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In January 2016, the RAND Corporation began work on Gun Policy in America, a research initiative that 
aims to create a resource where policymakers and the general public can access unbiased information that 
informs and enables the development of fair and effective firearm policies. Building on a long history of 

providing policymakers with objective, independent analyses of complex topics, RAND is developing policy 
analysis tools and research syntheses, grounded in science, with the goal of clarifying the effects of current 
and proposed firearm measures. We expect to release our initial research findings in the winter of 2016–2017. 

The Gun Policy in America initiative employs a mixed-methods approach that incorporates statistical 
modeling, expert elicitation, a systematic review and synthesis of the research literature, and other techniques 
that draw on RAND’s expertise in objectively analyzing complex policy challenges.

In March 2016, as RAND’s research effort was getting under way, the British medical journal The Lancet 
published an article by Bindu Kalesan and colleagues titled “Firearm Legislation and Firearm Mortality in 
the USA: A Cross-Sectional, State-Level Study” (Kalesan et al., 2016a). The article examined the effects of 
25 state firearm laws on gun deaths. Given the relevance of the findings to our ongoing research, we read the 
findings with great interest and care. In the course of that review, we identified a number of serious analytical 
errors that we suspected could undermine the article’s conclusions.

It is important to note that many—perhaps most—scientific articles include some mistakes, and 
normally this would not merit further attention. In this case, however, we could see that the article’s unusu-
ally strong and significant effects were probably wrong but would dominate our synthesis of findings from 
the research literature. Moreover, we could not ignore the article without violating the rules of our system-
atic review. The reported findings appeared likely to support bad gun policies and to hurt future research 
efforts that could treat the many highly significant findings reported in the article as valid. We contacted 
the article’s authors with our concerns but ultimately determined that new analyses were needed to test the 
validity of the published findings. We reconstructed the article’s data set using information in the article and 
reanalyzed the article’s models using the procedures documented in this report.

This short technical report serves as a supplement to our comment published in The Lancet in response 
to the article and will be of greatest interest to readers who are familiar with statistical methods. Because 
our comment in The Lancet was limited to 250 words, we were not able to include detail on our reanalysis 
and additional statistical support for our conclusions. Therefore, this report provides the background on our 
assessment and a detailed account of the errors we detected. Data and code for the analyses described here 
accompany this report on RAND’s website at www.rand.org/t/RR1642.

http://www.rand.org/pubs/research_reports/RR1642.html
http://www.rand.org/
http://www.rand.org/t/RR1642


OVERVIEW OF ANALYTICAL FLAWS IN 
THE ARTICLE ON STATE GUN POLICIES 
PUBLISHED IN THE LANCET
In their article, Kalesan and colleagues address the important 
question of whether firearm laws implemented in U.S. states are 
associated with reductions in firearm-related mortality (Kale-
san et al., 2016a). Their surprising results suggested, among 
other things, that nationwide implementation of just three laws 
would reduce firearm homicides, suicides, and accidental deaths 
by 98 percent—and that laws concerning the use of firearm 
locks to prevent unauthorized use are associated with a nearly 
elevenfold increase in firearm homicides. 

However, the central statistical model that served as the 
basis for these findings used 39 parameters (38 predictor 
degrees of freedom and an intercept) to explain just 50 observa-
tions. This suggests model overfitting, a phenomenon in which 
researchers attempt to estimate a model that is more complex 
than can be supported with the available data. As a result, 
the model’s parameter estimates and significance tests may be 
inaccurate. We reanalyzed the article’s data and found clear 
evidence that its substantive conclusions were invalid. Specifi-
cally, we found that the article’s multivariate effects were not 
statistically significant, that the point estimates for multivari-
ate incidence rate ratios (IRRs) reported in the article deviated 
substantially from estimates produced with more appropriate 
statistical methods, and that there were factual errors and 
inconsistencies in the text and tables of the article.

STATISTICAL PROBLEMS: MODEL FIT, 
STANDARD ERRORS, AND ESTIMATES
The article’s parameter estimates and their confidence intervals 
were incorrect, making them appear to support invalid conclu-
sions. Two problems led to these errors: overdispersion in the 
data relative to the assumed likelihood function and inaccurate 
estimates of standard errors due to model overfitting.

