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Preface

The U.S. Environmental Protection Agency (USEPA) Office of Research and Devel-
opment sponsored a study by the RAND Corporation to explore how Robust Deci-
sion Making (RDM) methods could be used to manage climate change and other key 
uncertainties faced by USEPA’s National Water Program. The study began in May 
2011 and was completed in March 2014. This final project report provides results 
from two case studies that apply RDM to water quality decision processes at USEPA’s 
Office of Water and partnering regional and state regulatory agencies. The results are 
intended to inform USEPA’s efforts to better incorporate robustness and adaptivity 
into current programs when faced with deeply uncertain scientific information about 
future conditions.

The research reported here was conducted in the RAND Environment, Energy, 
and Economic Development Program, which addresses topics relating to environmen-
tal quality and regulation, water and energy resources and systems, climate, natural 
hazards and disasters, and economic development, both domestically and internation-
ally. Program research is supported by government agencies, foundations, and the pri-
vate sector.

This program is part of RAND Justice, Infrastructure, and Environment, a divi-
sion of the RAND Corporation dedicated to improving policy and decisionmaking 
in a wide range of policy domains, including civil and criminal justice, infrastructure 
protection and homeland security, transportation and energy policy, and environmen-
tal and natural resource policy.

Questions or comments about this report should be sent to the project leaders, 
Robert Lempert (lempert@rand.org) or Jordan Fischbach (Jordan_Fischbach@rand.
org). For more information about the Environment, Energy, and Economic Develop-
ment Program, see http://www.rand.org/energy or contact Keith Crane, the director, 
at eeed@rand.org. Information about the RAND Corporation can be found at www.
rand.org.

mailto:lempert@rand.org
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Summary

The U.S. Environmental Protection Agency Office of Water (USEPA/OW) is charged 
with ensuring the health and safety of the nation’s water bodies and drinking water 
supply. To carry out this mission, the Clean Water Act, as amended, gives the Admin-
istrator of USEPA the authority to set water quality standards, engage with states and 
localities developing plans to meet these standards, review and approve such plans, 
provide financial and other assistance for implementation, and seek legal sanctions and 
fines for any failure to comply (33 U.S.C. § 1251 et seq., 2002). One key step USEPA 
and its state, local, and tribal partners take in protecting water quality is the develop-
ment of implementation plans that specify the actions a community will take to attain 
total maximum daily load (TMDL) water quality standards. 

However, these plans typically do not take climate change or other challeng-
ing uncertainties into account and may be vulnerable to future change or surprise. 
To assist USEPA and its partners, RAND researchers explored how Robust Decision 
Making (RDM) methods can be used to develop a plan that identifies robust and 
adaptive near- and long-term strategies and is based on the best available science as well 
as public engagement. In the course of the study, the researchers examined two pilot 
case studies—one on the Patuxent River in Maryland and one on the North Farm 
Creek tributary of the Illinois River—to explore and illustrate how RDM might help 
to improve USEPA future water quality decisions and uncertainties. 

How Uncertainty Threatens Water Quality Implementation Plans

USEPA seeks broad public engagement when working to protect water quality. Its goal 
is to conduct a decisionmaking process that transparently and predictably uses the best 
available scientific information. However, much of the relevant information is uncer-
tain, which complicates the pursuit of this goal. USEPA and its partners have often 
grappled with imperfect data regarding the hydrology, pollution sources, and pollutant 
flows in the water bodies they seek to protect. This uncertainty has been significantly 
exacerbated in recent years by factors such as climate change, changing patterns of land 
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use and other socioeconomic trends, and the pursuit of promising but largely untested 
approaches, such as green infrastructure, to environmental management. 

TMDL implementation planning typically relies on a combination of observed 
data and computer simulation modeling. Observed data are used to identify the 
sources of pollution affecting lakes, streams, and rivers, as well as monitor how con-
ditions change over time. Simulation models are used to suggest how pollution levels 
might change in the future, with or without policy interventions intended to reduce 
future pollution levels. While historical data provide the foundation for understanding 
the hydrology and pollution loads in a watershed, simulation models provide the best 
means available to make systematic inferences about future water quality. Such infer-
ences are necessary to have a forward-looking plan. 

Future projections are typically developed using rainfall-runoff simulation 
models. This study focuses on the use of such models to support TMDL planning 
processes. Although such models are typically calibrated using observed data, they can 
sometimes produce implausible or incorrect results due to a lack of sufficient resolution, 
skill, or overall scientific understanding of the system. In addition, even adequately 
skilled models can generate erroneous estimates of future water quality due to exter-
nal drivers that may evolve in unanticipated ways, such as hard-to-predict estimates of 
future climate, land use patterns, other socioeconomic factors, or policy implementa-
tion outcomes. These drivers are sometimes referred to as “deep” uncertainty, because 
the parties to a decision do not know—or cannot agree on—the best model for relat-
ing actions to consequences, nor the likelihood of future events.

When faced with deep uncertainty, the best approach is often to use a process of 
iterative risk management. Such an approach should recognize that some uncertainties 
are irreducible and help produce water quality implementation plans that are robust in 
the face of this uncertainty. It should also include an adaptive process of acting, moni-
toring, and changing course in response to new information. 

Although the analysis currently used to develop water quality implementation 
plans often uses a risk management framework, to date it has proved difficult to fully 
exploit the benefits of flexibility and experimentation in TMDL implementation 
planning. In large part this owes to institutional constraints. But standard analytic 
approaches do not necessarily facilitate the development of robust and adaptive plans 
due to a lack of appropriate methods for using uncertain simulation model results as 
part of forward-looking analysis. Climate change and the opportunities created by new 
approaches to environmental management have exacerbated this gap and suggest that 
new analytic approaches are needed to help make water management plans more flex-
ible and robust. Such new approaches may help reconcile the tension between the need 
for accountable, transparent, and objective governance and the benefits of flexibility 
and experimentation. 
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New Approach Can Make Uncertain Science Decision-Relevant

RDM is a new approach that can incorporate uncertain scientific and socioeconomic 
information into water quality implementation plans. RDM differs from many of the 
analytic approaches currently used by USEPA in that it employs a “backward” analy-
sis. Rather than beginning with an agreed upon set of assumptions about the future, 
RDM begins with a proposed plan or plans, uses analytics to stress-test them over 
many futures, and concisely summarizes the conditions in which each plan will work 
well or poorly. RDM adopts an “exploratory modeling” approach that uses simulation 
models not as tools for prediction, but simply as a means to map assumptions onto 
consequences without necessarily privileging one assumption over another. RDM can 
significantly enhance the value of simulation models initially designed for predictive 
analysis by running them over many plausible paths into the future in order to identify 
vulnerabilities of proposed strategies and potential robust responses.

RDM provides several advantages over traditional methods relevant to water 
quality implementation planning. First, the approach provides a way to draw deci-
sion-relevant information from a wide range of imperfect projections. This includes 
uncertainty about the future as well as the uncertainty inherent in imperfect hydro-
logic simulation models. RDM also supports improved plans by providing output in 
a scenario-based form that helps decisionmakers to agree on which decision to choose 
without requiring prior agreement on assumptions. This can reduce conflicts among 
stakeholders as well as facilitate interagency processes.

As shown in Figure S.1, the RDM process starts with a decision structuring exer-
cise in which parties to the decision define the key factors in the analysis (Step 1). Ana-
lysts next use simulation models representing these key factors to evaluate a proposed 
TMDL implementation plan or plans in each of many plausible paths into the future, 
which generates a large database of simulation model results (Step 2). In the third step, 
analysts and decisionmakers use visualization and statistical “scenario discovery” algo-
rithms to explore these many paths into the future and identify the key factors that dis-
tinguish futures in which TMDL plans meet and miss their goals. In the fourth step, 
analysts and decisionmakers identify and evaluate ways to improve plans to increase 
the range of futures over which they succeed.

This overall process aims to facilitate stress-testing of proposed TMDL imple-
mentation plans and deliberation among diverse stakeholders on appropriate responses 
to any vulnerabilities. The approach aims to embed systematic quantitative reasoning 
about the consequences of, and trade-offs among, alternative decision options within 
a framework that recognizes the legitimacy of different interests, values, and expecta-
tions about the future.
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Two Case Studies Demonstrate RDM Analysis for Water Quality

This report considers two pilot case studies—one on the Patuxent River in Mary-
land and one on the North Farm Creek tributary of the Illinois River near Peoria—
to explore and illustrate how RDM might help USEPA and its partners to improve 
TMDL implementation planning in the face of imperfect models, climate change, 
and other uncertainties. We chose these case studies based on an extensive screening 
process with USEPA/Office of Research and Development (ORD) and USEPA/OW 
staff, seeking two regions that (1) face diverse water quality management challenges, 
(2) already apply hydrologic simulation models, and (3) have relevant TMDL imple-
mentation planning activities currently under way for which an RDM analysis might 
provide useful information.

Patuxent River Case Study

After a series of discussions with Chesapeake Bay Program representatives, RAND 
and USEPA identified a key tributary of the Chesapeake Bay, the Patuxent River, as 
a good candidate to test the value of RDM for water quality management decisions. 
The chosen focus for this pilot is urban stormwater management. The Patuxent River is 
located between Baltimore and Washington. Its watershed is the largest entirely within 
Maryland, is highly urbanized, and has a rapidly growing population. The results of 
this pilot analysis can serve as a template for future planning as the Chesapeake Bay 
Program incorporates climate change into its future water quality planning for the 

Figure S.1
RDM Process for Deliberative Iterative Risk Management

RAND RR720-S.1
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broader Chesapeake Bay region. Table S.1 summarizes the key factors considered in 
this pilot. 

To perform the quantitative water quality experiments in this case study, we 
applied the Chesapeake Bay Program’s Phase 5.3.2 Watershed Model and the support-
ing Scenario Builder modeling suite. The study uses three key water quality perfor-
mance metrics—annual average delivered loads of nitrogen, phosphorus, and sediment 
from the Patuxent River to the Chesapeake Bay—and focuses on pollutant loads from 
the urban sources. We also considered the cost of implementing best management 
practices (BMPs) as a performance metric.

Phase II of Maryland’s Watershed Implementation Plan (WIP) sets water quality 
TMDL targets for the Patuxent River through a combination of historical water qual-
ity and hydrology monitoring data and detailed simulation modeling, and specifies a 
series of BMP investments designed to meet these new standards. We tested the per-
formance of this plan across a range of plausible futures. 

Initial results confirmed that, with historical hydrology, current land use, and 
current population assumed, Maryland’s Phase II WIP is able to meet the specified 
stormwater TMDL targets. However, for the three contaminants of concern—nitro-
gen, phosphorus, and sediment—the Phase II WIP often did not meet these targets 
when a nonstationary climate and potential future changes in population or land use 
development patterns were considered.

Table S.2 summarizes the performance of the two plans by way of example. “Cur-
rent Management” (no new BMP investment beyond 2010) and “Phase II WIP” (BMP 

Table S.1
Key Factors Considered in the Patuxent Case Study

Uncertain Factors (X) Policy Levers (L)

Hydrology and climate change
• Observed historical hydrology (1984–2005)
• Downscaled climate projections

• 2035–2045
• 2055–2065

Land use
• Population growth (2010–2050)
• Infill, sprawl, and forest conservation

BMP effectiveness
Evapotranspiration model parameters

MDE Phase II Watershed Implementation Plan BMPs, 
including

• Stormwater management–filtering practices
• Stormwater management–infiltration 

practices
• Urban stream restoration
• Urban forest buffers

Systems Model Relationships (R) Performance Metrics (M)

Phase 5.3.2 Chesapeake Bay Watershed Model
• Airshed model
• Land use change model
• Watershed model
• Chesapeake Bay model

Metrics
• Nitrogen delivered loads
• Phosphorus delivered loads
• Sediment delivered loads
• Implementation costs (extended analysis only) 

Targets
• Phase I WIP TMDLs
• Phase II WIP TMDLs (2017 interim; 2025 final)
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investments implemented as specified in Maryland’s WIP) were simulated in this study 
in 259 different futures. Each future represents a single realization of the model reflect-
ing one set of assumptions about future climate-influenced hydrology, population, and 
land use development patterns. For the three key contaminants considered, the table 
summarizes the number and percentage of futures in which the TMDL target is met in 
three hydrology periods: 1984–2005 (historical hydrology, seven futures), 2035–2045 
(126 futures), and 2055–2065 (126 futures). 

Table S.2 shows that current management rarely leads to attaining the Phase II 
WIP targets. The Phase II WIP increases the proportion of futures in which the target 
is met. For instance, with the Phase II WIP the percentage of futures meeting the sedi-
ment target increases from 0 percent to 43 percent for the historical climate projection, 
12 percent to 47 percent for the 2035–2025 climate projections, and 12 percent to  
44 percent for the 2055–2065 climate projections, respectively. However, as previously 
noted, the Phase II WIP does not meet TMDL targets in a substantial fraction of cases. 

Our vulnerability analysis identified two key drivers that best described when 
these targets were not met: an increase in precipitation due to climate change, or an 
increase in the amount of impervious area cover in the Patuxent Basin caused primar-
ily by population growth. Either individually or in combination, these uncertain driv-
ers led to pollutant loads from the Patuxent above the recently established long-term 
targets even when assuming that the substantial Phase II management infrastructure 
would be in place. For instance, Figure S.2 shows the results of our vulnerability analy-
sis for the nitrogen TMDL. The figure shows regions representing all futures in which 
the Phase II WIP is implemented. These futures plotted in terms of two key uncertain 
dimensions: the average annual precipitation change from the historical conditions 
(x-axis), and change in impervious land area in the Patuxent River watershed (y-axis).

Table S.2
Futures in Which Phase II Target Is Met, by Strategy and Contaminant

Performance Metric

Number (Percentage) of Futures Meeting the Phase II Target

Historical Hydrology
1984–2005

Climate Altered Hydrology
2035–2045

Climate Altered Hydrology
2055–2065

Current 
Management

Phase II 
WIP

Current 
Management

Phase II 
WIP

Current 
Management Phase II WIP

Nitrogen target 0 (0) 1 (14) 9 (7) 35 (28) 13 (10) 31 (25)

Phosphorus target 0 (0) 2 (29) 6 (5) 42 (33) 5 (4) 35 (28)

Sediment target 0 (0) 3 (43) 15 (12) 59 (47) 15 (12) 55 (44)

Meets all three 
targets 0 (0) 1 (14) 6 (5) 30 (24) 5 (4) 29 (23)
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The dark shaded region defines a decision-relevant scenario space described by 
the average annual precipitation change from historical conditions, and the percentage 
growth in impervious land area in the Patuxent River watershed. It shows that futures 
that display either higher precipitation, increased impervious area, or a combination of 
both lead to increased runoff, which in turn yields larger-than-expected nitrogen loads 
flowing into the Chesapeake Bay. These results show that average precipitation would 
need to stay constant or decline and impervious area would need to remain at the mid-
to-low end of the plausible range to consistently meet the nitrogen TMDL with the 
Phase II WIP implemented as currently constructed.

A preliminary extension to this analysis, considering how individual BMP types 
could be used to augment the plan, suggests that additional investment in some BMPs, 
including green infrastructure options such as wet ponds, wetlands, and urban filtering 
practices, could help achieve stormwater TMDL targets cost-effectively in some future 
scenarios of concern. However, in other cases, the scale of infrastructure investment 
needed would likely exceed the available land area for these BMPs and could be very 
expensive. Based on this analysis, we conclude that the State of Maryland should con-
sider a broader range of options, such as changes to land use practice, to help reduce or 
avoid more impervious area growth. 

Figure S.2
Futures in Which Phase II WIP Meets and Misses Nitrogen TMDL

RAND RR720-S.2
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North Farm Creek Case Study

The State of Illinois is beginning the process of implementing pollution control and 
restoration plans for the Middle Illinois River. RAND and USEPA chose the North 
Creek Tributary as a second case study because it includes a significant amount of agri-
cultural land and is currently addressing agricultural runoff challenges. Our analysis 
built on the 2012 load reduction strategy and BMP implementation plan for the North 
Farm Creek subwatershed, one of two pilot areas selected by the State of Illinois for ini-
tial development of load reduction strategies. The North Farm Creek Implementation 
Plan envisions an adaptive management approach that deploys BMPs in three phases: 
nonstructural (years 0–3), structural (years 3–10), and monitoring and adaptive man-
agement (years 10–20). 

The key factors considered in this pilot analysis are shown in Table S.3. In par-
ticular, the case study uses climate projections from the North American Regional Cli-
mate Change Assessment Program (NARCCAP) and the Soil and Water Assessment 
Tool (SWAT), a model commonly used by USEPA and many jurisdictions country-
wide for TMDL development. The North Farm Creek Implementation Plan includes 
eight BMPs, four of which could be simulated in the SWAT model available to this 
study. We refer to this as the Modeled Implementation Plan, and its performance is 
compared to futures in which no additional BMPs are implemented (“Current Man-
agement”; see Table S.4).

We used the simulation model to explore the performance of the Current Man-
agement strategy and the Modeled Implementation Plan over 140 futures, comprising 
seven alternative climate projections and 20 assumptions about the actual effective-
ness of the BMPs. This analysis suggests that future climate change could significantly 
increase pollution loads in North Farm Creek (by 30–60 percent for nitrogen, and 
85–200 percent for phosphorus, respectively) under Current Management. 

Table S.4 shows that the modeled BMPs could significantly reduce these pol-
lution loadings. In the current climate, these modeled BMPs would meet both the 

Table S.3
Factors Considered in the North Farm Creek Case Study

Uncertain Factors (X) Policy Levers (L)

Effects of climate change on streamflow
BMP effectiveness

• Intrinsic performance
• In response to climate change 

Draft Implementation Plan, including structural 
management options:

• Green infrastructure
• Grassed waterways
• Conservation tillage

Adaptive management responses

Systems Model Relationships (R) Performance Metrics (M)

SWAT model of North Farm Creek calibrated  
to meet current water quality Airshed model

TMDL compliance for:
• Nitrogen
• Phosphorus
• Sediment
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nitrogen and the phosphorus targets over the full range of assumptions about BMP 
effectiveness. In future climates, the modeled BMPs would meet the nitrogen target 
in about 40 percent of the futures considered. The failure of the modeled plan to meet 
the phosphorus and sediment standards in our analysis results in part from the fact we 
modeled only some components of the full North Creek Implementation Plan but may 
also result from aggressive targets for these pollutants. 

As shown in Figure S.3, our vulnerability analysis identified two key drivers that 
best described the conditions in which nitrogen loadings under the modeled BMPs 
in the Implementation Plan might exceed the TMDL: an increase in the annual 
precipitation combined with actual effectiveness of green infrastructure retrofitting 
less than that assumed in the plan. In the figure’s upper-left region, the Implementa-
tion Plan generally meets the nitrogen TMDL. In the lower right-hand region, the 
plan generally fails to meet the TMDL due to a combination of too-high precipi-
tation and too-low green infrastructure effectiveness. The horizontal axis spans the 
full range of the NARCCAP climate projections used in this analysis. The North 
Farm Creek plan would meet its TMDL goals if green infrastructure were only  
70 percent as effective as estimated as long as precipitation stays at historic levels. But 
if precipitation rises by 8 percent, well within the range of the NARCCAP projections, 
the modeled plan could fail to meet its goals even if the green infrastructure worked 
as well as projected.

The information from this vulnerability analysis can help inform the design and 
implementation of the North Farm Creek adaptive management plan. Monitoring the 
two factors that define this region—average annual rainfall and BMP effectiveness—
and responding, if necessary, with additional investment in enhanced green infrastruc-
ture or other BMPs could improve the plan’s ability to adapt over time to meet the 
nitrogen TMDL.

Table S.4
Futures in Which TMDL Targets Are Met, by Plan and Pollutant for North Farm Creek

Pollutant

Number (Percentage) of Futures Meeting the TMDL Target

Current Climate Future Climate (2041–2060)

Current 
Management

Modeled 
Implementation 

Plan
Current 

Management

Modeled 
Implementation 

 Plan

Nitrogen target 0 (0) 20 (100) 0 (0) 52 (43)

Phosphorus target 0 (0) 20 (100) 0 (0) 0 (0)

Sediment target 0 (0) 0 (0) 0 (0) 0 (0)
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Lessons Learned

These two case studies provide three important lessons for the development of TMDL 
implementation plans under conditions of uncertainty.  

• Climate change could have a significant impact on the success of water qual-
ity plans. In both pilot regions studied, TMDL plans expected to meet water
quality standards if future climate resembles the past do not meet these stan-
dards over a wide range of plausible future climate conditions. However, climate
change is not the only important uncertainty, nor is it necessarily the dominant
one. In the Patuxent case study, an increase in the area covered by impervious
surfaces such as roads or parking lots would reduce the ability of the watershed
implementation plan to meet current TMDL targets. Assumptions about BMP
effectiveness are similarly influential on future plan success in the North Farm
Creek pilot.

• Rainfall-runoff simulation models, when used appropriately, can provide
useful information for TMDL planning even in the face of deep uncertainty.
Used within an RDM framework, these models can help decisionmakers explore
the performance of TMDL plans across many plausible paths into the future.
Visualization and statistics on the resulting database of model runs can then help

Figure S.3
Futures in Which the Modeled Implementation Plan Meets and Misses TMDL 
Goals
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to identify the types of future conditions in which TMDL plans will meet or 
miss their water quality goals, suggest how plans can be modified to address 
these vulnerabilities, and help craft adaptive management plans by suggesting 
signposts and contingent actions. Statistical and visualization packages to enable 
these tasks are now readily available.

• Currently available simulation tools are suitable for such RDM analyses, 
but much could be done to improve their utility. For instance, the treatment 
of BMPs in both models could be improved, in terms of both resolution and skill. 
In addition, a greater emphasis on process-based representations would facilitate 
consideration of more types of BMPs and allow exploration over a wider range 
of assumptions about their effectiveness. The treatment of inputs in both models 
could also be streamlined to better integrate with simulations of a more complete 
range of biophysical and socioeconomic processes and to facilitate scanning over 
many possible futures.

Looking to the Future

To improve and maintain high water quality standards in changing, often difficult-
to-predict conditions, USEPA will need to employ iterative risk management and rely 
increasingly on robust and flexible implementation plans. Such plans should be devel-
oped as part of science-based, transparent, accountable, and participatory processes. 
These case studies describe analytic methods and tools that can be used to support par-
ticipatory processes, but more work is needed for full-scale implementation. Building 
on this foundation could significantly enhance USEPA’s ability to ensure water quality 
in the face of climate and other uncertainties.

Future analysis could help make TMDL plans more robust by considering a wider 
range of potential uncertainties and a richer set of response options. For instance, the 
current case studies considered uncertainty in either future land use or BMP effective-
ness, but not both together. In addition, future work could explore a wider range of 
socioeconomic factors and, importantly, consider water quality as part of a more inte-
grated multisector water management or land use plan. 

The treatment of adaptive TMDL implementation plans could also be consider-
ably expanded beyond that considered here. Future analyses could lay out multistage 
adaptive plans along the lines of the 2012 North Farm Creek Future Implementation 
Plan. These plans would include specific sets of near-term actions, signposts to monitor, 
and contingency actions to take in response to observations of one or more signposts. 
The analysis could then help compare and evaluate the robustness of proposed adap-
tive plans and would also allow decisionmakers to consider the benefits of investing in 
monitoring systems that would improve the information available to them over time.  
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Improvements to the analytic tools used in this study could significantly improve 
the effectiveness of the decision support available to water quality planners. In addi-
tion to improvements to the underlying simulation models (discussed above), improved 
planning tools could facilitate the design and comparison of multistage adaptive 
TMDL management plans. Improved visualization packages could make the results 
more broadly accessible. Packaging such tools in more user-friendly and potentially 
web-accessible toolkits could help make these methods widely available to decision-
makers at the local, state, and regional levels.

These two case studies also suggest how new decision support methods can facili-
tate more effective risk management for the nation’s overall efforts to improve water 
quality. RDM and similar analytic decision support methods can expand the range of 
conditions in which water quality implementation plans will be successful—that is, 
they can “adjust as planned” as future change unfolds. This makes it less likely that 
TMDL implementation plans, the organizations tasked to develop them, or the under-
lying standards would need to be changed. That said, because adaptive management 
principles are at the core of this approach, RDM also can help empower USEPA, state 
regulators, and other authorities to revisit and revise plans, the planners, and standards 
if necessary as new technology emerges or new scientific findings unfold.

The regulations used to protect water quality provide key tools to promote the 
public interest but must be carefully designed to enhance benefits, reduce adverse 
consequences, and respond effectively to environmental, socioeconomic, and other 
types of change. In particular, climate change and the opportunities created by new 
approaches to environmental management, such as green infrastructure, have created 
a need for new analytic approaches to help make water management plans more flex-
ible and robust. Such new approaches may help reconcile the tension between the need 
for accountable, transparent, and objective governance and the benefits of flexibility 
and experimentation. These methods do so by enabling exploration over a wide range 
of plausible futures, systematically identifying those future conditions in which pro-
posed water management strategies do or do not meet their goals, helping to identify 
specific milestones and midcourse corrections that can help strategies adapt over time, 
and identifying the trade-offs among alternative robust adaptive strategies—all within 
a process designed to facilitate stakeholder input and deliberation. This report provides 
only an initial exploration of the possibilities, but such approaches offer the potential 
to facilitate the development of robust, adaptive water quality management that may 
be more appropriate under the conditions of deep uncertainty arising from climate 
change and many other trends in our rapidly changing world.
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CHAPTER ONE

Water Quality Decisions Are Challenged by Future 
Uncertainty 

Our regulatory system . . . must be based on the best available science. It must 
allow for public participation and an open exchange of ideas. It must promote pre-
dictability and reduce uncertainty.

Executive Order 13563, January 18, 2011

Plans are worthless, but planning is everything.

Dwight D. Eisenhower

Introduction

The U.S. Environmental Protection Agency (USEPA) and its Office of Water (OW) 
are charged with ensuring the health and safety of the nation’s water bodies and drink-
ing water supply. To carry out this mission, the Clean Water Act, as amended, gives the 
USEPA administrator the authority to set water quality standards, engage with states 
and localities developing plans to meet those standards, review and approve such plans, 
provide financial and other assistance for implementation, and seek legal sanctions for 
any failure to comply (33 U.S.C. § 1251 et seq.). 

In conducting these activities, USEPA seeks broad public engagement in a process 
that transparently and predictably uses the best available scientific information. How-
ever, much of the relevant information is uncertain, which complicates the pursuit of 
these aims. USEPA and its partners have often grappled with imperfect data regarding 
the hydrology and pollution flows in the water bodies they seek to protect. But today, 
this uncertainty has been significantly exacerbated by factors such as climate change, 
changing patterns of land use and other socioeconomic trends, and the pursuit of 
promising but novel approaches to environmental management. This creates a ten-
sion between the need for accountable, transparent, and objective governance on the 
one hand, and the benefits of flexibility and experimentation as a means for managing 
uncertainty on the other.
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This report demonstrates a new approach, called Robust Decision Making 
(RDM), for incorporating uncertain scientific and socioeconomic information into 
one key step in protecting water quality—the development of the implementation 
plans that specify the actions communities will take to attain total maximum daily 
load (TMDL) water quality standards. Through two case studies, one focused on the 
Patuxent River in the Chesapeake Bay watershed and the other on the North Farm 
Creek Tributary of the Illinois River, this study suggests how water quality planners 
can: (1) test TMDL implementation plans over a wide range of futures; (2) use vul-
nerability analysis to facilitate the development of flexible and adaptive plans; and  
(3) identify key trade-offs among alternative improvements intended to make plans 
more robust. Overall, the report suggests that RDM-based analyses can help USEPA 
and its partners successfully manage uncertainty by developing flexible and robust 
plans within a process designed to facilitate stakeholder input and deliberation.

