areas (NOAA Center 
for Tsunami Research, undated).

These NOAA efforts are mainly focused on estimating, at a detailed level, the conse-
quences of a tsunami arising from specific scenarios (e.g., an earthquake of a given magnitude 
occurring in a particular location). There is a gap in research that attempts to assess overall 
tsunami hazards, i.e., both the likelihood and the inundation of tsunamis. 

There are also local and regional efforts to identify areas of high tsunami hazards. For 
example, the California Department of Conservation publishes tsunami hazard maps for pop-
ulated coastlines (California Geological Survey, 2007). These maps were created by using the 
MOST model for a “suite of tsunami source events” that represents “a number of extreme, 
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yet realistic, tsunami sources” (California Emergency Management Agency, 2009). The maps 
show the maximum inundation across these scenarios, but they do not contain information 
about the likelihood of such scenarios occurring.

RMS estimated the return period for a 5-meter tsunami along shorelines throughout the 
world (RMS, 2006). The RMS estimates have four bins, ranging from high hazard, where 
return periods are less than 500 years, to negligible hazard, where geology is not conducive 
to creating a tsunami. Although any coastline has some chance of being hit by a large tsu-
nami (e.g., from a meteor strike), for the purposes of this analysis we only consider areas with 
a return period of less than 500 years. Therefore, we focus our tsunami hazard estimates on 
high-hazard areas (in red in Figure 3.7).

To identify areas that are likely to be inundated during a tsunami, we conducted a simple 
analysis of coastal topography on high hazard coastlines (in Northern California, Oregon, and 
Washington) that flags any location with an elevation of 5 meters or less as being in a high 
tsunami-hazard zone. The RMS hazard assessment does not differentiate between high, low, 
and medium hazards by tsunami height. Instead, it differentiates them only by the likelihood 
of a tsunami of at least 5 meters. The 5-meter height is associated with a significant loss of 
life—about 5 percent of the population. Tsunami heights from earthquakes can greatly exceed  
5 meters and result in higher mortality rates. For example, the highest run-up in the 2004 
Indian Ocean tsunami was 40 meters. However, these heights are very unlikely as they depend 
on specific locations of earthquakes, bathymetry, and topography. The elevation data set is from 
the USGS NED (USGS, 2006), which is a compilation of raster elevation data for CONUS. 
This analysis does not account for the effects of the ocean floor or topography, which can atten-
uate tsunamis. NOAA tsunami models could better account for these details, but such models 
would have to be run across a range of different tsunami scenarios across a range of areas, thus 
such modeling is not feasible in this project.

Figure 3.7
RMS Tsunami Hazard Assessment for North American Coasts, 2006

RAND RR1453/1-3.7

High hazard with return
period <500 years

Moderate hazard with return
period 500–2,000 years

Low hazard with return
period 2,000-plus years

Negligible hazard with return
period of tens to hundreds of
thousands of years
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To estimate the potential area of inundation for a tsunami, the following procedure was 
used:

• Elevation data were selected for all areas in CONUS that are:
 – within 1 kilometer of the Pacific Coast
 – north of 40-degrees, 15-minutes north latitude (the southern limit of the RMS “high 
hazard” coastline)

• Any areas with an elevation at or below 5 meters were deemed at risk of a 500-year tsu-
nami.
 – Other areas are considered outside the 5-meter tsunami zone

• To estimate the height of the tsunami, we assume that the 500-year tsunami is 5 meters 
tall, so the height of inundation is the difference between 5 meters and the elevation.

RMS analysis considers tsunamis that inundate land that is 0.5 to 1 kilometer from the 
coast. Tsunami water can reach much farther inland (for example, 4 kilometers on part of 
Sumatra in the 2004 tsunami); however, most of the damage occurred near the coast. The 
choice of 40-degrees, 15-minutes north latitude coincides with RMS’s estimate of the high- 
hazard area with tsunami return periods of 500 years or less. These coastlines lie along subduc-
tion zones formed by the North American Plate, the Gorda Plate, and the Juan de Fuca Plate.

