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ABSTRACT

The term surgery scheduling is used about a variety of strategic, tactical and operational
scheduling problems, many of which are critical to an efficient use of hospital resources. Our
focus is on operational surgery scheduling problems, which are often NP-hard. The exact
problem formulation varies substantislly among hospitals, or even hospital departments. In _
addition, the level of detail vary between different planning situations, ranging from long term
patient admission planning to a very detailed planning of the same day’s surgeries. This
diversity makes it difficult to design scheduling methods and software solutions that are
applicable to a wide range of surgery scheduling problems, without extensive customization for
each individual application. We approach this challenge by proposing a new generalised model
for surgery scheduling problems. The problem can be seen as a rich extension to the resource-
constrained project scheduling problem, and we present a structured averview of how our
contribution relates to the existing project scheduling literature. We represent this problem by
extending the classical disjunctive graph model developed for jobshop scheduling problems. To
investigate the power of exact optimization methods in solving generalised surgery scheduling
problems, we formulate this disjunctive model as a Mixed Integer Linear Program and solve it by
means of 8 commercial solver. The results show that while it is not capable of solving realistic
instances to optimality, the formulation produces good bounds, and promising results were
found for interesting sub problems.
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1 Introduction

The term surgery scheduling covers a variety of strategic, tactical and operational
scheduling problems (John T. Blake and Carter 2002), many of which are critical to an
efficient use of hospital resources. Efficient surgery scheduling on different levels and
time scales is also crucial for minimizing patients’ waiting time, reducing the number of
cancellations, levelling staff work load and improving the overall performance of the
hospital (Cardoen et al. 2010). Our focus in this paper is on the operational surgery
scheduling problem (SSP), which may be informally described as the task of assigning
start times to all surgery related activities for each patient, while reserving capacity for
these on a set of constrained renewable resources. Such activities may be, for example,
preparation of the patient for surgery, preparation of equipment, removal of un-necessary
equipment (if the patient has some infection), surgery, waking the patient, cleaning of the
operating room and equipment, transporting the patient to the recovery room, recovery,
etc. The involved resources can be, e.g., operating rooms, operation teams, surgeons,
equipment, or post-operative beds. Objectives are typically resource overtime,
hospitalization costs, intervention costs, operating room utilization, patient's waiting time,
and patient or personnel preferences, among others. These scheduling problems are often
NP-hard (Hans et al. 2008).

Exact problem formulations vary substantially among hospitals, or even between hospital
departments. In addition, the level of detail varies between different planning situations:
patient admission planning may consider only one or two kinds of resources, is mainly
concerned with allocating a date of admission for each patient, and typically has a long
time horizon. Closer to the day of surgery—such as when scheduling surgeries for the
next one or two weeks—the number of activities, resources, and choices to make
increase. More detailed information about resource availability is also available at this
point. Finally, a very detailed schedule is made for the next day, considering all relevant
activities and resources in full detail, as illustrated in Fig. 1. This plan is also maintained
by dynamic re-scheduling during the actual day of surgery.
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Fig. 1: Example of activities for one patient, with an indication of flows of relevant resources.

Surgery planning software and associated scheduling algorithms must be able to handle
this variation in problem definitions without excessive customisation to each individual
hospital and planning situation. So far, however, the SSP literature directly reflects the
diversity of the problem domain (see the recent surveys of (Cardoen et al. 2010) and
(May et al. 2011)). Different authors use different problem definitions. They also focus
on different problem aspects, such as the intensive care unit as a bottleneck resource
(Jebali et al. 2006), prediction of hospital bed availability (John T Blake and Carter
1997), use of mobile equipment (Jebali et al. 2006), uncertainty in surgery durations
(Charnetski 1984; Denton et al. 2007; Hans et al. 2008), resource allocation and
sequencing in admission planning (Riise and Burke 2011), etc. There is no common
ontology for operational surgery scheduling problems, or any common repository of
benchmark problems (May et al. 2011). This, of course, makes it difficult to compare
algorithmic approaches.
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We propose that the great variety of real world SSPs is best handled through a
unified, or generalised, formulation of surgery scheduling problems. We view this
"generalised surgery scheduling problem" as an extended version of the classical
resource-constrained project scheduling problem (RCPSP). The problem includes some
new extensions that have not been previously reported in the literature. The proposed
modelling framework represents this problem by a generalisation of the classical
disjunctive graph representation for jobshop scheduling problems (Roy and Sussmann
1964). This is, as will be discussed in section 2.4, well suited to express a number of
problem properties in a straightforward manner. The resulting model provides a basis for
the development of a range of different algorithms. Due to the generality of the
underlying model these will be applicable across a wide range of real world problems.

To investigate the power of exact optimization methods, we formulate the
generalised SSP as a Mixed Integer Linear Program (MILP). We apply a commercial
solver to three sets of realistic benchmark instances. These are presented and made
available as instances of the (extended) RCPSP, to enable other researchers to develop
optimisation methods for the SSP without any knowledge of the application domain. The
computational results indicate that while large realistic problems could not be solved,
good bounds were found for most test instances. Also, optimal solutions were found for
interesting sub-problems. MILP solvers could thus constitute a useful part of a hybrid
optimisation method. Section 2 introduces the extended RCPSP problem, and includes a
structured overview of how this relates to previous work. In section 3 we explain how our
model applies to the generalised SSP. A comprehensive mathematical formulation of the
generalised SSP is given as a MILP in section 4. Experimental results are presented in
section 5, and we conclude and discuss directions for future research in section 6.

2 An Extended Resource-constrained Project Scheduling Problem

2.1 Definitions and extensions

In order to put the generalised surgery scheduling problem into context, it is useful to
consider its relationship with other scheduling problems. We view the generalised SSP as
a rich extension to the resource-constrained project scheduling problem (RCPSP)
(Artigues et al. 2008). The classical RCPSP considers the scheduling of the activities of a
single project, subject to fixed (conjunctive) precedence constraints. Each activity
demands a certain amount of each of a set of renewable resources, and each resource has
a constant capacity. Because of the resource capacity constraints, the problem also
contains disjunctive precedence constraints. A disjunctive precedence constraint between
two activities i and ; states that either i precedes j, or vice versa. Activity durations are not
sequence dependent, and the problem is entirely deterministic. Pre-emption is not
allowed. The objective is to minimize makespan. In the classification notation of
(Brucker et al. 1999), the standard RCPSP is labelled PS|prec|Cp,. Even in this basic
form, the RCPSP can be shown to be NP-hard in the strong sense (Blazewicz et al. 1983).
A recent review of RCPSP variants and extensions can be found in (Hartmann and
Briskorn 2010). The problem discussed in this paper includes many of these known
extensions, as well as —to the best of our knowledge— extensions that have not been
previously reported in the literature. The known extensions in the model are:

1. Multi-project: We have multiple-projects, represented in the same graph and sharing
the same pool of resources, as introduced in (Pritsker et al. 1969). Each project
consists of a set of activities, which is topologically ordered by precedence
constraints. E.g., in the SSP, each project contains all treatment activities related to
one patient referral.

2. Project release and completion constraints: Each project has an earliest possible start
time. The model also includes the possibility of expressing a latest possible
completion time for a project.
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3. Multiple modes: For each activity, a set of feasible modes are defined out of which
one must be selected. A mode defines a set of resources that can perform the activity,
the demand for each resource, and the activity duration (Elmaghraby 1977).

4. Setup times: Our model includes sequence-independent setup times (Mika et al.
2008).

5. Maximum delay: The model contains maximum delay (a.k.a. maximum time lag)
constraints between project activities. Note that the decision problem associated with
RCPSP with minimum and maximum delay (RCPSP/max) is NP-complete
(Hartmann and Briskorn 2010).