Challenges and Opportunities in the Uncertainties Affecting TMDL 
Planning

This study focuses on the use of hydrologic rainfall-runoff water quality simulation 
models in support of TMDL planning processes. Such planning processes generally 
rely on a combination of observed data and simulation modeling to support decision-
making. In particular, these analytic tools are used to (1) identify the sources of pol-
lution affecting particular lakes, streams, and rivers; (2) suggest how pollution levels 
might change in the future with and without various policy interventions that aim to 
reduce future pollution levels; and (3) monitor how conditions change over time. 

Observational data provide the foundation for understanding the hydrology and 
pollution loads in a watershed. Rainfall-runoff simulation models, when calibrated 
to the observed data, can deepen understanding of the past and present state of a 
hydrologic system. In addition, such simulation models also provide the best means 
available to make systematic and comprehensive inferences about future water quality. 
TMDL implementation planning requires such foresight, because the policy measures 
identified in these plans can take time to implement, may last for decades, and are 
costly to build, maintain, or improve in future years. For instance, investments in new 
infrastructure may affect pollution levels for decades. TMDL plans may also impose 
requirements on businesses, farms, and residences, which can generate public disap-
proval if these requirements do not reduce pollution as expected. Simulation models 
provide a convenient and accessible way to compare the potential benefits and costs of 
alternative TMDL plans before actions are initiated. 

However, water quality projections generated by simulation models can some-
times produce implausible or incorrect results. In some cases, the models lack sufficient 
resolution or skill. Such models’ ability to predict pollution levels depends on both the 
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quality and the quantity of observed monitoring data available for model calibration, 
as well as the extent to which the model adequately represents the physical processes 
in complicated and variable systems. When water quality models lack sufficient skill, 
planners can improve them by gathering additional monitoring data and working to 
improve the representation of the system in the model.

Even adequately skilled models, however, can generate erroneous estimates of 
future water quality due to external drivers that may evolve in unanticipated ways. 
Climate change presents one obvious source of uncertainty potentially affecting future 
water quality and the effectiveness of actions intended to improve it (USEPA, 2010c). 
Traditionally, water quality planning has assumed that future streamflow, precipita-
tion, and other relevant hydrological processes in a region will remain similar to those 
in the recent past, enabling an analysis that supports water quality planning to confi-
dently employ historical and current observations as the basis for future simulations. 
With climate change, however, such stationarity no longer remains a reliable assump-
tion (Milly et al., 2008). While current General Circulation Models (GCMs) offer one 
of the best available sources of information regarding projections of future climate, 
they remain imperfect tools for estimating future temperature and precipitation pat-
terns at the requisite spatial and temporal scales. This irreducible uncertainty may not 
be a temporary situation. There are strong reasons to believe such models will not soon 
achieve the reliability and precision generally expected of observations of historical 
and current climate (Weaver et al., 2013). As noted by the National Research Council 
(2009), climate change is certain to surprise us.

Uncertain socioeconomic drivers can also affect future water quality. Notably, 
population growth and changing patterns of land use across the country—for instance, 
continuing urbanization of previously undeveloped areas, or changes in agriculture 
crop choices and practices—can have substantial effects on water quality, most often 
negative. Moreover, many promising responses to climate change and these other types 
of stresses on the nation’s lakes, rivers, and streams, such as low-impact development 
(LID) or nature-based “green” infrastructure, also introduce significant uncertainty 
into the analysis. While the potential benefits are promising, the effectiveness of these 
new types of interventions may vary from location to location, and implementation 
will depend on the skill and commitment of many different actors. More broadly, as 
the focus of water quality efforts moves from “point” sources that can be directly moni-
tored and regulated, such as factories or power plants, to “nonpoint” or distributed pol-
lution sources, such as agricultural water runoff, confident predictions of the cost and 
effectiveness of various measures are likely to grow more difficult. 

As a result, even without climate change USEPA might consider incorporating 
new decision support methods for managing uncertainty in TMDL implementation 
planning. But federal agencies have also recently embarked on a concerted effort to 
incorporate climate change into their planning processes. Doing so provides a unique 
opportunity to improve their overall planning processes by exploring new meth-
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ods designed to more effectively manage many types of significant and irreducible 
uncertainty. 

Robust Decision Making

To address this uncertainty challenge, the USEPA Office of Research and Develop-
ment (ORD) asked RAND to consider how RDM methods might help USEPA/OW 
better manage climate and other uncertainties in its National Water Program. RDM 
(Lempert, Popper, and Bankes, 2003; Lempert et al., 2006; Lempert and Collins, 
2007) is an iterative, quantitative methodology designed to support decisionmaking 
under conditions of deep uncertainty. Deep uncertainty occurs when the parties to 
a decision do not know—or agree on—the best model for relating actions to con-
sequences or the likelihood of future events (Lempert, Popper, and Bankes, 2003). 
Deep uncertainty can be associated with key inputs to a planning challenge—such as 
future temperature or precipitation conditions given a changing climate—but can also 
describe “model uncertainty” emerging from limited, imperfect, or competing repre-
sentation of physical systems using present-day computer models. 

RDM has seen increasing application and success in areas focused on planning, 
in particular flood risk (CPRA, 2012; Groves, Sharon, and Knopman, 2012; Fischbach 
et al., 2012; Lempert et al., 2013) and water management applications (Groves and 
Lempert, 2007; Groves et al., 2008; Means et al., 2010; U.S. Bureau of Reclamation, 
2012). The present study examines the extent to which, given the differing institu-
tional and other contexts, RDM might also contribute to water quality management 
decisions.

RDM rests on a simple concept. Rather than using models and data to describe 
a best-estimate future, RDM runs one or more models over hundreds to thousands of 
different sets of assumptions to describe how plans perform in many plausible futures. 
The approach then uses statistics and visualizations based on the resulting large data-
base of model runs to help decisionmakers identify those model assumptions and 
future conditions where their plans will perform well or poorly. This information can 
help decisionmakers develop plans more robust to a wide range of future conditions. 

RDM may prove a promising tool for USEPA because it can help the agency 
develop more robust and adaptive TMDL plans in a manner that is science-based, 
transparent, and accountable to the public in the face of imperfect models, climate 
change, and other uncertainties. In particular, RDM may help USEPA to employ iter-
ative risk management, the recommended approach for climate-related decisions (Inter-
governmental Panel on Climate Change [IPCC], 2012; National Research Council 
[NRC], 2010; IPCC, 2014), in situations where the best available scientific informa-
tion remains imprecise. USEPA already organizes its water quality and TMDL plan-
ning processes around such an iterative risk management approach. For instance, 
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when setting drinking water standards, water quality for the nation’s water bodies, and 
standards for TMDLs, the agency follows a recursive process of monitoring, analysis, 
public input, decision, and review (see Appendix A). RDM and related methods may 
provide useful information on the design of such adaptive strategies more effectively 
than other analytic approaches often considered by USEPA.

Patuxent River and North Farm Creek Case Studies

This report considers two pilot case studies—one on the Patuxent River in Maryland 
and one on the North Farm Creek tributary of the Illinois River—to explore and illus-
trate how RDM might help USEPA and its partners to improve TMDL implementa-
tion planning in the face of imperfect models, climate change, and other uncertainties. 
We chose these case studies based on an extensive screening process with USEPA/
ORD and USEPA/OW staff, seeking two regions that (1) face diverse water quality 
management challenges, (2) already apply hydrologic simulation models, and (3) have 
relevant TMDL implementation planning activities currently under way for which an 
RDM analysis might provide useful information (see Appendix B).

The Patuxent River and North Farm Creek case studies satisfy these criteria. 
The former is largely urban and faces substantial urban stormwater management chal-
lenges, while the latter includes a significant amount of agricultural land and is cur-
rently addressing agriculture runoff challenges. In both cases, the requisite models and 
data were available, for the Patuxent as part of USEPA’s Chesapeake Bay Program, and 
for the Illinois River as part of USEPA’s Twenty Watersheds project (USEPA, 2013). In 
both cases, the models have sufficient skill at reproducing pollution flows under histori-
cal and current conditions in order to focus our analysis on uncertainties generated by 
potential future changes in climate or socioeconomic trends.

In both case studies, we conduct a vulnerability analysis of current TMDL imple-
mentation plans: Phase II of Maryland’s Watershed Implementation Plan for the Patux-
ent River, and the 2012 load reduction strategy and best management practice (BMP) 
implementation plan for the North Farm Creek watershed, respectively. In both cases, 
our analyses confirm that current plans will meet their TMDL targets if future climate 
is similar to historic climate and key socioeconomic trends evolve as expected. But both 
case studies also identify plausible combinations of changes in future trends in which 
the two current TMDL implementation plans may not prove successful. The analyses 
then suggest ways that the plans might be modified, now and in the future, to expand 
the range of futures over which the water quality goals can be met. 
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Organization of This Report

This study’s two case studies demonstrate how RDM can help USEPA and its state, 
tribal, and local partners to develop robust and flexible TMDL implementation plans 
in the face of climate change and other hard-to-predict uncertainties. The approach 
described is designed to support a transparent, objective, and science-based iterative 
risk management process. 

The next chapter of this report provides an overview of our proposed methodolog-
ical approach for robust adaptive TMDL planning. Chapter Three presents the Patux-
ent River urban stormwater management case study. Chapter Four presents the North 
Farm Creek rural runoff case study. Chapter Five draws the case studies together and 
provides preliminary conclusions.
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CHAPTER TWO

Analytic Tools for Robust Adaptive Water Quality 
Management 

Introduction

As theory and practice in many fields make clear, the best response to deeply uncer-
tain conditions is often to pursue strategies that are robust and adaptive (Rosenhead, 
1990; Rosenhead, Elton and Gupta, 1972). Robust strategies perform well across a 
wide range of plausible futures; that is, their outcomes are insensitive to uncertainty. 
Often strategies achieve robustness through adaptivity, evolving over time in response 
to new information (Walker, Marchau, and Swanson, 2010; Rosenhead, 2001).

While USEPA’s decision processes are designed around concepts of iterative risk 
management, the current practice does not facilitate the development of TMDL imple-
mentation plans designed to be adaptive, nor does it provide the means to ensure they 
are robust. In part, this is due to the shortcomings of commonly used analytic methods 
not well suited to examining robustness and informing the design of adaptive strate-
gies. In addition, a variety of institutional, political, and cognitive barriers can make it 
hard to implement adaptive strategies (Renn, 2008; Lee, 1993) or consider questions of 
robustness (Lempert, 2013; Lempert, Popper, and Bankes, 2003; Lempert and Light, 
2009). 

As just one example, Holling (1978) notes that adaptive management1 necessarily 
embraces the concept that failure can lead to success. This is because gathering good 
data requires conducting alternative activities, some of which prove more successful 
than others. However, organizations and policymakers often fear the consequences 
of being identified with failure and may resist any systematic monitoring or data col-

1  Note that the term adaptive management, widely used in the ecological and planning literatures, can have 
two different meanings. The term can refer to situations in which the choice of policy is strongly influenced by 
a requirement to generate reliable new information (Holling, 1978; Holling, 1996). But the term is also used 
more generally to refer to policies designed to respond to new information (NRC, 2009). The former, sometimes 
called active adaptive management, might involve forest managers who explicitly pursue alternative management 
practices on similar plots of land in order to gather scientific data on the most effective practices. The latter, some-
times called passive adaptive management, might involve a water management agency that pursues a portfolio of 
investments in different BMPs, largely to manage risk, but also intending to shift resources among investments in 
the future depending on which prove most successful. Unless otherwise noted, this study uses the term to mean 
passive adaptive management.
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lection that might make errors easier to identify and trace to a specific source. More 
broadly, there exists a fundamental tension between, on the one hand, the rational-
ized legal and administrative procedures designed to ensure that public servants pro-
vide accountable, objective, and predictable management for their democratic polities, 
and on the other, the practice of policy flexibility and experimentation (Kloppenberg, 
1986; Weber, 1922).

This study explores how new analytic methods for TMDL planning might help 
resolve this and similar tensions. 

Robust Decision Making

The discussion of how a new approach to TMDL planning might help reconcile the 
conflicting demands of flexibility and experimentation versus accountability, objectiv-
ity, and predictability may be usefully grounded in the broader context of decision 
support. The NRC (2009) defines decision support as the “set of processes intended to 
create the conditions for the production and appropriate use of decision-relevant infor-
mation.” A key tenet of decision support is that analytics—the discovery and commu-
nication of meaningful patterns in quantitative information—are most effective when 
closely linked to user needs. In practice, this often means placing the primary focus 
on decisionmaking processes and understanding how information products can best 
facilitate these processes. 

RDM (Lempert, Popper, and Bankes, 2003; Lempert et al., 2006; Hallegatte  
et al., 2012) provides one set of analytics in a decision support process that may facili-
tate TMDL planning under uncertainty. RDM belongs to a set of decision support 
approaches that begin with specific decisions under consideration and ask questions 
relevant to the choice among these decisions to organize information about possible 
future conditions such as those associated with climate or socioeconomic factors. The 
literature offers several names for such approaches, including “context-first” (Ranger  
et al., 2010), “decision-scaling” (Brown, 2010), and “assess risk of policy” (Carter  
et al., 2007; Dessai and Hulme, 2007; Lempert et al., 2004). All share the central idea 
of (1) beginning with a proposed plan or plans, (2) identifying future conditions where 
the plan fails to meet its goals and then (3) organizing available information about the 
future to help policymakers identify potential responses to those vulnerabilities and 
decide whether and when to adopt these responses.  

RDM thus differs from many of the decision processes currently used by USEPA 
in that it employs a “backward” analysis. Rather than beginning with an agreed upon 
set of assumptions about the future, RDM begins with a proposed plan or plans, uses 
analytics to stress-test them over many futures, and concisely summarizes the condi-
tions in which each plan will work well or poorly.  
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It is important to note that RDM uses simulation models in a way that is funda-
mentally different from analytic approaches, such as those commonly used by USEPA, 
that begin with agreement on a set of assumptions about the future. The latter regard 
models as predictive representations of reality sufficiently accurate to recommend the 
best response to an uncertain future. In contrast, RDM adopts an “exploratory mod-
eling” approach  (Bankes, 1993; Weaver et al., 2013) that regards models as mapping 
assumptions onto consequences without necessarily privileging some assumptions over 
others. Frequently, RDM can significantly enhance the value of decisionmakers’ cur-
rent models, generally designed for predictive analyses, by running them over many 
plausible paths into the future in order to identify vulnerabilities of proposed plans and 
potential robust responses.

Such “backward” analysis can help decisionmakers balance between two compel-
ling but flawed responses to the challenge of planning under conditions of deep uncer-
tainty. On one hand, decisionmakers may neglect important but uncertain factors. For 
instance, they may assume climate stationarity rather than attempt to include imper-
fect projections of future climate change in their analysis. In extremis, decisionmakers 
may rely solely on observational data to avoid reliance on imperfect simulation models. 
Such choices can produce narrowly accurate quantitative estimates but inform TMDL 
implementation plans better suited to past conditions than those of the future. 

On the other hand, decisionmakers may choose to treat the full range of uncer-
tainties within the framework of probabilistic decision and risk analysis. This in fact 
can prove the best approach when reliable probabilistic estimates are available. But 
when uncertainties are deep, plans based on best-estimate probability distributions 
can fail if the future unfolds differently than expected. In addition, while adaptive 
strategies can be represented within probabilistic decision analytic frameworks with 
approaches such as stochastic dynamic optimization, it can prove very complicated to 
do so with the detailed simulation models often used for TMDL planning. Finally, 
analyses that rely on broad agreement on a single joint probability distribution for a 
wide range of future biophysical and socioeconomic trends may inhibit efforts to gen-
erate consensus when the choice of any single distribution is insufficiently supported by 
the science and when different distributions are correlated with the differing economic 
interests and ethical values of the parties to the decision.

RDM avoids the first response by providing a means for drawing decision- 
relevant information from a wide range of imperfect projections. RDM avoids the 
second response by providing analytic output in a scenario-based form that helps deci-
sionmakers to agree on which decisions to choose without requiring prior agreement 
on assumptions. This can reduce conflicts among stakeholders as well as facilitate inter-
agency processes.
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Deliberation with Analysis Process

RDM’s process begins with a decision structuring exercise as illustrated in Figure 2.1. 
In this step decisionmakers define the objectives and metrics of the decision problem, 
policy options that could be used to meet these objectives, the uncertainties that could 
affect the success of proposed plans, and the relationships that govern how plans would 
perform with respect to the metrics (Step 1). This scoping activity often uses a frame-
work called “XLRM,” described in Chapter Three, which helps to collect and organize 
the information needed for the simulation modeling. 

In Step 2, analysts use the resulting simulation model to evaluate plans in each 
of many plausible futures. This generates a large database of simulation model results. 
In Step 3, analysts and decisionmakers use visualizations and “scenario discovery” to 
explore the simulation data and identify the key combinations of future conditions in 
which each candidate plan might not meet decisionmakers’ objectives. For example, 
TMDL implementation plans may fail to meet regulatory goals if climate change is 
more severe than expected and key BMPs perform less well than estimated. Such a 
scenario (“severe climate change and ineffective BMPs”) may concisely capture the 
vulnerabilities of the TMDL implementation plan.

Next, using the trade-off analysis (Step 4), decisionmakers may identify a suitable 
robust strategy. Or, they may decide that none of the alternatives under consideration 
proves sufficiently robust. In this case they could return to the search for suitable can-
didates, perhaps through modification of or hybridization among the initial set, this 

Figure 2.1
The RDM Approach
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time with deeper insight into the strengths and weaknesses of the alternatives initially 
considered.2

This RDM process explicitly follows a “deliberation with analysis” process of deci-
sion support, in which parties to the decision deliberate on their objectives, options, 
and problem framing; analysts generate decision-relevant information using the system 
models; and the parties to the decision revisit their objectives, options, and problem 
framing influenced by this quantitative information (NRC, 2009). RDM adds to this 
general approach the concepts of running the analysis backward—that is, beginning 
with a proposed plan—and testing plans against many different plausible futures. The 
overall process aims to facilitate deliberation among diverse stakeholders by embedding 
systematic quantitative reasoning about the consequences of, and trade-offs among, 
alternative decision options within a framework that recognizes the legitimacy of dif-
ferent interests, values, and expectations about the future (Lempert, 2013; Parker et 
al., 2015).

Scenario Discovery

The third RDM step, identifying vulnerabilities, plays a major role in the case studies 
discussed in this document. By understanding in detail the conditions under which 
TMDL plans may fail to meet their goals, planners may better understand how they 
might adjust these plans either in the present or in the future as conditions evolve.  

Figure 2.2 summarizes the scenario discovery analytics that play a key role in 
this RDM vulnerability analysis. This hypothetical example begins with a large data-
base of model run results in which each such entry represents the performance of one 
alternative plan in one future framed by an explicit set of assumptions. Some of the 
values in each entry in the database represent specific assumptions about future climate 
and other relevant factors; other values represent important performance metrics, such 
as pollution loadings addressed in a TMDL. The scenario discovery cluster-finding 
algorithms then seek to parse the database to provide a concise description of those 
combinations of future conditions that best distinguish the future cases in which the 
implementation plan does or does not meet its goals. 

In Figure 2.2, each axis represents a different uncertain parameter, and each point 
in the scatterplot shows the outcome from one unique combination of these parameters 
in the simulation (that is, one plausible future). Open circles show futures in which 
the plan meets its goals, while the filled circles show “vulnerable futures” in which the 
minimum performance standard is not met. 

The goal in scenario discovery is to describe one or more sets of vulnerable 
futures as a concise, understandable, and decision-relevant scenario. In this context 

2 There are also other paths through the RDM process. Information in the database of model results might 
help identify the initial candidate plan, or information about the vulnerabilities of the candidate plan may lead 
directly to another scoping exercise to revisit objectives, uncertainties, or plans.
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and throughout the remainder of this report, we use the term scenario to describe a 
set of futures that share one or more decision-relevant attributes. The algorithms used 
to support this process seek to balance between the competing goals of simplicity and 
accuracy using three measures of merit: coverage, density, and interpretability. Cover-
age, also known as precision or positive predictive value, is the fraction of the total 
number of cases representing vulnerable futures that are actually represented by the 
scenario conditions. The scenario in Figure 2.2 has coverage of 88 percent because the 
scenario contains 14 of the 16 futures in which the plan fails. Density, also known as 
sensitivity or recall, is the fraction of cases within the scenario that are vulnerable. The 
scenario in Figure 2.2 has a density of 82 percent, because the plan fails in 14 of the 
17 futures it contains. 

Interpretability is the ease with which the scenario can be communicated to and 
understood by plansmakers. It is typically measured heuristically as the number of 
restrictions used to define the scenario, with a smaller number generally proving to be 
more easily interpretable. The scenario shown in Figure 2.2 is defined by constraints 
on only two uncertain parameters. Improving any one of these three measures often 
comes at the detriment of one or both of the others; any scenario represents a balance 
between the accuracy and simplicity of its representation of a plan’s vulnerabilities. 
The case studies in this report use a classification algorithm called PRIM (Patient Rule 
Induction Method) (Friedman and Fisher, 1999) combined with a principal compo-

Figure 2.2
Notional Scenario Discovery Analysis
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nent analysis to generate the scenarios (Bryant and Lempert, 2010; Groves and Lem-
pert, 2007; Dalal et al., 2013).3  

The scenarios crafted through this process also provide the foundation for adap-
tive management, that is, developing, evaluating, and comparing potential modifi-
cations to the alternative plans that might reduce these vulnerabilities (Step 4). The 
design of such plans is often not obvious, but by providing detailed understanding of 
the vulnerabilities of proposed plans, RDM often helps decisionmakers identify and 
choose more successful adaptive plans (Groves et al., 2014; Bloom, 2015; Lempert 
and Groves, 2010; Lempert, Popper, and Bankes, 2003). For instance, knowing that a 
particular TMDL implementation plan may fail to meet goals under a particular set 
of conditions might help decisionmakers decide to modify that plan with an alterna-
tive mix of BMPs. Scenario discovery facilitates this process by identifying the specific 
conditions to which the plan is vulnerable. 

Facilitating Robust Adaptive TMDL Implementation Plans

To understand how RDM and the scenarios it helps to identify might facilitate robust 
and adaptive TMDL planning, it is useful to differentiate explicitly between three attri-
butes of decisionmaking approaches: metrics, criteria, and processes (Lempert, 2014). 
Many discussions of decisionmaking approaches often blur the distinction between 
these very different attributes (Kalra et al., 2014).

Decision metrics represent systematic methodologies used to measure the conse-
quences of alternative decisions. USEPA analyses use several different types of decision 
metrics, including benefit-cost analysis, cost-effectiveness analysis, and multiobjective 
frameworks. RDM analyses have used all three types.4 In this study, the case studies 
use multiattribute decision metrics based on pollution loadings, the relationship of 
these loadings to TMDL goals, and the cost of alternative BMPs.

Decision criteria are used to rank alternative decisions according to the deci-
sion metrics. Many approaches use optimality criteria, that is, they choose the deci-
sion option that gives the best performance contingent on some set of best-estimate 
assumptions. This is problematic when such performance is dependent on actual future 
conditions, or if multiple criteria are actually to be considered. In contrast, RDM 
uses a robustness criterion. The literature has many definitions of robustness, such as:  
(1) achieving some acceptable level of performance over a wide range of plausible futures 
and (2) trading some optimal performance for less sensitivity to broken assumptions 
(Lempert and Collins, 2007). The case studies in this report do not emphasize the 

3  Software packages that help to perform these analyses are available online (Benjamin P. Bryant, 2014).
4  For example, see Lempert (2014).
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choice among alternative TMDL plans but do judge existing plans by their ability to 
satisfice over a wide range of futures.

Lastly, a decision process includes several elements. Two that are particularly ger-
mane here include: (1) the analytic steps used to compare alternative options, and 
(2) the associated interactions between analysts and information users through which 
information is incorporated into decisions. As noted, RDM’s “backward” analysis, 
which begins with a plan for consideration rather than a consensus view on the uncer-
tainties, helps decisionmakers agree on decisions without having to agree on the under-
lying assumptions about the future.

This distinction, between criteria and measures on one hand and decision pro-
cesses on the other, becomes particularly useful in illustrating how RDM can facili-
tate the development of robust, adaptive TMDL implementation plans. In particular, 
RDM interacts with adaptive planning at two levels: the design of the plans themselves 
and the processes by which the plans are created and implemented.

Recent years have seen a growing interest in formalizing the concepts, methods, 
and tools for developing and evaluating adaptive strategies (Haasnoot et al., 2013; 
Walker and Marchau, 2003; Groves et al., 2013; Lempert and Groves, 2010). Rosen-
head (1972), one of the first to explore the connections between robustness and adap-
tive strategies, defines a decision as a “commitment of resources that transforms some 
aspect of the decision-making environment.” A plan, which foreshadows “a set of deci-
sions which it is currently anticipated will be taken at some time or times in the future,” 
is often adaptive because it often also includes “an identification of an intended future 
state which necessarily implies a set of future decisions.” Walker and colleagues (2001) 
similarly define adaptive strategies as comprising “sequential combinations of policy 
options. Some options are implemented right away; others are designed to be imple-
mented at an unspecified time in the future or not at all if conditions are inappropriate.” 

Essential components of an adaptive plan include a planned sequence of actions, 
the potential to gain new information that might signal a need to change this planned 
sequence, and actions that would be taken in response to this new information. The 
sequential decisions of traditional decision analysis (Morgan and Henrion, 1990), as 
well as real options approaches (Trigeorgis, 1996), follow this structure. Introducing 
language used in RDM analyses, Dewar (2002; 1993) describes a planning methodol-
ogy in which decisionmakers identify the key assumptions underlying a proposed plan. 
Dewar then defines shaping actions as those designed to make key assumptions more 
likely to resemble actual future conditions; hedging actions as decisions to be taken if 
key assumptions begin to fail; and signposts as observed events or thresholds that sug-
gest such an assumption is indeed failing. 

Table 2.1 provides a taxonomy of attributes and processes for developing and 
implementing adaptive strategies. The first column lists seven such attributes. The 
second column describes the contribution of each attribute. The third column lists 
how RDM and similar analyses might contribute to supporting that attribute.
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Based on Swanson et. al. (2006; 2010), this taxonomy offers a structure for con-
sidering what analytic approaches such as RDM may contribute to TMDL planning. 
The first three elements refer primarily to attributes of the policies themselves. The 
third element, in noting that an adaptive strategy should often consist of a portfolio of 
actions that aim to influence multiple elements of a complex interacting system, draws 
on key insights from integrated water resource management and the concept of defense 
in depth employed in integrated flood risk management. The final four elements refer 
primarily to the context in which the plans are developed and implemented, which in 
general should encourage review and response, encompass a diversity of approaches to 
promote learning, decentralize decisionmaking, and emerge from a process of mul-

Table 2.1
Attributes of Adaptive Decision Strategies

Attribute Purpose How RDM Might Contribute 

Attributes of plans themselves

1. Forward looking Identify longer-term vulnerabilities 
(including forgone opportunities) of 
near-term plans and potential  
responses to those vulnerabilities.

Enable useful consideration of the 
near-term implications of a large 
multiplicity of plausible futures.

2. Automatic plan 
adjustment

Specify signposts that indicate need for 
plan adjustment and contingent actions 
to take in response to those signposts. 

Identify and evaluate alternative 
combinations of shaping actions, 
hedging actions, and signposts.

3. Integrated plans Combine management of multiple 
elements of a system in a holistic plan 
that recognizes linkages among system 
elements.

Improve ability to consider multiple 
system elements, which often have 
differing levels of uncertainty.

Attributes of context in which plans are developed and implemented

1. Iterative review 
and continuous 
learning

Regularly review plans to address 
emerging issues and trigger important 
plan adjustments.

Help understand the conditions 
under which adaptive strategies may 
succeed or fail.