Errors in the Evaluation of Model Fit
The article posits that the residuals of the models used to gener-
ate IRR estimates are Poisson-distributed. The article acknowl-
edges this assumption, stating, “Because the variance of our 
outcome was equal to the mean, we used Poisson regression 
with population as an offset to normalise population sizes, and 

robust standard errors” (Kalesan et al., 2016a, pp. 1849–1850).  
However, it later correctly reports the mean of the outcome 
to be 632 firearm deaths per 100,000 people, with a standard 
deviation of 629. Thus, the variance is not equal to the mean 
but approximately 600 times larger. Although this discrep-
ancy in the mean and variance does not prove overdispersion, 
substantial overdispersion is evident in the models used to 
estimate the crude IRRs presented in the article. After the 
population offset was applied, the models used to estimate the 
25 crude IRRs had residual variance approximately 15 times 
larger than expected under a Poisson distribution. The article 
then presents Huber-corrected standard errors (robust standard 
errors in Stata), which widened the confidence intervals around 
the crude IRRs, potentially mitigating this violation of model 
assumptions.

Although robust standard errors can correct for the effect 
of overdispersion on the standard errors of model parameters, 
this procedure does not correct the likelihood statistics that 
are used to evaluate model fit. The article’s supplementary 
appendix describes how the final model was selected (Kalesan 
et al., 2016b). Using the Akaike Information Criterion (AIC), 
residual deviance, and McFadden’s R-squared, according to 
the article, the final model had a better fit than models with 
fewer predictors. However, because overdispersion in the data 
was not addressed in the likelihood function (only in the post-
estimation calculation of standard errors), all three of these fit 
criteria are biased in favor of excessively complex models (see 
Burnham and Anderson, 2002). As such, adding parameters to 
the models may appear to improve model quality, but a model 
that correctly accounts for overdispersion would reveal that the 
opposite is true. Moreover, these criteria are valid only asymp-
totically in large samples. When the number of predictors is 
close to the number of observations, a correction to the likeli-
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hood, such as the corrected AIC, is required (Burnham and 
Anderson, 2002). Both of these problems (overdispersion and 
violation of asymptotic assumptions) resulted in a bias toward 
selecting a more complex model than the data could support.

By several metrics, the multivariate model estimated and 
interpreted in the article was far too complicated for the data. 
Although the article did not explicitly report that the multivari-
ate model used 39 parameters to fit 50 data points, this can be 
computed from the AIC and deviance values presented in the 
article’s appendix. Specifically, the model included an intercept, 
25 laws, four categorical covariates with four levels each, and 
one continuous covariate. Such a high ratio of the number of 
predictors to the number of observations violates key assump-
tions of the article’s statistical methods, which are asymptoti-
cally correct only in large samples. While the field does not 
have precise definitions for when large sample assumptions are 
violated, requiring at least ten cases per parameter is a com-
mon rule of thumb (see Draper and Smith, 1998; Peduzzi et 
al., 1996). However, others suggest no fewer than 15 cases per 
parameter, or that sample size requirements grow exponentially 
with increasing numbers of parameters (Good and Hardin, 
2012; Cavanaugh, 1997). By all standard recommendations 
for the methods described in the article, anything above ten 
or even five parameters should be suspected as leading to an 
overfit model when modeling 50 data points (Harrell, Lee, and 
Mark, 1996).

By definition, overfit models yield residual deviances that 
are misleadingly low, meaning that the in-sample deviances 
provide inaccurate information about true prediction or gener-
alization error. As a result, p-values and standard errors based 
on large-sample asymptotic distributions are smaller than they 
should be and yield false significance.

We demonstrated that the residual deviance for the article’s 
multivariate model was too low by comparing it to a cross-
validated estimate of the residual deviance. (Data and code for 
all analyses described here accompany this report on RAND’s 
website at www.rand.org/t/RR1642, and we encourage others 
to investigate and replicate our methods.) We used “leave one 
out” cross-validation to estimate prediction error. With this 
method, we ran the model for 49 states and used it to predict 
the state that was not included in the estimation. We repeated 
this process for all 50 states and summed the total Poisson devi-
ance of those 50 predictions.

Unfortunately, the article’s model was not sufficiently iden-
tified to cross-validate the full model; dropping even a single 
state resulted in predictors that are perfectly correlated or have 

no variance, violating the model’s requirements for estimation. 
Indeed, the predictor “Child handgun restrictions” applies to 
only a single state (i.e., it is a variable indicating “New Jersey”). 
To overcome this problem, we cross-validated a simpler model 
that dropped the “Child handgun restrictions” and “Large 
magazine ban” predictors, neither of which was a significant 
predictor in the article’s multivariate model.