The tsunami estimates from RMS that we use might be conservative in some places. The 
high hazard zone is anything with a return period of 500 years or less. It is likely that some 
areas have a return period for a 5-meter tsunami of less than 500 years. In such a region, a 500-
year tsunami would correspond to a tsunami above 5 meters in height. Additionally, during 
an earthquake that triggers a large tsunami, land can subside, which could push the tsunami 
run-up higher relative to the current elevation. For example, models used to construct Oregon’s 
tsunami hazard zone project (Priest, 1995) include up to 4 feet of subsidence (see Figure 3.8).3 
Finally, if the tsunami occurred at high tide, it would run up higher (and conversely, if at low 
tide, it would run up lower). Unfortunately, comprehensive data that are detailed enough to 
make these estimates are not available.

Our method assumes that the tsunami run-up elevation is constant (within the cutoff of 
1 kilometer to the coast). In reality, tsunami run-up dissipates as tsunamis travel across land, 
thus the run-up from a 5-meter tsunami 500 meters inland is likely to be less than 5 meters.

Figure 3.9 shows tsunami hazards predicted for Pacific City, Oregon. Note that the 
behavior shown on the map is similar for much of the Pacific Coast. Generally, the only area 
that lies below 5 meters of elevation is sandy beach (and considered on many maps to be part 
of the ocean). The steep beaches of the Pacific Coast mitigate the damage that would be caused 
by a 5-meter tsunami.

3  For areas with a substantial likelihood of uplift of land, the authors assumed zero subsidence (Priest, 1995, p. 8). Subsid-
ence was minor overall compared with the modeled tsunami heights, which reach up to 48 feet in one of their three models 
used to map inundation zones. Therefore, the Oregon inundation maps consider much more severe tsunamis than those 
used in the RMS projection.
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Figure 3.8
USGS National Elevation Data for Astoria, Oregon

RAND RR1453/1-3.8

Figure 3.9
RAND Estimation of Inundation Height for 5-Meter Tsunami in Pacific City, Oregon
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3.6. Tornadoes

Tornadoes occur relatively frequently, but they usually affect small areas of land. Data about 
historical tornado observations can be incomplete because they require that somebody observe 
a tornado, which might not occur in a relatively unpopulated area or at night. Since 1950, 
there has been a steady increase in the number of tornadoes reported in the United States, but 
this rise has been driven by increases in reporting of the weakest, F0 tornadoes (Ramsdell and 
Rishel, 2007).

Likely because of a building’s relatively small chance of being hit by a tornado, building 
codes do not require construction in anticipation of tornado winds. In contrast, hurricane 
winds, which are likely to hit a relatively large area of land, are considered in building codes.

Climate change can impact tornado frequency and severity, but there is little under-
standing of what changes would occur. There are two major limitations for studying convec-
tive storms. First, historical data are problematic, which leads to low confidence in measured 
historical trends (Kunkel et al., 2013; Seneviratne et al., 2012). As mentioned in the following 
section, this can lead to underestimates of the risk of tornadoes in the data we are using, but 
these underestimates are likely to be concentrated in less-populated regions without much 
infrastructure where tornadoes go undetected. The second limitation is that climate models do 
not have the resolution to model tornadoes. Overall, some changes in climate are likely to help 
tornado formation (atmospheric instability) and other changes likely to hurt (reduced vertical 
shear) (Seneviratne et al., 2012, p. 151). Others find that the trends tend to be favorable but 
statistically insignificant (Kunkel et al., 2013). Therefore, we do not model changes in tornado 
exposure caused by climate change.

3.6.1. Data Sources

Tornado wind-speed return periods were taken from the extreme wind-speed analysis con-
ducted by Pacific Northwest National Laboratory (Ramsdell and Rishel, 2007) covering the 
years 1950 to 2003. While the data set covers a range of return periods, our analysis uses a 
100,000-year return period.

3.6.2. Analysis Methods

The most-detailed study we identified on tornado likelihoods was conducted by Pacific North-
west National Laboratory (Ramsdell and Rishel, 2007) on behalf of the Nuclear Regulatory 
Commission. Unlike most infrastructures, nuclear facilities must consider extremely low like-
lihoods, such as the probability of being hit by a tornado, into their design basis. 

To estimate the likelihood of a tornado strike and the associated winds, the researchers 
used a database of tornado strikes since 1950 kept by the National Centers for Environmental 
Information (formerly the National Climactic Data Center). These data provide the location, 
length, width, and maximum intensity. They estimated probability/wind-speed distributions 
for tornado strikes to either a point of land or any point within a 200-foot-wide area (to repre-
sent a large building). These estimates of distributions were made for grids laid over the United 
States where the cells were either 1-degree, 2-degree, or 4-degrees. Higher levels of resolution 
result in a more-detailed map but reduce the number of tornado observations, which makes 
the estimates less reliable (Figure 3.10).