2. Multistakeholder 
deliberation

Improve legitimacy, salience, and 
comprehensiveness of decisions with 
deliberation among parties to the 
decision, all recognizing an “open 
impartiality” that accepts legitimacy 
and importance of view of others.

Embed analysis in process of 
deliberation with analysis that 
recognizes multiple worldviews; 
demands clear explication of 
reasoning, logic, and values; and 
facilitates iterative assessment.

3. Diversity of 
approaches

Implement a variety of alternative  
plans to gain knowledge about the 
most effective approaches.

Can help with experimental 
design in cases where variation is 
planned as part of active adaptive 
management.

4. Decentralized 
decisionmaking

Improve flexibility and responsiveness 
by placing decisionmaking authority 
and responsibility at the lowest 
effective and accountable level of 
governance.

Can help jurisdictions at multi-
levels develop plans without 
certainty about the actions of other 
jurisdictions.

SOURCE: Adapted from Swanson et al. (2006; 2010).
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tistakeholder deliberation.5 Note that the earlier elements in the taxonomy, such as 
forward looking and automatic plan adjustment, tend to relate to information products 
that might be delivered by a quantitative analysis. The latter elements in the taxonomy, 
such as multistakeholder deliberation and decentralized decisionmaking, tend to relate to 
decision support processes and the institutions in which they are embedded.

RDM has demonstrated success in supporting the development of plans with the 
first three attributes listed in Table 2.1. RDM is forward looking, in the sense that it 
evaluates a proposed plan over many hundreds to thousands of plausible paths into 
the future. The approach then identifies the key factors distinguishing those futures 
in which the plan meets its goals from those where it does not. This information can 
help identify combinations of signposts, hedging actions, and shaping actions within a 
stakeholder process of deliberation with analysis that can help decisionmakers to craft 
these elements together into adaptive strategies.

RDM has also demonstrated success in supporting planning processes with the 
last four attributes listed in Table 2.1. In particular, RDM has been used to facilitate 
multistakeholder deliberation and develop adaptive plans that pursue a diversity of 
approaches (Groves et al., 2013; Groves, Sharon, and Knopman, 2012). 

Case Studies Illuminate These Themes

The case studies we describe in the next two chapters begin to implement and test these 
ideas. The Patuxent River case study (Chapter Three) examines the water quality man-
agement plans for the basin over hundreds of futures defined by alternative assump-
tions about future climate and land use. The analysis identifies the sets of future condi-
tions for which an existing implementation plan meets or misses its water quality goals. 
The analysis concludes by examining the cost-effectiveness of additional investment 
in options that could reduce the vulnerabilities of the current plan. The second case 
study (Chapter Four) similarly identifies the vulnerabilities of the current water qual-
ity implementation plan for the North Farm Creek tributary of the Illinois River over 
dozens of futures defined by alternative assumptions about future climate and BMP 
effectiveness. In contrast to the Patuxent River plan, however, the North Farm Creek 
plan was laid out as an adaptive management strategy. The second case study therefore 
begins to describe the types of signposts and response options the region could use to 
implement this adaptive strategy. The case studies emphasize the first three steps of the 

5  The taxonomy in Table 2.1 largely maps onto Swanson et al.’s (2006) seven tools for adaptive policies. But the 
Swanson taxonomy focuses on distinguishing between tools useful for anticipated and for unanticipated changes. 
The taxonomy here focuses more on distinguishing between attributes of the plan and those of the context in 
which they are developed. In addition, the taxonomy here includes the attribute of integrated plans that has 
become increasingly important in areas such as integrated water resource management.
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RDM process shown in Figure 2.1 and provide only initial explorations of potential 
new planning options and the trade-offs among them.

Overall, RDM and related analytic approaches may offer the potential for an 
improved approach to TMDL planning that both provides the information needed for 
the development of robust adaptive plans and supports the types of deliberative and 
stakeholder-involved processes such strategies may require. After presenting the two 
case studies, the final chapter will assess the extent to which the analyses here approach 
these goals and suggest potential next steps to enhance the ability of USEPA and its 
partners to ensure the health and safety of the nation’s waters in the face of climate 
change and other uncertainties.
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CHAPTER THREE

Managing Storm Water in Maryland’s Patuxent River Basin 
with Climate and Land Use Uncertainty

Introduction

Managing Storm Water in a Densely Developed Urban Watershed

The Chesapeake Bay is the largest coastal estuary in the United States: a complex eco-
system that includes important habitats, food webs, and other coastal resources. The 
Chesapeake Bay watershed stretches across more than 64,000 square miles, encompass-
ing parts of six states—Delaware, Maryland, New York, Pennsylvania, Virginia, and 
West Virginia—and includes major metropolitan centers such as Baltimore and Wash-
ington, D.C. The Bay and its tributary rivers, wetlands, and forests provide homes, 
food, and protection for complex groups of animals and plants. Marine species of all 
types and sizes either live in the Bay and its tributaries or use its waters as they migrate 
along the East Coast. 

The health of the Chesapeake Bay is challenged by the interactions between the 
Bay’s ecosystems and the human communities that depend on its water resources. In 
particular, pollution from urban stormwater runoff in the form of nitrogen, phospho-
rus, or dissolved sediment flowing into the Bay can significantly hinder the capacity 
of bay grasses to grow and reduce oxygen levels that are needed by all aquatic species 
(Orth and Moore, 1983; Najjar et al., 2010; Chesapeake Bay Program, 2013a). Manag-
ing the level of these nutrients in the Bay is a continual challenge, exacerbated by pres-
sures from several different sources. For instance, changes in land use patterns, trig-
gered by urban development, contribute to the transformation of forest and farmland 
into developed areas with roads, septic systems, and impervious surfaces that reduce 
natural infiltration into soil and facilitate the transportation of pollutants into the Bay 
(Lowrance et al., 1997). In addition, climate change is expected to exacerbate these 
problems. Climate projections for the Chesapeake Bay region include increased pre-
cipitation in winter and spring, which can increase the flow of nutrients and sediments 
to the Bay, and higher air and water temperatures, which can diminish the capacity of 
bay grasses to grow (Najjar et al., 2010). 

After a series of discussions with Chesapeake Bay Program representatives, 
RAND and USEPA identified one key tributary of the Chesapeake Bay, the Patuxent 
River, as a good candidate to test the value of RDM for urban stormwater manage-
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ment decisions. The Patuxent River is located between Baltimore and Washington  
(Figure 3.1). Its watershed is 957 square miles in area (2,479 km2), highly urbanized, 
and has a rapidly growing population. 

Urban growth in the Patuxent River Basin transforms farmland and forests into 
developed areas, increasing the land area covered by impervious surfaces such as roads 
and parking lots. This development process increases urban runoff and, in turn, can 
increase the amount of pollutants reaching the Patuxent River and flowing into the 
Chesapeake Bay. Under many circumstances, urban runoff can lead to a higher con-
centration of nitrogen, phosphorus, or sediment in water bodies (Cheung et al., 2003; 
Leopold, 1968; Taylor et al., 2005; Van Metre, Mahler, and Furlong, 2000; Wolman 
and Schick, 1967), which can make maintaining adequate water quality standards a 
substantial challenge. Urban runoff from the Patuxent River is a key stressor for water 
quality in the Bay, making this location a good choice for our first case study. 

The Patuxent is also the largest and longest river entirely within the State of Mary-
land; its watershed is the largest in the state. The Chesapeake Bay Program expects that 
the results of this pilot analysis will serve as a template for future planning as it incor-
porates climate change into its future water quality planning for the broader Chesa-
peake Bay region as mandated by Executive Order 13508 (Office of the Press Secretary, 
The White House, 2009). Note that the Patuxent is also a tidal river and faces future 
water quality threats (e.g., channel erosion) from sea level rise. The interaction of the 
river and coastal change when considering future climate impacts is important but 
could not be incorporated into this initial pilot study.

Meeting Current and Future Water Quality Standards

To improve water quality in the Chesapeake Bay, in 2010 USEPA and the Bay water-
shed jurisdictions—Maryland, Virginia, Pennsylvania, Delaware, West Virginia, New 
York, and the District of Columbia—established a TMDL for pollutants that can 
enter the Bay. The states within the Bay then allocated caps for nutrient and sedi-
ment loads across their major basins and developed statewide watershed implemetation 
plans (WIPs) that set forth a series of actions designed to meet their respective TMDL 
targets. 

Maryland’s WIP consists of three planning phases with a final implementation 
date of 2025. The first planning phase was completed in 2010; Phase II, drafted in 
2012, is currently being implemented. The development of Phase III will begin in 
2017 and is expected to further refine the implementation plans developed in Phase I 
and Phase II. Maryland’s Phase I WIP set initial limits on the amount of nutrient and 
sediment contributions from different sources and established guidelines for the plans 
to be used for reducing the levels of these pollutants entering the Chesapeake Bay. 
Phase II builds on this initial effort by providing more geographic detail regarding the 
TMDLs and the plans required to meet these targets. In addition, to develop Phase II 
the State of Maryland Department of the Environment (MDE) and USEPA placed a 
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Figure 3.1
Map of the Patuxent River Watershed

SOURCE: Modi�ed from Bachman and Krantz, 2000.
RAND RR720-3.1

Patuxent River watershed
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greater emphasis on collaborating with key local stakeholders and other federal agen-
cies. During the yearlong collaborative effort, for instance, there were nearly 100 out-
reach events that engaged state staff members, soil conservation managers, local deci-
sionmakers, and other federal partners (MDE, 2012).

Table 3.1 shows the overall WIP targets from Phase II for the Patuxent River 
from each pollutant source. Compared with Phase I, the Phase II targets are more 
ambitious in terms of the planned pollutant reduction. Table 3.3, in contrast, compares 
just the nitrogen, phosphorus, and sediment targets for stormwater across the Phase I 
and Phase II WIP.

The Phase II Patuxent TMDL targets were set through a combination of histori-
cal water quality and hydrological monitoring data, coupled with simulation model-
ing conducted by USEPA’s Chesapeake Bay Program. The plan calls for a substantial 
long-term investment of $14.4 billion for Maryland’s contribution to Bay restoration 
from 2010 to 2025, $7.4 billion (51 percent) of which would go toward stormwater 
pollutant reduction BMPs (MDE, 2012).1 We estimate the Patuxent River share of 
these stormwater BMP costs at approximately $2.5 billion.2 Despite the significant 

1  USEPA (2014) defines BMPs as “techniques, measures or structural controls used to manage the quantity and 
improve the quality of stormwater runoff.”
2 The cost estimate for the Patuxent alone considers the acreage of BMPs implemented in Phase II WIP described 
in the input parameters of the Phase 5.3.2 model for the Patuxent (Table 3.5) and the annualized costs of each 
BMP estimated by King and Hagan (2011) for the period 2010–2025. The BMPs included in this estimate are 
bioretention, bioswale, dry detention ponds, erosion and sediment control, dry extended detention ponds, urban 
filtering practices, infiltration practices without sand and vegetation, infiltration practices with sand and vegeta-
tion, vegetated open channels, wet ponds and wetlands, and retrofit urban stormwater. 

Table 3.1
Maryland’s Phase II Watershed Implementation Plan Targets for the Patuxent River

Source Sector

2025 Final TMDL Target 
(million pounds/year) 

Nitrogen Phosphorus Sediment

Agriculture 0.427 0.064 37.21

Forest 0.472 0.014 13.51

Nontidal atmospheric 0.021 0.002 N/A

Septic 0.038 N/A N/A

Stormwater 0.936 0.079 43.97

Wastewater 0.948 0.083 8.871

SOURCE: MDE, 2012.
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cost and long time frame for implementation, the performance of the WIP has not 
been tested against a changing climate, alternate future land use patterns, or other key 
uncertainties.

Best Management Practices to Reduce Stormwater Runoff Pollution

A key goal of this effort was to consider how performance of BMPs to control urban 
stormwater pollution would be affected over the long term given climate change. Best 
management practices were first introduced to reduce the peak discharge volume into 
storm sewers. Dry ponds were built to retain the water and release it gradually into the 
sewage system. For this reason, such ponds are one of the most common BMPs for con-
trolling urban stormwater pollution in the United States today. Later, environmental 
concerns led to the idea of LID, which suggests that new projects should impose the 
least possible changes to the environment, including hydrology (Dietz, 2007). BMPs 
were needed not only to decrease the peak discharge of stormwater runoff, but also 
to ensure that the runoff does not carry pollutants. This increased the popularity of 
“green” BMPs such as bioretentions, bioswales, and infiltration trenches. In addition 
to reducing runoff volume, these BMPs offer other benefits such as sediment retention, 
plant uptake of pollutants, and natural filtration as a means to treat stormwater (i.e., 
the water is filtered when it infiltrates the soil). 

Scientific understanding of actual BMP performance when implemented remains 
limited. Monitoring data are labor-intensive to gather, site- and design-specific, and 
difficult to generalize broadly (Jones et al., 2004). Existing stormwater BMP data are 
typically characterized by large uncertainties and allow for only rough or heuristic esti-
mates of potential pollution load reduction from proposed new infrastructure invest-
ments (King and Hagan, 2011). 

This limitation on scientific knowledge is exacerbated by climate change, which 
could alter the frequency or intensity of precipitation events in watersheds such as the 
Patuxent, potentially leading to an increased number of large storm events (IPCC, 2012; 
National Climate Assessment and Development Advisory Committee [NCADAC], 
2013; Wuebbles et al., 2014). Further, there are few existing studies on BMP effective-
ness as a function of storm size. To our knowledge, only one study to date has modeled 
pollutant removal in BMPs (Ackerman and Stein, 2008), while several others focused 
on the discharge reduction for various storm sizes (Damodaram, 2010; Heitz, Khos-
rowpanah, and Nelson, 2000). Ackerman and Stein (2008) found that BMP effective-
ness suffered during large storms and wet years, with effectiveness most sensitive to 
infiltration rates. Damodaram (2010) concluded that the infiltration-based LIDs are 
more successful than storage-based conventional BMPs in reducing peak flow during 
small storms. But for large storms, the conventional BMPs deliver better results; the 
authors recommend implementing a combination of LIDs and conventional BMPs. 
Heitz, Khosrowpanah, and Nelson (2000) used a simulation model to show that a 
detention pond needs to increase in size relative to its drainage area (a proxy for the 
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amount of runoff reaching the pond) to boost volume capture efficiency. This study did 
not specify the effect on pollutant removal, but the authors expect it to be nonlinear. 

This chapter considers how USEPA and the State of Maryland should plan for 
stormwater management in the long term given the substantial uncertainties about cli-
mate, land use, and the effectiveness of BMPs for contaminant removal. 

Approach

Participatory Scoping Using the XLRM Framework

This pilot was a collaborative effort between RAND, USEPA/ORD, and the  
Chesapeake Bay Program. Stakeholder engagement played an important role in the 
study. The authors and partnering organizations conducted an in-person kickoff meet-
ing on October 5, 2012, at the Chesapeake Bay Program office in Annapolis, Mary-
land. At that meeting, participants developed a more detailed scope for the study and 
identified the key contributors for different elements of the study. 

The scoping approach organizes the results from the participatory workshop 
within the “XLRM” framework originally formulated by Lempert, Popper, and 
Bankes, 2003. In the XLRM abbreviation, “M” stands for the objectives to be met 
and the performance metrics that are used to quantify these objectives; “L” stands for 
management plans (or levers) that can be used to achieve these objectives; “X” stands 
for uncertain factors that could affect the ability to achieve decisionmakers’ objec-
tives, often related to long-term uncertainty; and “R” stands for physical and economic 
relationships among these elements as reflected in planning models. Each one of these 
categories was discussed in depth with the study partners, with several subsequent tele-
phone calls and other exchanges to further consolidate and elaborate important ele-
ments. We use this framework to organize and describe the study scope.

The study team identified four types of uncertainties for this effort: hydrologic 
uncertainty related to climate change, future population growth, changes to land use 
patterns, and BMP effectiveness across different storm types. Against these uncertain-
ties, we tested the range of BMPs specified in Maryland’s Phase II WIP for the Chesa-
peake Bay TMDL, including green infrastructure options such as urban forest buffers, 
permeable pavement, bioretention, vegetated open channels, and urban infiltration 
practices. 

To perform the quantitative water quality experiments, this case study applies the 
Chesapeake Bay Program’s Phase 5.3.2 Watershed Model and the supporting Scenario 
Builder modeling suite, which includes a land use change model and an airshed model. 
The study uses four key performance metrics, including annual average delivered loads 
of nitrogen, phosphorus, and sediments from the Patuxent basin to the Chesapeake 
Bay, specifically focusing on pollutant loads from the urban source sectors. We also 
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considered BMP implementation cost as a performance metric for a portion of the 
analysis. 

Table 3.2 shows the final XLRM matrix developed for this effort. Each portion of 
the scope is described in further detail in the sections following.

Performance Metrics

During the scoping workshops, participants identified three main sources of contami-
nants relevant for our case study: stormwater, wastewater, and other sources (primarily 
undeveloped/forested areas and agriculture). Each category contributes roughly one-
third of the overall pollutant load into the Chesapeake Bay from the Patuxent River 
Basin. However, because this case study is intended to focus specifically on stormwater 
management, we consider only sources of contaminants directly tied to the corre-
sponding urban land uses (Chesapeake Bay Program, 2013b): 

• Construction: Includes construction land, exposed rocks, and beaches.
• Extractive: Includes active and abandoned mines, gravel pits, and other extrac-

tive uses that require urban storm sewer systems regulated within urban jurisdic-
tions.

• Impervious and pervious land uses: Includes impervious and pervious seg-
ments in areas characterized by a high percentage of constructed materials (e.g., 
asphalt, concrete, buildings, etc.). These land uses include single-family hous-
ing units (low-intensity residential), apartment complexes and row houses (high-
intensity residential), and commercial, industrial, and infrastructure uses. 

Table 3.2
XLRM Scoping Summary for the Patuxent Case Study

Uncertain Factors (X) Policy Levers (L)

Hydrology and climate change
• Observed historical hydrology (1984–2005)
• Downscaled climate projections

• 2035–2045
• 2055–2065

Land use
• Population growth (2010–2050)
• Infill, sprawl, and forest conservation

BMP effectiveness
Evapotranspiration model parameters

MDE Phase II WIP BMPs, including:
• Stormwater management–filtering practices
• Stormwater management–infiltration 

practices
• Urban stream restoration
• Urban forest buffers

Systems Model Relationships (R) Performance Metrics (M)

Phase 5.3.2 Chesapeake Bay Watershed Model
• Airshed model
• Land use change model
• Watershed model
• Chesapeake Bay model

Metrics
• Nitrogen delivered loads
• Phosphorus delivered loads
• Sediment delivered loads
• Implementation costs (extended analysis only) 

Targets
• Phase I WIP TMDLs
• Phase II WIP TMDLs (2017 interim; 2025 final)
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Water Quality Metrics

Based on the TMDL and Maryland’s Phase II WIP targets and drawing from these 
land uses, the three contaminant outcome metrics simulated using the Phase 5.3.2 
Watershed Model were 

• Average annual nitrogen delivered loads to the Bay (millions pounds/year)
• Average annual phosphorus loads to the Bay (millions pounds/year)
• Average annual sediment loads to the Bay (millions pounds/year).

These metrics are crucial for assessing the Patuxent Basin’s ecosystem health. 
Excess nitrogen and phosphorus enhance the growth of dense algal blooms that 
adversely affect blue crabs, block sunlight needed by bay grasses to grow, and reduce 
available oxygen needed by bottom-dwelling species (Chesapeake Bay Program, 2013a; 
Najjar et al., 2010). Excess sediment blocks sunlight needed by plants that grow in the 
Bay’s shallows, which in turn affects young fish and shellfish that use these ecosystems 
for protection. Sediment can also have acute and chronic effects on aquatic life when 
combined with chemical contaminants. In addition, excess sediment has a direct eco-
nomic impact by silting ports and channels, thus reducing navigation (Chesapeake Bay 
Program, 2013a). 

In order to maintain a healthy environment in the Chesapeake Bay and support 
restoration efforts, the TMDLs set limits on the amount of nutrients and sediment 
that can enter the Patuxent or subsequently flow into the Chesapeake Bay (Table 3.3, 
Table 3.4). Our analysis compares the results from future simulations against these 
established thresholds. We identify as vulnerable those cases that exceed these limits. 

Table 3.3
Maryland WIP Stormwater Target Loads for the Patuxent River

Pollutant Type

Annual Target (million pounds/year)

Phase I
Phase II

2017 Interim
Phase II

2025 Final

Nitrogen 2.740 1.029 1.029

Phosphorus 0.210 0.078 0.078

Sediment 85 52 55.9

SOURCE: MDE, 2012, adjusted by the pilot study team. Note that these thresholds are adjusted to the 
calibration runs of the Phase 5.3.2 model and differ somewhat from those listed in the Phase II WIP 
report and in Table 3.1 of this report. Differences between calibration results and actual Phase II WIP 
targets can arise because districts and local authorities have room for adjusting the model’s estimated 
targets to their regions. 
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As part of this analysis, it was necessary to adjust the thresholds stipulated in 
Maryland’s Phase II WIP slightly to better reflect the calibration results from the Phase 
5.3.2 model. This adjustment was verified with the Chesapeake Bay Program. Differ-
ences between calibration results and the actual Phase II WIP targets can arise because 
districts and local authorities still have some room for adjusting these models’ esti-
mated targets to the context of their regions. 

In our simulations, the Patuxent Basin’s contribution to the Chesapeake Bay 
TMDL for each contaminant was calculated using the watershed model, but the policy 
analysis focused only on the urban stormwater portion of the plan. Other contami-
nant sources, such as wastewater, agriculture, and forests, were allowed to vary across 
the uncertain futures considered (e.g., greater sprawl yielding more septic systems), 
but were not otherwise taken into consideration when comparing between stormwater 
management plans. 

During the scoping workshop, participants agreed that this effort is relevant to 
planners in several agencies, including USEPA’s Office of Water and Chesapeake Bay 
Program. However, because Maryland’s Department of the Environment is ultimately 
responsible for meeting the stormwater management goals for the Patuxent, this study 
takes the state’s perspective when considering alternate policy approaches—in particu-
lar, the MDE WIP for stormwater loads—even though the results address the overall 
TMDL set by USEPA. 

Best Management Practice Costs

We adapted standardized cost estimates for new BMP implementation from Mary-
land’s Department of the Environment for each of the stormwater BMP types dis-
cussed below (King and Hagan, 2011). The estimates represent the unit cost associated 
with the implementation of each BMP per acre of area treated, as shown in Table 3.5. 

Policy Levers

For this case study, we considered two different plans for managing the Patuxent’s 
nutrient levels. The first approach, Current Management, shows the case in which 

Table 3.4
Maryland Phase II WIP Final 2025 Stormwater Target Loads, by Land Use 

Land Use Type Nitrogen Phosphorus Sediment

Construction 0.094 0.017 17.814

Extractive 0.013 0.002 1.217

Nonregulated developed 0.198 0.013 3.399

Regulated developed 0.724 0.046 33.470

NOTE: Quantities in millions of pounds per year (MDE, 2012). Adjusted by the pilot study team to match 
Patuxent calibration results.
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no additional actions are taken for managing nutrients in the Bay beyond the BMPs 
already implemented as of 2012. This no-action case serves as a baseline, against which 
we compare the approach set forth in the State of Maryland Phase II WIP. In this 
case, the simulation results reflect the outcomes in which all BMPs identified in the 
state’s plan are implemented in the Patuxent by the year 2025. Table 3.6 shows how the  
additional BMPs build on existing management. The tabular results reflect that the 
Phase II WIP includes the implementation of several new green infrastructure BMP 
types, such as bioretention or bioswales, as well as expanded investment in existing 
BMPs, such as urban nutrient management or erosion and sediment control. 

Uncertain Factors (X)

During the scoping discussion, participants identified four potential key sources of 
uncertainty to consider in this case study: 

Table 3.5
Best Management Practice Unit Costs

BMP Full Name

Average Annual  
Implementation Cost

(dollars per acre-foot treated)

Standard stormwater management (gray infrastructure)

Dry detention ponds and hydrodynamic structures 3,181

Erosion and sediment control 1,310

Infiltration practices without sand and vegetation 3,789

Infiltration practices with sand and vegetation 4,431

Mechanical street sweeping 754

Nature-based stormwater management (green infrastructure)

Bioretention 3,875

Bioswales 3,031

Urban forest buffers 2,860

Urban filtering practices 4,156

Retrofit stormwater management 6,429

Vegetated open channels 1,810

Wet ponds and wetlands 1,968

Urban stream restoration 4,116

SOURCE: Modified from King and Hagan (2011). Retrofit stormwater management is the average annual 
cost of bioretention (retrofit–highly urban), dry extended detention ponds (retrofit), and wet ponds 
and wetlands (retrofit). Urban filtering practices is the average annual cost of filtering practices (sand, 
above ground) and filtering practices (sand, below ground).
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1. the effects of a changing climate on the future basin hydrology
2. potential changes to future land use in the Patuxent Basin from population 

growth or new development patterns
3. uncertainty regarding the contaminant removal effectiveness of stormwater 

BMPs 
4. alternative carbon dioxide adjustment scenarios. 

Hydrologic Uncertainty

The effects of a changing climate on future water quality in the Patuxent River are 
the central uncertain drivers to be considered in this analysis. To consider potential 
changes in hydrology due to a changing climate, we included downscaled air tem-
perature and precipitation sequences from selected climate models and emissions sce-
narios provided for this purpose and already adapted for the Phase 5.3 model by the 
Chesapeake Bay Program. Specifically, we used time series inputs derived from IPCC 

Table 3.6
Best Management Practices Included in the Phase II WIP

BMP Name Unit
2012 

Progress 2025 WIP
Change from 

2012

Standard stormwater management (gray infrastructure)

Dry detention ponds and hydrodynamic 
structures

Acres 4,857 2,885 –1,972

Erosion and sediment control Acres 1,258 1,848 590

Stormwater management generic BMP Acres 19,566 7,443 –12,123

Urban nutrient management Acres 13,544 30,898 17,354

Urban infiltration practices Acres 1,012 1,511 498

Mechanical street sweeping lbs/year – 568,089 568,089

Nature-based stormwater management (green infrastructure)

Bioretention Acres – 2,131 2,131

Bioswales Acres – 1,654 1,654

Urban forest buffers Acres 68 881 813

Urban filtering practices Acres 1,482 9,480 7,997

Retrofit stormwater management Acres 3,501 12,660 9,159

Vegetated open channels Acres – 595 595

Wet ponds and wetlands Acres 4,850 7,839 2,989

Urban stream restoration lbs/year 22,948 11,481,346 11,458,398

SOURCE: Phase 5.3.2 model supporting data.
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Fourth Assessment Report (AR4) models, and subsequently downscaled by U.S. Geo-
logical Survey (USGS) (Solomon, 2007; Wilby et al., 2004), to develop a series of 
climate-altered hydrology projections designed to represent different plausible hydrology 
futures. The downscaling yielded hourly time series data at one-eighth degree spatial 
resolution for use in the model from six GCMs across three IPCC Special Report 
on Emissions Scenarios (SRES) emissions scenarios (Najjar, Patterson, and Graham, 
2009; Pruzinsky and Bhatt, 2012; IPCC, 2000) (Table 3.7).

Using results from all models across three emissions scenarios resulted in a total of 
18 climate-altered hydrology projections. Based on data availability, we considered two 
ten-year future time periods from these sequences: 2035–2045 and 2055–2065. For 
each model and emissions scenario, Figure 3.2 shows how the temperature and pre-
cipitation inputs vary over the period 2035–2045 (top pane) and 2055–2065 (bottom 
pane) in comparison with the observed historical climate in the Patuxent. These changes 
are summarized by the average change in annual precipitation (x-axis, percent change) 
and average temperature anomaly (y-axis) relative to the 1984–2005 historical baseline. 