This reduced model had a cross-validated residual devi-
ance of 465.5, which is approximately 28 times larger than the 
in-sample deviance from the article’s model, 16.7 (Kalesan et 
al., 2016b, Supplementary Table 1). In contrast, models that are 
not overfit provide very similar cross-validated and in-sample 
deviance. For example, a model for the crude effect of “Gun 
dealer license” had a cross-validated deviance that was larger 
than the in-sample deviance by a factor of just 1.12. In short, 
the article’s multivariate model included so many predictors 
that it almost perfectly explains the data used to estimate it, yet 
it also has a high generalization error—meaning that it makes 
very inaccurate predictions about “new” data.

Errors in the Calculation of Confidence 
Intervals and Significance
While this analysis demonstrates that the model is overfit (that 
is, it yields a deceptively small residual variance in the sample 
on which it is estimated and makes inaccurate predictions 
about new data), this does not, itself, indicate that the article’s 
conclusions are wrong. It does, however, indicate that one needs 
to estimate confidence intervals and statistical significance 
in a manner that does not rely on large-sample distributional 
assumptions (Harrell, Lee, and Mark, 1996).

Resampling methods (e.g., bootstrapping, permutation, 
exact tests) are frequently used for hypothesis testing and for 
generating confidence intervals when the requirement for a 
large sample and distributional assumptions of maximum like-
lihood methods are not met (Good, 2005). However, none of 
the multivariate IRRs on which the article’s conclusions depend 
are statistically significant when evaluated with such methods. 
The table on the following page compares confidence inter-
vals for the article’s statistically significant multivariate effects 
with corresponding bootstrapped confidence intervals (see 
Efron, 1979). The bootstrapped intervals are wider by orders of 
magnitude. The predictors with the three smallest IRRs in the 
article (bold in the table) were the primary focus of the article’s 
conclusions. Our comparison revealed that these predictors 
have effectively unbounded bootstrapped confidence intervals.
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The multivariate model used to generate our bootstrapped 

confidence intervals was slightly different from the model used 

in the article. Because of these differences, the bootstrapped 

intervals may underestimate the true confidence intervals. The 

multivariate model used in the bootstrap analysis dropped the 

seven predictors with IRRs near 1 reported as nonsignificant 

in the article.1 We made this modification because many of 

those variables had little variance or were highly collinear, and, 

1 These predictors were “Report records to state,” “Fingerprinting,” 
“Ammunition purchaser records,” “Child handgun restrictions,” 
“Child access not permitted,” “Juvenile handgun purchases,” and 
“Large magazine ban.”

thus, the model was not estimable in most of the resampled 
data sets. For example, a model that included “Child handgun 
restrictions” could be estimated only in resampled data sets 
that include New Jersey because all other states have identical 
values. Essentially, the full model was overfit to such an extent 
that it could not be estimated within almost any random subset 
of the 50 states. Dropping those reportedly nonsignificant 
predictors resulted in a more parsimonious model as judged by 
cross-validation. In addition, all of the laws that were statisti-
cally significant in the article’s multivariate model were also 
significant in the simplified version used here when significance 
is assessed using the same method as was used in the article. 

Predictor in Multivariate Model

Kalesan et al. Bootstrap

Lower Limit Upper Limit Lower Limit Upper Limit

Gun dealer license 0.85 0.97 0.36 2.92

Record keeping and retention 0.74 0.85 0.06 4.58

Mandatory theft reporting 1.26 2.13 0.03 132.96

Gun store security precaution 0.76 0.92 0.07 5.31

Police inspection 1.10 1.30 0.20 12.10

Bulk purchases limitation 1.39 1.70 0.08 25.67

Firearm identification 0.09 0.29 0.00 >1,000

Owner theft reporting 0.40 0.74 0.01 25.58

Universal background checks 0.23 0.67 0.00 91.54

Safety training 0.45 0.73 0.02 16.54

Extension of background-check limit 1.09 1.63 0.05 37.04

Permit law involvement 0.61 0.80 0.03 8.26

Closure of gun show loophole 1.03 1.15 0.21 6.48

Ammunition background checks 0.09 0.36 0.00 >1,000

Firearm locks 2.12 7.15 0.00 >1,000

Assault weapon ban 1.11 2.59 0.02 96.38

Discretion allowed when issuing permits 
to carry a concealed weapon

1.11 1.29 0.24 9.81

Stand-your-ground 1.03 1.12 0.57 1.72

NOTES: Bootstrap estimates are based on 20,000 replicated data sets using a standard case-resampling bootstrap procedure. Bold 
indicates the predictors with the three smallest IRRs in the article that were the primary focus of the article’s conclusions.