Based on these findings, the Nuclear Regulatory Commission set a design basis for nuclear 
facilities to withstand wind speeds of 230 miles per hour in central United States, 200 miles per 
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hour in the western Great Plains and on the East Coast, and 160 miles per hour in the western 
United States.

The report presents the estimate distributions in maps that show each cell and report the 
tornadic wind speed estimated for the map’s return period. Each map has a return period of 
either 10–5 (once in 100,000 years), 10–6 (once in 1 million years), or 10–7 (once in 10 million 
years).

Additional data are presented for each cell that give the strike probability of any intensity 
tornado, and data that allow adjustments in likelihood to be made that account for 200-foot 
structures. Furthermore, the report provides a method for adjusting for other sizes of struc-
ture as well. Unfortunately, the result of these adjustments adjust only the likelihoods (e.g., a 
400-foot structure in Florida would have an increase in likelihood from 10–5 to 1.059 x 10–4 
[Ramsdell and Rishel, 2007, p. A-2]), which means that cells in the adjusted maps would vary 
in their likelihood, which makes comparing risk difficult.

In our analysis, we consider a return period (10–5—that is, once in 100,000 years—which 
is the highest likelihood available) and compare thresholds with the reported wind speeds to 
identify areas of high tornado hazards. Figure 3.11 shows the digitized map. White areas of the 
map correspond to areas where tornadoes have not been observed. Note that the observation 
of tornadoes is more likely in populated areas; hence areas in the sparsely populated West that 
have observed tornadoes tend to be in large cities like Phoenix and Salt Lake City. Therefore, 
the calculations are likely to underestimate tornado severity in lesser-populated areas.

Figure 3.10.
Pacific Northwest National Laboratory Estimates of 10–5-Year–1 Probability Tornado Wind Speeds, 
2-Degree by 2-Degree Cells (Cells Are Overlaid on a Map of CONUS)

SOURCE: Ramsdell and Rishel, 2007, pp. 5–7. 
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Figure 3.11

RAND Digitization of Pacific Northwest National Laboratory Estimates of 10–5-Year–1 Probability 
Tornado Wind Speeds, 2-Degree by 2-Degree Cells

SOURCE: Ramsdell and Rishel, 2007, p. 5–7.   
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3.7. Landslides

Small landslides are relatively frequent but do not tend to have notable impacts, whereas large 
landslides, while rare, can have a range of impacts. In addition to affecting water supplies, 
fisheries, forests, and sewage disposal systems, larger landslides can cause damage to dams and 
transportation routes. Because landslides are highly localized events, regional or national losses 
associated with landslides are hard to determine. Additionally, landslides tend to coincide with 
other disasters, such as hurricanes and earthquakes, making it difficult to isolate the specific 
impacts of landslides.

Avalanches and landslides are related. We included landslides because we judge it unlikely 
that avalanches present a high risk for most infrastructure assets as they tend to occur in 
remote areas without a high density of infrastructure. 

The SREX concludes with high confidence that the frequency of landslides will increase 
in the future because of climate change from heat, glacial retreat, permafrost degradation, as 
well as increased heavy rainfall (Seneviratne et al., 2012, p. 114). However, the SREX con-
cludes there is low confidence about future locations and timing because “these depend on 
local geological conditions and other non-climatic factors” (Seneviratne et al., 2012, p. 114). 
Similarly, the data we are using to assess landslide risk are coarse and reflect general trends in 
susceptibility, but site-specific topography is the greatest determinant of landslide risk. Because 
our data do not support detailed assessment of landslide risks, we do not think they justify any 
climate adjustment, but should be interpreted with the realization that landslide risk is likely 
to increase with climate change if changes in precipitation effect areas where the elevation con-
tours of land create a susceptibility for landslides.

3.7.1. Data Sources

Landslide data were drawn from the USGS Landslide Incidence and Susceptibility assessment 
(USGS, 2013). 