Temperatures in the set of climate projections used range from an increase of 1.25 
to 3.75 degrees Fahrenheit by 2035–2045 up to 5 to 5.5 degrees Fahrenheit by 2055–
2065. Examining the 2035–2045 results, we find that the downscaled projections 
show a wide range of potential changes to future precipitation from different models 
and emissions scenarios, from an average annual rainfall decline of nearly 10 percent to 
an increase of over 10 percent. The precipitation projections vary within each emissions 
scenario, showing no obvious pattern, but some clustering is noted for results from the 

Table 3.7
Summary of AR4 Climate Models and Emissions Scenarios Applied in Case Study

GCM Name Source

BCCR-BCM2 Bjerkenes Centre for Climate Research, Norway

CSIRO Mk3 Commonwealth Scientific and Industrial Research Organization, Australia

CSIRO Mk3.5 Commonwealth Scientific and Industrial Research Organization, Australia

INM-CM3.0 Institute of Numerical Mathematics, Russia

MIROC3.2 Model for Interdisciplinary Research on Climate, National Institute of 
Environmental Studies, Japan

NCAR-CCSM3 National Center for Atmospheric Research, U.S.A., Community Climate System 
Model 3

Emissions Scenarios

SRES A2

SRES A1B IPCC Special Report on Emissions Scenarios (IPCC 2000)

SRES B1
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Figure 3.2
Change in Precipitation and Temperature from the Historical 1984–2005 Period for Two 
Future Time Periods
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same GCM run across emissions scenarios. For example, all three Institute of Numeri-
cal Mathematics Coupled Model Version 3.0 (INM-CM3.0) runs tend toward drier 
future conditions, while the NCAR-CCSM3 runs are clustered near the high end of 
higher precipitation futures for the Patuxent Basin. The 2035–2045 results in Figure 
3.2 confirm that the model uncertainty associated with precipitation is high and could 
lead to a range of plausible outcomes when translated into runoff and pollutant load.

The bottom pane, showing the additional change by 2055–2065, tells a similar 
story. As expected, the 2055–2065 projections yield warmer conditions than the 2035–
2045 climate sequences, though the rate of increase varies by model and emissions 
scenario. In contrast, the precipitation changes are much more heterogeneous: Some of 
the 2055–2065 projections are wetter than in 2035–2045, while others are drier. The 
change over 20 years can be dramatic for a given model and emissions scenario. For 
example, the CSIRO Mk3.5 model in the A1B scenario goes from one of the “driest” 
models, on average, in 2035–2045, to one of the “wettest” by 2055–2065. In contrast, 
the MIROC3.2 model shows wetter futures for the Patuxent in the earlier period, but 
drier futures 20 years later. 

We considered both future time periods in our analysis. However, for the remain-
der of this chapter, for convenience we describe results from the 2035–2045 period 
only. This period better overlaps with the time horizon of the Phase II WIP, and the 
bottom line results are very similar from both future hydrology periods. Appendix C 
includes analysis results for the 2055–2065 climate sequences. 

Another way to represent the climate-altered hydrology projections is by fitting 
an extreme value distribution to the resulting runoff volumes. Figure 3.3 shows the 
annual exceedance probability (return period) of daily runoff from the observed his-
torical hydrology data set compared with the 18 climate-altered hydrology projections 
for 2035–2045, fitted using a Log-Pearson Type III three-parameter distribution com-
monly applied when considering extreme precipitation or flood events. Here, two log-
transformed distribution parameters (standard deviation and skew) are held constant 
at the values derived from the historical data, while the distribution mean is allowed to 
vary with the climate-altered hydrology projections. 

Results are similar to Figure 3.2 but generally show that most climate-altered 
hydrology futures show (a) an increase in runoff volume at any given return period, 
and (b) larger runoff volumes per event becoming more likely by 2035–2045 in most 
cases. For example, the historical upper bound 10 percent annual chance (10-year) 
daily runoff volume for the basin is 2,050 acre-feet (black dashed lines). Most climate-
altered hydrology projections show this volume becoming more likely by 2035–2045, 
with the most extreme projection showing this volume doubling in annual likelihood 
to a 20 percent annual chance (five-year) event. 
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Land Use Uncertainty

Twelve land use scenarios were included in this case study. These land use scenarios 
reflect potential future changes across two key dimensions: population growth and 
land use patterns. To account for an uncertain and growing population, we considered 
four population scenarios, accounting for population growth for the period 2010–
2050.3 Several scenarios were adapted from USEPA’s Integrated Climate and Land Use 
Scenarios (ICLUS) by our Chesapeake Bay Program partners for use in this study.4 The 
population growth scenarios, in order of increasing population, include

1. 2010 population: Assumes that the population of the Patuxent Basin will 
remain constant at 2010 levels (725,000) for the next four decades.

3  The Patuxent Basin includes portions of the following counties in Maryland: Anne Arundel, Howard, Mont-
gomery, Prince George, Calvert, Charles, and St. Mary.
4  USEPA developed the ICLUS scenarios by adapting U.S. Census population and migration projections to be 
consistent with the storyline of IPCC’s SRES scenarios. Population is projected using two models: (1) a demo-
graphic model that generates population projections at the county level, and (2) a geospatial model that estimates 
population density based on housing units at a 2.47-acre (1-hectare) resolution (USEPA, 2009b).

Figure 3.3
Observed Historical and Climate-Altered Hydrology Daily Runoff Volume Return Periods for 
the Patuxent River Basin

NOTE: Solid black line shows daily runoff by return period from the observed historical hydrology
scenario. Gray shading shows the range of daily runoff projections from the climate projected hydrology
scenario. Black dashed lines highlight the 10-year daily runoff, while the red dashed line shows how this
volume might occur more frequently in one extreme climate projection.  
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2. ICLUS B1 scenario: Land use changes under this scenario result from poten-
tial changes in urban growth rates resulting from a rapid demographic transi-
tion to low mortality and fertility, consistent with the IPCC SRES B1 scenario. 
The population would reach 773,000 residents by 2050.

3. Trend growth: Under this land use scenario, population growth in the Patux-
ent Basin will continue on the observed historical trend, increasing the popula-
tion from 725,000 residents in 2010 to 940,000 residents by 2050. 

4. ICLUS A2 scenario: Land use changes under this scenario as a result of poten-
tial population growth over the coming decades resulting from a slow demo-
graphic transition to low mortality and fertility, consistent with the IPCC SRES 
A2 scenario. Under this scenario, the population would reach 1.31 million resi-
dents by 2050.

The second dimension corresponds to future development patterns, reflecting 
either future infill for already dense areas, or “sprawl” as new residents convert forested 
or agricultural regions to new urban development areas. Once again, the Chesapeake 
Bay Program played a key role in developing these scenarios by applying Version 2.0 of 
the Chesapeake Bay Land Change Model (CBLCM). The CBLCM uses U.S. Census 
data and a growth allocation model to project future urban area at each watershed 
segment. Then, for each segment, the proportions of urban growth that affect other 
land uses (e.g., farmland, forest, sewer, septic) are estimated using a stochastic cellular 
automata model customized for the Chesapeake Bay that extrapolates historic pat-
terns of urban growth into the future (Goetz and Jantz, 2006; Claggett et al., 2008). 
CBLCM parameters were adjusted to reflect two plausible future land use patterns: 

1. Infill: This scenario assumes that the absorption of housing units within the 
existing built and sewered landscape increases by 50 percent over recent growth 
patterns.

2. Sprawl: This scenario assumes that new growth follows the recent historical 
pattern, leading to additional urban acreage at lower population density.

A factorial combination of population projections and development patterns pro-
duces a total of eight land use scenarios. These scenarios primarily affect both runoff 
and pollutant loads through the conversion of forest, agriculture, or other pervious land 
use types to new impervious ground cover. Figure 3.4 shows the increase in impervi-
ous land cover across the scenarios with no additional policy efforts undertaken and 
when compared with land use in the Patuxent Basin in 2010. As shown in the figure, a 
combination of sprawl and more rapid population growth could lead to an increase of 
over 63 percent in impervious cover by 2050, whereas more benign futures could see a 
roughly 10–20 percent increase. 
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Additional Uncertainties

We also explored several other sources of uncertainty during the investigation, dis-
cussed briefly below. Both uncertain drivers were later removed from the final experi-
mental design after initial testing and were instead replaced with single point estimates 
to reduce computation time.

Effect of Climate Change on BMP Performance

We initially considered a range of parameters reflecting varying BMP performance 
with increasingly large storm events. The scenarios varied in terms of how rapidly the 
BMP’s capacity to remove contaminants is reduced as a function of runoff event return 
frequency, ranging from the case in which BMP performance is not affected by runoff 
return frequency to a case in which BMP performance degrades rapidly. Initial testing 
of this uncertain relationship, however, showed little variation in WIP performance 
when alternate assumptions were considered. For the final experimental design in this 
analysis, the Chesapeake Bay Program’s initial assumptions regarding how BMP con-
taminant removal declines as storms increase in size were applied across all cases. 

BMP performance uncertainty also could include uncertainty related to future 
operations and maintenance (O&M) of stormwater BMPs. Inadequate maintenance 
could dramatically affect BMP performance. This uncertainty was not considered in 
the Patuxent case study but is addressed in the Illinois River case study described in 
Chapter Four.

Figure 3.4
Impervious Area Projections for Three Land Use Scenarios
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Carbon Dioxide Adjustments

The Phase 5.3.2 model uses potential evapotranspiration to evaluate evaporative losses 
from vegetation. In the context of the Patuxent River, evapotranspiration is a poten-
tially important factor in determining the precipitation that runs off into the Patuxent 
River. Previous empirical studies suggest that higher levels of carbon dioxide could 
reduce evapotranspiration losses by around 10 percent, which could lead to higher 
flows in the Chesapeake Bay (Butcher, 2013; Lockwood, 1999). 

Given the potential importance of evapotranspiration in determining water flows 
in the Patuxent River, it is important to increase the accuracy of these estimations 
in the Phase 5.3.2 model. Currently, the model does not take into account the effect 
of changes in carbon dioxide emissions in the plant growth estimations. In order to 
account for this effect, we used new adjusted plant growth parameters that account for 
the effect of rising carbon dioxide emissions on increases in plants’ water use efficiency. 
This reduces evapotranspiration and can potentially increase water flows in the Patux-
ent River (Butcher et al., 2014). 

However, simulation tests showed that the parameter adjustments resulted in 
runoff increases on the order of 1 percent or less. As a result, rather than consider both 
the original and revised parameter assumptions in the scenario analysis, for simplic-
ity the results presented below are shown only with the carbon dioxide adjustment in 
place. 

Relationships 

The Phase 5.3.2 Watershed Model integrates a number of modules that were applied 
to complete the simulations in this case study. The overall model architecture is sum-
marized in Figure 3.5. The airshed model and the land use change model generate inputs 
needed by the watershed model. The airshed model takes into account nitrogen emis-
sions from power plants, vehicles, and other sources to predict the amount and allo-
cation of these pollutants into the Patuxent Basin. The land use model estimates the 
effects of urban land use and population on sewer and septic systems based on data 
from the U.S. Census, land cover trends, sewer service areas, population projections, 
and land conversion trends. The scenario builder module combines the inputs from 
these two models and other data to produce input tables for the watershed model, 
which describe BMP acreage or direct load reductions (where applicable), total acreage 
by land use type, and other input data. The watershed model uses information provided 
by scenario builder and climate data to estimate the amount of nutrients and sediments 
reaching the Patuxent Basin. The Chesapeake Bay model predicts the changes in water 
quality due to the changes in input loads from the watershed model (USEPA, 2010a). 

Appendix C of this document provides additional information about the Phase 
5.3.2 simulation model, including results from previous model calibration and valida-
tion studies.
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Figure 3.5
Chesapeake Bay Phase 5.3.2 Watershed Model Flowchart

SOURCE: Chesapeake Bay Program (2013b).
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Experimental Design and Case Generation

We conducted several simulation experiments using the scope outlined in the previous 
sections. The experimental design included a full factorial sampling design across the 
uncertain inputs, including

• 19 hydrology projections (18 climate-altered hydrologies  + 1 observed historical)
• two ten-year future hydrology time periods (2035–2045; 2055–2065)
• current (2010) population and three future population trends
• two development patterns.

We considered all possible combinations of these scenario inputs for future condi-
tions, yielding 222 futures. We also tested all hydrologies—the observed historical (1 
projection) and all climate-altered hydrology projections across both time periods (18 x 
2 = 36 projections)—against the current population and land use, essentially adding a 
land use scenario in which no net change occurs. This yielded another 37 futures, for 
a total of 259 futures. Both plans were then tested against this common set of futures, 
yielding a total of 518 cases considered. Each case was run using the Phase 5.3.2 model 
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in a server environment and took approximately 40 minutes to complete, yielding a 
total of 345 hours of runtime for the analysis. 

Analysis Steps

The primary results from this analysis can be considered a vulnerability assessment 
(stress-testing) of Maryland’s Phase II WIP. Discussion of the analysis proceeds in 
several steps. We first summarize the range of pollutant loads across the 259 futures, 
with and without the WIP implemented. We then compare these results to MDE’s 
WIP targets to determine how often the state is or is not meeting its intended goals in 
different futures. 

Using these targets, we next use clustering algorithms to perform “scenario dis-
covery,” as described in Chapter Two, with the goal of identifying a small set of input 
parameters and associated thresholds that best distinguish the conditions in which 
the plan does meet the TMDL targets from those in which it does not (Bryant and 
Lempert, 2010; Groves and Lempert, 2007). Scenario discovery algorithms are applied 
to the 259 cases in which the WIP is implemented to best characterize those condi-
tions leading to vulnerability. In addition, we applied a variation of these methods that 
combines Principal Component Analysis (PCA) and PRIM (Dalal et al., 2013). This 
PCA-PRIM approach, discussed later, allowed us to identify latent components that 
are linear combinations of the input parameters considered in the model and that best 
describe the most vulnerable cases for each contaminant.

This case study identifies potential vulnerabilities but does not formally consider 
new BMPs or other augmentations to Maryland’s stormwater plan using the same 
modeling approach. However, the final portion of this analysis takes a first step toward 
considering such potential augmentations. In this final step, we use the Phase 5.3.2 
model to help identify which BMPs provide the most consistent load reduction across 
different types of hydrology projections, as well as those BMPs that appear to provide 
cost-effective performance based on a simplified comparison of load reduction and 
cost. Using the BMP types identified, we then calculate order-of-magnitude costs for 
potential augments in selected scenarios to show what additional investment may be 
required to improve the robustness of Maryland’s plans. 

The analysis was conducted for all contaminants; similar patterns of results were 
found for nitrogen, phosphorus, and sediment. We describe selected results for the his-
torical climate sequence and for the 2035–2045 climate sequences in the next section. 
Additional results for all three contaminants, as well as for the 2055–2065 projections, 
are provided in Appendix C.
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Results of the Analysis

Water Quality Results Across Many Futures with the Phase II WIP

Results from the simulation runs generated by the experimental design are shown in 
Figure 3.6 for two key pollutant load metrics: nitrogen (x-axis) and sediment (y-axis). 
Results for phosphorus show a similar pattern and are provided in Appendix C. The 
scatterplots following provide a summary of all cases run in the experimental design 
with the Phase II WIP implemented. Each point represents one future—one realiza-
tion of the model with a single climate, population, and land use development projec-
tion. We use two symbol types to show whether the case reflects the observed histori-
cal hydrology (x) or climate-projected hydrology (o). Colors show the type of land use 
development assumed, and the symbols are sized according to the population growth 
projection.

Figure 3.6 also includes lines indicating the final 2025 TMDL targets for these 
contaminants (red dashed lines). Points that fall in the gray shaded quadrant meet both 
standards, while those in the upper-right quadrant meet neither standard. Points in the 
lower-right quadrant meet the sediment load target, but not nitrogen, and the reverse 
is true in the upper-left region. 

The figure includes three panes. In the first pane, a single future is shown, which 
assumes observed historical hydrology and no change in population or land use. As 
expected, with these assumptions, the Phase II WIP exactly meets the TMDL tar-
gets set for these pollutants. In the second pane, however, results are shown across all 
hydrology assumptions—including both the observed historical and climate-altered 
cases—while population and land use are held constant at no net change. In the final 
pane, all futures in the experimental design are shown, varying both hydrology and 
land use assumptions.

Figure 3.6 reveals several key results. When the climate-altered hydrologies are 
included (middle pane), the figure shows futures in which the TMDLs are met, and 
those in which they are exceeded, in nearly equal numbers. When hydrology, popula-
tion, and land use all vary together, however (bottom pane), the Phase II WIP does not 
consistently meet the new targets across most or all plausible futures. Many cases, espe-
cially those with higher population projections, show nitrogen and sediment TMDL 
exceedances upward of 50 to 100 percent beyond the established target. Greater pol-
lutant loads are most clearly correlated with higher population projections (point size). 
Also of note is how closely results from each contaminant correlate with one another—
in this case, they have an R-squared value of 0.97. Similar correlations, with R-squared 
values above 0.90, are observed with phosphorus (not shown). This suggests that cases 
stressing for one contaminant are nearly always stressing for all contaminants.

Figure 3.7 shows these results across uncertainties concerning only the observed 
historical and climate-altered hydrology projections. Here, nitrogen loads are indicated 
by color and point size and are shown across the same temperature (y-axis) and precipi-
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Figure 3.6
Nitrogen and Sediment Loads Across All Futures, Phase II WIP (2035–2045)
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tation (x-axis) dimensions as shown in Figure 3.2. Th is fi gure shows one population 
projection (trend) and development pattern (sprawl; middle red column in Figure 3.8) 
across all hydrology projections considered, once again focused on the Current Man-
agement plan.

Holding population and land use constant, Figure 3.7 shows that nitrogen loads 
also vary across the climate projections with a clear—and expected—trend toward 
increasing pollutant loads with increased average annual precipitation. Only the cases 
that project a substantial reduction in average precipitation of approximately 3 per-
cent or greater result in nitrogen loads close to the TMDL target without additional 
BMPs implemented. Of note is that, when we consider hydrology variation alone, the 
observed historical value (origin) falls in the middle of the range rather than represent-
ing a more- or most-favorable case. Th is is because some of the climate-altered hydrol-
ogy projections display drier conditions than the historical records (left quadrant). In 
these cases, less precipitation also leads to less urban runoff , which in turn decreases the 
nitrogen loads reaching the Patuxent River. 

Phase II WIP Outcomes Compared with Current Management

We next consider how the Phase II WIP improves upon previous stormwater manage-
ment. Figure 3.8 shows the same scatterplot as the bottom pane of Figure 3.6, but with 
two panes included to show both the “Current Management” plan (no new investment 
beyond 2010, left pane) and a future in which all stormwater BMPs in the Phase II 

  Figure 3.7
Nitrogen Load, by Climate Model, for One Land Use Scenario, Phase II WIP (2035–2045)
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WIP are implemented (right pane). The same set of uncertain futures is shown for both 
plans.

Figure 3.8 shows that, under current management, the new TMDL targets are 
almost never met across the range of uncertain futures. When the WIP is implemented, 
we observe a consistent reduction in pollutant loads for both metrics shown and across 
the futures considered (points shift toward the origin). As a result, the Phase II WIP 
represents a clear improvement over current management and allows the state to meet 
either one or both of the TMDL targets in additional futures. 

Another way to visualize these results is via boxplot summaries of all futures 
(Figure 3.9). This figure shows all three contaminants of concern, with and without 
implementing the Phase II WIP, and summarizes the distribution of the range of the 
futures in each case. Note that this summarizes the distributional pattern of results 
alone and makes no assumption about the likelihood of any of the futures. The figure 
also notes where the 2025 Phase II WIP TMDL target is located with respect to the 
majority of cases (dashed red line), and the plot is annotated to show the point where 

Figure 3.8
Scatterplot of Nitrogen and Sediment Loads Across All Futures, Both Plans (2035–2045)

NOTE: Dashed red lines show the TMDL target for each contaminant.
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Figure 3.9
Boxplot Summary of Pollutant Loads Across All Futures, 2035–2045

NOTE: Dashed red lines show the TMDL target for each contaminant. The boxplots presented do not represent probability distributions, but instead
report the results of a set of model runs (futures). Each point summarized represents one mapping of assumptions to consequence, and the points
are not assumed to be equally likely. Each individual future shifts downwards when BMPs are applied.   
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current population/land use and historical hydrology—the case used initially by the 
State of Maryland to develop the TMDLs—falls in the distribution.

The boxplot summaries show that, with the Phase II WIP in place, the nitrogen 
target is exceeded in nearly three-quarters of the simulated futures. Only the lower tail 
(lowest 25 percent of cases) falls below the target line. Results are somewhat better for 
phosphorus and sediment, with the sediment target met in nearly half of the futures. 

For this analysis, a future is considered to be acceptable (not vulnerable) when the 
TMDL target is met for a particular pollutant. This suggests four types of cases: 

1. futures in which the nitrogen target is met
2. futures in which the phosphorus target is met
3. futures in which the sediment target is met
4. futures in which all three targets are met. 

Table 3.8 summarizes the performance of each plan across the 259 futures con-
sidered for each type of case for each of the three periods considered in this study: 
1984–2005 (seven futures), 2035–2045 (126 futures), and 2055–2065 (126 futures). 

As expected, Current Management rarely leads to attaining the Phase II WIP 
targets across all the specified failure modes. When the Phase II WIP is implemented, 
it increases the proportion of futures in which the target is met substantially. For 
instance, with the Phase II WIP the percentage of futures meeting the sediment target 
increases from 0 percent to 43 percent for the historical hydrology, 12 percent to 47 
percent for the 2035–2025 climate projections, and 12 percent to 44 percent for the 
2055–2065 climate projections, respectively. However, as previously noted, the Phase 
II WIP does not meet the TMDL target in a substantial fraction of cases: over two-

Table 3.8
Futures in Which Phase II Target Is Met, by Plan and Contaminant

Performance Metric

Number (Percentage) of Futures Meeting the Phase II Target

Historical Hydrology
1984–2005

Climate Altered Hydrology
2035–2045

Climate Altered Hydrology
2055–2065

Current 
Management

Phase II 
WIP

Current 
Management

Phase II 
WIP

Current 
Management Phase II WIP

Nitrogen target 0 (0) 1 (14) 9 (7) 35 (28) 13 (10) 31 (25)

Phosphorus target 0 (0) 2 (29) 6 (5) 42 (33) 5 (4) 35 (28)

Sediment target 0 (0) 3 (43) 15 (12) 59 (47) 15 (12) 55 (44)

Meets all three 
targets 0 (0) 1 (14) 6 (5) 30 (24) 5 (4) 29 (23)
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thirds of all futures for phosphorus in all three hydrology periods, for instance, and 
nearly three-quarters of all futures for nitrogen. 

Identifying Decision-Relevant Scenarios

Our next step was to use the scenario discovery methods introduced in Chapter Two 
(Bryant and Lempert, 2010) to identify those future conditions most frequently asso-
ciated with vulnerable outcomes for these contaminants. This discussion focuses on 
results for the nitrogen target only, but similar results emerge for the other two con-
taminants (see Appendix C). The goal was to characterize these futures as one or more 
descriptive scenarios—a small representative set, identified analytically—that could 
later be used to identify or test additional options designed to reduce vulnerability. 

This analysis starts by looking across all uncertain inputs considered. We char-
acterized the uncertainties with several different types of statistical summaries to see 
which could most concisely explain the effects of uncertainty on the success of the 
Phase II WIP—that is, the highest coverage and density, as explained in detail in 
Chapter Two. Table 3.9 shows a summary of the value ranges of both hydrology and 
land use that we used as inputs for the scenario discovery clustering analysis. These 
parameter ranges include the observed historical hydrology and the 2035–2045 cli-
mate projections. Appendix C provides a more detailed tabulation of these parameter 
inputs, as well as a similar table for the 2055–2065 climate projections.

Table 3.9 shows that each hydrology input is described in terms of average pre-
cipitation (annual, summer, and winter), average temperature (annual, summer, and 
winter), average annual runoff, or the mean of the fitted Log-Pearson Type III distribu-
tion (Figure 3.3). The combination of these metrics provides a comprehensive descrip-
tion of each climate projection and allows the clustering algorithms to exploit differ-
ences across the hydrology sequences to identify the most relevant vulnerable regions. 
The table also presents the land use scenario characterizations used as inputs for sce-
nario discovery. The seven land use scenarios are described in terms of the surface area 
for each land use type. These characterizations allow scenario discovery to identify the 
land use type and range that best explains futures in which the Phase II WIP does not 
meet its TMDL targets. 

The parameter inputs described in Table 3.9 were used in a scenario discovery 
analysis using the Patient Rule Induction Method (Friedman and Fisher, 1999). In 
addition, we augmented the standard scenario discovery clustering approach with a 
preprocessing step that uses PCA to identify linear combinations of these inputs (i.e., 
hydrology and land use characterizations) that are closely correlated. This preprocessing 
step is useful for characterizing policy regions not well described using the traditional 
“hyper-rectangular” regions provided by the traditional scenario discovery method. 
PCA transforms the input data into independent linear combinations that are then 
used as inputs in the PRIM algorithm. These linear combinations can describe latent 
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features in the input data and can be used as more suitable descriptions of regions of 
vulnerable futures with high coverage and high density.

Figure 3.10 shows an illustration of the use of PRIM with and without PCA. The 
black dots denote cases in which the plan in consideration fails to meet its goals, and 
open circles cases in which the plan under consideration performs as intended. The 
left pane shows the results of using PRIM without PCA. In this case two inputs, X1 
and X2, describe the vulnerable region. However, the vulnerable region cannot be well 

Table 3.9
Uncertain Input Value Ranges Used in Scenario Discovery (Observed Historical and 2035–
2045 Hydrology)

Uncertainty Type

Range

UnitsLow High

Hydrology inputs

Average precipitation

Annual 40.1 48.9 Inches

Summer 21.0 26.0 Inches

Winter 17.9 23.7 Inches

Average temperature

Annual 55.9 59.6 Degrees F

Summer 69.1 72.8 Degrees F

Winter 42.6 46.7 Degrees F

Average annual runoff

All areas 232.8 387.6 Thousands of acre-feet

Impervious areas only 111.9 151.8 Thousands of acre-feet

Annual maximum 24-hour runoffa 1.2 1.5 Thousands of acre-feet

Land use inputs

Impervious 40.5 66.2 Thousands of acres

Pervious 137.3 253.0 Thousands of acres

Construction 1.1 9.0 Thousands of acres

Nonregulated developed 49.0 129.4 Thousands of acres

Regulated developed 128.8 189.8 Thousands of acres

a Annual maximum 24-hour runoff is used as a parameter input (mean) for the Log-Pearson Type 
III distribution. The values shown above are converted for the distribution by first converting to 
log(runoff), and then taking the mean across the ten-year sequence. The subsequent parameter range 
used in the distribution estimate is 7.05 to 7.34.
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described by a rectangle, as it clearly displays a triangular shape. The right pane shows 
the results of using PRIM with PCA. In this case, the two principal components PC1 
and PC2 are linear combinations of inputs X1 and X2 found by implementing PCA 
(i.e., X X X XPC1 1 2;PC2 1 21 1 2 2α β α β= + = + ). In this rotated coordinated system, 
the vulnerable region can be well described by a rectangular region (Dalal et al., 2013). 

In the following paragraphs we describe the results of using scenario discovery 
to understand the futures in which the nitrogen TMDL target is not met, using the 
observed historical and 2035–2045 hydrology inputs. Similar analysis for the phospho-
rus and sediment TMDL targets is provided in Appendix C. 