Comparing the Article’s 95% Confidence Intervals to Bootstrapped Confidence Intervals for Multivariate IRRs 
Interpreted as Significant in the Article
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Thus, the model used to produce our bootstrapped estimates is 
anticonservative because it underestimates the width of the true 
confidence intervals for the article’s model. Despite this under-
estimation, none of the effects reported in the article approach 
statistical significance using bootstrapped standard errors.

The use of the bootstrap does require certain assumptions 
(see Good, 2005), and readers may wonder whether the case-
resampling method we used is the most appropriate for estimat-
ing confidence intervals in this data set. We acknowledge that 
it is difficult to know whether our bootstrapped confidence 
intervals actually reflect 95-percent coverage of the true popula-
tion value. To partially address this concern, it is helpful to 
note that the bootstrapped confidence intervals for the crude 
IRRs are almost identical to the Huber-corrected intervals 
reported in the article. These confidence intervals are presented 
as an appendix to this report. The discrepancy between the 
two methods occurs only in the more complicated multivariate 
model. More generally, the case-resampling bootstrapped con-
fidence intervals very closely correspond to the Huber-corrected 
confidence intervals until the models get highly complex. When 
the number of parameters becomes a substantial fraction of the 
sample size (e.g., 25 degrees of freedom on 50 cases), the two 
methods dramatically diverge. The Huber-corrected intervals 
get progressively narrower as additional parameters are added 
and residual deviance necessarily approaches zero; in contrast, 
the bootstrapped intervals correctly get larger as the model 
becomes less well identified.

Errors in the Estimated IRRs
These analyses demonstrate that the effects detected with the 
article’s multivariate model are not statistically significant, but 
we also found that the reported IRR estimates are very likely 
incorrect and should not be interpreted. When the number  
of predictors is close to or greater than the number of data 
points, standard methods to estimate effects may return 
estimates that are dramatically different from those of the true 
data-generating model.

Unfortunately, there is no generally accepted solution 
to the problem of estimating interpretable coefficients when 
the number of parameters is close to (or exceeds) the amount 
of available data. However, there are some methods that are 
commonly used to address this model selection problem. 
Often, these methods use a model quality indicator (e.g., 
AIC, cross-validated error) to select a best subset of predictors 
(e.g., stepwise regression) that can be well estimated—or they 

shrink model coefficients toward the null (e.g., IRR = 1) until 
the model predictions minimize cross-validated error. (See, for 
example, Hoerl and Kennard, 1970; Tibshirani, 1996). When 
we applied such methods, they produced multivariate IRR 
estimates that differed widely from those reported in the article. 
For example, the LASSO method (Tibshirani, 1996) is an 
alternate approach to estimating the multivariate Poisson model 
that uses coefficient shrinkage to avoid overfitting. LASSO 
estimation yields a solution in which all multivariate IRRs are 
between 0.95 and 1.05. The pattern of effects is also substan-
tively different; the LASSO multivariate IRRs have a correla-
tion of just 0.14 with those reported in the article. The LASSO 
model has a cross-validated residual deviance of 75, compared 
to 465 for the article’s model, indicating that it is much more 
accurate in predicting the rate of firearm deaths for states that 
were not used in the model estimation.