3.7.2. Analysis Methods

Research on landslide susceptibility is limited. The most commonly cited source of country-
wide landslide hazards is a map of Landslide Incidence and Susceptibility from the USGS 
(Radbruch-Hall et al., 1982), which has been digitized (USGS, 2013) and is included in HSIP 
Gold.4 

The USGS Landslide Incidence and Susceptibility maps were created by looking at for-
mations identified on the geologic map of the United States (King and Beikman, 1974) and 
estimating landslide incidence and susceptibility across the formation or groups of formations. 
Many of these formations are large in areas—especially east of the Rockies—so large areas 
have the same rating, even if local incidence or susceptibility varies. For example, the USGS 
incidence and susceptibility ratings do not take into account topography—a point on a flat 
plain would get the same rating as a point on a steep hillside if they are in the same formation.

We focus our analysis on landslide susceptibility. While the data contain incidence infor-
mation, they do not provide an estimate of likelihood of a landslide for a particular time 

4  More-detailed research about landslide hazards that uses more-rigorous methods is available for small areas. For exam-
ple, Schulz (2006) used light and detection and ranging to precisely determine where landslides had occurred in the city of 
Seattle.
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period, only the incidence of a landslide at some point in history. Furthermore, the map is 
coarse, which diminishes the impact of local topography that can affect the likelihood of a 
landslide. 

In addition to not providing a direct measure of likelihood, the available data also do not 
provide a direct measure of consequences either, because they do not indicate how extreme the 
landslides are. We assume that the consequence of a landslide would be severe if it occurred.
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CHAPTER FOUR

Infrastructure Data Collection Process 

All infrastructure data used in the completed analysis are drawn from the Homeland Infra-
structure Foundation-Level Data HSIP Gold database. HSIP Gold is a geospatial data inven-
tory jointly built by the National Geospatial Agency and DHS, and used by the Homeland 
Security and Homeland Defense (HLS/HD) communities.

As a first step, we mapped HSIP Gold infrastructure data to PPD-21 infrastructure sectors 
and identified a subset of infrastructure sectors on which to focus our analysis. We included a 
sector in our analysis when it exhibits at least a few of the following attributes:

• broader network effects within sector
• cascading effects to other sectors
• major direct property or casualty consequences.

Using the above list of criteria as guidance and erring on the side of inclusion, we 
arrived at the following sectors as the ones to include in our modeling effort:

• chemical industry
• communications
• energy (including nuclear power)
• transportation
• water supply and treatment.

HSIP Gold contains several infrastructure layers pertaining to each of the sectors listed 
above. To ensure that the model is useful without being excessively computationally intensive, 
we selected a subset of data layers (or subsectors) within each chosen infrastructure sector to 
include for each hazard in the model. Using the same guiding criteria used to pick infrastruc-
ture sectors, we first classified data layers pertaining to each of the five chosen sectors into the 
following four categories: 

• definitely include in spatial exposure modeling
• assume exposure but do not explicitly model (redundant layer)
• likely exclude from model based on judgment (unlikely to have notable consequences)
• definitely exclude from model.

We then refined this categorization through review of our categorization with sector spe-
cific experts from the DHS Office of Infrastructure Protection.  This review provided guid-
ance on specific additional subsectors to either include or exclude.  These recommendations 
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were incorporated in the finalized list of data layers to include and exclude for each of the five 
sectors.

We further pruned the data to identify a subset of data elements (e.g., individual electric 
power plants are data elements of the electric power generation plants data layer in the energy 
sector) to include for each subsector. The rationale for pruning at this level is consistent with 
the rationale for focusing on subsets of sectors and data layers—to ensure that model results 
are useful and include critical elements without unduly straining computational resources. 
With input from sector experts, we identified a set of criteria including status (in operation vs. 
obsolete), capacity (any available measure of size; e.g., generation capacity for electric power 
generation plants), throughput (any available measure of traffic or flow), and connectivity (any 
available measure of node criticality; e.g., number of lines connected to a substation) with 
accompanying thresholds for inclusion to arrive at a final list of data elements for each chosen 
infrastructure subsector. For some subsectors, we chose to include all elements when either 
the number of total elements was small or the data layer had already undergone filtering (e.g., 
interstate highways). 

Table 4.1 describes for each infrastructure layer the sample of infrastructure elements that 
are considered in this analysis. The table shows that all elements are taken into account for the 
majority of the infrastructure layers. For some infrastructure types, a sample of the most rel-
evant is selected based on capacity, status, functionality or relevance. Table 4.2 lists the number 
of infrastructure assets by type included in this analysis.