In the first iteration of this clustering analysis, we found that a single character-
ization, average annual runoff from impervious areas only, concisely describes futures 
in which the nitrogen TMDL target is not met with the Phase II WIP. Using this 
single characterization, 94 percent of all futures that do not meet the nitrogen TMDL 
(coverage) are described by those cases in which runoff from impervious areas exceeds 
114,990 acre-feet. In addition, the nitrogen TMDL is not met in 95 percent of futures 
in which runoff from impervious areas is above 114,990 acre-feet (density). This initial 
iteration provides an easily interpretable, one-dimensional threshold that describes a 
vulnerable region with both high coverage and high density. Of note is how low this 
threshold falls in the range of total annual runoff from impervious areas (Table 3.9)—
that is, it is very close to the lower bound. We refer to this vulnerable, stressing scenario 
as the “Increased Impervious Runoff” scenario. The nitrogen TMDL is met only in 

Figure 3.10
PCA-PRIM Example Results

SOURCE: Dalal et al., 2013. Used with permission.
NOTE: The black dots cluster describes the vulnerable region of the experiment: a) in the original
coordinate system using PRIM with no PCA and b) in the rotated coordinate system using PRIM
with PCA.
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futures in which impervious area runoff is kept at a minimum (best-case) across the 
scenario range. 

Although this one-dimensional threshold provides an easy-to-understand descrip-
tion of the vulnerable region for the nitrogen TMDL, it provides no further informa-
tion about how specific hydrology and land use changes could affect the performance 
of the Phase II WIP TMDL plan. As a result, we conducted a second experiment using 
PCA-PRIM to identify linear combinations of distinct changes in both precipitation 
and impervious land cover that also describe high coverage and high-density decision-
relevant scenario regions. 

Table 3.10 shows the results of using PCA across the input parameters considered 
in this case study (Table 3.9). The columns indicate the three possible combinations 
(PCs) found using PCA, and rows indicate the parameters included in each combina-
tion. The cell values denote the standardized loadings (unit scale) for the input param-
eters considered by the different components. These standardized loadings indicate the 
correlation between the components and the corresponding parameter. The final row 
indicates the proportion of variance explained by each of the proposed components. 

The three components described in Table 3.10 were considered in our analysis. 
PC1 is a linear combination of impervious area and average annual runoff. PC2 is a 
linear combination of the average annual precipitation, the mean of the adjusted Log-
Pearson Type III runoff distribution, and average annual runoff. Finally, PC3 is a func-
tion only of the average annual temperature.

According to these results, PC1 explains the largest share of the variance across 
the input parameters (Table 3.10, bottom row). That is, using PC1 directly as an input 
parameter in PRIM provides regions with higher density than the traditional scenario 
discovery approach, and with higher density and coverage than the components of 
PC2 or PC3. Therefore, PC1 was selected as the most suitable linear combination of 
input parameters for the PCA-PRIM analysis.  

Figure 3.11 shows the results of this second experiment. The figure shows a scatter-
plot of all futures. Open circles show nonvulnerable cases, where the nitrogen TMDL 

Table 3.10
Standardized Loadings in PCA Analysis

Variable PC1 PC2 PC3

Average annual temperature – – 0.99

Average annual precipitation – 0.92 –

Annual maximum 24-hour runoff – 0.32 –

Impervious area 0.99 – –

Average annual runoff 0.86 0.43 –

Proportion of variance explained 45% 27% 25%
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target is met, and filled circles indicate futures in which the TMDL is exceeded. These 
are plotted against the two key uncertain dimensions on the axes identified with PCA-
PRIM: the average annual precipitation change from the historical conditions (y-axis), 

Figure 3.11
Futures in Which Phase II WIP Meets and Misses Nitrogen (N) TMDL
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and change in impervious land area in the Patuxent River watershed (x-axis). The 
region highlighted in gray was selected using the PCA-PRIM process to explain most 
of the vulnerable futures.

The shaded region defines a single decision-relevant scenario described by two 
factors: the average annual precipitation change from historical conditions, and the 
percent growth in impervious land area in the Patuxent River watershed. The angled 
line defines the cutoff for this region as a linear combination of both factors, according 
to the following functional form:

Impervious Area Change[%] + 5.05 × Precipitation Change[%] > 11%.

This linear equation describes the relationship between these two factors that 
describes the vulnerable region identified with PCA-PRIM. It shows that futures that 
fall inside this region display higher precipitation, increased impervious area, or a com-
bination of both. Any of these combinations leads to increased runoff, which in turn 
yields larger-than-expected nitrogen loads flowing into the Chesapeake Bay. This region 
captures 99 percent of the total of vulnerable cases for nitrogen (coverage). Within this 
region, 93 percent of the cases are vulnerable (93 percent density).

An increase in precipitation leads to higher runoff directly, and this in turn results 
in higher nitrogen loads. According to the above equation and Figure 3.11, an increase 
in average annual precipitation of more than 2 percent over the historical baseline would 
nearly always lead to exceeding the TMDL irrespective of the size of future impervi-
ous areas. Similarly, an increase in impervious area leads to higher urban runoff, which 
also leads to higher nitrogen loads. If impervious area increases more than 50 percent 
above the current baseline (consistent with the ICLUS A2 high population projection; 
see right two bars on Figure 3.4), vulnerability always emerges, irrespective of whether 
average precipitation increases or declines. In addition, in many other futures in which 
impervious land cover increases between 0 and 50 percent, the nitrogen TMDL target 
is not met, even in cases in which average precipitation stays constant or declines. Put 
another way, average precipitation would need to stay constant or decline and impervi-
ous area would need to remain at the mid to low end of the plausible range in order to 
meet the nitrogen TMDL consistently with the Phase II WIP as currently constructed. 

The decision-relevant scenario shown in Figure 3.11 can also inform the choice 
of signposts that might give decisionmakers early warning of emerging conditions in 
which their TMDL plans might miss their goals. For instance, similar to the discus-
sion in Groves et al., 2014, decisionmakers might use data on building permits and 
other indicators of construction plans to determine whether impervious cover in the 
Patuxent region is trending toward the range (gray area) where nitrogen loadings might 
exceed the TMDL. 

We repeated the same set of experiments, using both a standard PRIM and PCA-
PRIM approach, for phosphorus, sediment, and a combination of all three contami-
nants (vulnerable if all three targets are exceeded). Similar results were found for the 
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other contaminants, though construction land cover was also identified as a key driv-
ing variable along with impervious area runoff when using the simple PRIM approach 
to evaluate vulnerability with respect to phosphorus or sediment loading. When using 
PCA-PRIM, results for phosphorus were very similar to those for nitrogen, but sed-
iment TMDL vulnerability emerged only with larger increases in impervious area, 
precipitation change, or a combination of both. Results from all experiments for the 
2035–2045 climate projections are provided in Table 3.11. More detailed scenario dis-
covery analysis results for all contaminants are also provided in Appendix C.

What Options Could Maryland Consider to Augment Its Existing Plan?

As previously noted, testing plans that build on or augment Maryland’s current Phase 
II WIP could be performed within the same modeling framework, but that was beyond 
the scope of this effort. However, given the vulnerability that emerges as a result of 
increased runoff—due to an increase in average precipitation, an increase in impervi-
ous land cover, or both—as a next step we used the same modeling toolkit to conduct 
a preliminary assessment of each BMP type to consider what augments might be most 
effective to help mitigate this vulnerable scenario. This step illustrates what could be 
done as part of a fuller treatment. We considered two key factors: 

Table 3.11
Scenario Discovery Analysis Summary Results

Metric Scenario Definition
Coverage 

(%)
Density 

(%)

Standard PRIM

Nitrogen Impervious area runoff > 114.5 thousand acre-feet 94 95

Phosphorus Impervious area runoff > 104.6 thousand acre-feet
Construction area > 2.1 thousand acres

87 90

Sediment Impervious area runoff > 103.6 thousand acre-feet
Construction area > 3.3 thousand acres

86 88

Combined Impervious area runoff > 104.6 thousand acre-feet
Construction area > 3.3 thousand acres

86 83

PCA-PRIM

Nitrogen Impervious area change[%] + 5.1 × Precipitation change [%] > 
11%

99 93

Phosphorus Impervious area change [%] + 4.5 × Precipitation change [%] 
> 16%

94 87

Sediment Impervious area change [%] + 1.9 × Precipitation change [%] 
> 27%

82 89

Combined Impervious area change [%] + 1.7 × Precipitation change [%] 
> 27%

88 91

NOTE: Results shown for 2035–2045 climate projections.
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1. How effectively does the BMP remove contaminants on a per-unit basis, given 
a range of potential future precipitation values? 

2. Which options could provide additional load reduction cost-effectively using 
simplified, first-order cost estimates?

To address the first question, we conducted an additional simulation experiment 
with the goal of characterizing load reduction for each BMP type normalized as net 
pounds of nitrogen removal per unit volume of runoff (acre-feet). We considered the 
performance of each of the 19 BMPs implemented in the Patuxent as part of the Phase 
II WIP in isolation (Table 3.6), comparing the performance of each individual BMP 
in turn to a future without additional action in 19 baseline and climate-altered hydrol-
ogy sequences (18 downscaled climate projections for 2035–2045 plus one observed 
historical sequence). The experiment was conducted only for the BMPs implemented 
in the upper part of the Patuxent to conserve computational resources. The experiment 
totaled 380 simulation runs and took an additional 127 hours of runtime to complete 
running the Phase 5.3.2 model in a server environment with 16 CPU cores running 
at 2.4GHz.

Given the particular concern with impervious land cover identified using scenario 
discovery, in the remainder of this section we focus on BMP performance specifically 
for impervious land uses only. Results are shown in Figure 3.12 across the range of 
hydrology uncertainty considered. This figure shows how normalized net removal of 
nitrogen varies across the climate projections for each BMP. Results are summarized 
for each projection according to the change in average precipitation relative to the 
1984–2005 observed historical average.

Figure 3.12 shows that the BMPs vary widely in terms of net nitrogen load 
removal. This is driven primarily by assumptions about BMP performance built into 
the Phase 5.3.2 model that were not tested rigorously nor allowed to vary in this analy-
sis. Performance for each BMP varies, with better performance occurring when average 
precipitation declines and with steadily worsening load removal in higher precipitation 
futures. Overall, however, a series of low-impact or green infrastructure BMP types 
appear to provide good performance. For example, urban filtering practices (sand filter-
ing above and below ground), retrofitting, wet ponds and wetlands, and urban stream 
restoration show notably better per-acre-foot performance than other BMP types. The 
variation with precipitation/runoff differs by BMP, but the range of variation seems to 
scale with net removal in each case.

This rough ranking is retained when comparing BMP cost-effectiveness using 
order-of-magnitude cost estimates. To make cost-effectiveness comparisons across dif-
ferent BMPs, it is necessary to also estimate the net per-unit removal effectiveness for 
each BMP. Net effectiveness was estimated by normalizing the removal effectiveness of 
each BMP per unit of runoff (pounds per acre-foot of water treated).
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Figure 3.13 shows a scatterplot of the normalized net nitrogen removal (y-axis)—
here showing the average across the range of hydrologic uncertainty—plotted against 
the assumed cost per acre for each BMP type. The point size is scaled by the implied 
cost-effectiveness ratio (normalized nitrogen removal divided by per-acre BMP cost).

This simplified cost-effectiveness comparison shows substantial variation in aver-
age BMP cost for the subset shown, ranging from below $2,000 to upward of $6,000 
per treated acre-foot of water. Given the variation in performance, wet ponds and wet-
lands appear to provide reasonable net removal at relatively low cost for impervious 
land uses. The best performer in terms of net removal, urban filtering practices, is also 
one of the more expensive options on a per-acre-foot of water basis, but nevertheless 
shows good performance in terms of cost-effectiveness relative to most other BMPs. A 
series of others, ranging from bioswales to urban stream restoration, also provide rea-
sonable cost effectiveness when compared with other approaches on a per-unit basis. 

The results of this analysis can be used to make a preliminary, first-order assess-
ment of the available options to reduce the vulnerability of the Phase II WIP. Figure 
3.14 presents two examples to illustrate this point. Each point represents one future. 

Figure 3.12
Nitrogen Removal Effectiveness for Impervious Land Use, by BMP Type

NOTE: In this chart, zero precipitation change is relative to the historical average. BMP types not applied
to impervious areas are omitted.
RAND RR720-3.12
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Open circles show nonvulnerable cases, where the nitrogen TMDL target is met, and 
filled circles indicate futures in which the nitrogen TMDL is exceeded. The futures are 
divided into two columns, with those on the left belonging to the “Increased imper-
vious runoff” scenario previously defined using scenario discovery, and those on the 
right not included in this scenario. The black shaded points denote two example futures 
from this scenario for which we have estimated the scale and cost of mitigation efforts 
to reduce the vulnerability. The text annotations describe each of these futures and the 
corresponding hypothetical mitigation strategy. 

In the first example future shown in Figure 3.14, the Patuxent Basin exceeds the 
nitrogen TMDL by only 3,935 pounds (small exceedance). This future has moderate 
impervious area growth associated with low population growth and infill growth pat-
terns but shows increased average precipitation compared with historical values. One 
possible approach to reduce nitrogen loads is to expand the implementation of some 
BMPs already included in the Phase II WIP. 

Based on simplified estimates of net BMP effectiveness, we calculated the addi-
tional effort needed to mitigate the vulnerability in this future, here assuming an 
approach that expands the application of wet ponds and wetlands in the Patuxent 
Basin. For the hydrology conditions in this future, wet ponds and wetlands remove 

Figure 3.13
Nitrogen Removal Cost-Effectiveness for Impervious Land Use, by BMP Type
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7,875 pounds of nitrogen (i.e., BMP net effectiveness × impervious runoff) and the 
Phase II WIP creates 7,839 acres of wet ponds and wetlands in the Patuxent, leading to 
a ratio of removed nitrogen to implemented acres equal to 1.005 (pounds/implemented 
acre). In this rough calculation, the basin would need at least an additional 3,917 acres 
of wet ponds and wetlands investment to reduce nitrogen loads below the TMDL 
target, at a cost of approximately $8 million. 

Using a similar approach with the second example future in Figure 3.14 and 
applying urban filtering practices as the example BMP, we found that meeting the 
TMDL would require the implementation of this BMP on an additional 80,892 acres 
at a cost of $336 million. However, augmentation at this scale is infeasible: The Patux-
ent Basin simply does not have sufficient additional urban acreage on which these 
practices could be implemented. This suggests how difficult it might be to mitigate the 
vulnerability from high impervious runoff futures using existing practices, whether 
traditional (gray infrastructure) or nature-based (green infrastructure). Instead, addi-
tional options—potentially including land use practices designed to avoid creating 
new impervious cover even with new urban growth—may be needed to meet or main-
tain water quality objectives in stressing future conditions.

Figure 3.14
Example of Mitigation Options for Two Vulnerable Futures for the Nitrogen TMDL

RAND RR720-3.14
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Of course, this final analysis is substantially simplified. BMPs do not function in 
isolation but rather as a part of a treatment train in conjunction with other upstream 
and downstream management practices. As a result, the simplified estimates presented 
in Figure 3.14 are likely to be biased downward in terms of the amount of contaminant 
reduction provided when compared with more sophisticated or high-resolution BMP 
treatment designs. In general, this analysis is at a pilot scale and does not provide suffi-
cient information to support additional action. It is suggestive of what options the State 
of Maryland could consider to augment its WIP for impervious land use areas, but 
further analysis will be needed to formally consider potential stormwater management 
augmentation to Maryland’s Phase II WIP in light of the vulnerabilities identified in 
this pilot analysis. Additional analysis is needed to thoroughly test alternate approaches 
against the range of futures considered in this report, as well as other key uncertainties 
that could not be addressed in this pilot-scale study.

Summary

In this chapter, we performed a pilot study of urban stormwater management focused 
on the Patuxent River Basin. We tested the stormwater investments included in the 
State of Maryland’s Phase II Watershed Implementation Plan against a wide range of 
plausible future hydrology or land use conditions, looking forward approximately 40 
to 50 years, using the Chesapeake Bay Program’s Phase 5.3.2 model together with sce-
nario inputs developed and provided by Chesapeake Bay Program partners. Our initial 
vulnerability analysis showed that Maryland’s Phase II WIP meets new water quality 
TMDL targets for nitrogen, phosphorus, and sediment, assuming historical hydrology 
and current land uses. In addition, when compared with Current Management, the 
Phase II WIP increases the number of plausible futures in which TMDL targets are 
met, especially cases where all three targets are exceeded with Current Management.

More often than not, however, the Phase II WIP does not meet TMDL targets 
when a changing climate and future changes in population or development patterns 
are considered. Specifically, scenario discovery demonstrates that water quality targets 
for nitrogen are most often not met when precipitation increases over the historical 
average (or declines by only a small amount), impervious land cover increases, or both. 
Similar patterns were observed for phosphorus and sediment targets. To help hedge 
against these vulnerable outcomes, the state could consider greater investment in BMP 
types such as wetlands or urban filtering practices that appear to provide cost-effective 
pollutant load reduction for impervious areas when compared with other approaches. 

However, a preliminary analysis suggests that in some plausible stressing futures, 
none of the BMP types considered could meet existing water quality targets. The high 
level of vulnerability suggests that it may be difficult to meet the newly established 
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TMDLs at reasonable cost with existing technology and practice once climate uncer-
tainty and land use changes are considered. In turn, this suggests that:

1. Additional options may be needed for the basin, including changes to land use 
practice, to help avoid future impervious area growth.

2. Suggested potential signposts that would indicate the need for additional BMP 
investments or new policy options should be monitored.  

These topics are taken up for further discussion in Chapter Five.





59

CHAPTER FOUR

Evaluating the Impacts of Climate Change on the Water 
Quality Implementation Plan for the North Farm Creek 
Tributary of the Illinois River

Introduction

The Illinois River, a principal tributary of the Mississippi River Basin, flows for about 
270 miles across central Illinois, beginning just south of Chicago and joining the Mis-
sissippi near St. Louis. The Illinois River drains approximately 28,000 square miles, 
an area including 90 percent of the state’s population. The river is a major source of 
waterborne commerce, fishing, and recreation. In the early 1900s, the Illinois River 
had abundant fisheries and carried extensive commerce. By mid-century, however, the 
river had been significantly degraded, with sedimentation impeding navigation and 
its fisheries depleted. The National Research Council (NRC, 1992) identified the Illi-
nois River as one of three large-floodplain river ecosystem restoration priorities in the 
United States. 

In 1997, the State of Illinois adopted an Integrated Management Plan that has 
since guided restoration and protection of the river (Illinois River Strategy Team, 1997). 
The Middle Illinois River watershed, surrounding Peoria, ranked high on the state’s 
list of impaired waters. As part of its overall efforts, in 2010 the state targeted this area 
for developing TMDL standards. The first phase of developing TMDL, recently com-
pleted, identified the key contaminants threatening this part of the river. These include 
phosphorus, dissolved oxygen sedimentation, siltation, total suspended solids (sedi-
ment), pH, alteration in streamside vegetation as a potential biological impairment, 
and fecal coliform bacteria as a potential impairment to human health. 

Illinois is now beginning the process of implementing pollution control and resto-
ration plans for the Middle Illinois River. Illinois selected two pilot areas, North Farm 
Creek (Figure 4.1) and Dry Run Tributary, to demonstrate the development of load 
reduction implementation plans. The Illinois Environmental Protection Agency (IEPA) 
and USEPA have provided additional resources in the form of technical assistance to 
the Peoria and Tri-County Area TMDL partnership to make this planning process 
more useful to local decisionmakers. In December 2012, the state published a load 
reduction strategy for the two selected subwatersheds (Tetra Tech, 2012b). The analysis 
in this report focuses on one of these pilot areas, North Farm Creek, and aims to sup-
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Figure 4.1
North Farm Creek Subwatershed on the Peoria Area of the Illinois River

SOURCES: Google Maps (left panel) and Tetra Tech (2012) (right panel).
RAND RR720-4.1

North Farm Creek subwatershed
Farm Creek watershed

0 4 miles321



Evaluating the Impacts of Climate Change on the Implementation Plan for North Farm Creek    61

port load reduction efforts in the pilot area as well as throughout the Middle Illinois 
River Watershed.

The Farm Creek case study described in this chapter focuses on managing the 
effects of climate change and other uncertainties on the North Farm Creek Implemen-
tation Plan using the December 2012 load reduction strategy as the starting point. The 
strategy did not previously consider climate change, and IEPA and USEPA Region 5 
officials expressed an interest in such an analysis. A recent USEPA study that conducted 
watershed modeling in 20 large U.S. drainage basins (Johnson et al., 2012) suggests 
that climate change could have a significant impact on pollution loads in this region.

North Farm Creek is located upstream of the confluence point of Farm Creek 
and the Illinois River (Figure 4.1). Developed land constitutes 54 percent of the total 
watershed area of 6,248 acres. But North Farm Creek also has significant agricultural 
lands, with 15 percent cultivated cropland and 7 percent pasture (Table 4.1). 

The North Farm Creek Subwatershed is an important component of the Middle 
Illinois River’s overall TMDL and load reduction strategy (LRS) because this sub-
watershed contributes significantly to concentrations of nitrogen, phosphorus, total 
suspended solids, chloride, and bacteria in the region (Tetra Tech, 2012b). Agriculture 
makes an important contribution to this water quality impairment as the source of 
about half of the nitrogen, phosphorus, and suspended solids (Figure 4.2). 

These impairments are due to various physical and anthropogenic factors. Spe-
cifically, four main processes have been identified as the largest sources of nutrients 
and pollutant loads in North Farm Creek: (1) watershed, stream bank, and gully ero-
sion; (2) urban and agricultural stormwater runoff; (3) National Pollutant Discharge 
Elimination System (NPDES)1 facilities and sanitary sewer overflows; and (4) deicing 
agents. The North Farm Creek subwatershed consists of many ravines, and the steep 

1  NPDES is a national program established under the Clean Water Act to regulate point-source discharges 
of pollutants into U.S. waters. Under this program, any facility discharging pollutants must obtain an NPDES 
permit that governs the types, amounts, and conditions under which pollutants may be discharged to a receiving 
water body.

Table 4.1
Land Use in the North Farm Creek Subwatershed

Land Use Percentage Area

Developed 54

Deciduous forest 23

Cultivated crops 15

Grassland/pasture 7

Bare rock/sand/clay 1

Water and wetlands <1
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topography of the land leads to high levels of erosion and sediment transport. In addi-
tion, large quantities of urban stormwater runoff are transported over impervious sur-

Figure 4.2
Pollution Sources in the North Farm Creek Subwatershed

SOURCE: Tetra Tech (2012b).
RAND RR720-4.2
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faces. Wastewater discharges from three permitted NPDES facilities in the area further 
exacerbate the in-stream nutrient and bacterial loadings. At least one sanitary sewer 
overflow outfall has occurred in the area and discharged 4,500 gallons of untreated 
wastewater into Farm Creek (Tetra Tech, 2012b). 

North Farm Creek provides a useful case study for this report for two reasons. 
First, in contrast to the Patuxent River watershed, which is largely developed land, 
the region includes runoff from agricultural lands as a significant source of pollution. 
Second, this study extends the modeling conducted in USEPA’s Twenty Watersheds 
study (Johnson et al., 2012), which was intended as a national scale assessment of 
streamflow and water quality sensitivity to climate change in different regions of the 
nation, to consider potential management responses to this risk.  The Twenty Water-
sheds study employed the SWAT watershed model, version 2005 (Soil and Water 
Assessment Tool) (Nietsch et al., 2011). This case study provides additional insights 
into how climate change can be appropriately included in such analyses using SWAT 
and addresses the extent to which existing tools might need to be augmented to achieve 
this goal. In addition, this case study provides useful information to decisionmakers in 
the North Farm Creek region for making their implementation plans more robust to 
potential climate change.

Approach

This case study was conducted in collaboration with the Illinois Environmental Pro-
tection Agency and with USEPA Region 5. The RAND team and representatives of 
these organizations held several meetings by phone during the course of the effort and 
met in person in February 2014. As in Chapter Three, this case study employed the 
“XLRM” framework (Lempert, Popper, and Bankes, 2003) to help guide discussions 
with USEPA and IEPA as well as model development and data gathering. Table 4.2 
summarizes these factors, described in detail in the subsections following. 

Relationships

This case study uses a SWAT model originally developed as part of USEPA’s 20 Water-
sheds Study to estimate pollution loads in the North Farm Creek subwatershed under 
the influence of alternative climate change projections. SWAT was selected for use in 
that study because it is 

• a dynamic simulation with time steps sufficiently short (at least daily) to examine 
the implications of any changes in the frequency or intensity of extreme events on 
hydrologic and water quality outcomes

• process-based, so that the simulations respond to changes in meteorological inputs



64    Managing Water Quality in the Face of Uncertainty

• able to explicitly account for the effects of climate change on plant growth (includ-
ing atmospheric carbon dioxide concentrations), which can have important effects 
on hydrology and pollutant loads

• able to simulate water quality in North Farm Creek with sufficient skill
• widely used and accepted for hydrologic, water quality, and regulatory applica-

tions 
• in the public domain (Johnson et al., 2012; USDA-ARS, 2014b). 

SWAT is a river basin scale model developed by the U.S. Department of Agricul-
ture Agricultural Research Service (USDA ARS) to quantify the impact of land man-
agement practices in large, complex watersheds. SWAT partitions a given watershed 
into smaller subbasins, each composed of many hydrologic response units (HRUs). 
Each HRU aims to represent a homogeneous area, with a single soil type, land use, and 
land slope. As shown in Figure 4.3, SWAT considers the major modes of water trans-
port within HRUs. SWAT requires data on land topography, soil distribution, and 
temperature and precipitation. Based on these data, SWAT simulates a number of land 
and in-stream hydrological (water balance and transport) and nutrient (nitrification, 
eutrophication, and erosion) processes. SWAT has been used extensively in watershed 
modeling and TMDL development. Several studies review the scientific applications of 
SWAT in a variety of contexts (for example, see Gassman et al., 2007). 

The SWAT model allows us to estimate future pollution loads in North Farm 
Creek. As shown in Figure 4.4, the model combines a description of various alterna-
tive pollution control plans (described below), gathers information on future climate 
and BMP effectiveness, and calculates the resulting pollution loads. We can represent 
alternative plans, hydrology in future climates, and assumptions about BMP effective-
ness by adjusting appropriate parameters in the SWAT model, as described in detail 

Table 4.2
Factors Considered in the North Farm Creek Case Study

Uncertain Factors (X) Policy Levers (L)

Effects of climate change on streamflow
BMP effectiveness

• Intrinsic performance
• In response to climate change 

Draft Implementation Plan, including structural 
management options:

• Green infrastructure
• Grassed waterways
• Conservation tillage
• Adaptive management responses

Systems Model Relationships (R) Performance Metrics (M)

SWAT model of North Farm Creek calibrated to 
meet current water quality airshed model

TMDL compliance for:
• Nitrogen
• Phosphorus
• Sediment
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 Figure 4.3
Processes Considered in the SWAT Model

SOURCE: Nietsch et al. (2011). Used with permission.
RAND RR720-4.3
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Modeling Schematic for North Farm Creek Case Study
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below. These are labeled in Figure 4.4 according to their respective XLRM grouping 
(Table 4.2).

The SWAT model used in the 20 Watersheds study, calibrated for the Illinois 
River inclusive of North Farm Creek, was made available to the study team. However, 
our case study required recalibration of this SWAT model for two reasons: (1) the 
Illinois River model for the 20 Watersheds study did not cover the full time period of 
interest for the present analysis, and (2) SWAT is scale dependent, so that output from 
the larger Illinois River model is not an accurate representation of the loadings in the 
smaller-scale North Farm Creek subwatershed. 