6. Activity time windows: Our model contains both hard (Bomsdorf and Derigs 2008)
and soft (Vanhoucke et al. 2006) time windows.

7. Dedicated resources: Some resources in the SSP, such as a surgeon, or a surgery
table, can only be assigned to one activity at the time (capacity = 1). Indeed, in some
versions of the problem (e.g. in a simple patient admission problem) all resources can
be considered as such.

8. Continuous time: In the traditional RCPSP, time is treated as a discrete variable. We
use a continuous representation of time, as e.g. in (Icmeli and Rom 1996).

In addition to those listed above, we introduce the following new extensions to the

classical RCPSP:

1. Resource periods: A sequence of non-overlapping available periods is defined for
each resource. This is a convenient, and to our knowledge new, way of representing
time-dependent resource availability, resource capacity, and block constraints in a
disjunctive graph model. Further motivation and details of this concept will be given
in section 2.4.2.

2. Inter-mode constraints: Compatibility constraints between the modes of activities in
the same project.

3. Project disjunctions: Some resources are required to complete all work with one
project before participating in any activity of any other project.

4. Mode-dependent precedence constraints: Depending on the modes chosen for the two
activities, there may be a precedence constraint between them.

These extensions will all be discussed in detail in the following. In addition, the SSP also
typically includes a variety of objective function components (see section 3.5), rather than
the single makespan objective of the classical RCPSP.

2.2 Problem statement

In section 3 we will explain how the proposed modelling framework can express a wide
range of real world SSP variants. First, however, we present the modelling framework in
general project scheduling terms, since we believe that it is applicable also to many other
real world scheduling applications. This detailed discussion will include some new and
useful concepts. One of these is a generalisation of the disjunctive precedence constraint
that was briefly mentioned above for the classical RCPSP. This generalisation will be
thoroughly discussed in section 2.4.2.

Our scheduling problem can be loosely formulated as follows:

Given a set of resources R, a set of resource periods X" for each resourcer € R, a
set of projects P, a set of activities N'P for each project p € P, and a set of modes Mt
for each activity i € U, N'P, find:
1. An assignment of modes to all activities
2. An ordering of activities, and a choice of activity start times that respects a
set of conjunctive precedence constraints, and a set of generalised
disjunctive precedence constraints,
so that some scalar cost function is minimized.

Fig. 2: An informal definition of the scheduling problem
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The various kinds of precedence constraints mentioned in Fig. 2 will be discussed in
detail below. To simplify the discussion, we decompose this problem into two sub
problems; a "Resource assignment problem" and a "Sequencing problem", where the
latter includes both ordering and scheduling decisions. Please refer to Table 1 on page 15
for an overview of the notation that we use.

2.3 The resource assignment problem

As indicated above, the resource assignment problem consists of choosing exactly one
mode for each scheduled activity. The choices of mode for different activities are not
independent. If one activity uses a specific resource, other activities in the same project
may be required to use the same resource. For example, in a typical SSP the team, surgery
room, and surgery table will all be the same for all project activities that use such
resources. We model this by defining as input to the model a set of modes JV[Jlm that are
feasible for activity i given the choice of mode m for another activity j of the same
project. This is a generalisation of the simpler “Same mode constraints” discussed in
(Drexl et al. 2000).

Note that for the SSP, as in many other real world scheduling problems, there may be
instances where not all activities can be scheduled within the available time horizon. In
such cases it is necessary to choose which activities schedule. Modes must be chosen only
for scheduled activities. We demand that each project is either completely scheduled (all
the project's activities are scheduled), or not at all (no project activities are scheduled).
Let R! be the set of resources that is assigned to activity i through the choice of mode.
Some objective components depend only on the resource assignment. However, many
objective components can only be evaluated after solving the associated sequencing
problem.

2.4 The sequencing problem and the generalised disjunctive graph

Once a mode is chosen for each activity, we are left with a single-mode generalisation of
the RCPSP with precedence constraints, multiple projects, various forms of disjunctive
precedence constraints, time windows, and time dependent resource capacities. These
problem features, as well as activity durations and release dates, can all be modelled in a
natural manner by expressing the problem as a generalised disjunctive graph,

G= (V,EUA)

Such a graph representation has been used with various types of algorithms, including
exact tree-search based algorithms as well as (meta-) heuristic search methods based on
iterative graph modifications (Artigues et al. 2003). In addition to the artificial source (s)
and target (e) nodes, the set of nodes ¥ contains nodes associated with the project
activities as well as nodes that are used to define resource periods. We associate an
earliest possible start time t; with each node i. The set of all arcs of the graph represent
the precedence constraints of the problem. It can be seen as the union of all project-
related arcs, E, and all resource related arcs, 4. G can therefore be seen as a union of
subgraphs, each associated with a project or a specific resource. These subgraphs share
some nodes, but have disjoint arc sets. We discuss these subgraphs in detail in the
following.

(5.1)

2.4.1 Project subgraphs

Each project p € P is associated with a positive acyclic subgraph G = G(VP,EP) in G
by, where VP = NP U {s}U{e} U {sp} U {ep}. The artificial nodes s, and e,, represent
the “project start” and “project finish” activities (both with zero duration and resource
demand) of project p, respectively. Let the arc set Elp represent all conjunctive precedence
constraints in project p. The lengths of each arc (i, j) € Ef equals the duration of activity
i in the chosen mode. Let Eg be the set of all arcs from s,, to any activity of project p
without predecessors. Similarly, E. f is the set of arcs from each activity without a
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successor to e,. The total arc set of project p can then be written as EP = EPUEY U

Eé’ u {(sp, ep), (s, sp), (ep, e)}. The arc set E that was introduced in Equation (5.1) is the
union E = U, EP. Fig. 3 shows a simple example from surgery scheduling, with a project
subgraph containing preparation, surgery, and recovery activities. The two preparation
activities, preparation of the patient and preparation of surgery equipment can be done in
parallel. They both have to be completed before the surgery—activity 2—can be
performed. The earliest possible starting time of the project start node (¥,) represents the
project release date, and is modelled as the length of the arc (s, s,), assuming tg = 0. te,

is the time when all the planned activities of the project are completed.

Preparation Surgery Recovery
ess, =W /z“' 0 L\f
P i 02— . f3¢ -
;Ls ~~~~~~ >° >‘ \\2 'f”—w\ SR 5 1€
S _—— i/ - =)
\{ 1 \/€12 K /
N CA
332='(€23+623/

T femH
Fig. 3: Subgraph for project p, where arc lengths represent activity durations or time
constraints.

The arc length £5 e is the duration of activity 3. Note that activity durations are not

sequence dependent. The arc (3,2) in Fig. 3 is given a negative weight to model that
activity 3 has to follow activity 2 within a maximum delay, &,3. The arc with length
{’ep s = — & < 0 expresses a deadline for the treatment of the patient. This is useful

when the planner wants to enforce some preferences that are not otherwise stated in the
model, such as a decision to schedule a project within a restricted time period.

Mode-dependent precedence constraints

We extend the concept of conjunctive precedence constraints to include “mode-
dependent” precedence constraints. These have the form: "if activities i and j share
resource 7, then i must precede j"'. Mode-dependent precedence constraints are similar to
the “partially ordered destructive relation” introduced in (Bartels and Zimmermann
2009), which was derived in the context of non-renewable resources in destructive testing
projects. Note that in terms of our decomposition into a resource assignment problem and
a sequencing problem, all modes are selected at the resource assignment level. For the
resulting sequencing problem, the relevant mode-dependent precedence constraints are
therefore included in £ just like any other conjunctive precedence constraint.

242 Resource subgraphs

Most activities will use modes that include one or several resources. The problem graph
G includes a resource subgraph, G, = (V", A"), for each resource . V™ c V contains all
activities whose chosen mode contains resource r. V" also contains a set of nodes that
define the available resource periods, as will be explained in the following. The set of all
resource related arcs in the project graph (5.1) is the union 4 = U, A".