Table 4.1
Population Data Sources and Infrastructure Types Considered

Infrastructure Name Types or Size of Infrastructure Considered

Electric power generation plants Operational capacity above 10 MWs

Chemical industries Annual volume sales above $100,000

Energy distribution  
and control facilities

All

FAA air route traffic control centers All

Natural gas import/export points All

Natural gas processing plants Active and capacity above 100 MMcfd

Intermodal terminal facilities Only for trucks

Internet exchange points All

Locks All

Nuclear power plants All

Nuclear fuel facilities All

Petroleum, oil, and  
lubricants storage facilities

All active

U.S. coastal, Great Lakes,  
and inland ports

All

Railroad stations All active
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Infrastructure Name Types or Size of Infrastructure Considered

Refineries All operational

Railroad tunnels All active

Railroad yards All

Substation Number of lines equal to or more than 10

Fixed-guideway transit  
systems stations

All

Airports Only international airports

Canals All

Road bridges All

Road tunnels All

Railroad bridges All

Oil and natural gas pipelines Operating status, and commodities  
include crude oil, natural gas, and  
additional oil derivatives

Fixed-guideway transit  
systems transit lines

Active or under construction; 
rail modes: heavy rail, light rail,  
and commuter rail

Electric power transmission lines Extra-high or ultra-high voltage

Interstates Only shield class type “1”

Railroad transit lines Main rail lines, operating speed  
higher than 60 mph

Dams All

Population census 2010 All

Wastewater treatment plants All

NOTE: MW = megawatts. MMcfd = million cubic feet per day.

Table 4.1—Continued
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Infrastructure Sector Subsectors
No. Included 
 in Analysis

Chemical industry Chemical manufacturing facilities 52,759

Communications Internet exchange points 78

Energy (including  
nuclear power)

Electric power generation plants 4,017

Electric power substations 870

Energy power transmission linesa 208,612

Energy distribution and control facilities 80

Natural gas import/export points 26

Natural gas processing plants 179

Nuclear fuel facilities 13

Nuclear plants 89

Oil and natural gas pipelinesa 1,685,806

Petroleum, oil and lubricants  
storage facilities

58

Refineries 144

Transportation Airportsa 180

Canalsa 1,186

DHS-identified railroad bridges 114

Railroad stations 499

Railroad transit linesa 73,528

DHS-identified railroad tunnels 30

Railroad yards 2,211

DHS-identified road bridges and tunnels 140

Coastal, Great Lakes, and inland ports 22,635

FAA air route traffic control centers 22

Fixed-guideway transit systems,  
stations, and linesa

5,340

Intermodal terminal facilities 3,270

Interstate highwaysa 83,443

Locks 219

Water supply and 
wastewater treatment

Dams 372

Wastewater treatment plants 3,970

a Estimated number of infrastructure points. Point counts were estimated when the original geospatial 
information systems infrastructure data set type was in line or area form.  In this case, centroid or distance rules 
were applied for point creation.

Table 4.2
Number of Total Assets in Each Infrastructure Layer
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CHAPTER FIVE

Approach to Characterizing Infrastructure Vulnerability to 
Hazards

The primary focus of the analysis is to characterize exposure of national infrastructure to natu-
ral disasters. As a first step, we assessed the vulnerability of each infrastructure sector to each 
considered hazard. If a given type of infrastructure is unlikely to be affected by a particular 
hazard (e.g., roads and drought), then even if this infrastructure was exposed to this hazard, 
there would be no impact.  

We define vulnerability as the effect on an infrastructure subsector of exposure to one of 
the 11 natural hazards described in Chapters Two and Three—coastal floods, riverine floods, 
hurricane winds, extreme temperatures, droughts, wildfires, earthquakes, ice storms, tsuna-
mis, tornados, and landslides. We found vulnerability data that can be classified into three 
categories—empirical, standards-based, and rooted in expert judgment. These three categories 
of data correspond to different levels of detail and fidelity.

Empirical vulnerability data describe the response of a given infrastructure sector to haz-
ards of varying severity. This type of data can be seen as providing a high level of detail about 
infrastructure response to hazards. We found data of this high fidelity for only a few of the 
infrastructure subsectors included in this analysis (e.g., depth-damage curves—which estimate 
the percentage of damage to a structure with each additional foot of flood depth above first 
floor level—from HAZUS for a subset of energy subsectors including electric power generating 
plants, substations, nuclear plants, nuclear fuel facilities, and oil refineries).  