For this recalibration, North Farm Creek was delineated into 33 subbasins, and 
data from two U.S. Geological Survey (USGS) gauging stations (for hydrology calibra-
tion) and one IEPA water quality station (for water quality calibration) were used to 
calibrate and validate the SWAT model. Other data used in the recalibration included

• 10-meter digital elevation model taken from the National Hydrography Dataset’s 
NHDPlus hydrography database (USEPA, 2010d)

• land use and land cover information incorporated from the 2006 National Land 
Cover Database (Fry et al., 2011)

• information on the four main types of soil in the watershed from USDA’s Soil 
Survey Geographic database (SSURGO)

• meteorological data, including precipitation and daily temperature minimum 
and maximum, from Peoria airport station, part of the Better Assessment Sci-
ence Integrating Point and Nonpoint Sources (BASINS) meteorological data set 
(USEPA, 2008)

• additional meteorological inputs such as solar radiation and windspeed from 
SWAT’s built-in weather generator (Nietsch et al., 2011). 

Overall, the recalibrated SWAT model shows sufficient skill at reproducing pol-
lution flows in North Farm Creek for the purposes of our analysis. Using data from 
the historical period 2000–2012, we evaluated the model’s performance for hydrology 
using statistical criteria and graphical comparisons to establish goodness-of-fit. Over-
all, the model skill was rated as good because the model met seven of nine calibration 
criteria. 

For water quality, data on total suspended solids (TSS), total phosphorus (TP), 
soluble reactive phosphorus (SRP), total nitrogen (TN), total Kjeldahl nitrogen (TKN), 
and nitrate+nitrite nitrogen (NOx) were used for calibration (October 2005–August 
2010) and validation (October 2000–August 2005). From this analysis, the model skill 
for sediment and nutrient loads (except phosphorus) was rated very good. Appendix D 
describes the SWAT model calibration and validation in more detail.

We needed to make several other modifications to SWAT in order to automate 
multiple runs for use in the RDM analysis. We first obtained the FORTRAN binaries 
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for the model and compiled them so that they could be modified and run on a Unix 
cluster. This was necessary because out-of-the-box, SWAT is an executable file that 
cannot be modified. Next, we modified SWAT so as to circumvent the data input pro-
cess. Typically, a graphical user interface is used to provide HRU-specific input files, 
which the model then reads and runs. However, even a small-scale watershed such as 
North Farm Creek contains close to 8,000 HRUs, and manually generating input files 
for even a few futures would be a cumbersome task. We edited the program routines to 
provide more flexible treatment of the BMPs such that BMP activation, BMP nutrient 
removal efficiencies, and BMP effectiveness parameters were directly supplied for the 
relevant parts of the watershed inside the source code rather than generated individu-
ally for each future. 

Despite SWAT’s considerable capabilities, the model has some limitations rele-
vant for this study. First, SWAT does not model interaction between HRUs for certain 
watershed processes such as groundwater or base flow (Narasimhan et al., 2013), which 
can introduce error in the hydrology and nutrient processes of the model if different 
types of land use need to interact. Second, SWAT allows BMPs to be applied only to 
HRUs, which have no real geographic meaning.2 In actuality, the placement of BMPs 
occurs over a defined area, chosen on the basis of on-the-ground knowledge of the 
watershed conditions. Such considerations are lacking in the model. Finally, SWAT 
uses a daily time step, which means that subdaily events affecting flow and nutrient 
transport are not adequately modeled.

Policy Levers

The Implementation Plan for North Farm Creek (Tetra Tech, 2012b) describes a 
number of load-reduction measures, divided into structural and nonstructural man-
agement options. This plan is the focus of our analysis. In addition to examining the 
potential impacts of climate change and any vulnerabilities it might create, the study 
also compared a plan consisting of some of the BMPs in this Implementation Plan to a 
Current Management plan, representing the case in which no additional management 
actions are taken. In addition, the study suggests potential modifications to the Imple-
mentation Plan that might reduce its potential vulnerabilities.

The Implementation Plan, as shown in Table 4.3, consists of six nonstructural 
management options and eight structural management options. Nonstructural man-
agement practices, also termed source control practices, aim to prevent runoff from a 
site, whereas structural management practices refer to redevelopment or retrofits of 
pollutant control and conveyance structures. Some of the former, such as education 
programs and the development of ordinances, are applied to the entire watershed. But 
in most cases, management options are applied only to particular land area types. For 

2  For example, a single HRU could be spread over two pieces of land that are not contiguous. 
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instance, green infrastructure retrofitting is applied to impervious surfaces in devel-
oped areas, while conservation tillage is appropriate for cultivated agricultural areas. 

The Implementation Plan includes qualitative rankings for the level of pollution 
reduction provided by each BMP (moderate or high) and for the cost (low, moderate, 
and high). In addition, the plan envisions an adaptive management approach consist-
ing of a three-phased implementation schedule that combines both monitoring and 
adjustment over time. The plan unfolds according to the following schedule:

Table 4.3
BMPs Considered In Case Study

Activity Critical Area
Phasing

I/II/III
Pollution 
Removal Cost

Nonstructural Management Options

Education and pollution prevention 
programs

Watershed wide H/C/C Moderate Low

Ordinance development Watershed wide H/C/C Moderate Moderate

Street and parking lot sweeping Impervious surfaces H/C/C Moderate Moderate

Pet waste education and outreach 
campaign

Residential areas H/C/C Moderate Low

Wildlife implementation practices Riparian areas H/C/C Moderate Low

Salt management plan Impervious salted areas 
watershed wide

H/C/C High Low

Structural Management Options

Green infrastructure retrofitting Impervious areas M/H/C High High

SSO control East Peoria Oakwood Ave. 
outfall

H/C/C High High

Disinfection of primary sewage 
plant effluents

Sundale Sewer Corp.-
Highland

H/C/C High High

Stabilizing erosion of steep slopes Storm sewer outfalls, steep 
slopes

H/C/C High Moderate-
High

Stream bank restoration Eroding stream banks L/H/H High High

Riparian area management Riparian areas H/H/C High Moderate

Grassed waterways Cultivated agricultural 
areas

H/M/L High Low

Conservation tillage Cultivated agricultural 
areas

H/M/L High Low

NOTE: Shading shows BMPs modeled in this study. Unshaded entries included in North Farm Creek 
Load Reduction Strategy but not included in this case study. Activity levels in each phase: H = High, 
C=Continued at prior-phase level, M= Moderate, L = Low. SSO = sanitary sewer overflow. 
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• Phase I (years 0–3): Implement nonstructural BMPs and begin planning for 
structural BMPs

• Phase II (years 3–10): Begin implementing structural BMPs
• Phase III (years 10–20): Monitoring and adaptive management.

Each phase has associated milestones and goals designed to measure progress 
and suggest the need for midcourse corrections in the plan. The milestones refer to 
the qualitative levels of activity shown in Table 4.3 under the column “phasing.” For 
instance, the emphasis on green infrastructure retrofitting is high in Phase II and is 
continued into Phase III. The quantitative goals for pollution removal (fourth column) 
refer to particular levels of pollution load reduction expected at particular points in 
time. The Implementation Plan uses implementation schedules and qualitative High/
Moderate/Low “emphasis” categories (i.e., the extent to which particular BMPs have 
been implemented) and pollution loadings as its primary evaluation tools. The plan 
uses these tools to suggest triggers that may indicate a need for modifications over time. 
For instance, the plan may need to be modified if observed BMP performance does not 
align with expectations, or if water quality conditions do not improve.

In this case study, we do not consider the entire Implementation Plan. Instead, 
we model the performance of four structural BMPs: green infrastructure retrofitting, 
riparian area management, grassed waterways, and conservation tillage. Our analysis is 
limited to these four BMPs because, as described in detail below, the option to model 
the other BMPs is either not provided in SWAT or is provided in a way that is not suit-
able for RDM analysis. Table 4.3 highlights these BMPs with shaded rows. We follow 
these BMPs through the adaptive management process described in the Implementa-
tion Plan, with the aim of providing a quantitative understanding of their ability to 
achieve pollution load reductions, the uncertainties that affect these reductions, and 
the types of triggers that may be effective in allowing for adjustments over time. 

Table 4.4 summarizes the land use type and removal efficiencies for the BMPs 
used in this study. Each BMP can in practice be applied to the given land use, but 
we apply it only to the land use in bold for reasons discussed below. We modeled the 
effectiveness of these four BMPs using SWAT’s built-in “generic conservation practice” 
module, which enables the user to specify nutrient- and sediment-removal efficien-
cies and to specify the type of land use or HRU to which the BMP is applied. For the 
nonurban BMPs considered in this study, we use removal efficiencies as estimated by 
Waidler et al. (2012). The range of urban BMP removal efficiencies was taken from the 
Implementation Plan. The range of agricultural BMP removal efficiencies was taken 
from Dermisis et al. (2010) and Hallock (2007). 

To model the phased implementation of the Implementation Plan, we first quan-
tified the different levels of emphasis in the plan (High/Medium/Low) by assuming 
that these categories refer to the percentage of the relevant HRUs to which the plan 
can be applied, namely 100 percent (High), 50 percent (Medium), and 25 percent 
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(Low).3 We then randomly assigned BMPs to HRUs of the appropriate land use type 
for each of the three implementation levels. For instance, for a Medium application of 
the grassed waterways BMP, we randomly assigned this BMP to half the cropland and 
pasture HRUs in North Farm Creek. It was necessary to use such random assignments 
because SWAT does not allow spatially targeted placement of BMPs. The number of 
HRUs is sufficiently large, however, that our results are insensitive to the details of any 
particular random assignment.4

SWAT has several limitations in its treatment of BMPs that are particularly ger-
mane to this analysis and, we expect, for any future attempts to use SWAT for RDM 
studies. Here we describe some of these limitations. At the close of the chapter we 
describe how they might be addressed in future work.

This study considered only four types of BMPs. While SWAT has several built-
in modules that simulate a variety of BMPs, only the “Generic Conservation Prac-
tice” module was suitable for the RDM analysis. The generic module enables user-
defined input of removal efficiencies, while management-specific modules allow only 
user-defined input of structural management parameters, such as the geometry of the 
grassed waterway or filter strip. However, the information required to relate the struc-
tural parameters to removal efficiencies is generally lacking, as is information regarding 

3 This assumption is analogous to that made in the analysis (done using the Long-Term Hydrological Impact 
Analysis [L-THIA] model) for some structural BMPs as part of the North Farm Creek Implementation Plan 
report (Tetra Tech, 2012b).  
4 To check this, we generated an ensemble of runs (n = 5) and noticed that the ensemble standard deviation in 
yearly loadings was 20.3 lbs/year for nitrogen, 3.4 lbs/year for phosphorus, and 1,550 lbs/year for sediment. These 
magnitudes are much smaller than the model uncertainty and climate uncertainty described below.

Table 4.4
Land Use Type and Removal Efficiencies for BMPs Considered in Case Study

Structural BMP Land Use (HRU)
BMP Removal 
Efficiency (%)

Uncertainty in Removal 
Efficiency

[Implied Effectiveness]

Green infrastructure 
retrofitting

Urban Phosphorus = 47 
Nitrogen = 48 
Sediment = 52

Phosphorus = [0.76–1.0]
Nitrogen = N/A

Sediment = [0.39–1.0]

Grassed waterways Cropland (corn, soy); pasture Phosphorus = 75 
Nitrogen = 70 
Sediment = 65

Nitrogen = [0.3–1.0]
Phosphorus = N/A

Sediment = [0.62–1.0]

Riparian area 
management (filter 
strips)

Cropland (corn, soy); pasture; 
rangeland

Phosphorus = 75 
Nitrogen = 70 
Sediment = 65

Phosphorus = N/A
Nitrogen = N/A

Sediment = [0.53–1.0]

Conservation tillage Cropland (corn, soy); pasture Phosphorus = 45 
Nitrogen = 55 
Sediment = 75

Phosphorus = N/A
Nitrogen = N/A
Sediment = N/A
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how climate change will affect such relationships. Thus, we restricted ourselves to using 
the generic module in which we can directly specify (and modify) removal efficiencies. 

In particular, using the generic BMP module precluded treatment of two impor-
tant BMPs: stream bank restoration and slope stabilization. In principle, SWAT could 
address these two BMPs by modifying the model’s physical channel equations. For 
example, one could simulate both BMPs indirectly by changing the soil erodability fac-
tors associated with stream banks and channels that the BMPs are designed to affect. 
Similarly to the challenge of SWAT’s nongeneric BMP modules, such an approach 
poses problems because the physical relationship between a parameter such as soil 
erodibility or bank slope and pollutant removal efficiency is not known; the effects of 
climate change on these relationships are not known; and changing the physical equa-
tions SWAT uses to model watershed processes risks introducing model uncertainty 
and errors. The need to exclude stream bank restoration and slope stabilization BMPs 
from the analysis affects most significantly the projected sediment and phosphorus 
loadings and less significantly the nitrogen loadings.

In addition, SWAT can use the generic BMP module only once in any one HRU. 
For example, if we use the SWAT generic BMP module to simulate the effect of imple-
menting porous pavement in urban HRUs, then the generic module cannot also be 
used to add bioswales to those same HRUs. We thus use the SWAT generic module 
to simulate all four BMP types by assuming that only one type of BMP is applied in 
each HRU. In reality, multiple BMPs could be applied in the same HRU. Table 4.4 
shows the land types in bold to which we apply each BMP. While this assumption 
underestimates the true removal capacity of the plan, it still enables us to apply BMPs 
to the entire region. Moreover, in a practical context, all BMPs cannot necessarily be 
co-applied all the time.5

Overall, however, these limitations suggest that our analysis likely underestimates 
the possible levels of nutrient and sediment reduction. 

Uncertainties

This case study focuses on two important uncertainties—climate change and the effec-
tiveness of various BMPs—that may affect the ability of the Implementation Plan to 
meet the TMDL goals for the region.

5  The ability to be co-applied as well as the removal efficiencies of multiple BMPs is dependent upon BMP type, 
HRU characteristics, weather patterns, and other factors (Srinivasan, 2015). Nevertheless, we can get a sense of 
the lower and upper bounds through a simple example. Without loss of generality, suppose we apply two BMPs, 
with efficiencies given by E1 and E2, to an area containing two HRUs of equal size. Case 1: each BMP can be 
applied to only one HRU, so the overall removal capacity will be: Eff1 ≈ (E1 + E2)/2. Case 2: each BMP can be 
applied to both HRUs so the overall removal capacity will be: Eff2 ≈ E1 + (1-E1) × E2. Suppose we’re interested 
in phosphorus removal through conservation tillage (E1 = 0.45) and grassed waterways (E2 = 0.75). As such, for 
case 1 Eff1 = 0.6, and for case 2 Eff2 = 0.86. Thus, the maximum difference is not large relative to the perfor-
mance uncertainties we are considering. Moreover, this difference is reduced as the number of BMPs and/or their 
removal capacities increase. 
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To represent uncertainty in future climate, this case study uses six mid-21st cen-
tury (2041–2070) climate change projections from the North American Regional Cli-
mate Change Assessment Program (NARCCAP) that were also used in the USEPA 
20 Watersheds Study (Mearns et al., 2006). These consist of six pairings of one of the 
GCMs used in the IPCC Fourth Assessment Report (IPCC, 2007) with a higher-res-
olution regional climate model.6 Each pairing provides a 50-square-kilometer grid over 
North America. This downscaled output is archived for two 30-year periods (1971–
2000 and 2041–2070) at a temporal resolution of three hours. Each GCM in the 
NARCCAP ensemble is driven by the IPCC A2 emissions projection, which is among 
the highest of the carbon emissions scenarios in the Special Report on Emissions Sce-
narios (SRES) set (IPCC, 2000). 

As shown in Figure 4.5, the six projections show a range of plausible deviations 
from historic temperature and precipitation patterns in the North Farm Creek area. All 
six projections are hotter than the historic baseline, with increases in average annual 

6  The six pairings used in this and the 20 Watersheds study are the: (1) Geophysical Fluid Dynamics Laboratory 
(GFDL) GCM with the Regional Climate Model (RegCM) RCM (NCAR regional climate model), (2) GFDL 
GCM with the GFDL RCM, (3) Third Generation Coupled Climate Model (CGCM3) GCM with the RegCM 
RCM, (4) CGCM3 GCM with the Weather Research and Forecasting Model (WRF) RCM, (5) Hadley Center 
Coupled Model, version 3 (HADCM3) GCM with the Hadley Regional Model (HadRM) RCM, and (6) Com-
munity Climate System Model (CCSM3) GCM with Canadian Regional Climate Model CRCM RCM.

Figure 4.5
Range of Climate Projections Used in This Study
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temperatures ranging from about 4.1 to 5.0 degrees Fahrenheit. Five of the six projec-
tions are wetter than the historic baseline, with up to a 12 percent increase in average 
annual rainfall, while the sixth is slightly drier (2 percent decline). This pattern is typi-
cal of most ensembles of regional climate projections, which generally show a larger 
spread in precipitation than temperature and, in particular, often disagree about the 
sign of future precipitation changes (IPCC, 2013). 

Watershed modeling at the scale of the North Farm Creek requires higher spa-
tial resolution than the 50-square-kilometer NARCCAP projections, and detailed 
efforts also depend on meteorological variables in addition to average annual tem-
perature and precipitation. This information was generated using a “change factor” 
or “delta” method. An approximately 30-year time series of observed local climate for 
each National Climatic Data Center weather station used by the Illinois River Basin 
SWAT model was obtained from the 2006 Metrological Database in USEPA’s BASINS 
system. Historical temperature and precipitation values for each weather station used 
by the model were then adjusted to represent each of the six NARCCAP scenarios 
using the BASINS Climate Assessment Tool (CAT) (USEPA, 2013). The analysis used 
monthly climate change statistics, representing the difference between the 2041–2070 
and 1971–2000 time periods in each NARCCAP projection, to perturb these observa-
tional data, which were then used as inputs into the SWAT model’s weather generator 
to create realizations of other climate variables based on monthly statistics conditional 
on the precipitation projections. 

As discussed in Chapter Three, climate change is expected to affect the intensity 
and frequency of extreme precipitation events (IPCC, 2012). More intense precipita-
tion events may have significant impacts on water quality (USEPA, 2009a). To repre-
sent changes in event intensity, climate change scenarios calculated separate monthly 
climate change statistics for daily precipitation within different percentile classes from 
the NARCCAP model outputs. In particular, the delta method perturbations were 
applied separately to precipitation events in the greater- and less-than-70th percentile 
event classes, while maintaining the appropriate mass balance.7 Most of the climate 
projections show increases in precipitation volume for larger, more extreme events, 
with a constant or decreasing volume of precipitation in the smaller events.

It is important to note that the six NARCCAP projections used in this study 
likely represent an underestimate of the full range of potential future outcomes. The 20 
Watersheds study compared the water quality results obtained from the six NARCCAP 
projections to eight additional projections obtained from applying the delta method 
directly to the outputs from the four GCMs (without first coupling to the RCMs) and 
by applying the bias-corrected and spatially downscaled (BCSD) downscaling method 

7  The delta method is a technique to downscale the global results of GCMs to produce regionally specific cli-
mate forecasts. An elementary discussion of this technique is available from Scenarios Network for Alaska and 
Arctic Planning (SNAP) (2015).
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to the GCM outputs (USEPA, 2013). The study found in general that projections of 
flow and water quality in each of the 20 basins were sensitive to the choice of GCM 
projection and to the downscaling method. In addition, the IPCC has provided an 
updated ensemble of over 100 new climate projections as part of the recently released 
Fifth Assessment report (IPCC, 2013). This CMIP5 (Climate Intercomparison Proj-
ect 5) ensemble, derived from roughly 30 GCMs run with up to four alternative pro-
jections of atmospheric greenhouse gas concentrations, spans a much larger range of 
temperature and, especially, precipitation than those provided by the six NARCCAP 
projections used in this study. The range of projections considered in this case study 
thus represents a lower bound on the potential range of future climate changes that 
might face North Farm Creek.

We represent uncertainty regarding the effectiveness of various BMPs by varying 
over a wide range their ability to remove pollution. In practice, BMP effectiveness may 
vary depending on the specific conditions in which the BMP is deployed, how well 
the BMP is maintained over time, and the effects of climate change. As noted in the 
discussion surrounding Table 4.3, the literature provides a range of estimates for the 
performance of each BMP. We choose the high end of the range as 100 percent effec-
tiveness. The lowest removal efficiency estimate in the literature for each of the four 
BMPs is roughly half of the highest estimate, so we set the low end of the uncertainty 
range at 50 percent effectiveness. 

Metrics

The TMDL and LRS study for the North Farm Creek subwatershed requires reduc-
tions in bacteria, total suspended solids, and nutrients to meet water quality goals. 
Table 4.5 shows the plan’s specific reduction goals. Our analysis will focus on total 
suspended solids, nitrogen, and phosphorus. These contaminants have sufficiently long 
time series of water quality data available at a fine enough spatial scale to properly cali-
brate the SWAT model for North Farm Creek. 

Table 4.5
North Farm Creek TMDL and LRS Reduction Goals

Pollutant Reduction Requirement (%)

Sediment 88

Nitrogen 17–63

Phosphorus 21–73
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Experimental Design and Case Generation 

Using these XLRM factors, we examined the performance of alternative pollution 
control plans for the North Farm Creek subwatershed over a wide range of futures. 
Each future consists of one assumption about future climate and one set of assump-
tions about future BMP effectiveness. The experimental design that defines this range 
of futures was composed of

• a full factorial sample over seven hydrology sequences (six downscaled climate 
projections and one projection that repeats the observed historical record)

• 20 sets of BMP effectiveness parameters generated using a Latin hypercube sample 
over the range 50 percent to 100 percent for each of the four BMPs.8

Considering all possible combinations of these scenario inputs yielded 140 differ-
ent futures. For each of these futures, we ran the model for both the Current Manage-
ment plan (no additional BMPs) and the modeled BMPs in the Implementation Plan, 
for a total of 147 cases.9 Nitrogen, phosphorus, and sediment loads were recorded for 
each case. We then used the database of run results to understand the potential effec-
tiveness of the plan over a range of future conditions. Each case was run in a server 
environment and took approximately 20 minutes to complete, yielding about 47 hours 
of runtime for the full array of results discussed here. 

Results

Figure 4.6 first compares the Current Management and the modeled BMPs in the 
Implementation Plan (hereafter the Modeled Implementation Plan) using box-plot sum-
maries of annual nutrient and sediment loadings across all the futures considered in 
this analysis. Note that for each pollutant, the modeled plan reduces both the load and 
the variation in load across the plausible futures. For instance, with Current Manage-
ment, nitrogen loads in North Farm Creek range from 22,000 to 60,000 lbs/yr. With 
the modeled plan in place, nitrogen loads range from 15,000 to 30,000 lbs/yr.

The Modeled Implementation Plan shows similar improvements for phosphorus 
and sediment. These calculations also suggest that the Implementation Plan would be 
significantly more effective at reaching the TMDL standards for North Farm Creek, 
shown by the red lines (Tetra Tech, 2012a), for nitrogen than for the other two pol-

8 Latin hypercube sampling is a method used to obtain simulation parameters from a multidimensional distri-
bution such that each dimension is equally represented. This reduces the number of simulation runs required to 
produce stable outputs in stochastic simulations. 
9 The number of cases is 147 because the BMP effectiveness uncertainties do not affect the Current Manage-
ment Plan.
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Figure 4.6
Annual Nutrient Loads Across All Future Projections (2041–2060) Under Current Management Versus Modeled Implementation Plan

NOTE: The red lines show the TMDL target for each pollutant. The boxplots presented do not represent probability distributions, but instead report
the results of a set of model runs (futures). Each point summarized represents one mapping of assumptions to consequence, and the points are not
assumed to be equally likely. Each individual future shifts downward when BMPs are applied.  
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lutants.10 For nitrogen, roughly 50 percent of the cases meet or perform better than the 
TMDL standard, while for phosphorus, a little less than 25 percent of the cases meet 
or perform better than the TMDL standard. For sediment we find that nutrient loads 
always fail to meet the TMDL standard. 

Table 4.6 summarizes the performance of the Modeled Implementation Plan 
across the futures considered in this analysis. In contrast to the annual loads in Figure 
4.7, this table considers the average load for each pollutant over the entire time series 
in each future. The first column shows, as expected, that in the current climate the 
Current Management plan does not meet the TMDL for nitrogen, phosphorus, or 
sediment. The second column shows that if the modeled plan were currently in place, 
it would meet the nitrogen and phosphorus TMDLs, but not sediment, over the full 
range of assumptions about BMP effectiveness considered here. The third column 
shows that the Current Management plan would not meet the TMDLs in any of the 
six future climates considered in this analysis. The fourth column shows that by mid-
century the modeled plan would meet the nitrogen TMDL in nearly 40 percent of the 
futures but would not meet the phosphorus and sediment TMDLs.

As discussed in more detail later, the failure of the modeled plan to meet the 
phosphorus and sediment standards in our analysis likely results from a combination of 
limitations of the current modeling—in particular the fact that we model only half the 

10  The TMDL targets were derived by multiplying the TMDL values for Farm Creek by two scaling factors. The 
first scaling factor equates a given nutrient load derived from SWAT to the empirical load reported in the TMDL 
report. The second scaling factor is the ratio of a given nutrient load in North Farm Creek versus Farm Creek.

Table 4.6
Futures in Which TMDL Targets Are Met, by Plan and Pollutant, for North Farm Creek

Pollutant

Number (Percent) of Futures Meeting the TMDL Target

Current Climate Future Climate (2041–2060)

Current 
Management

Modeled 
Implementation  

Plan
Current 

Management

Modeled 
Implementation  

Plan

Nitrogen target 0 (0) 20 (100) 0 (0) 52 (43)

Phosphorus target 0 (0) 20 (100) 0 (0) 0 (0)

Sediment target 0 (0) 0 (0) 0 (0) 0 (0)

Meets all three targets 0 (0) 0 (0) 0 (0) 0 (0)

NOTE: This table shows one future for current management in the current time period; 20 futures for 
the modeled plan in the current time period, representing a range of assumptions about  
BMP effectiveness; six futures for current management at midcentury, representing a range of climate 
projections; and 120 futures for the modeled plan at midcentury, representing a range of climate 
projections and assumptions about BMP effectiveness.
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structural BMPs and none of the nonstructural management options—and aggressive 
targets for these pollutants in the North Farm Creek plan. 

We can next use the analysis to explore key drivers that explain this variation in 
performance. Figure 4.7 compares the Current Management and modeled plan using 
scatterplot summaries of the average nitrogen and phosphorus loads for the 20-year 
period 2041–2060. Each point represents one of the futures considered in the analy-
sis. The figure shows pollution loading for each future with a point whose color and 
size indicate the climate variables in each future. A red-shaded point indicates a future 
climate with larger temperature increases over historical. Similarly, a larger point indi-
cates future climates with greater precipitation than historical. The “x” in each panel 
indicates the loadings with historic climate. The scatter of similarly colored and sized 
points in the right panel owes to the range of assumptions regarding BMP effectiveness. 

Comparing the right and left panels suggests, similarly to Figure 4.6, that the 
modeled plan lowers nitrogen loads to meet the TMDL for many futures, but that even 
with the plan in place phosphorus loads remain above the TMDL standard across all 
future conditions. Figure 4.7 suggests that differences in precipitation largely explain 
the difference in the projected nitrogen loading to streams, as indicated by the larger 

Figure 4.7
Nitrogen and Phosphorus Loads for Current and Modeled Implementation Plan

NOTE: Figure shows nitrogen and phosphorus loadings for current (left panel) and Modeled
Implementation Plan (right panel) for each future considered in the analysis. Dot size shows future
precipitation, dot color shows future temperature, and x indicates historic climate. Dashed red lines
show TMDLs.
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points for higher values of nitrogen loadings. For phosphorus, there is no clear trend 
in temperature or precipitation among the future climate projections, though the com-
bination increases pollutant loads. Nutrient transport is highly correlated with BMP 
effectiveness, especially for nitrogen, as shown by the large spread of loadings for each 
climate projection in the right panel of Figure 4.7. 