Resource periods

Many real world scheduling problems run over several days, while many common
constraints and objective components are naturally formulated on a daily basis. At the
same time, the availability of resources is often time dependent. In the literature on
RCPSP, this has been modelled in different ways, including the use of resource
availability calendars, and insertion of “forbidden periods”, or artificial “away” activities.
In the context of the disjunctive graph model, we find that these aspects of the problem
can be modelled in a more flexible way by using the concept of “resource periods”. A
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resource period is an interval in time in which a resource is available with a certain
capacity. We let X7 = {1,2,..} be the set of successive resource periods associated with
the resource 7. To find a feasible solution to the problem, exactly one resource period

k € K" has to be chosen for each activity and for each resource r that is assigned to the
activity through the choice of mode. As will be shown below, this approach has several
advantages:

1. It enables a natural modelling of hard resource availability time windows in terms
of lengths of arcs in the resource graph.

2. It facilitates an efficient evaluation of any objectives and constraints that are
connected with the end time of each period, which will be a direct result of time
propagation through the graph.

3. It offers a convenient way of modelling time dependent resource capacity, as well
as block constraints.

Fig. 4 shows a small example, with a subgraph for one resource r that is available in two
resource periods.

__A,_F_,_,,_k_k:‘a'l

T |

ShmmmEna -¢° \\(P
[ G
Shr s'o 0§ ey s el

Fig. 4: A resource subgraph for the resource r, with two resource periods. The arc lengths
signify time, and un-labelled arcs have length zero. See the text for details.

Each period k € K" is represented in the subgraph of resource » by a pair of start and end
nodes, 5"y and €’;. Each resource period is subject to time constraints, which are
represented in the resource subgraph by a set of fixed arcs. The start time of each resource
period k is fixed to @*. This is modelled by the arcs (s, s") and (5" ,s) with lengths ok
and —@*, respectively, as illustrated in the example in Fig. 4. The end time of the
resource period k is bounded by the start time of the following resource

period k+1. These bounds are modelled by the arc (¢, 5'k+,) with zero length (whereas
the zero length arc (s, €’%) is used to bound the end time from below). An additional
upper bound ¢* on the resource period end time may, when relevant, be expressed by
adding an arc (€'}, s) with length —a*. Such arcs can be used to express for example hard
constraints on the end of staff working hours, or other resource availability restrictions.
All activities that use a given resource period must start and finish within the
corresponding time window. This is similar to the time-switch constraint used in (Chen et
al. 1997), but in our case the available period is specific to the individual resource. In a
feasible solution, the earliest start times of the nodes ey, equals the latest completion time
of any activities that are scheduled in resource period k. In Appendix A, we show that it is
straightforward to express some objective components, such as the "overtime" objective,
as a function of t,r.

Different resources may have different period definitions. For example, in surgery
scheduling, one finds that two surgery teams may have different—possibly overlapping—
working hours. Also, some surgery resources may be continuously available, such as
intensive care beds, operating rooms, and equipment. For simplicity and consistency, we
model these resources as having one resource period. So called "block constraints" are
represented by letting a resource period be available only to a subset of activities. In this
aspect, the concept of resource periods is similar (but reverse) to that of “forbidden
periods” used in (Drexl et al. 2000).

In the following, we will describe in detail various important problem constraints, and
how they can be expressed in our graph model. First, however, we must define a
generalisation of the classical concept of disjunctive precedence constraints.
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Generalised disjunctive precedence constraints

In the standard RCPSP, disjunctive precedence constraints are used to model that when a
resource has limited capacity, not all activities can be scheduled concurrently. One
therefore has to select an ordering among some pairs of activities 7 and j, to obtain a
feasible schedule'. In classical disjunctive graph models (Roy and Sussmann 1964) this
is modelled by pairs of directed arcs {(i,7), (j,i)}, where exactly one arc must be selected
from each pair to establish an ordering. The union of selected arcs from all such pairs is
called a selection. Making a feasible selection is equivalent to removing those arcs that
were not selected from the original problem graph, in such a way that the resulting
solution graph is positive acyclic.

More complicated disjunctive constraints are also necessary to model our problem. We
therefore generalise the traditional concept of disjunction by generalising an arc to a set
of arcs, and the pair of arcs to a set of such sets. We use the following definition:

A disjunctive set of size n; is defined as a set of sets of arcs, Dj = {Dj(l), sty D-(nj)}.

Obviously, the classical disjunctive pair of directed arcs between activities a and b can be
seen as a special case of a disjunctive set D;, where n; = 2, and D;(1) = (a,b) and
D;j(2) = (b, a). Our model also contains disjunctive pairs of arcs that are between
different activities; i.e. where D;(1) = (a,b) and D;(2) = (¢, d) for some activities a, b,
¢, and d. The above definition is also a generalisation of the "family of disjunctive sets"
used in (Groflin and Klinkert 2007), where each set in the disjunctive set contains only
one arc. Another example of previous generalisations of disjunctive graphs can be found
in (Mannino and Mascis 2009), in the context of train scheduling.

Below, we will introduce several "complicated” disjunctive constraints. The set of all
disjunctive constraints in our model are represented as a collection of disjunctive sets,

D = {D, ..., D,y }?. Again, from each disjunctive set D; € D we want to select precisely
one of its sets of arcs. We denote this chosen set of arcs by S (Dj), and generalize the
concept of selection as follows:

Let D = {Dy, ..., Dy} be a collection of disjunctive sets. A selection is then defined as
S(D) = U S(py)
j

A selection of the disjunctive sets in the problem represented by the graph in Equation
(5.1), is feasible if it produces a positive acyclic solution graph:

G= (V,EUA),

where A = (4 \ D) U S(D). Correspondingly, each resource subgraph G, C G is
transformed by the selection S(D) into a subgraph G, C G . The lengths of each arc

(i,j) € A either equals the duration of the predecessor activity i plus any setup time for
the resource 7, or express some other time constraint. Calculating the longest path in G
between s and all other nodes thus gives the earliest start time of each node, which in turn
forms the basis for evaluating the cost of the solution (Appendix A).

We now go on to describe the most important disjunctive constraints of our problem.

(5.2)

Disjunctive constraints between activity nodes and resource period nodes
As mentioned above, exactly one resource period must be chosen for each activity, and
for each of the activity's assigned resources.

! Note that in our model, a disjunctive constraint between the activities needs only be included in
the model if they can both be assigned to the same resource period.
2 Note that the collection D corresponds to the “disjunctive constraints” mentioned in Fig. 2.

10
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D (1) D (2) i -D (3)\

Fig. 5: Activity “/” can be executed in any one of three available periods for the single
resource. Here, and in the following figures, solid arcs belong to a project graph, while
dotted arcs belongs to a resource graph.

This choice is modelled by defining a disjunctive set D; = {D;(1), D;(2), ... } for each
activity i and each resource r € R'. Each set D; (k) contains two arcs linking the activity
to resource period k € K. This is illustrated in Fig. 5. Selecting a resource period for
activity i corresponds to choosing a set of arcs § (Dj) = D;(k), for some k € {1,.., |Dj |}
In our simple example, choosing S (Dj) = D;(2) will give the graph in Fig. 6.

I )-&
bl

Fig. 6: The example of Fig. 5, after a selection has been made.

Project disjunctions

It is a property of the surgery scheduling problem that some resources, such as the
operating room, can only be used in one project (patient) at the time. All activities of one
project must complete their use of the resource before it can be used in any activity of any
other project. This comes from the fact that as long as activities for one patient are not
completed in the operating room, no activities concerning other patients can happen in the
same room. We can think of this constraint as a disjunction between projects. To our
knowledge, such a constraint has not been previously studied, although it bears some
resemblance to constraints that were used in (Bomsdorf and Derigs 2008; Nonobe and
Ibaraki 2002), which demand that no other activities can be scheduled between certain
pairs of precedence-related activities.