In the absence of such detailed empirical data, existing design or performance standards 
that specify the severity of hazard that a given infrastructure asset is required to be able to 
withstand can provide some insight into the vulnerability of different infrastructure subsectors 
to different hazards. This category of data can be seen as providing a medium level of detail 
about infrastructure vulnerability because such standards are not comprehensive across sec-
tors and across hazards of different severities. For some of the included infrastructure sectors, 
we found this type of standards-based vulnerability data (e.g., vulnerability of nuclear power 
plants to hurricane winds). 

For most sectors, however, there is no documented vulnerability data, so we used expert 
judgment to make a binary decision (yes, if affected; no, if not affected) regarding whether an 
infrastructure system or subsector was likely to be affected by a hazard. This category of data 
can be seen as providing a low level of detail. Table 5.1 provides an overview of the detail level 
of available vulnerability data across hazards and infrastructure sectors. 

One limitation of the varying fidelity of the available vulnerability data is that our analy-
sis is necessarily limited to the lowest level of detail (the judgment approach) across infrastruc-
tures and hazards to ensure valid processing and interpretation of results. 
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In characterizing the exposure of infrastructures to hazards, we only count an infrastruc-
ture asset in a location as being exposed to a given hazard if we assessed that there could be a 
conceivable vulnerability of the infrastructure to the hazard (i.e., a “1” in Table 5.2) and if the 
hazard exists in the particular location. When assessing vulnerability, we generally considered 
interactions that result in direct physical damage, not service disruption or physical damage 
caused by subsequent reactions or cascading events. These judgments are subjective and other 
judgments might be appropriate for other analyses.

An important feature of this analysis is that it is possible to assess each infrastructure 
type’s susceptibility to being affected by multiple hazards of different severities and different 
likelihoods. All hazards considered are classified into categories that make it possible to com-
pare their aggregated exposure on a given infrastructure asset; Table 5.3 presents the criteria 
for classifying hazards into these categories. 

We consider two levels of hazard severity, high and low, with high severity representing 
the most potentially damaging hazards, and low severity representing all potentially damaging 
hazards, including those also considered to be of high severity.

Additionally, we consider three likelihood periods: (a) return periods less than or equal to 
100 years; (b) return periods greater than 100 years but less than or equal to 1,000 years; and 
(c) return periods greater than 1,000 years. Like severity, likelihood also is cumulative—when 
a hazard event has a return period of less than or equal to 100 years and is expected to occur in 
likelihood period (a), it is also included in the less likely likelihood periods, periods (b) and (c).

Allowing for variation across the two hazard severities and the three likelihood periods 
results in six severity-likelihood categories, represented as columns in Table 5.3. The rows 
represent individual hazards; each cell contains the criteria for classifying each hazard across 
the severity-likelihood categories (blank cells indicate an instance where the hazard does not 
qualify).

For example, for the earthquake hazard, high severity includes all earthquakes with PGA 
at or above 0.5 g, thus a 500-year return period earthquake of 0.5 g PGA falls inside of both 
the “High Severity; 100 yr<p≤1,000 yr” and “High Severity; p>1,000 yr” categories. Addi-
tionally, low severity also includes earthquakes of 0.5 g PGA, so this example earthquake also 
falls within the “Low Severity; 100 yr<p≤1,000 yr” and “Low Severity; p>1,000 yr” categories. 
Blank cells indicate instances where the hazard does not qualify.

Table 5.1
Level of Detail of Vulnerability Data by Hazard and Infrastructure Sector

Hazard
Chemical 
Industry Communications Energy Transportation

Water Supply  
and Treatment

Flooding (coastal  
and riverine)

Low Low Medium Medium High

Hurricane winds Low Low Medium Medium Medium

Extreme temperature Low Low Low Low Low

Meteorological  
drought

Low Low Low Low Low

Wildfires Low Low Low Low Low

Earthquakes Low High Medium High High
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Table 5.1—Continued

Hazard
Chemical 
Industry Communications Energy Transportation

Water Supply  
and Treatment

Ice storms Low Low Low Low Low

Tsunamis Low Low Low Low Low

Tornadoes Low Low Low Low Low

Landslides Low Low Low Low Low
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Table 5.2. 
Interactions Leading to Physical Infrastructure Damage Between Infrastructures and Hazards