It is possible that the LASSO method, which relies on 
shrinking the model coefficients, may have resulted in coef-
ficients that are biased toward being too small (i.e., yielding 
IRRs too close to 1) when applied to such a small data set. 
However, even if one used conventional stepwise regression—
which suffers from the opposite problem, producing estimates 
that are biased away from IRR = 1—the best multivariate 
model estimated IRRs that are completely different from those 
reported in the article. Specifically, we used “forward- 
backward” stepwise variable selection with the minimum cross-
validated error as the stopping criterion. With this method, 
the model includes the strongest predictors in the sample, and 
attempts to add or subtract predictors until no predictor can be 
added or removed without increasing the cross-validated error. 
The best model using this method of variable selection included 
only five laws as predictors, all of which had IRRs that fell into 
a narrow range between 0.93 and 1.07. In contrast, the article 
reported multivariate IRRs for laws that varied from 0.16 to 
3.90. In short, even a stepwise regression approach to variable 
selection—which is known to exaggerate effect sizes—found 
no evidence that any of these laws had large effects on firearm 
fatalities when conditioned on the available covariates (most 
notably the prior year’s firearm fatalities, which entered the 
model as the best predictor). The large multivariate effect sizes 
reported in the article emerge only if one continues to add 
predictors to the model even when they degrade the cross- 
validated predictive accuracy.

Published statistical analyses often violate assumptions 
in ways that underestimate standard errors. In many cases, 
these violations are harmless because the estimate is essentially 
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sound, though the p-values may be modestly anticonserva-
tive. In the article, however, the multivariate IRRs bear little 
relationship to the estimates derived from the same data using 
more-appropriate models. Therefore, we concluded that the 
reported multivariate IRRs should not be used or interpreted.

ERRORS IN THE DESCRIPTION OF 
STATE LAWS
We recreated the article’s data set using (1) the state-level data 
on covariates and laws provided in the article and its supple-
mentary appendix (Kalesan et al., 2016a and 2016b, respec-
tively), and (2) the state-level firearm-related death counts and 
population sizes from the U.S. Centers for Disease Control and 
Prevention’s Web-Based Injury Statistics Query and Report-
ing System (WISQARS). The total number of firearm deaths 
in 2010 reported in WISQARS exactly matched the article’s 
numbers. 

However, there were inconsistencies in the article and its 
appendix in the description of which laws applied to each state. 
Table 1 in the article describes each state’s laws in a way that is 
sometimes inconsistent with the descriptions in the subsequent 
table (Kalesan et al., 2016a, Table 2) and in Supplementary 
Appendix Table 2 (Kalesan et al., 2016b). For example, Califor-
nia is listed as not having a law closing the gun show loophole 
in the article’s Table 1, but it is shown as having such a law in 
Table 2. We identified 11 such inconsistencies, which are listed 
in the table below. Moreover, neither the data presented in 
Table 1 nor the data in Table 2 and Supplementary Appendix 
Table 2 exactly reproduced all IRRs presented in the article’s 
crude associations (Kalesan et al., 2016a, Figure). That is to say, 
neither set of tables accurately represents the data actually used 
in the article’s statistical analyses.

By trying various combinations of possibilities when the 
tables disagreed, we identified a state law listing that matched 
the “Crude IRR” estimates and confidence intervals shown 
in the figure in the article. There was one exception (“Gun 
store security precaution”), for which we matched the confi-
dence interval listed in the figure, but not the point estimate. 
However, the article’s crude IRR for this law was inconsistent 
with its own confidence intervals, indicating an error in the 
article’s tabled value (see Kalesan et al., 2016a, Figure). Thus, 
we are confident that our reconstructed data set is functionally 
identical to the data used to create the crude IRR estimates 
in the published article. This reconstructed data set produced 

multivariate IRR estimates that were slightly different from the 
original results; they have a correlation of 0.99 with the article’s 
multivariate IRRs. Similarly, the AIC values were close for the 
article’s full model, which was used for all study conclusions 
(485.7 versus 484.7 for the original and reconstructed data sets, 
respectively). The table on the following page explains how we 
resolved the inconsistencies across the article’s tables.

CONCLUSIONS
The IRRs on which the article’s conclusions were based are not 
statistically significant, and the IRR estimates themselves are 
substantively different from estimates using more-appropriate 
methods. 

Uncorrected, the article offers high-profile support for 
claims about gun policy for which there is no evidence. Some of 
the policies for which the article claims support could do harm. 
For instance, if policymakers accept the article’s finding that 
laws requiring gun locks increase firearm deaths, this could lead 
to policies relaxing gun lock requirements, even though the 
article presents no credible evidence to support such a change. 
Our corrected analyses found no statistically significant evi-
dence for any of the article’s major conclusions.