Project disjunctions are modelled by creating one disjunctive set D; for each pair of
projects (p,p"), and for each relevant, “project-disjunctive”, resource r. The situation is
illustrated in the example of Fig. 7, where a disjunctive set D; = {{al,a2},{b}}. That is,
exactly one of the arc sets {a;, a,} or {b} must be selected.

Preperations Surgery Cleaning
: '\0 e ¢ P
P "
Q< SO
7 \)&1 \ Wt -
/ Y \ == N

@ 0

Fig. 7: Project disjunction as a dISJunctlve set between two projects, on the resource "OR".
The double arcs represent the disjunctive set, from which either {a;, a,} or {b} must be
selected.

Resource capacity and flow

11
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So far we have ignored resource demand and capacity constraints. In our model, both the
capacity of resource r and the corresponding demand d] of activity 7, can be larger than
one. If the activities that are assigned to a resource period k € X" have a total demand
that is larger than the resource capacity in the period, cf , they cannot all be scheduled
concurrently. To avoid this, a partial ordering of the activities must be imposed by
suitable decision variables (see section 4). Such a partial ordering can be represented by
the arcs in a graph for each resource period. The nodes are the resource period's start and
end nodes, as well as the activity nodes (Fig. 8).

Fig. 8 The flow network associated with a single resource period. Arc labels refer to flow.

Like in (Artigues et al. 2003), we model the use and capacity of the resource by a flow in
this network. The start node s}, of resource period k& can be seen as a source node with
total (positive) divergence c} . Similarly, the end node ey, is a sink node with divergence
—c},. The divergence of all other nodes is zero. In addition to the standard flow
conservation constraints, we also introduce activity demand constraints which state that
the total flow into—and out of—each activity node i must equal d} . Note that this model
can easily be reduced to the classical network flow model by representing each activity
by two nodes, one source and one sink node, both with divergence of magnitude equal to
dl.

2.5 Objective function

The traditional objective in project scheduling is to minimize only makespan or project
lateness. Several other objective components are necessary to model the generalised SSP
(see section 3.5).

3 Modelling Surgery Scheduling Problems

Now that we have presented the general reference model, we can discuss how it can
express real world SSP concepts. For completeness we also include the relevant
mathematical notation for each concept, which will be used in the MILP formulation in
section 4. A summary of this notation may be found in Table 1.

Note that the model can easily express re-scheduling based on an existing solution. This
is the norm in practical surgery scheduling, since an existing plan must usually be
respected to some degree. So must manually made planning decisions. This is handled by
adding appropriate constraints or preferences when the SSP is mapped into the
generalised model

3.1 Patients

The SSP concerns the scheduling of activities associated with specific referrals for

surgery for each patient. Model parameters are set based on patient properties as follows:

e P: The set of projects, each representing a patient referral. Note that compared to
many other RCPSP variants, these projects are typically quite small, with less than,
say, 10 or 15 activities. Also, not many of these activities can be performed in
parallel, as most of them involve the patient.

e V'P: This set represents the real world hospitals activities associated with project p.
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e w,: The due date for the project is set to the guarantied deadline date for the
corresponding surgery. In Norway, at least, violations of this deadline is a common
measure of the hospital's performance.

e xp: The reference date for the project is typically set to the date at which the referral
was written. This is the date from which waiting time is counted.

3.2 Activities

Each hospital activity is modelled with the following properties:

e Y™ The duration of activity i depends on which resources that are used, i.e. the
chosen mode. E.g., the duration of the surgery itself depends on the surgeon, whether
surgeons in training are present, the type of surgery, etc. All durations are treated as
deterministic; see section 3.4.

e G, [a; B;]: All relevant precedence constraints between activities, as well as any
hard time constraints are included by adding weighted directed arcs to the
corresponding project graph, GP.

e [{;,n;]: Preferred time windows are set either to reflect patient preferences or based
on previous planning to achieve a minimum disruption with respect to the existing
schedule.

e  §;: The maximum delay between activities i and j is used to model how long the
patient can wait between activities. For most pairs of successive activities in the
operating room, this parameter is set to zero, as no delay is permitted. For SSP
instances with many activities per project, these activities are therefore very tightly
linked through such constraints. This has consequences for iterative improvement
algorithms such as local search, since it severely limits the freedom of modifying the
mode or the starting time of single activities, unless the search is allowed to move
into infeasible parts of the search space.

e M An activity i may need one or several resources to be present. A mode is added
to this set for each feasible combination of resources that can execute activity .

o M! < M ASSP istypically tightly constrained by mode consistency constraints.

jm =
The set ]V[JLm contains those modes that are legal for activity i when activity j uses
mode m. For the example in Fig. 1, this is used to express that if the activity
“Surgery” uses a specific operating room, “OR”, then so must the activities “Prep2”,
“Wake Up”, “Remove used equipment”, and “Cleaning OR”.

e T7;: When relevant, e.g. in the case of children or patients with diabetes, this target
activity start time is set to the earliest possible time in the day.

e II": This set of mode-dependent precedence relationships are set to express (e.g.) that
each “Prepl” activity’ must precede the corresponding “Remove superfluous
equipment” activity* if they are both assigned to the operation room resource 7.
However, if the "Prep1" activity is chosen to use a separate preparation room, the two
activities can happen in parallel.

e v/: This penalty is used to express a preferred choice of surgeon, 7, for a given
surgery activity, .

3.3 Resources

The number of resources that are included varies between hospitals and planning
situations. In admission planning, which is typically performed quite some time before
the date of surgery, only the most critical resources are included. Often, even if a resource
is actually critical it may be omitted simply because no information exists about its
availability. Closer to the day of surgery more information is available, and more
resources are included in the planning. A detailed SSP may e.g. include resources such as

3 The first, pre-anesthesia, step of preparation of a patient for surgery
* Equipment that is not needed in the OR is removed if the patient is infected, so that it does not
have to be sterilized after the surgery.
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operating rooms, intensive care units, stationary equipment, surgeons, anaesthesiologists,

surgery teams, cleaning staff, surgery tables, and other mobile equipment. These

constitute the model’s set of resources, R. For eachr € R:

e u™: This parameter is set to reflect how much of each resource the mode 7 demands,
in terms of resource units. E.g., transporting the patient to the recovery unit after
surgery may require only one team nurse. If the team has three nurses, the team will
have capacity 3, while the transport activity will have modes that require only 1 unit
of the team resource. u* = 0 means that mode m does not involve resource r.

e KT, ¥, o¥andc]: Inthe SSP problem definition, each resource has a calendar that
defines periods in which the resource is available (e.g. each day’s working hours for
employees, or allocated time blocks for operating rooms). Based on this, a
corresponding set of non-overlapping resource periods, K, is defined in the
corresponding resource graph, G,.. The start and end times (¢*and o, respectively)
of each k € X" are modelled as weighted arcs in G,.. A flow is defined on the arcs of
G, to reflect the capacity (cj) of each resource period, in “resource units”. E.g.. a
“team” resource may have capacity 3, which enables it to perform three activities in
parallel, each of which requires one team unit. Another example is if a problem
instance does not define individual surgeon resources, but rather surgeon groups with
time dependent capacities in terms of the number of parallel surgeries the group can
perform.

e K] € KT: Allocation of surgery time, on resource r, to medical specialties’ are
expressed as block constraints by defining these sub sets of resource periods that are
available to each activity, i. Resource skills and other resource/activity compatibility
parameters are also considered.

e (C S R: This set is used to define those resources, usually operating rooms, that can
only participate in the treatment of one patient at the time (without any interlacing of
activities concerning other patients).

e p": Setup time is set for equipment that needs to be sterilized between surgeries.

e ¢k The preferred finish time is used to express the end of working hours for staff, in
the case where a wider resource period is defined to allow for overtime.