Infrastructure 
Name

Winter
Storm

Extreme 
Temp. Hurricane Landslide Riverine

Storm 
Surge Wildfire

Digital
Coast SLR

Tidal
Flood Tsunami

Meteorological 
Drought Quake Tornado

Interstates 0 0 0 1 0 0 0 0 0 1 0 1 0

Road  
bridges 0 0 1 1 1 1 1 0 0 1 0 1 1

Road  
tunnels 0 0 0 1 0 0 0 0 0 1 0 1 1

Fixed- 
guideway 
transit  
systems  
transit  
lines

0 0 1 1 1 0 1 0 0 1 0 1 1

Electric  
power 
generation 
plants

0 1 1 1 1 1 1 1 1 1 1 1 1

Fixed- 
guideway 
transit  
systems  
stations

0 0 1 1 1 1 1 1 1 1 0 1 1

Railroad  
transit 
lines

0 0 0 1 1 0 0 0 0 1 0 1 1

Railroad 
stations 0 0 1 1 1 1 1 1 1 1 0 1 1

Railroad 
bridges 0 0 1 1 1 1 1 0 0 1 0 1 1

Railroad 
tunnels 0 0 0 1 0 0 0 0 0 1 0 1 1

Railroad  
yards 0 0 0 1 1 1 1 1 1 1 0 1 0
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Table 5.2—Continued

Infrastructure 
Name

Winter
Storm

Extreme 
Temp. Hurricane Landslide Riverine

Storm 
Surge Wildfire

Digital
Coast SLR

Tidal
Flood Tsunami

Meteorological 
Drought Quake Tornado

Airports 0 0 1 1 1 1 1 1 1 1 0 1 1

FAA air route 
traffic control 
centers

0 0 1 1 1 1 1 0 0 1 0 1 1

Intermodal 
terminal 
facilities

0 0 1 1 1 1 1 1 1 1 0 1 1

U.S. coastal, 
Great Lakes, 
and inland 
ports

0 0 1 1 1 1 0 1 1 1 0 1 1

Canals 0 0 0 1 0 0 0 0 0 1 0 1 1

Locks 0 0 0 1 0 0 0 0 0 1 0 1 1

Internet 
exchange 
points

0 0 1 1 1 1 1 1 1 1 0 1 1

Chemical 
industries 0 1 1 1 1 1 1 1 1 1 1 1 1

Oil and  
natural gas 
pipelines

0 0 0 1 0 0 0 0 0 1 0 1 1

Petroleum,  
oil, and 
lubricants 
storage 
facilities

0 0 1 1 1 1 1 1 1 1 0 1 1

Refineries 0 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5.2—Continued

Infrastructure 
Name

Winter
Storm

Extreme 
Temp. Hurricane Landslide Riverine

Storm 
Surge Wildfire

Digital
Coast SLR

Tidal
Flood Tsunami

Meteorological 
Drought Quake Tornado

Natural gas 
import/export 
points

0 0 1 1 1 1 1 0 0 1 0 1 1

Natural gas 
processing plants

0 0 1 1 1 1 1 0 0 1 0 1 1

Energy 
distribution  
and control 
facilities

0 1 1 1 1 1 1 1 1 1 0 1 1

Nuclear plants 0 1 1 1 1 1 1 1 1 1 1 1 1

Nuclear fuel 
facilities

0 1 1 1 1 1 1 1 1 1 0 1 1

Substation 0 1 1 1 1 1 1 1 1 1 0 1 1

Electric power 
transmission lines

1 0 1 1 1 1 1 0 0 1 0 1 1

Dams 0 0 0 1 0 0 0 0 0 1 0 1 1

Population 1 1 1 1 1 1 1 1 1 1 1 1 1

Wastewater 
treatment plants

0 1 0 1 1 1 1 1 1 1 1 1 1

NOTES: A cell denoting “1” indicates that the infrastructure is affected by the specified hazard. On the contrary, “0” indicates that that infrastructure is not affected by 
the noted hazard.
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Hazard Type
Low Severity 

p≤100 yr
Low Severity 

100 yr<p≤1,000 yr 
Low Severity 

p>1,000 yr
High Severity 

p≤100 yr
High Severity 

100 yr<p≤1,000 yr 
High Severity 

p>1,000 yr 

Earthquake [0.1g,0.5g] and 
[0.5g,∞]; 