To further test the effects of these drivers, we reran the SWAT model while hold-
ing temperature constant at historic values and varying precipitation according to the 
alternative climate projections, as well as vice versa. We found that increased precipita-
tion tends to increase sediment and nutrient loadings. However, the form of nitrogen 
considered in the TMDL (inorganic nitrites and nitrates, or NO2NO3) was most sensi-
tive to precipitation changes, while phosphorus and sediment were comparatively less 
sensitive. In contrast, temperature does not appear to have any directional effect on 
nutrient and sediment loadings in our analysis. This could owe to competing mecha-
nisms at play: Higher temperature leads to higher evapotranspiration, which in turn 
reduces surface flow volumes. On the other hand, higher temperatures also lead to 
increased carbon dioxide, leading to additional plant growth. This in turn increases the 
net phosphorus and nitrogen in the watershed. This behavior is consistent with earlier 
studies that find that precipitation (particularly surface runoff), and not temperature, 
is the driving factor for nutrient and sediment loadings to watersheds, and furthermore 
NO2NO3 is most sensitive to precipitation change when compared with phosphorus 
and sediment (Ficklin et al., 2010). Our results are consistent with these findings for all 
futures except CCSM-WRFP, which is about 2.5 percent drier and about 5° C hotter 
than historic climate, yet it results in higher nutrient and sediment loadings as com-
pared to the historic climate. This could be because while our temperature increases are 
similar, our precipitation decreases are only a quarter as large as those considered in the 
(Ficklin et al., 2010) study. This decrease may not be significant enough to drive down 
sediment and nutrient loadings in the CCSM-WRFP future. 

The differential response of nitrogen and phosphorus loadings to future changes 
in climate variables in our model is consistent with the sensitivities discussed in the 
literature. In general, previous studies suggest that the influence of precipitation and 
temperature changes on water quality results from several counterbalancing forces, 
with the overall result highly sensitive to local geology (Murdoch, Baron, and Miller, 
2000). On the one hand, wetter futures dilute the point- and non-point-source pol-
lutants entering streams, thereby improving water quality. However, because water 
residence times are lower, wetter futures also increase erosion and sediment transport 
while reducing chemical and biological transformations in the soil (Mulholland et al., 
1997). Wetter climates also increase the spatial extent of surface runoff, and conse-
quently increase the pollutant loadings from point- and non-point sources (Lins and 
Slack, 1999). Phosphorus loading, in particular, goes up due to increased weathering 
and erosion (Covich et al., 1997).
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It also proves useful to consider the dependence of the Modeled Implementation 
Plan on various flow intensities. For instance, Figure 4.8 compares nitrogen loadings 

Figure 4.8
Flow Duration Curves for Nitrogen

NOTE: The solid black lines represent TMDLs for a given �ow duration interval.
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in North Farm Creek for the Current Management (red line) and Modeled Implemen-
tation Plan (blue points) for the historic (lower panel) and CGCM3-CRCM (upper 
panel) climate projections. The CGCM3-CRCM climate projection has the highest 
combination of nitrogen and phosphorus loads. The TMDL targets for each flow dura-
tion interval are indicated with solid black lines. The data plotted are at the monthly 
time step, which seems to offer the optimal accuracy/variation trade-off.11 

The scatter of points in Figure 4.8 stems from the range of assumptions about 
BMP effectiveness. This figure suggests that for nitrogen the Modeled Implementation 
Plan performs adequately under high- and low-flow conditions but performs less well 
under mid-flow conditions. Water residence times are likely to be highest during mid-
flow conditions, enabling bulk transport of nutrients into the stream. During low-flow 
conditions, there is not enough volume, and during high-flow conditions the water 
does not have enough time to absorb large amounts of nitrogen. 

Overall, the projections for phosphorus loadings for the Modeled Implementation 
Plan, which always exceed the TMDL, are likely high. First, because of SWAT model 
limitations the analysis was unable to include stream bank restoration and efforts to 
stabilize slopes, two of the most important BMPs for controlling phosphorus. Second, 
the modeling assumptions in SWAT generally lead to elevated levels of phosphorus 
and sediment for two interrelated reasons: (1) sediment and phosphorus transport are 
tightly coupled in SWAT, and (2) in watersheds with a mix of developed and unde-
veloped areas, such as North Farm Creek, SWAT transports all runoff as sheet flow 
across the pervious sections without any piping or channelization, which results in the 
overestimation of sediment from developed areas. Given that, this analysis may overes-
timate sediment and phosphorus transport (Tetra Tech, undated). Finally, local IEPA 
staff report that the phosphorus TMDL for North Farm Creek may have been set at a 
very stringent level.

Identifying Vulnerabilities and Adaptive Management Responses

We can now use the information in Figure 4.7 to summarize the conditions under 
which the Modeled Implementation Plan does or does not meet its TMDL goals. We 
focus on nitrogen because we expect the model results to be most accurate for that pol-
lutant. These conditions, which represent scenarios that illuminate the vulnerabilities 
of the plan (Lempert, 2013), can then be used to suggest how an adaptive management 
plan might respond over time to help ensure North Farm Creek meets its water quality 
goals (Lempert and Groves, 2010).

The scenario discovery analysis finds that the loadings generally exceed the TMDL 
in 2041–2070 under conditions with high precipitation and relatively low effectiveness 

11  Typically, shorter time steps result in poorer model results compared to longer time steps (Moriasi et al., 
2007). On the other hand, plotting longer time step data may obscure the daily variation needed to investigate 
the flow-dependent performance of these BMPs.
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of the green infrastructure refitting BMP. In particular, nitrogen loadings satisfy the 
TMDL in any future that lies above a line defined by the following two conditions:

1. Green infrastructure retrofitting effectiveness is 100 percent, and precipitation
increases less than 8 percent above historic, or

2. Precipitation decreases 2.5 percent below historic, and green infrastructure ret-
rofitting effectiveness is at least 60 percent of the best estimate.12

This is not surprising. Increased precipitation increases nitrogen loading. Half of 
North Farm Creek’s area is currently developed, and as discussed in Chapter Three, 
developed impervious land is a major source of nitrogen. The Modeled Implementation 
Plan uses green infrastructure retrofitting as its main BMP for controlling runoff from 

12 This cluster has coverage and density of 99 percent and 77 percent, respectively; that is, nitrogen loadings 
exceed the TMDL in 77 percent of the cases that meet these conditions, and 99 percent of the cases in all the 
runs in which nitrogen exceeds the TMDL are explained by these conditions. 

Figure 4.9
Futures in Which the Modeled Implementation Plan Meets and Misses 
TMDL Goals

NOTE: Green line shows scenario in which nitrogen loadings under the modeled
BMPs in the North Farm Creek Implementation Plan exceed the TMDL. Filled and
open circles indicate cases in which nitrogen loadings exceed and fall below the
TMDL, respectively. The six climate model projections associated with each data
column are also indicated. Note that two projections overlap.
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developed areas. So the effectiveness of such BMPs should significantly affect the plan’s 
ability to control nitrogen.

This scenario can help to inform the milestones and midcourse corrections the 
North Farm Creek Implementation plan might use to adapt, over time, to new infor-
mation, to improve its ability to meet the nitrogen TMDL. If at the end of Phase II of 
the plan, precipitation seems likely to be higher than historic and green infrastructure 
BMPs are performing as expected, then North Farm Creek might accelerate deploy-
ment of these BMPs in Phase III. If the green infrastructure BMPs are not performing 
as well as expected at the end of Phase II but precipitation is expected to stay close to 
historic levels, then accelerating deployment of these BMPs might still make sense. If 
precipitation increases are expected and the green infrastructure BMPs are performing 
poorly, then North Farm Creek may need to explore other options, including a poten-
tial change in the nitrogen TMDL.

The anomalous behavior of the GFDL/GFDL climate projection in Figure 4.9 
suggests some of the strengths and weaknesses of this analysis. Note that this projec-
tion suggests that the current TMDL plan would meet its goals over a much wider 
range of precipitation and BMP effectiveness changes than suggested by the other cli-
mate projections. In general, the SWAT model suggests that higher temperature and 
precipitation lead to higher nutrient loadings. 

The GFDL/GFDL projection has, however, the largest late summer temperature 
increase (roughly +5°C) compared to the other five climate futures. This temperature 
increase occurs around the same time as a fairly large decrease in precipitation (roughly 
−40 percent). Because SWAT’s physical modeling of the impact of temperature and 
precipitation is nonlinear, both the timing and particular combination of precipita-
tion decrease and temperature increase drive the reduction in contaminant load that 
eventually ends up in leach and runoff, as our results reflect.13 In particular, the late- 
summer increase in temperature does not significantly impact plant growth but does 
result in higher evaporation, which in turn increases soil storage and infiltration capac-
ity. As a result, additional rain produces lower runoff, which in turn reduces contami-
nant loads. Moreover, the concurrent decrease in precipitation in the GFDL/GFDL 
projection occurs during the later stage of crop growth in our model. This affects 
biomass growth such that plants take up fewer nutrients, runoff is reduced, and thus 
nutrient loadings to nearby streams are smaller. 

This information suggests that: (1) attributes of future climate beyond average 
annual precipitation may also be important in determining the success of North Farm 
Creek’s TMDL implementation plans, (2) the use of downscaled GCM projections 
within an RDM decision framework can help suggest these attributes, and (3) an 
ensemble of only six projections may be too small in number to provide reasonable 
inference on the most important combinations of attributes.

13  Personal communications with Dr. Raghavan Srinivasan, SWAT Developer at Texas A&M.   
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Observations About Using SWAT for RDM Analyses

This study provides insights into how the SWAT watershed model might be modified to 
facilitate RDM analyses. Overall, SWAT is a good candidate for such analyses given its 
reasonable skill at reproducing historic pollution flows, its fast runtime, and its ability to 
model numerous different types of management practices. However, with a few modi-
fications the model’s ability to support RDM analyses could be significantly improved. 

First, SWAT could be modified to include functionality such that alternative 
land-use and management scenarios can be input into the model without having to 
supply input files for each HRU (or through modifying the core program routines, 
as we did in this case study). SWAT can already read up to 18 precipitation and tem-
perature files, and while land-use and management inputs are slightly more complex, 
extending such functionality should not be too complicated. 

Second, when simulating BMPs in climate- and land use–change studies, we have 
information only on the BMP removal efficiencies in alternative futures but do not 
have information on the precise structural features of the BMP associated with those 
removal efficiencies. However, SWAT currently asks the user to control BMP effective-
ness by adjusting these structural parameters (e.g., the width of a grassed waterway or 
a filter strip). To facilitate RDM analyses, it would be advantageous if for each BMP 
type an option were given—similar to the generic conservation practice module—to 
directly adjust nutrient removal efficiencies without knowledge of its structural param-
eters. Relatedly, a major drawback of BMP simulations in SWAT is the HRU-based 
targeting of the BMPs, which has no geographic meaning. In practice, BMPs are 
applied to specific plots of land in the watershed, and the choice of where to install a 
BMP is a major consideration in how effective a given plan will be in meeting its goals. 

Finally, SWAT’s ability to model phosphorus and sediment should be improved. 
SWAT Rev. 591 was the latest version of the model available when modeling work on 
this case study began. In recent months, considerable revisions were made to SWAT to 
fix major issues with sediment yield, channel erosion, and channel transport capacity 
(i.e., USDA-ARS, 2014a). Similar changes may be necessary for phosphorus transport.

The above observations suggest several criteria upon which to judge whether a 
given watershed model is suitable for an RDM analysis, as summarized below.

Computational Features 

The computational features that make a given watershed model suitable for an RDM 
analysis are

• fast runtime so many thousands or millions of scenarios can be simulated quickly
• ability to handle multiple climate scenarios as inputs
• automatable handling of model inputs and outputs. For the Farm Creek analysis, 

we wrote UNIX Shell scripts to iteratively run under alternative scenarios and 
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supply relevant inputs and handle output. Models that have this capability by 
default would significantly improve ease of use. 

Simulation Features

The simulation features suitable for an RDM analysis are
• physical process-based models. Such models are helpful for RDM because they 

enable the representation and assessment of alternative management plans by let-
ting the user modify model parameters. For example, many BMPs in the North 
Farm Creek analysis were represented by directly altering nutrient removal effi-
ciencies in SWAT transport equations. Furthermore, BMPs could be “switched” 
on or off, which is a more realistic depiction of the watershed management con-
text

• appropriate temporal resolution. SWAT simulates watersheds on a daily time step. 
Models with daily or even subdaily time steps may be more suitable for RDM 
because they can capture the variability in climate events that drive water qual-
ity metrics. Longer time step models may not adequately capture such variabil-
ity, although their runtimes are typically much faster. Given the importance of 
capturing climate change–induced variability in drivers of water quality as well 
as the increasing rate of computing power, it makes sense to develop higher-reso-
lution models that are potentially slower with current computational speeds, but 
may be improved over time.  

Summary

This chapter describes a pilot study evaluating the vulnerability of the North Farm 
Creek Implementation Plan over a wide range of futures including future climate 
change and alternative assumptions regarding the effectiveness of four BMPs. We find 
that climate change could significantly affect the North Farm Creek Implementation 
Plan’s ability to meet its TMDL targets for nitrogen, phosphorus, and sediment. In 
particular, we find that the plan’s ability to meet the nitrogen TMDL is most sensitive 
to annual average rainfall and the effectiveness of green infrastructure retrofitting. 

We used the SWAT model, version 2005, in this analysis. SWAT offers a promis-
ing platform for an RDM approach to water quality management. However, this study 
identified several modifications to the SWAT model that might significantly enhance 
its suitability for such purposes.

The North Farm Creek Implementation Plan envisions an adaptive management 
approach with a phased BMP deployment that combines both monitoring and adjust-
ment over time. The current plan uses implementation schedules and load reduction as 
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its primary evaluation tools. This study suggests monitoring precipitation trends and 
BMP effectiveness might also provide valuable information on how the Implementa-
tion Plan might be adjusted over time.
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CHAPTER FIVE

Implications for USEPA Water Quality Management

The USEPA/OW and its state, local, and tribal partners must ensure the health and 
safety of U.S. water bodies and drinking water supplies. They must do so in the face 
of deep uncertainty regarding future climate, land use, other drivers of change, as well 
as the future cost and performance of potential new pollution control approaches such 
as low-impact development. It is widely understood the future climate, particularly 
precipitation, is difficult to predict at the spatial and temporal scales relevant for water 
quality. Nonetheless, EPA’s draft Climate Change Adaptation Plan (Cross-EPA Work 
Group on Climate Change Adaptation Planning, 2012) describes a need to “integrate, 
or mainstream, considerations of climate change into its programs, policies, rules and 
operations” (p. 7), while OW’s Climate Change Adaptation Implementation Plan calls 
specifically for the agency to “identify ways to better integrate climate change consid-
erations into water quality management planning projects and processes” (Office of 
Water, 2013, p. 11).

These uncertainties create significant challenges for the appropriate use of sci-
entific information. Effective water quality plans should be forward looking, that is, 
consider the future consequences of today’s actions. Such foresight is generally needed 
because some steps for improving water quality involve investments in long-lived infra-
structure, or otherwise require people, businesses, and farms to alter practices and 
behaviors. Linking current actions to future consequences generally requires projec-
tions from hydrologic simulation models, which in turn require model-based projec-
tions of future climate, economic activity, land use, and other factors. But uncertainty 
makes the projections from such models unreliable. As a result, relying on best-
estimate forecasts from these models can lead to plans that fail to meet their goals,  
and may complicate the process of reaching agreement on plans among stakeholders 
with differing interests and expectations. 

This study provides an initial exploration of the extent to which RDM can 
improve decisionmakers’ ability to effectively employ potentially unreliable simula-
tion models for TMDL implementation planning. A primary focus is on uncertainty 
associated with climate change, but the methods described can address a wide range of 
socioeconomic uncertainties as well. Importantly, TMDL planning under conditions 
of uncertainty is not only, or even primarily, an analytic challenge. Such plans must 
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be developed in a manner that the public finds accountable, objective, and predictable. 
These attributes can conflict with potentially effective approaches to uncertainty man-
agement based on flexibility and experimentation.  

This chapter reviews how the two case studies address the challenge of TMDL 
implementation planning under climate and other uncertainties. We then explore how 
future work might build on these RDM methods to more fully support USEPA and its 
partners in ensuring water quality.

Summary of Case Study Findings 

Though preliminary, the results from our two initial case studies suggest that RDM 
can usefully support USEPA/OW efforts to incorporate and manage uncertainty from 
climate change and other drivers in its decisions. Specifically, in these case studies we 
used RDM to help provide

1. a detailed understanding of where current management plans do or do not meet 
water quality goals under future conditions

2. a systematic identification of risks, highlighting key scenarios for future plan-
ning

3. information to help specify the milestones and midcourse corrections appropri-
ate for adaptive management

4. useful information on trade-offs among alternate approaches for managing 
these risks. 

Patuxent River Case Study Findings

Phase II of Maryland’s Watershed Implementation Plan set water quality TMDL tar-
gets for the Patuxent River, part of the Chesapeake Bay watershed, through a combina-
tion of historical water quality and hydrology monitoring data and detailed simulation 
modeling. Our analysis suggested that these TMDL targets would be met when we 
assumed historical hydrology and current land uses. However, for three contaminants 
of concern in the Chesapeake—nitrogen, phosphorus, and sediment—the Phase II 
WIP often would not meet these targets under scenarios incorporating climate change 
or future changes in population or development patterns. 

Our vulnerability analysis identified two key drivers that best described when 
these targets were not met: an increase in precipitation due to climate change or an 
increase in the amount of impervious area cover in the Patuxent Basin primarily due to 
population growth. Either individually or in combination, these uncertain drivers led 
to pollutant loads from the Patuxent above the recently established long-term targets 
even with the substantial Phase II management infrastructure in place. A preliminary 
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extension to this analysis, considering how individual BMP types already included in 
the plan could be used to augment the plan further, suggests that additional invest-
ment in some BMPs, including green infrastructure options such as wet ponds, wet-
lands, and urban filtering practices, could help achieve stormwater TMDL targets cost-
effectively in some stressing futures. However, in other cases the scale of infrastructure 
needed would likely exceed the available land area for these BMPs. Based on this  
analysis, the State of Maryland should consider a broader range of options, such as 
changes to land use practices to help reduce or avoid more impervious area growth. 

North Farm Creek Case Study Findings

The State of Illinois is beginning the process of implementing pollution control and 
restoration plans for the Middle Illinois River. Our study built on the 2012 load reduc-
tion strategy and BMP implementation plan for the North Farm Creek subwatershed, 
one of two pilot areas selected by the state for the initial development of load reduction 
strategies. The North Farm Creek Implementation Plan envisions an adaptive manage-
ment approach that deploys BMPs in three phases: nonstructural (years 0–3); structural 
(years 3–10); and monitoring and adaptive management (years 10–20). Our analyses 
found that future climate change could significantly increase pollution loads in North 
Farm Creek (by 30–60 percent for nitrogen, and 85–200 percent for phosphorus). We 
also found that implementing plan BMPs can significantly decrease pollution loads 
even under futures where the climate has changed. We found that the Implementation 
Plan’s ability to meet the nitrogen TMDL targets depends primarily on changes in 
average annual rainfall and change in the effectiveness of green infrastructure retrofit-
ting. Monitoring these two factors and responding, if necessary, with enhanced green 
infrastructure deployments or deployments of other BMPs could improve the plan’s 
ability to adapt over time to meet the nitrogen TMDL.

Facilitating Adaptive Water Quality Management

The best responses to deeply uncertain conditions often employ strategies that are 
robust and adaptive. Robust strategies perform well over a wide range of plausible 
futures. Adaptive strategies are designed to evolve over time in response to new infor-
mation. Such robust and adaptive strategies often emerge from an iterative risk man-
agement process.

USEPA’s current processes for setting water quality standards and TMDL plan-
ning do include many attributes of iterative risk management. For instance, with 
its sequences of state standard setting, public comment, USEPA approval, and peri-
odic review, the process for setting water quality standards (shown in Appendix B, 
Figure B.1) incorporates at least four attributes of adaptive decision strategies shown in  
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Chapter Two, Table 2.1, including iterative review, multistakeholder deliberations, 
diversity of approaches, and decentralized decisionmaking.  

But TMDL implementation plans are not generally robust and adaptive. Some 
are presented as static strategies, without any explicit treatment of uncertainty or flex-
ibility. Even those TMDL plans that do refer to adaptive management, such as the 
North Farm Creek plan, tend to describe the process qualitatively and do not provide 
specifics on how the plan might adapt over time or describe the gains that adaptivity 
might offer. In part, USEPA and its partners have not pursued robust and adaptive 
TMDL plans because they lack the appropriate analytic methods to do so.

Patuxent and North Farm Creek case studies help to demonstrate the utility of 
RDM and related methods to support adaptive TMDL planning. It thus proves useful 
to summarize how they do so and to explore how the underlying RDM methods might 
in the future be extended to provide analytic support for an entire process of climate-
related iterative risk management for water quality. 

At the most basic level, the RDM approach demonstrated here provides a frame-
work for articulating the basic components of a forward-looking adaptive decision 
strategy: near-term actions, signposts, and contingent actions. In each case study, 
the near-term actions are the BMPs proposed in the current TMDL implementation 
plans. The vulnerable scenarios for those plans provide information on appropriate 
signposts. In the Patuxent Basin, for instance, the vulnerable scenario in Figure 3.11 
(Chapter Three) suggests that decisionmakers monitor average annual precipitation 
and changes in impervious area. If observations suggest that conditions are moving 
into the upper right-hand corner of the figure, decisionmakers could respond with con-
tingent actions—for instance, increasing deployment of those BMPs listed in Figure 
3.14 (Chapter Three). In North Farm Creek, the vulnerable scenario in Figure 4.9 sug-
gests that decisionmakers monitor BMP effectiveness and average annual rainfall. If 
observations suggest that conditions are moving into the lower right-hand corner of the 
figure, decisionmakers could respond with contingent actions: increasing deployment 
of those BMPs that were proving most effective in the region. 

Clearly, these case studies provide only an initial sketch of the types of informa-
tion decisionmakers require to develop effective adaptive TMDL implementation plans. 
The speed with which contingent actions can be deployed will dictate the amount of 
advance warning decisionmakers will need that they are approaching a vulnerable sce-
nario. Similarly, decisionmakers will need to compare the cost of mistakenly deploying 
a contingent action when it is not needed to the costs of not deploying it when it is to 
determine how much confidence they need that a relevant signpost has been observed. 

Different signposts will also require different monitoring strategies. In the Patux-
ent region, for instance, observing changes in impervious area might require assem-
bling detailed land use data and using building permits to project the future land use 
changes. Meteorological observations can provide data on current and past average 
precipitation, but these trends do not necessarily lead to accurate forecasts of future 
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precipitation. Until the ability to make such climate projections improves, decision-
makers in Maryland may find it useful to rely more heavily on signposts related to 
future impervious area than on those related to future climate. 

Generalizing from the case studies, we can begin to consider how the process of 
stress-testing plans to identify vulnerable scenarios, which then can be used to identify 
signposts and contingent actions, might facilitate a broader process of adaptive water 
quality management. To do so, it is useful to distinguish three tiers of processes that 
can affect the ability of adaptive strategies to meet their goals in the face of uncer-
tainty. Figure 5.1 draws on the “learning loop” framework (Argyris and Schon, 1978; 
Hargrove, 2002; Keen, Brown, and Dyball, 2005; Kolb and Fry, 1975; Peschl, 2007), 
often used in the resilience and climate change adaptation literature, which we have 
modified here to focus on those processes most relevant to water quality management. 
In particular, the figure aims to capture some of the rich institutional context in which 
robust adaptive strategies would be developed and implemented.

The left side of the figure shows three tiers of environmental policymaking. First, 
Congress enacts statutes such as the Clean Water Act (outer tier). These statutes autho-
rize USEPA to conduct processes such as shown in Figure A.1 (Appendix A) to develop 
standards, enforce these standards, and create suitable implementation plans (middle 
tier), which may include investments in infrastructure and control practices, regulatory 
changes, and nonstructural management options. USEPA, states, and other jurisdic-
tions then carry out these implementation plans (inner tier). 

Figure 5.1
Three Tiers of Adaptive Decisionmaking

SOURCE: Adapted from IPCC (2012), Figures 1–3, and from Folke, Chapin, and Olsson (2009).
RAND RR720-5.1

Single loop

Triple loop

RDM analysis

RDM analysis

Double loop

Implementation
Adjust as
planned

Standards
and plans

Revise plans

Revisit rules
and statutes

Outcomes

Rules and
statutes



92    Managing Water Quality in the Face of Uncertainty

Adjustments over time in response to new information can occur at each of these 
levels. As suggested by our case studies, an adaptive TMDL implementation plan 
could specify milestones to measure progress toward meeting a regulatory standard, 
and additional actions to take—for example, increased investment in a specific treat-
ment technology—in response to observations related to those milestones. The “adjust 
as planned” tier on the right side of Figure 5.1 represents such adjustments, which 
take place within the context of an existing plan. In other cases, it may prove useful or 
necessary to revise or recreate the implementation plan, or revisit the standard-setting 
process itself. This might be necessary if, for example, new information suggests the 
current implementation plan will likely not meet its intended standard, if the stan-
dard itself may be insufficient to address water quality or public health goals, or if the 
standard proves to be difficult or impossible to achieve. The middle tier in Figure 5.1 
represents such a process. Lastly, it may prove necessary to return to Congress to revise 
the statutes themselves in light of new information, as shown by the figure’s upper tier.1

Ideally, planned adaptation would be contained within the inner tier, unfolding 
according to a prenegotiated and predetermined set of observations and responses to 
those observations. But in practice, it is impossible to develop plans that can encom-
pass all contingencies. Moving to the middle tier, standards can be changed and plans 
modified or rewritten, but repeatedly revisiting plans and standards can lead to incon-
sistent, unpredictable, and unenforceable regulations. The outer tier, employing the 
fundamental decisionmaking institutions of a democratic polity, in principle offers the 
most flexibility in responding to new conditions. But passing new statutes or revisiting 
standard-setting processes can be extremely costly in terms of both time and effort. 

In principle, RDM and related decision support approaches, such as those dem-
onstrated in these case studies, could improve the ability of USEPA, state regulators, 
and other authorities to develop and implement adaptive water management plans by 
expanding the range of contingencies that can be addressed within the inner tiers, 
thereby reducing the need to move to the outer tiers. As its basic concept, the analyses 
described in our case studies begin with a plan, stress test it over a wide range of plau-
sible futures, identify the conditions in which the plan performs poorly and well, and 
use this information to suggest ways in which the plans might be made more robust. 
The case studies demonstrate this process for implementation plans that lie in the inner 
“adjust as planned” tier of Figure 5.1. Both case studies suggest that in some futures it 
may prove useful to increase investment in already-identified BMPs, and suggest sign-
posts that would signal the need to take such additional actions. Plans developed using 
such methods would be robust to a wider range of contingencies, and thus reduce the 
range of futures in which a new planning process would be necessary to ensure com-
pliance with TMDLs, as suggested by the dashed lines in Figure 5.1. In essence, such 

1  Using the terminology of triple-loop learning, the lowest tier in Figure 5.1 represents single-loop learning, the 
middle tier double-loop learning, and the highest tier triple-loop learning.
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adaptive TMDL plans would regularize a process within Tier 1 that would otherwise 
require the more difficult process of revisiting plans and standards in Tier 2.2

Similarly, such RDM-based decision support might expand the range of condi-
tions addressed within the middle, “revise rules and plans” tier, also suggested by the 
dashed lines in Figure 5.1.  For instance, one might use simulation modeling to stress 
test the water quality standard setting process over a wide range of plausible futures to 
understand the range of conditions the process might successfully address, and how 
changes in that process and the information it uses might significantly expand the 
range of such conditions. This process could formally incorporate projected (rather 
than historical) estimates of precipitation or other climate extremes—in a planned 
cycle of review using the best scientific evidence available—and could lead to different 
TMDL standards and specific criteria for reviewing and potentially adjusting those 
standards. In the outermost tier, understanding and expanding the range of conditions 
addressed within the process of setting water quality standards could guide any statu-
tory revisions needed to establish such processes and reduce the need to make subse-
quent revisions.