3.4 Uncertainty

In the presented model, activity durations are treated as deterministic. In practical use, the
durations are set based on statistical information from daily operations. They include a
scalable buffering to model robustness, or alternatively, encourage over-booking of
resources. The model can be extended to include a more rigorous treatment of activity
durations, but this is outside the scope of this paper.

In admission planning, the uncertainty in the number of future arrivals of patients must be
taken into account. This can be done by limiting future resource availability.

We do not consider robustness with respect to short term disruptions, e.g. in the form of
arriving emergency care patients or unexpected cancellations. The disruptions caused by
such events are very large, and may be best handled by a combination of strategic
dimensioning of resource capacities, and efficient dynamic re-scheduling.

3.5 Objective components

In the review in (Cardoen et al. 2010), the authors give an overview of SSP objective
components, and classify them according to how they are treated in the literature.
Common SSP objective components are patient waiting time, makespan, time of day
preferences, soft time windows, minimum disruption, resource overtime, resource
utilization, minimum resource activity, and choice of surgeon preferences. Finally, it is
common that surgery scheduling with short time horizons must include the option not to
schedule some of the patients. These are then postponed to the next time period. The SSP

* E.g. “General Surgery”, or “Orthopedics”
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therefore often includes an objective component that encourages scheduling of as many
patients as possible, and gives a priority between patients when some must be postponed.
In Appendix A we describe how these SSP objective components may be expressed in the
proposed model.

4 Mixed Integer Linear Program formulation

We now go on to show how our general project scheduling model can be formulated as a
mixed integer linear program (MILP). This provides a precise and comprehensive
description of the generalised SSP. It also enables us to asses the solving power of a
commercial MILP solver, when applied to our formulation. The level of generality makes
the model rather complex, but some simplification is possible for specific SSP variations.
Note that while we have previously de-composed the problem into a resource assignment
problem and a sequencing problem, the following MILP formulation includes the whole
unified scheduling problem. Table 1 summarizes the notation that we need.

Table 1: Summary of notation.

Definitions

P The set of all projects

NP The set of activities belonging to project p

N The set of all activities. N' = U;ep N'P.

M The set of modes for activity i.

]v[]’m c Mt | The set of all modes that are feasible for activity i when activity j uses mode m.

R The set of all resources, R # @.

R The resources assigned to activity i, through the choice of mode.

X The set of resource periods for resource 7.

K K" The set of resource periods for resource r that are available to activity i.

Gi The set of immediate predecessor activities of activity j, in the project graph.

C The set of all resources that can only participate in one project at the time, meaning
that all activities from a project has to be completed before the resource takes part in
any other activity from any other project. C € R

Sp The set of all activities of the project p that does not have any predecessors on
resource 7. Sy & N'P. Defined for eachr € C.

& The set of all activities of the project p that does not have any followers on resource
r. &5 € N'P. Defined for each r € C.

Sk, €k The start and finish nodes of resource period k € K7, respectively.

Problem parameters

H The planning horizon, or planning period length.

3 The number of time units in a day.

[¢:,n;] Preferred (soft) time window for activity i.

[a;, Bi] Hard time window constraint for activity i.

Wy Due date for project p, given in days. Preference, not a hard constraint.

[yp, gp] Hard time window constraint for project p. ,, is the project release date, while ¢,
can be set to model any absolute upper limit on project completion (or to / if no
such limit exists).

Xp Reference date for project p, given in days.

cr The capacity of the resource period & of resource r, in resource units.

ur Mode m’s use of resource r, given in resource units.

Ul =1 if mode m uses resource r (U7t > 0), zero otherwise.

5 Maximum delay between the completions of activity i and the start of activity ;.

" The duration of activity i in mode m.

p" The setup time for resource r. p” = 0 only for resources with maximum capacity 1.

Ik Fixed starting time of resource period k. This is a hard constraint.

ok Latest end time of resource period k. The maximum value for this input parameter
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must be the start time for the following resource period on the same resource. This
is a hard constraint.

¢ Preferred finish time for resource period &, which is typically used in objective
components concerning resource utilisation.

nr The set of ordered pairs of activities, (i,j) that are associated through “mode-
dependent” precedence constraints in such a way that if they both use resource 7,
then 7 must precede J.

T; Preferred time of day, given in time units since midnight, for activity i. If no
preference exists, the corresponding weight in the “Preferred time of day objectives”
(Equation (10.2)) will be zero, and the value of 7;will be ignored.

V] = (0 if resource r is a preferred resources of activity 7, and 1 otherwise.

AT AT Resource 7 prefers to participate in at least A™ activities, from the set of desired

activities, A”. These parameters are 0 and empty, respectively, for resources without
such preferences.

Decision variables

x" = 1 if activity i uses mode m € M and 0 otherwise.

q{“ = 1 if activity i uses resource period k € K7, for resource 7, and 0 otherwise.

4 The non-negative starting time of activity 7.

fg The non-negative flow of units of resource » between activity i and activity j.
Zij = 1 if activity i precedes activity j, and 0 otherwise.

L =1if p precedes p'on r, and 0 if p’ precedes p on , where r € C and p,p’ € P.

Derived variables

Vi The completion time of activity i.

€k The earliest start time of the artificial “end activity” of resource period &, which is
the same as the maximum completion time over all activities that are scheduled in
resource period £.

Cp Completion time of project p

dl The demand of activity i for resource 7 in the chosen mode.

gr = 1 if activity i uses resource r in the chosen mode, and 0 otherwise.

hP Binary variable expressing whether project p is un-scheduled (h? = 1), or

scheduled (kP = 0).

Unless otherwise specified, all time-related parameters or variables above are given in
time units since midnight on the first day of the planning period. For the SSP the natural
time units are minutes (3 = 1440.0). We therefore continue to use continuous time, since a
time indexed formulation would need to have many more variables. The MILP
formulation is defined by equations (7.1) through (7.34) (M represents a large number).
First we define the decision variables and some derived variables:

xMe{01); Vie N,vmeM!
z; €{0,1}; Vi,jEN

ttER; VIEN

gk €{0,1}; vreR,VkeX]

fii ERy; VrER,Vi,jENU(U

dypr €{0,1};

h? € {0,1}; Vp€E P

y, ER; VIEN

(7.1)
(7.2)
(1.3)
(7.4)

D) 09
KEXT

Vr€CVpp € P (7.6)
1.7

(7.8)
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gl €{0,1}; VIr€ER,VIEN (7.9)
yi=t+ Z ﬁlmxim;ViEN (7.10)
memt
gi = Z utx"; VIER,VIEN (1.11)
meM!
di = Z W VrER,VIEN (7.12)
meMt

Equation (7.10) defines the completion times for each activity, while (7.11) defines the
variable g/ that indicates whether or not activity i uses resource 7 in the chosen mode.
(7.12) defines resource demands for each activity in the chosen mode.

ZXim:l—hp;ViEN (7.13)

memi

quk=gir; VIiENVreR (7.14)

kex]

X" < Z X" ; Vi,jENP, VpEP (7.15)
m’EMjilm

(7.13) says that exactly one mode must be chosen for each activity of a scheduled project.
Equation (7.14) states that exactly one resource period must be chosen for each resource
that is assigned to an activity. This period must be selected amongst those available to the
activity; thus the equation also expresses block constraints. Consistency between modes
of different activities is ensured by (7.15).