500-yr return period

[0.1g,0.5g] and 
[0.5g,∞]; 500-  
and 2,500-yr  
return period

  [0.5g,∞];  
500-yr return period

[0.5g,∞]; 500-and 
2,500-yr return 

period

Landslide All assumed low 
severity; all  

assumed p<100 yr

All assumed  
low severity;  

all assumed p<100 yr

All assumed low 
severity; all assumed 

p<100 yr

Meteorological 
drought

Consider only Q95 
KBDI [400,600] and 

KBDI [600,800]; 
all assumed to 

be p<100 yr

Consider only Q95 
KBDI [400,600] & KBDI 
[600,800]; all assumed 

 to be p<100 yr

Consider only Q95  
KBDI [400,600] and 
 KBDI [600,800]; all 

assumed to be 
 p<100 yr

Consider only 
 Q95 

KBDI [600,800]; 
all assumed 

to be p<100 yr 
return period

Consider only Q95 
KBDI [600,800]; 

all assumed to be 
p<100 yr

Consider only 
Q95 KBDI  

[600,800]; all 
assumed to be 

p<100 yr

Wildfire High risk and very  
high risk of wildfire (fire 
index of 401 or higher);  

all assumed to be  
100 yr≤p<1,000 yr

High risk and  
very high risk of  

wildfire (fire index  
of 401 or higher);  
all assumed to be  
100 yr≤p<1,000 yr

Very high risk of  
wildfire (fire index  

of 1935 or higher); all 
assumed to be  

100 yr≤p<1,000 yr

Very high risk  
of wildfire  

(fire index of  
1935 or higher); 

 all assumed to be 
100 yr≤p<1,000 yr

Extreme  
temperature

120 degrees or higher; 
return periods: 20

120 degrees or higher; 
all assumed p<100 yr 

120 degrees or  
higher; all  

assumed p<100 yr 

130 degrees; 
all assumed 

 p<100 yr

130 degrees; 
all assumed p<100 yr

130 degrees; all 
assumed 
p<100 yr

Hurricane Category 2  
wind cutoff (96 mph) 

and Category 4  
(130 mph); use  

natural return period

Category 2 wind cutoff  
(96 mph) and Category 4 

(130 mph);  
use natural 

return period

Category 2 
 wind cutoff (96 mph) 

and Category 4  
(130 mph); 
use natural  

return period

Category 4 
(130 mph); 
use natural  

return period 

Category 4 (130 mph);  
use natural return 

period 

Category 4  
(130 mph); 

use natural return 
period 

Table 5.3
Criteria for Binning Natural Hazards by Intensity and Likelihood
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Hazard Type
Low Severity 

p≤100 yr
Low Severity 

100yr<p≤1,000 yr 
Low Severity 

p>1,000 yr
High Severity 

p≤100 yr
High Severity 

100 yr<p≤1,000 yr 
High Severity 

p>1,000 yr 

Riverine flooding All assumed 
 to be high 

severity;  
all assumed  

p<100 yr

All assumed to be  
high severity;  

all assumed p<100 yr

All assumed to  
be high severity;  

all assumed  
p<100 yr

Tsunami All assumed to be  
high severity; all assumed 

500-yr return period

All assumed to 
 be high severity; 

all assumed  
500-yr return 

period

Ice storm Category 4 or higher; 
all assumed 50-yr 

 return period

Category 4 or higher; 
all assumed 50-yr  

return period

Category 4  
or higher;  

all assumed  
50-yr  

return period

Category 5 
for severe; all 
assumed 50-yr 
return period

Category 5 for severe;  
all assumed 50-yr  

return period

Category 5 
for severe; all 
assumed 50-yr 
return period

Permanent  
inundation

1-ft flooding;  
use natural return 

period

1-ft flooding; use  
natural return period

6-ft flooding;  
use natural 

 return period

6-ft flooding; use  
natural return period

Tidal flooding 1-ft flooding; 
only 20-yr  

return period

1-ft flooding; only  
20-yr return period

1-ft flooding; only 
20-yr return period

6-ft flooding;  
only 20-yr  

return period

6-ft flooding; only  
20-yr return period

6-ft flooding; 
only 20-yr  

return period

Storm surge flooding 1-ft flooding; 
only 100-yr return 

period

1-ft flooding; only  
100-yr return period

1-ft flooding; 
only 100-yr return 

period

6-ft flooding; 
only 100-yr  

return period

6-ft flooding; only  
100-yr return period

6-ft flooding; 
only 100-yr  

return period

Tornado EF0 and EF3; 
all assumed to be 

p≥1000 yr

EF3; all  
assumed to be 

p≤1,000 yr

Table 5.3—Continued
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