Although we identified problems with this particular 
article, we hold past work by the research team in high regard. 
Our interest in reporting this reanalysis is to correct the sci-
entific record and to justify our decision to exclude this article 
from RAND’s ongoing systematic examination of the effects 
of gun policies. The article’s unusually large—and erroneous—
effects would otherwise dominate our synthesis of the gun 
policy research and those of other meta-analyses for decades to 
come. We have opted to publicly share this evaluation because 
effective gun policies depend on accurate, objective research, 
and the article’s findings could damage the analytical support 
for these decisions and lead to flawed policies.

Finally, we hope that carefully documenting these  
problems—and demonstrating statistical methods that can 
identify and correct them—may serve as a guide to researchers 
in this field. The problems caused by an overfit model and a 
misspecified likelihood function are not unique to this particu-
lar article. The underlying problems are present in a substantial 
fraction of published studies that attempt to link state-level 
policies with mortality or crime data. We hope that this docu-
ment can encourage the field to adopt better statistical meth-
ods, resulting in improved substantive conclusions. 

6



Law State Value Used Data Source

Bulk purchases limitation Virginia Y Table 1

Stand-your-ground Louisiana Y Table 1

Stand-your-ground Arkansas N Sup. Table 2

Stand-your-ground Arizona Y Sup. Table 2 

Stand-your-ground Nevada N Sup. Table 2

Stand-your-ground Oregon N Sup. Table 2

Stand-your-ground North Dakota N Table 1

Gun store security precaution Connecticut Y Sup. Table 2

Closure of gun show loophole California Y Table 2

Assault weapons ban North Dakota N Sup. Table 2

Assault weapons ban Maryland Y Sup. Table 2

NOTES: A “Y” value indicates that we concluded that the article's analysis assumed the state had such 
a law in place; an “N” value indicates that the article assumed no such law was in place. For example, 
our reconstructed data set indicated that Virginia had a bulk purchase limit as shown in Kalesan et al., 
2016a, Table 1, even though the opposite claim was made in Kalesan et al., 2016b, Supplementary 
Table 2.

Resolving Inconsistencies for Use in the Reconstructed Data
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Predictor

Kalesan et al. Bootstrap

Lower Limit Upper Limit Lower Limit Upper Limit

Gun dealer license 0.60 0.89 0.60 0.91

Record keeping and retention 0.65 0.92 0.65 0.92

Report records to state 0.57 0.85 0.56 0.88

Mandatory theft reporting 0.56 0.84 0.39 0.88

Gun store security precaution 0.63 0.95 0.62 0.99

Police inspection 0.65 0.95 0.65 0.97

Bulk purchases limitation 0.62 0.89 0.51 1.01

Firearm identification 0.52 0.82 0.46 0.87

Owner theft reporting 0.45 0.87 0.43 0.88

Universal background checks 0.60 0.86 0.47 0.88

Fingerprinting 0.47 0.76 0.41 0.75

Safety training 0.57 0.87 0.37 0.91

Extension of background-check limit 0.50 0.75 0.47 0.75

Permit law involvement 0.46 0.88 0.45 0.88

Closure of gun show loophole 0.55 0.79 0.53 0.80

Ammunition purchaser records 0.61 0.84 0.40 0.89

Ammunition background checks 0.42 0.85 0.37 0.80

Firearm locks 0.53 0.76 0.50 0.76

Child handgun restrictions 0.46 0.56 0.45 0.55

Child access not permitted 0.64 0.98 0.63 0.98

Juvenile handgun purchases 0.51 0.71 0.49 0.70

Assault weapon ban 0.45 0.72 0.41 0.68

Large magazine ban 0.43 0.73 0.35 0.68

Discretion allowed when issuing permits 
to carry a concealed weapon

0.52 0.75 0.50 0.77

Stand-your-ground 1.27 1.74 1.27 1.76

NOTE: Bootstrap estimates are based on 10,000 replicated data sets using a standard case-resampling bootstrap procedure.

Appendix: Comparing the Article’s Confidence Intervals to Bootstrapped Confidence Intervals for Crude IRRs
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About This Report

As part of RAND's Gun Policy in America research initiative, this critique of “Firearm Legislation and Firearm Mortality in 
the USA: A Cross-Sectional, State-Level Study,” published by Kalesan et al. in the journal The Lancet, serves as a technical 
appendix to the RAND study team’s comment on the article, also published in The Lancet. Because our comment was limited 
to 250 words, we were not able to include detail on our reanalysis and additional statistical support for our conclusions. 
Therefore, this report provides technical background on our assessment, including a detailed account of the errors detected. 
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