Zij+ z; < 1 Vi,jeEN (7.16)
zi;=1, VIEG,VJEN (7.17)
zj2 (gl +g/—1); VreRV(E)eN (7.18)
tj— y;—p"Max(0,g] + g7 —1) 2 (z;;, 1) M; VijEN,VreR (7.19)
dppr + dgry =1; Vp,p'€ P (7.20)
zij 2 dpp+ 9] +97 -2, Vr€C VieE, V€S, Vpp' € P (7.21)

(7.22)

Zji

(7.16) says that if activity i precedes activity j, then activity j cannot precede activity i.
(7.19) expresses the link between the precedence variable and activity start and
completion times, taking resource setup time into account. Note that such setup time only
has meaning for resources with capacity one; for all other resources p” = 0. We can use
M=H. Equations (7.17) and (7.18) express project graph and mode dependent
precedence constraints, respectively. (7.20), (7.21) and (7.22) enforce project
disjunctions. The definition of ) and £ assumes that the feasible set of modes for all
activities in p are bound through mode compatibility in a way that ensure that if resource
ris used, then &y and € contains the set of first and last activities of ponr,
respectively. For projects for which this assumption does not hold, the constraints must
be taken between all pairs of activities, i.e. Sy = &, =N P,

> —d,+gj+9l —1;Vr€ CViES] VjEE,, Vpp' € P

t; > Max(a,v,); VPE P,Yi€ENP (7.23)

yi < Min(Bey); VPE P,VIiEN? (7.24)

Equations (7.23) and (7.24) express activity and project time windows
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fr<z;M, VreRVijeEN (7.25)
ij ij

Zfi?+z Lro=di; VIENVreR (7.26)
JEN kex]

Zfi§+z fh,=d; ViEN,VreR (7.27)
iEN kE?er

T SAqf ; VIENVKEKTVTER (7.28)
L Schal ;s VIEN,VKEXT VT ER (7.29)
z foit foeg=ci VKEXVreR (7.30)
IEN

Z fla+ fha=ci; VKEXT VT ER (7.31)
IEN

(7.25) ensures that the flow associated with resource r is zero if activity i does not
precede activity j, and, vice versa, forces z;; = 1 if there is any such flow between the two

111 — 1 Cm o,m .M o, Mm 1"
activities. M = min(max,, ¢ ypi dr' X; , MAX,,capi Uy Xj ,kegrcr}ad(w (e )):
3 ]

Flow conservation and demand satisfaction is ensured through the constraints in (7.26)
and (7.27). Equations (7.28) and (7.29) ensures that the flow from any resource period
start (end) node to (from) any activity i, is zero if the activity is not scheduled in that
resource period. Resource capacity for each resource period is given by (7.30) and (7.31).

t; — pkqk > 0; vieN,vr e R,Vk € K] (7.32)
yi—okgf—(1- g )M<0; VieNVreRVkeX] (7.33)
(7.34)

tj — yi—(?l-j < O; Vi,jEN
Equations (7.32) and (7.33) force activity start times to lie within hard time windows for

the chosen resource period. In (7.33), we can use M=H. Finally, (7.34) is the max-delay
constraint between project activities.

Note that if a given resource has a constant capacity = 1, and the maximum demand for
this resource for any activity is also one, then we can omit the flow formulation in
equations (7.26) through (7.31). For such a resource r, we can use the simpler classical

resource disjunctions instead. Together with (7.16), this can be expressed by:

zij+ zy2 gl +9i -1 VijEN (7.35)

5 Computational experiments

As the proposed model aims to cover a large majority of the real world SSPs, it is
necessarily general and not tuned to any specific problem variant. All the same, it is
useful to investigate how a commercial MILP solver will perform on the model.

5.1 Test instance classes

The problem class’s inherent diversity makes it impossible to test it for the entire variety
of SSP problems. However, we present a representative set of realistic test instances that
together should give some indication of the model's performance in typical planning
situations. The instances can be ordered in three classes, characterized by their planning
horizon and the level of detail in resource information. All the test problems are based on
the basic configuration of a surgery department in a medium sized Norwegian hospital.
The test data are available online in the XML format of the proposed general project
scheduling model. This will enable researchers in project scheduling to develop and test
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algorithms for the generalised SSP without the need for any understanding of the surgery
scheduling domain.

For all instances, the objective function can be written as a weighted sum of objective
components as defined in Appendix A. The choice of objective components for each
respective class of test instances is given below.

5.1.1 The "Admission” problem

This is a typical admission planning problem, with surgeon and operating room resources,
both with constant unit capacity. The surgery is the only project activity. Our test cases
have a planning horizon of about 4 or 5 months. Each surgery that was already scheduled
in the existing plan are constrained by time windows to the day (resource period) on
which they where originally scheduled. There are four objective components of the
admission problem; patient waiting time, surgeon overtime and “children early in the
morning”, and the "un-scheduled" objective. The internal weighting between patients in
"children early" objective is inversely proportional to the patient’s age, and zero for
patients above a certain age (adults). Weights for the "un-scheduled" objective are
calculated based on the relative waiting time that the patient would have if her surgery
was scheduled at the end of the planning horizon®.

5.1.2 The "Weekly" problem

In the “weekly” surgery scheduling problem, we include three activities per project:
surgery, recovery, and the cleaning of operating rooms. The involved resources are
surgeons, operating rooms, a recovery unit, and cleaning personnel. The planning horizon
is one week. The objective components include those of the “Admission problem”. In
addition, a violation of soft time windows is added, where each time window defines the
day on which each surgery was scheduled in the previous existing schedule. This replaces
the hard time window constraints that were used in the admission planning problem.

5.1.3 The "Daily” problem

This is a very detailed SSP, with a planning horizon of one day. The considered resources
are surgeons, operating rooms, teams, cleaning personnel, and the recovery unit. The
project activities are preparation of the patient (pre- and post-anesthesia as separate
activities), finding the necessary equipment, removing superfluous equipment in cases
with infected patients, surgery, waking the patient, removing used equipment,
transporting the patient to the recovery unit, cleaning the operating room, and recovery.
The objective function is the same as for the “Weekly” problem, except that the waiting
time component and the soft time windows are excluded.

5.2 Results

All experiments were carried out using 64-bit CPLEX 12 on a Dell Precision M4500
laptop computer with an Intel Core i7 CPU with four 1.73 GHz cores, and with 8Gb
RAM. The CPLEX setup is standard, except that we specify that it should use parallel
mode with up to 6 threads. In all experiments, CPLEX was given an initial feasible
solution that was generated by a simple construction heuristic, applying a suitably
modified version of the sequential schedule generation scheme (Artigues et al. 2008). The
heuristic schedules one project at the time, in the order of increasing project due date.
Each CPLEX run had a timeout that was chosen to reflect a realistic level of patience on
the part of the planner in each planning situation: 5 minutes for the daily planning
problem, 60 minutes for admission planning, and 15 minutes for weekly planning.

® These test instances correspond to those that were used in (Riise and Burke 2011), but with the
modification that the overtime objective is replaced by the linear formulation of Equation (10.10),
that the choice of surgeon is no longer pre-determined, and that the weights for the "un-scheduled"
objective is set individually for each patient. Also, the normalisation of each objective component
is changed.
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Computational results for these three problem classes are given in Table 2, Table 3, and
Table 4. The instance names indicate the number of projects in each case; e.g. "w32a" is a
"weekly" problem instance with 32 projects). The columns "#var" and "#constr" contains
the number of variables and constraints, respectively, in the MILP formulation. We report
the objective value of the initial heuristic solution ("Initial"), and the value of the best
found solution ("Result"). If this was proven optimal, we report the wall time ("T") used
to supply this proof. The column "Bound" contains the best lower bound produced by
CPLEX in any of our runs. Bold face indicates improvement with respect to the initial
solution, or proof of optimality. Result values in italic indicate that the search stopped
because of lack of memory.