Table 5.1 explores how RDM might help improve water quality management 
in each of these tiers, the actions that might be taken, and those who might take pri-
mary responsibility for such actions. When considering specific infrastructure plans 
(first column), such as Maryland’s Phase II WIP or North Farm Creek’s Implementa-
tion Plan, RDM can help identify plausible vulnerabilities due to climate and other 
drivers and additional infrastructure investment options that help hedge against such 
stressing futures. For instance, Figure 4.9 (Chapter Four) from the North Farm Creek 
case study suggests the combinations of precipitation change and BMP effectiveness 
beyond which the Implementation Plan might need to incorporate new types of BMPs. 
Figure 3.11 (Chapter Three) from the Patuxent case study suggests the combinations of  
climate change and land use changes beyond which the problem framing might use-
fully switch from one of water quality regulation to that of land use planning. In the 
second column, RDM might also usefully inform more systematic state or regional 
planning that addresses water quality goals in the context of broader, multiobjective 
water management or land use plans, in which states with enforcement responsibil-
ity can seek to meet water quality targets along with other goals via more systematic 
changes to land use practices. The third column suggests how RDM might inform 
federal and state actions to modify the standard setting process.

2 See related discussion for water supply management in Bloom (2015). 
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Looking to the Future

This report’s Patuxent and North Farm Creek case studies demonstrate how an RDM-
based decision support approach could improve the management of climate and other 
uncertainty in TMDL implementation planning. But these two case studies present 

Table 5.1
Case Study Results in the Adaptive Decisionmaking Framework

Adjust as Planned Revise Plans Revise Standards

Improve plans by adjusting them 
based on the difference between 
what is expected and what is 
observed.

Use new information to question basic 
assumptions and reevaluate plan scope, 
objectives, and range of options.

Use new information 
to revise water quality 
standards or to build 
adaptation into the 
standard-setting 
process.

Patuxent River Case Study

How well do urban stormwater pollution control BMPs perform over the long term, given uncertainty 
about climate and land use?

Analytic findings: 
• TMDL targets not met in most futures because of growth of impervious land cover and/or 

changes in precipitation
• Cost-effective green infrastructure BMPs plausible for limited coping with uncertainty

Potential actions Hedging/
mitigation for 
future conditions: 
invest more in cost-
effective BMPs to 
help meet TMDLs 
(e.g., wetlands, 
urban filtering)

Consider how to ensure 
that impervious land cover 
is kept to a minimum: alter 
land-use patterns

Revisit TMDL-setting 
based on historical 
information and 
whether water 
quality standards are 
achievable: modify 
policy on how water 
quality standards are set

Potential actors State agencies State agencies State agencies and 
USEPA

North Farm Creek Case Study

How might climate change affect the implementation plan for North Farm Creek subwatershed?

Analytic findings: 
• Future climate change could significantly increase pollution loads in North Farm Creek
• Implementing plan BMPs can significantly decrease pollution loads under future climate
• Useful to consider TMDLs at different flow intensities

Potential actions Adjust Phase III 
BMPs based on 
monitoring of 
climate and BMP 
effectiveness

Expand set of BMPs Revisit TMDLs, especially 
phosphorus

Potential actors State agencies State agencies State agencies and 
USEPA
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only an initial exploration and suggest many ways in which such analyses might be 
usefully expanded in the future. 

While both case studies identify vulnerable scenarios that combine both projec-
tions of future climate and projections of other uncertain factors (impervious surfaces 
in the Patuxent and a simple proxy for BMP effectiveness for North Farm Creek), 
future work could consider a much wider range of uncertainties. Due to computa-
tional and resource limitations, for instance, the Patuxent case study did not consider 
uncertainty regarding BMP effectiveness, and the North Farm Creek case study did 
not consider uncertainty regarding future land use, though these two factors are likely 
important in both regions. Neither case study explored the full range of socioeconomic 
factors that might affect pollution flows and BMP effectiveness, and the BMPs consid-
ered were drawn solely from existing plans. In addition, both case studies considered 
water quality in isolation, but not as part of a more integrated, multisector water man-
agement or land use plan. 

The treatment of adaptive TMDL implementation plans could also be consider-
ably expanded beyond that considered here. Future analyses could explore alternative 
observations that might be made and the specific triggers that might be established to 
indicate the need for contingent actions. Such analyses would allow the design and 
comparison of alternative adaptive plans. In addition, such attention would allow deci-
sionmakers to consider the benefits of investing in observation systems (for both bio-
physical and socioeconomic systems) that would improve the information available 
to them over time. Both case studies also suggest how new decision support methods 
might facilitate adaptive strategies within the middle and outer tiers of water quality 
management. Both case studies suggest the types of futures in which the local authori-
ties might need to engage with federal officials to reexamine the appropriate TMDL 
standards. Such analyses might also begin to suggest what investments in observations 
might be most useful to support the two highest tiers of adaptive decisionmaking, if 
and when it becomes required.

Future work might also help expand the quantitative toolkit available to analysts 
and decisionmakers. The North Farm Creek case study suggested some specific aug-
mentations to the SWAT model that would improve its ability to conduct RDM analy-
ses. More broadly, the hydrology simulation models currently used for TMDL plan-
ning were generally not designed for the type of multiscenario analysis demonstrated 
here. There are many ways in which the ability of such models to support such analyses 
could be improved, from the details of the way they handle inputs and output files, to 
their ability to interact more easily with models and projections that represent the more 
complete range of biophysical and socioeconomic factors that affect water quality.

The regulations used to protect water quality provide key tools to promote the 
public interest but must be carefully designed to enhance benefits, reduce adverse con-
sequences, and respond effectively to environmental, socioeconomic, and other types of 
change. In particular, climate change and the opportunities created by new approaches 
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to environmental management, such as green infrastructure, have created a need for 
new forward-looking analytic approaches to help make water management plans more 
flexible and robust. Such new approaches may help reconcile the tension between the 
need for accountable, transparent, and objective governance and the benefits of flex-
ibility and experimentation. These methods do so by enabling exploration over a wide 
range of plausible futures, systematically identifying those future conditions in which 
proposed water management plans do or do not meet their goals, helping to identify 
specific milestones and midcourse corrections that can help plans adapt over time, 
and identifying the trade-offs among alternative robust adaptive plans—all within a 
process designed to facilitate stakeholder input and deliberation. This report provides 
only an initial exploration of the possibilities, but such approaches offer the potential 
to facilitate the development of robust, adaptive water quality management that may 
be more appropriate under the conditions of deep uncertainty arising from climate 
change and many other trends in our rapidly changing world.



97

APPENDIX A

Iterative Risk Management Process for Setting Water 
Quality Standards

This appendix suggests how USEPA’s current process for setting water quality stan-
dards represents an iterative risk management process potentially affected by climate 
change. Under the Clean Water Act, states and tribes have primary responsibility for 
developing water quality standards for each of the water bodies in their jurisdictions. 
USEPA issues technical guidance for developing criteria and conducts a final review 
before implementation. These state and tribal processes typically involve gathering sci-
entific evidence, expert judgment, and USEPA guidance; soliciting public comment 
and review; and drafting of rules, review, and eventual approval by USEPA. 

Figure A.1 shows a flowchart developed by the authors to represent USEPA’s pro-
cess for setting water quality standards (USEPA, 1994; USEPA, 1991). The process 
includes monitoring and analysis (green boxes) and a variety of decision steps (blue 
boxes). The process follows an iterative risk management process in the sense that it 
includes provisions for public input on the decisions informed by this analysis (red 
boxes), and the use of iteration to update and revise plans and standards. On this flow-
chart, we have highlighted the steps in which climate-related uncertainty could affect 
the analysis outcomes and thus influence USEPA’s eventual decisions. 
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Figure A.1
USEPA Process for Setting Water Quality Standards

SOURCE: Adapted from USEPA (1994).
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APPENDIX B

Criteria for Choosing Case Studies

We chose the Patuxent River and North Farm Creek case studies based on an extensive 
screening process with USEPA/ORD and USEPA/OW staff. We reviewed a number of 
potential regions, seeking two case studies with diverse attributes and the potential for 
significant RDM analyses. In particular, we sought case studies that could

1. demonstrate how RDM could prove useful to USEPA/OW as a method for 
climate-related decision support

2. inform judgments about the range and types of USEPA plans for which an 
RDM analysis might prove valuable

3. provide information addressing current high-priority USEPA/OW water qual-
ity planning efforts.

Our previous experience with RDM analyses, coupled with the fact that these 
efforts were intended to be pilot tests, also suggested we wanted case studies with spe-
cific attributes: 

1. significant potential climate impacts
2. multiple uncertain factors (climate and land use, for example) that affect USEPA’s 

ability to achieve its goals
3. a range of policy options available to address the intended goals
4. existing models and data relatively easy to adapt for the RDM analysis
5. OW and/or other USEPA personnel able to participate in an RDM case study. 

We chose the Patuxent River and North Farm Creek case studies because they 
both are potentially affected by climate change, had local stakeholders interested 
in working with us, and provide a useful contrast. The former is largely urban and 
faces substantial urban stormwater management challenges, while the latter includes 
large rural areas and is currently addressing agriculture runoff challenges. The neces-
sary modeling and data were also available in both cases, for the Patuxent as part of  
USEPA’s Chesapeake Bay Program, and for the Illinois River as part of USEPA’s 20 
Watersheds project (USEPA, 2013). 
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APPENDIX C

Supplemental Information for the Patuxent River Case Study

This appendix presents additional information in support of the analysis described in 
Chapter Three of this report but not otherwise presented in the main body. The appen-
dix is divided into three main sections. The first section provides additional informa-
tion about the calibration and validation of the Phase 5.3.2 model conducted by the 
Chesapeake Bay Program modeling team. The second section shows additional simula-
tion and vulnerability analysis results for the 2035–2045 hydrology period, including 
both phosphorous load results across many futures and additional scenario discovery. 
The final section presents a similar set of simulated results for the 2055–2065 hydrol-
ogy period, across all three contaminants. Note that the scenario discovery analysis 
was not repeated for the 2055–2065 time period. 

Phase 5.3.2 Watershed Model Calibration and Validation

The Phase 5.3.2 model has been the subject of numerous validation and verification 
exercises, starting with its first application to the Chesapeake Bay watershed (Donigian 
et al., 1994). In addition, the Scientific and Advisory Committee of the Chesapeake 
Bay Program provides ongoing technical oversight for the model, discussing both the 
validity of its application for bay plans and future model development (Band et al., 
2008). 

Phase 5.3.2 model calibration is an iterative procedure of model development 
and refinement in which simulated and observed data are compared to ensure that 
the parameters chosen for representing the physical characteristics of the bay result in 
coherent results. The validation exercise compares simulated data against observed data 
that were not used for the calibration process. This provides an independent assessment 
of the model’s capacity for simulating the physical characteristics of the bay, including 
water flows and nutrient loads.

The Phase 5.3.2 Bay Watershed Model segments are defined in a way that river 
segments are close to instream flow and water quality monitoring stations. Calibration 
and validation rely on a comprehensive set of monitoring sites within the Chesapeake 
Bay watershed. The model uses data collected from a total of 767 stations: 237 sites for 
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flow, 215 for total phosphorus, 200 for suspended sediments, and 115 for total nitro-
gen (STAC, 2011; USEPA, 2010b). Figure C.1 shows the full set of monitoring stations 
used for Phase 5.3.2 model calibration. 

The calibration process compares model output to monitored streamflow and 
water quality data for the years 1985–2005 at in-stream monitoring sites. The cali-
bration includes various parameters, such as suspended sediments, total phospho-
rus, organic phosphorus, particulate phosphorus, phosphate, total nitrogen, nitrate, 
total ammonia, organic nitrogen concentrations and loads, and temperature (USEPA, 
2010b). 

The Chesapeake Bay Program has conducted several studies comparing the results 
of the model against observed data at different locations within the Chesapeake Bay. 
These comparisons were made for the Patuxent River using data collected by the USGS 
at Bowie, Maryland. Figure C.2 compares the results of simulated output by the Phase 
5 model and observed flow data. The top panel compares these two data series using 
daily data time series. The bottom panel presents the cumulative flow estimates for the 
observed and the simulated data. 

The comparison of the flow data shows that the Phase 5 tends to slightly overesti-
mate flow estimates in the river, but is generally in close range with the observed data. 

Similarly, Figure C.3 shows the comparison between observed and simulated data 
for total nitrogen in the Patuxent River. For total nitrogen, the observed and simulated 
data show the same pattern of behavior across time (top panel), and the differences 
between simulated and observed results tend to be small (bottom panel).

Finally, a separate validation exercise was conducted to compare simulated data 
against observed data that were not used for the calibration process. This provided an 
independent assessment of the model’s capacity for simulating the physical characteris-
tics of the bay, including water flows and nutrient loads, and is documented separately 
by the Chesapeake Bay Program (USEPA, 2010b).
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Figure C.1
Phase 5.3 Model Hydrology (Upper Panel) and Water Quality (Lower Panel) Calibration Monitoring Stations 

SOURCE: USEPA (2010b). Sampling points are overlaid on the Phase 5.3.2 model river segments. 
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Figure C.2
Patuxent River Simulated and Observed Data for Flow (upper panel) and Cumulative Flow 
(lower panel) at Bowie, Maryland

SOURCE: Greene and Linker et al. (1998).
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Figure C.3
Patuxent River Simulated and Observed Total Nitrogen Data at Bowie, Maryland

SOURCE: Linker et al. (1998).
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Additional Results for the 2035–2045 Hydrology Period

Water Quality Results Across Many Futures

Figure C.4
Scatterplot of Phosphorous and Sediment Loads, Both Plans (2035–2045)
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Scenario Discovery Results for Phosphorus and Sediment 

This section provides additional results from the scenario discovery analysis, including 
results for phosphorus and sediment. The same approach described in the main body 
was applied for these additional contaminants. 

Tables C.1 and C.2 provide additional detail on the characterization of both the 
climate and land use uncertainties, respectively, for the scenario discovery analysis.
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Table C.1
Climate Scenario Characterizations Used in Scenario Discovery

Climate 
Scenario

Emissions 
Scenario

Hydrology 
Years

Average Precipitation (inches)
Average Temperature  
(degrees Fahrenheit)

Average Runoff  
(acre-feet)

Mean Log-
Pearson 
Type IIIAnnual Summer Winter Annual Summer Winter All Areas

Impervious 
Area

Observed 
historical

Observed 
historical 1984–2005 44.1 23.4 20.8 55.9 69.1 42.6 341,079 134,978 7.2

BCCR-BCM2 SRES A1B 2035–2045 45.8 23.3 22.4 57.7 70.5 44.8 343,313 139,305 7.2

SRES A2 2035–2045 44.8 23.7 21.1 57.1 70.4 43.8 332,390 136,122 7.2

SRES B1 2035–2045 47.8 24.1 23.7 57.1 69.9 44.3 387,593 149,778 7.3

CSIRO Mk3 SRES A1B 2035–2045 45.9 23.9 22.0 58.3 71.7 44.9 342,574 140,212 7.2

SRES A2 2035–2045 47.2 23.7 23.6 58.3 71.2 45.4 362,242 145,130 7.3

SRES B1 2035–2045 44.3 22.7 21.6 57.9 70.6 45.1 315,605 132,211 7.2

CSIRO Mk3.5 SRES A1B 2035–2045 40.1 22.2 17.9 58.6 72.2 45.0 232,800 111,905 7.1

SRES A2 2035–2045 44.0 21.9 22.1 58.5 72.3 44.7 308,848 131,403 7.2

SRES B1 2035–2045 44.9 24.6 20.3 57.5 70.8 44.1 325,514 134,969 7.2

INM-CM3.0 SRES A1B 2035–2045 40.1 21.0 19.1 59.6 72.5 46.7 232,927 112,331 7.1

SRES A2 2035–2045 41.9 21.5 20.3 59.5 72.8 46.1 261,454 119,847 7.1

SRES B1 2035–2045 42.8 24.0 18.9 59.0 72.5 45.4 273,339 123,769 7.2

MIROC3.2 SRES A1B 2035–2045 46.0 22.9 23.1 59.5 72.4 46.5 327,887 138,062 7.2

SRES A2 2035–2045 43.0 22.1 20.9 58.7 71.7 45.6 286,299 125,864 7.2

SRES B1 2035–2045 46.4 24.0 22.4 58.5 71.6 45.3 341,068 140,334 7.3
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Climate 
Scenario

Emissions 
Scenario

Hydrology 
Years

Average Precipitation (inches)
Average Temperature  
(degrees Fahrenheit)

Average Runoff  
(acre-feet)

Mean Log-
Pearson 
Type IIIAnnual Summer Winter Annual Summer Winter All Areas

Impervious 
Area

NCAR-CCSM3 SRES A1B 2035–2045 48.5 25.7 22.9 58.9 72.3 45.4 373,850 150,088 7.3

SRES A2 2035–2045 48.9 26.0 22.9 58.6 72.1 45.1 381,998 151,754 7.3

SRES B1 2035–2045 47.3 24.5 22.7 58.0 71.6 44.3 364,628 146,083 7.3

Table C.1—Continued
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Table C.2
Land Use Scenario Characterizations Used in Scenario Discovery

Development 
Pattern Urban Growth Projection

Land Use Type Area (acres)

Extractive Impervious Pervious Construction 
Nonregulated 

Developed 
Regulated 
Developed

Current 2010 population
(3 million residents) 1,258 40,531 137,259 6,578 48,967 128,822

Infill ICLUS B1 scenario
(3.05 million residents) 1,258 44,922 157,673 1,134 69,806 132,789

Trend growth
(3.9 million residents) 1,258 49,014 178,918 3,053 85,525 142,407

ICLUS A2 scenario
(6.02 million residents) 1,258 61,521 235,603 6,166 124,233 172,890

Sprawl ICLUS B1 scenario
(3.05 million residents) 1,258 45,618 160,064 1,112 70,330 135,352

Trend growth
(3.9 million residents) 1,258 51,554 187,652 3,605 87,666 151,540

ICLUS A2 scenario
(6.02 million residents) 1,258 66,213 253,016 8,962 129,422 189,807
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The figures that follow show the vulnerable regions identified in the scenario discov-
ery analysis for phosphorus, sediment, and all contaminants combined, meaning that all 
three targets are exceeded. All figures are from the 2035–2045 hydrology period. 

Figure C.5
Decision-Relevant Scenario Identified for Phosphorus TMDL

RAND RR720-C.5
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Figure C.6
Decision-Relevant Scenario Identified for Sediment TMDL

RAND RR720-C.6
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Figure C.7
Decision-Relevant Scenario Region Identified for All Three Contaminants

RAND RR720-C.7
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Results for the 2055–2065 Hydrology Period

Water Quality Results Across Many Futures

As discussed in Chapter Three, the potential effects of climate change on future water 
quality in the Patuxent River are a key uncertainty in our analysis. To address this, 
we considered the effect of 18 downscaled climate sequences for two different time 
periods: 2035–2045 and 2055–2065. Chapter Three presented results from the 2035–
2045 period in detail. In this section, we provide additional information regarding the 
2055–2065 simulations. 

Table C.3 presents a summary of the hydrological characteristics of the 2055–
2065 climate sequences. These ranges include only the 2055–2065 climate projections. 
The subsequent figures show results from the analysis for this additional time period.

Table C.3
Characterization of Climate Scenarios (2055–2065 Hydrology)

Uncertainty Type

Range

UnitsLow High

Hydrology Inputs

Average precipitation

Annual 40.8 49.0 Inches

Summer 20.2 26.3 Inches

Winter 18.5 24.7 Inches

Average temperature

Annual 58.0 61.4 Degrees F

Summer 70.9 74.7 Degrees F

Winter 44.7 48.0 Degrees F

Average annual runoff

All areas 226.08 386.0 Thousands of acre feet

Impervious areas only 112.44 152.2 Thousands of acre feet
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Figure C.8
Scatterplot of Nitrogen and Sediment Loads, Both Plans (2055–2065)
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Figure C.9
Scatterplot of Phosphorus and Sediment Loads, Both Plans (2055–2065)
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Figure C.10
Boxplot Summary of Contaminant Loads Across All Futures (2055–2065)

RAND RR720-C.10
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APPENDIX D

SWAT Model Calibration and Validation

The hydrologic and water quality modeling for the North Farm Creek case study was 
done using SWAT Rev. 591, which was calibrated and validated to observed flow using 
two USGS stations and one water quality station from Illinois Environmental Protec-
tion Agency. In this appendix, we provide a summary of the full calibration report 
(TetraTech, 2014).

The physical characteristics of the watershed—reaches, subbasins, and HRUs—
were modeled using the 10-meter digital elevation model (DEM) incorporated into the 
NHDPlus hydrography database (USEPA, 2010d). Land use and coverage was based 
on the 2006 National Land Cover Database (Fry et al., 2011). Soil characteristics such 
as depth, particle size distribution, bulk density, hydraulic connectivity, and available 
water capacity were derived from the USDA SSURGO. 

Daily time series on precipitation and maximum and minimum air temperature 
through 2006 were obtained from the Peoria Airport station and have been processed, 
quality checked, and gap-filled as part of the BASINS meteorological dataset (USEPA, 
2008). Limited water quality data was available, and as a result only one of the two 
available USGS stations located upstream of the mouth of the watershed was used for 
water quality calibration. 

Hydrology Calibration and Validation

Model performance for hydrology was evaluated over the period 2000–2012. Good-
ness-of-fit was assessed through graphical comparisons and the relative error method. 
The full hydrology calibration criteria are provided in Table D.1, while the summary 
statistics for the hydrology calibration and validation are shown in Tables D.2 (Fondu-
lac Creek near East Peoria) and D.3 (Farm Creek at Farmdale), respectively. 
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Table D.1
SWAT Model Hydrology Calibration Criteria

Statistic Criteria (%)

Error in total volume ≤ 10

Error in 50% lowest flows ≤ 10

Error in 10% highest flows ≤ 15

Seasonal volume error (summer) ≤ 30

Seasonal volume error (fall) ≤ 30

Seasonal volume error (winter) ≤ 30

Seasonal volume error (spring) ≤ 30

Error in storm volumes ≤ 20

Error in summer storm volumes ≤ 50

Table D.2
Hydrology Calibration and Validation Summary Statistics at Fondulac Creek near East Peoria

SWAT Simulated Flow Observed Flow Gage

Reach outflow from outlet 5
11.91-year analysis period: 10/1/2000–9/31/2012
Flow volumes are (inches/year) for upstream 
drainage area

Fondulac Creek Near East Peoria, Ill.
Manually entered data
Drainage area (sq mi): 5.54

Total simulated in stream flow 8.51 Total observed in stream flow 8.81

Total of simulated highest 10% 
flows

4.36 Total of observed highest 10% 
flows

5.45

Total of simulated lowest 50% 
flows

0.63 Total of observed lowest 50% 
flows

0.63

Simulated summer flow 
volume (months 7–9)

1.40 Observed summer flow volume 
(7–9)

0.96

Simulated fall flow volume 
(months 10–12)

1.10 Observed fall flow volume 
(10–12)

1.49

Simulated winter flow volume 
(months 1–3)

2.11 Observed winter flow volume 
(1–3)

2.58

Simulated spring flow volume 
(months 4–6)

3.89 Observed spring flow volume 
(4–6)

3.78

Total simulated storm volume 4.09 Total observed storm volume 4.83

Simulated summer storm 
volume (7–9)

0.37 Observed summer storm 
volume (7–9)

0.46
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Errors (Simulated–Observed) Error Statistics Recommended Criteria (%)

Error in total volume –3.48 10

Error in 50% lowest flows 0.40 10

Error in 10% highest flows –19.91 15

Seasonal volume error—
summer

45.97 30

Seasonal volume error—fall –26.14 >>                    30 Clear

Seasonal volume error—winter –18.27 30

Seasonal volume error—spring 2.99 30

Error in storm volumes –15.31 20

Error in summer storm volumes –19.69 50

Nash-Sutcliffe coefficient of 
efficiency, E

0.436 Model accuracy increases
as E or E’ approaches 1.0

Baseline adjusted coefficient 
(Garrick), E’

0.335

Monthly Nash-Sutcliffe 
Efficiency

0.814

Table D.2—Continued

Table D.3
Hydrology Calibration and Validation Summary Statistics at Farm Creek at Farmdale

SWAT Simulated Flow Observed Flow Gage

Reach outflow from outlet 10
12-year analysis period: 10/1/2000–9/30/2012
Flow volumes are (inches/year) for upstream 
drainage area

Farm Creek at Farmdale, Ill.
Manually entered data
Drainage area (sq mi): 27.4

Total simulated in stream flow 9.70 Total observed in stream flow 10.20

Total of simulated highest 10% 
flows

5.26 Total of observed highest 10% 
flows

5.57

Total of simulated lowest 50% 
flows

0.89 Total of observed lowest 50% 
flows

0.94

Simulated summer flow 
volume (months 7–9)

1.77 Observed summer flow volume 
(7–9)

1.28

Simulated fall flow volume 
(months 10–12)

1.35 Observed fall flow volume 
(10–12)

1.47

Simulated winter flow volume 
(months 1–3)

2.57 Observed winter flow volume 
(1–3)

2.97



122    Managing Water Quality in the Face of Uncertainty

Table D.3—Continued

SWAT Simulated Flow Observed Flow Gage

Simulated spring flow volume 
(months 4–6)

4.02 Observed spring flow volume 
(4–6):

4.49

Total simulated storm volume 3.74 Total observed storm volume: 3.96

Simulated summer storm 
volume (7–9)

0.83 Observed summer storm 
volume (7–9):

0.53

Errors (Simulated–Observed) Error Statistics Recommended Criteria (%)

Error in total volume –4.88 10

Error in 50% lowest flows –4.58 10

Error in 10% highest flows –5.47 15

Seasonal volume error—
summer

38.14 30

Seasonal volume error—fall –7.79 >>                    30 Clear

Seasonal volume error—winter –13.51 30

Seasonal volume error—spring –10.47 30

Error in storm volumes –5.61 20

Error in summer storm volumes 56.53 50

Nash-Sutcliffe coefficient of 
efficiency, E

0.491 Model accuracy increases
as E or E’ approaches 1.0

Baseline adjusted coefficient 
(Garrick), E’

0.409

Monthly Nash-Sutcliffe 
Efficiency

0.867

Water Quality Calibration and Validation

Water quality calibration and validation were conducted for monthly simulated and 
observed loads for total suspended solids (TSS), total phosphorus (TP), soluble reactive 
phosphorus (SRP), total nitrogen (TN), and nitrogen species—namely, total Kjeldahl 
nitrogen (TKN) and nitrate+nitrite nitrogen (NOx). Water quality calibration and 
validation periods were 2005–2010 and 2000–2005, respectively. Table D.4 provides 
summary statistics for the water quality calibration and validation. 
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Table D.4
Water Quality Calibration and Validation Summary Statistics, Camp Street Bridge in East Peoria

Statistic

Calibration Validation

TSS TKN NOx TN SRP TP TSS TKN Nox TN SRP TP

Average absolute error 
(%)

25.90 56.40 60.00 47.30 29.90 35.90 21.20 60.20 62.10 44.20 45.20 37.40

Median absolute error (%) 11.80 36.40 31.10 26.20 28.60 24.60 8.30 39.70 29.10 24.70 40.10 20.90

Relative error (%) –12.20 11.10 10.70 23.60 26.40 –4.80 –0.20 27.20 –1.60 15.70 42.30 10.00

Nash-Sutcliffe Efficiency 0.891 –0.467 0.342 0.482 0.81 0.551 0.942 –0.682 0.415 0.692 0.604 0.421
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