Table 2 Results for the "daily" class

Case #var #constr Initial Result T(s) Bound FOT the "daily" instances,

di0a | 47051 | 131887 0.0387 0.0387 | - 0 | optimality was only proven when
diob | 48325 | 135124 4.0792 40792 | - 39646 | it was trivial, i.e. in the cases

dl0c | 48325 135124 0.4472 0.4472 - 0.3785 | where the initial Ob_] ective value
dlod | 49614 | 138392 | 45350.5330 | 453505330 | - 03646 | was zero (no children and no

dl0e | 47057 | 131895 4.1875 41875 | - 2.8298 | overtime). No improvements

dsa | 13405 39529 3.9861 3981 | - 38819 | were found on the initial solution
dsb | 14087 | 41386 4.6715 46715 | - | 40660 | for any of the cases. Running

dsc | 14081 | 41378 0 0| 217 o | each case for one hour failed to
dsd | 12747 | 37715 4.4875 44875 | - | 43792 | provide any better results, except
dse | 12741 | 37707 0 0| 242 o | for the instant d5b, for which a

value of 4.2757 was found after
about 10 minutes. Note that the initial solution values are not very far from the lower
bounds, except for the case d10d, where the initial solution contained some un-scheduled
projects.
None of the "admission" instances (Table 3) were solved to proven optimality and for
only one of them were improvements found over the heuristic starting solution. Again,
the lower bounds are reasonably good.

Table 3 Results for the "admission" class

Case #var #constr Initial Result Bound Case #var #constr Initial Result Bound

WOT_1 52280 217150 45.6763 45.6763 35.8683 WOT_6 72264 275121 48.9564 48.9564 34.2245
WOT 2 59916 238259 46.8723 46.8723 34.3954 WOT_7 76049 289227 50.2774 50.2774 35.1558
WOT _3 61095 242054 48.1108 47.3801 35.7004 § WOT_8 82463 314303 50.3108 50.3108 34.3746
WOT_4 67806 256402 50.4721 50.4721 37.0322 § WOT 9 93086 337288 51.3888 51.3888 34.4294
WOT_5 67916 260364 49.9758 49.9758 36.7373 WOT_10 98775 359556 52.8344 52.8344 34.7907

Similar observations can be made for the "weekly" problems. It is evident from Table 4
("Full problem") that for realistically sized cases (w32*), CPLEX cannot improve the
initial solution within the allocated time, or prove optimality. Even using a one hour time
limit did not yield any improvements. The only improvements that were found over the
given start solutions were for the instance w16b, and for the completely unrealistic 8-
project instances. For these, the improved solutions were found and proven optimal in
0.11 — 1.22 seconds. Note from Table 4, however, that again our formulation provides
fairly good lower bounds ("Bound" for the full problem).

Table 4: Results for the "Weekly" problem class, for the full problem, and for sub problems with
fixed modes as well as with both fixed modes and fixed resource periods.

Full problem Fixed mode Fixed mode & RP
Case #var #constr Initial Result T(s) Bound Result T(s) Result T(s)
w32a 33396 100381 3.1044 3.1044 - 2.1881 3.1044 - 3.0810 78.23
w32b 34659 101908 10890.8376 10890.8376 - 2.1524 10890.8376 - 10890.8376 -
w32¢ 33672 100741 13329.1240 13329.1240 - 1.6816 13329.1240 - 13329.1240 -
w32d 32889 99821 2.6379 2.6379 - 1.7059 2.5200 527.33 2.5761 390.20
w32e 33780 100895 2.4877 2.4877 - 1.5895 2.4606 - 2.4808 55.82
w24a 19749 57926 4.9931 4.9931 = 3.7798 4.6662 13.34 4.6662 0.72
w24b 19697 57665 4.5797 4.5797 - 4.5619 4.5753 82.57 4.5782 14.85
w24c 19632 57731 3.6967 3.6967 - 3.1800 3.6793 34.63 3.6793 2.06
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wl6a 10083 27308 3.6851 3.6851 - 3.4576 3.5422 7.6 3.5422 0.64
wl6b 8939 25891 3.0673 3.0673 1.22 3.0673 3.0673 0.01 3.0673 0.03
wl6c 8636 25559 3.2711 3.2641 - 3.2507 3.2711 0.02 3.2711 0.02
w8a 2513 6915 1.9252 1.9252 | 0.11 1.9252 1.9252 0.02 1.9252 0.00
w8b 2648 7078 0.9629 0.9629 | 0.39 0.9629 0.9629 0.00 0.9629 0.00
w8c 2771 7184 0.4328 0.4328 | 0.14 0.4328 0.4328 0.02 0.4328 0.02

In certain planning situations, or in the context of a hybrid combination of algorithms, it
may be interesting to solve specific sub-problems. We therefore investigated how CPLEX
performed on the single-mode version of each instance, by fixing the mode to that given
in the starting solution. Table 4, in the columns labelled "Fixed mode", illustrates the
results for the "Weekly" instances. As expected, this simpler problem is easier to solve,
and optimal solutions are found for all of the smaller instances. We also tried to fix both
mode and the choice of resource period for each activity (" Fixed mode & RP" in Table
4). In that case, optimality was proven for all instances, except for w32b and w32c.
Notably, these were the only instances for which the input start solution contained some
un-scheduled projects. These results demonstrate that CPLEX can be used to solve such
small sub problems, possibly in a heuristic way, if a reasonably good start solution is
provided. As such, solving our MILP formulation could be usefully included in a hybrid
combination of collaborating solvers for the SSP. However, it is apparent from Table 4
that our MILP formulation alone will not be competitive with heuristic methods for the
full multi-modal problem.

6 Conclusion

The great diversity of real life surgery scheduling problems (SSP) implies a need for
generalisation. A unified SSP model would greatly facilitate the development of
algorithms that are robust across problem variations, and thus applicable in commercial
planning software.

To this end, we have presented a general project scheduling model as a rich extension of
the classical resource constrained project scheduling problem (RCPSP). We have
discussed the involved extensions in detail, with particular attention to some new
extensions that have not been previously used in the literature. These are mainly: resource
periods, project disjunctions, inter-mode compatibility constraints and mode-dependent
precedence constraints.

The proposed model is based on a generalisation of disjunctive graphs, for which we have
introduced the concept of "disjunctive sets" as a basis for several types of problem
constraints.

While the proposed model can express a range of complicated scheduling problems, we
have focused our attention on the SSP, and have explained how real world SSPs can be
expressed using this general modelling framework.

Having thus demonstrated the generality and expression power of the model, we wanted
to investigate the practicality of solving it. Although the graph based model can be
expected to be a suitable basis for a range of exact and heuristic methods (Artigues et al.
2008), we chose to this end to formulate the problem as a mixed integer linear program
(MILP). This formulation also provides a precise mathematical description of the
generalised SSP. Three different classes of realistic surgery scheduling problems were
presented, and computational experiments were performed using CPLEX. The results
show that realistically sized problem instances could not be solved within a practical time
frame. This, and the fact that even the much simpler classical RCPSP is NP-hard in the
strong sense, suggests that meta-heuristic approaches will be more promising for realistic
problem instances. At the time of writing, we are therefore developing a meta-heuristic
solution approach based on the presented modelling framework. The aim is to provide a
high performance heuristic solver that is robust across most real world SSP applications.
This does not mean, however, that the proposed MILP formulation is not useful. Our
results show that the formulation, despite is generality, produces good bounds for most
test instances. Also, promising solutions was found for interesting sub problems. It is
therefore probable that our MILP formulation can be applied as a part of a hybrid
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framework of collaborative solvers, together with meta-heuristic methods, to improve
solutions and/or produce bounds for sub problems. Observe also that our test results were
produced without any strengthening of the formulation with valid inequalities, or any use
of additional algorithmic mechanisms such as column generation. Further improvements
along these lines are therefore also an interesting direction for further research.

Finally, note that the proposed model is aimed at generality, rather than performance for
any specific SSP. One can therefore expect that MILP-formulations with better
performance may be found for selected problem variants.
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A Objective Components

We write the objective function of our model as a linear combination of independent objective components,
and assume that it is to be minimized:

0= ZWl o (10.1)
l

In this appendix we give a comprehensive mathematical description of each objective component in the
model, using the notation in Table 1 (page 15). We also explain how each component can be used in surgery
scheduling. We would like the objective weights (w;) in (10.1) to intuitively reflect the relative importance
of the objective components, as these weights are typically set by the user of some decision support system
in which the model will be used. We therefore require that the objective components, O', are scaled to
approximately the same order of magnitude.

We assume that choosing the earliest possible start time is always optimal for a given solution graph. In other
words, we assume that the objective function is regular in the sense defined in (Sprecher et al. 1995). This is
normally the case, but does not hold for all components individually. For example, for the soft time window
components, (10.4) or (10.5), some later activity start time may give a lower value. For the SSP, however,
surgery planners typically prefer to plan all activities as early as possible in the day, to keep any spare time
towards the end of the day in case of unforeseen delays or arrival of emergency care patients. This can be
easily modelled by adding an overtime objective on some critical resources, as e.g. the operating rooms, with
a suitable preferred end time. This component will normally ensure that the total objective function is regular
per resource period, and thus regular overall for any feasible solution.

The relevant objective components can be classified according to the basis for their evaluation; activity start
times, resource use, or project completion time.

A.1 Activity start times

Some objectives can be calculated based on the time of day of activity start times. Consider first the
"preferred time of day" objective:

1 ;
= — ir(i (10.2)
Or STV E (1-hP) ( E TW F(L))
DEP IENPOAN

r(i) = Imod(t; 3) — 7 O
Here, T; is the target time of day for activity i and 3 is the number of time units in a day. I'(i) is the absolute
value of the difference between the planned time of day associated with the start time ¢; of activity 7, and T;.
NT € IV is the set of activities that are involved in the objective, and relative importance is weighted with
0 < w' < 1. The variable h? = 0 if the project is scheduled and 1 otherwise.

For the SSP, (10.2) may be used to express a need to operate on certain patients on preferred times of the
day. For example it is preferred to operate on children, patients with diabetes, outpatients’, or patients with
high demand for post-surgical care as early as possible in the day. A useful time resolution for the SSP is
minutes, which means that 3 = 1440 in the equation. Only surgery activities are included in 7, and the
weights w' are set according to the patient’s age, and/or medical condition.

We express the degree of violations of soft time windows (Vanhoucke et al. 2006), as:

1 wiA;
Ory =2 Y (1 =hP) ) = a4
|N|pe? n— §;

[ENP
where [ {;, ;] is the soft time window of activity 7, and A;= Max(y; —n;, {; — t;,0). Similarly, a time
window violation count objective can then be written as:

" In some hospitals, some outpatients may be included in the surgery schedule for inpatients for various reasons. If so,
they should be treated early in the day so that they can return home on the same day.
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Orwe = ﬁZpE?(l —hP) Yienrw'o; (10-5)

_ (L ifA> 0 (10.6)
£ {O; otherwise

In both (10.4) and (10.5), the weights 0 < w’ < 1 express the relative importance between activities. In

admission planning, (10.4) or (10.5) may be used to express the reluctance to move a surgery from the

already planned date to another, or the preference of a certain day or week in which the patients want to be

admitted. Narrow soft time windows may also be used to minimize the amount of schedule disruptions in a

dynamic SSP problem, such as planning for the next day.

A2 Use of resources

The problem definition may include preferences concerning resource assignments. We model this by
assigning a penalty V] to all non-desired resource assignments:

1 .
0r = 37 ), W' D, VI oD

iEN TreER

In the SSP, (10.7) may be used to model a strong preference—but still not hard constraint—on who the main
surgeon should be for each intervention.

From the point of view of the resource, some activities may be more attractive than others:

1 O Wr 10.8)
Oy =— ) — Max|0,A" — Z r 0.
%4 |R|TER /V ( gl)

{EAT
Here, A" is the desired number of activities from the set A™, for resource r. For resources without any such
upper limit, we use A” = |A"|. w,. € [0,1] expresses relative importance between resources. In the SSP,
(10.8) expresses the consideration that a surgeon in training requires a minimum number of surgeries of a
given type during the planning period. A" is then the set of relevant surgeries for surgeon 7, and A" is the
minimum required number of these.

Resource overtime can be calculated based on the violation of (soft) resource period end time limits.
Typically, one resource period is defined per working day. The latest completion time €, for any activity
scheduled in resource period £ can be extracted directly from the graph as the earliest start time of the
resource period’s end node. Let ¢¥ be the preferred end time of period 4, and let resource period’s “overtime”
be defined as:

_ ok k
0, otherwise
We can then write the resource overtime objective as
O = — z Wr Z - (10.10)
o r =
ReT L T3] £, (0% — oF)

Here, R° € R is the set of resources for which the objective is defined, and the w,. reflect the relative
importance of each resource r € R?. In the SSP, (10.10) is used to model staff overtime; usually for the
surgeons.

We express a resource utilisation objective as the time that the resource is used in each resource period,
relative to the maximum period duration (O’k — (pk):
K
5 o Z W N Ziew 41 Tmepet Xim i (10.11)
o =
IR & ™" (a* — ")

reER KEXT
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Again, w,. = 0 expresses the relative importance between resources. Some authors use an “Undertime”
measure for the SSP (Cardoen et al. 2010), but we take the position that under-utilisation of resources is
better measured by a specific measure of resource utilisation, in the form of (10.11). When applied to
surgeons, minimizing this utilisation measure is sometimes called minimization of surgeons waiting time.

A.3 Project completion
The earliest possible project completion times® can be used to calculate several common objective

components. One of these is the relative waiting time, by which we mean the number of days between the
project reference date and the project completion time, relative to the number of days between the reference

and due dates:
2
0, = LZ (ﬂz) (10.12)
|~73| peP Wy — Xp

Here C, = [max;enr(y;) / 3] is the completion date of project p, given in days. Note that if a project is
completed past its due date, the corresponding project’s contribution to the sum above will be larger than
one. The power two means that it is better to have a well distributed waiting time, than to assign all the
waiting time to only a few projects. Equation (10.12) can be used to model one of the most objectives in long
term surgery scheduling; the minimisation of the time that a patient has to wait for surgery. The reference
date x,, is set to patient p's referral date, and the due date w,, is set to the guaranty date for the patient’s
surgery. Equation (10.12) promotes a fair distribution of waiting time among patients, since (w, — Xp) 18
strongly related to the urgency of the surgery. The waiting time objective correlates with patient throughput
measures (Cardoen et al. 2010), which can be based on the number of patients that will have an earliest start
time of their “Project Finish” nodes within a given time interval.

One may also want to formulate a separate objective that states the degree of violation of due dates, such as
the weighted project tardiness objective:
1 w.
0, == » —=Max(0, C, —w,) (10.13)
|P| L wp
pEP
Here, w,, expresses the relative importance between projects. Another correlated objective is the classical
makespan objective, but taken over the totality of all projects:

_3 (10.14)
Oy = rgle%g( Cyp

In admission planning, (10.14) can express the goal of reducing the queues of elective patient for each
specialty. This is obviously correlated with the waiting times for patients, as well as to resource utilisation
objectives.

A4 Un-scheduled Projects

In many variations of the SSP, one considers a limited planning horizon. This means that a feasible solution
may include a set of projects that are left un-scheduled, as discussed in section 2.3. In order to force as many
projects as possible to be scheduled, the model contains an “Un-scheduled projects” objective:

1
Oysp = WZ w,, AP (10.15)
p

The weights wy, express the relative importance of scheduling each project.

% i.e. when all activities of a project are completed.
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