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1 Background

This document provides a description of a mathematical optimization model able to solve the train
dispatching problem for the Stavanger-Moi line to optimality in seconds. The model that was imple-
mented cover, to the best of our knowledge, all relevant issues for dispatching on the Stavanger - Moi
line. The model contains most of the required features for decision support train dispatchers on small
and medium sized regional lines.

The model was developed by SINTEF as part of the research project Prioritization of trains and has
been tested/used in actual operations by the dispatchers at Stavanger train dispatching central in the
period February to October 2014. We thank them for their many good suggestions helping to improve
the model.

The project was supported by The Research Council of Norway, Jernbaneverket, NSB Persontog, Fly-
toget AS, CargoNet AS and SINTEF. We are most greatful for their support.

2 Problem description

A railway network is generally a complex, interconnected system with different types of infrastructure
which can be represented with growing detail. Moving from the macroscopic to the microscopic level
inevitably increases the number and complexity of resources to be taken in account, turning even simple
representation into a non trivial task. Although most details of the microscopic level are relevant in a
practical implementation, they are omitted in this description for sake of clarity.

In this simplified picture, we start by modeling the Railway Network as a set S of stations and a set C
of connections between pairs of stations. In the general case, adjacent stations may be connected by an
arbitrary number of parallel tracks. In this report, we will consider at most two tracks (double track).
We now introduce definitions for the elements of a railway network on the macroscopic and (in part)
microscopic infrastructural level.

Stations. A station is represented for our purpose by a directed graph, with nodes associated with
tracks where the trains can stop to execute some operations (stopping points) and directed edges as-
sociated with interlocking-routes, i.e. the tracks connecting stopping points. Special stopping points
are the entry/exit points, where trains enter or exit the station, and the platforms, where trains may
embark and alight passengers, or simply wait before departure. Each train running through a station s
is associated with a directed path in the station graph. In the common case of passenger trains, such
path contains a platform node. Trains running through a station s without a scheduled stop (ex. freight
trains) may or may not have platforms in their path. Also, a path through a station will always contain
an entrance (exit) node, unless the train originates (or terminates) in the station.

Connections. One or more tracks which connect two stations of the line are a connection. Tracks
may be partitioned into sections and, generally, trains running on a track in the same direction must
be separated by a minimum number of sections. This model allows for any number of fixed block
sections. Also, we assume that rolling stock running on a double-track connection may use each track
exclusively in one direction (uni-directional traffic), unless in the case of failure of one of the two tracks
(interruption). Should this occur, trains running in opposite direction will alternate on the available
track, as for the case of single-track connections.
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Trains. Let T be the set of controlled trains. Controlled trains are trains for which, at time zero (the
observed time), information is available and re-scheduling and re-routing decisions can, to some extent,
be taken. Note that many of such trains may still have to enter the controlled line. Moreover, Train
Dispatching is a real-time activity, which means that a controlled train can be anywhere in the network
when the solution process is started, or can be simply expected to originate somewhere at a given time
in the future.

Train Routes. A train route corresponds to the sequence of tracks, interlocking routes and stopping
points encountered by a train in its run through the railway network. At a macroscopic level, the route
of a train i € T is an alternating (ordered) sequence of stations and connections. At a given time, we
denote by S(i) the set of stations on the route of i. There is a natural ordering (S(i), >;), where for any
distinct r, s € S(i) we let s >; r if s is encountered after r on the route of train i. We then define the set
C (i) of connections in the route of train 7, i.e. C(i) contains a connection for each pair of consecutive
stations in S(7), plus possibly the initial connection leading to the first station (if the current position of
i is on a track). Also the connections in C(i) are naturally ordered and for c,d € C(i) we writed >, ¢
if d is encountered after ¢ on the route of train i. Also, if the train is currently outside the controlled
region we add to C(i) a fictitious connection to represent it, which is the first one in the ordering of
C(i). Similarly, if the train will end outside the controlled region we add a second fictitious connection
which will be the last one in the ordering of C (7).

Let us consider now two distinct trains i and j and let S(7,7) = S(i) N S(j) be the set of stations common
to the routes of i and j. We assume that S(i, j) is a set of consecutive stations both for i and for j, and we
order the stations in S(i,7) as they are ordered in S(i). Trains i and j are called followers if train i visits
the stations in S(i,j) in the same order as train j; otherwise they are called opposite trains. We denote
by Opp the set of unordered pairs of opposite trains and by Foll the set of unordered pairs of follower
trains. Let C(i,j) be the set of connections between consecutive stations in S(Z,j). Also the connections
in C(i,j) are ordered as encountered by train i. Each connection can be single or double-track, and we
denote by DC (i, ) the set of double tracks between C (i, ), ordered in the usual way.

On the microscopic level, routes also include the complete trajectories of trains across the stations,
defined as alternating sequences of nodes and arcs of the station graph.

Official and real-time timetable. The schedule is a real vector t which specifies the exact timing of
all the movements of the train’s route. A given component #; of the schedule 7 is associated with a train
i and with an non-sharable railway resource r, and denotes the time in which i enters . Non-sharable
railway resources include track sections, station platforms or stopping points, converging interlocking
routes, etc. A resource is occupied by a train until it enters the next resource on its route. A timetable
is the sub-vector of a schedule specifying when trains arrive and depart from each station in their route.
The official timetable is the wanted one, typically planned long in advance but may be updated from
one day to the next. The real-time timetable, instead, is the outcome of real-time dispatching decisions.

Conflicts and Meet and Pass events. The model described in this report allows only opposite trains
to cross each other on double track connections. Follower trains can meet and pass each other in stations
several times but cannot overtake on double-tracks. When running on tracks, followers must maintain
a safety distance of at least one block section.

Conflicts are associated with schedules. We say that a schedule ¢ generates a conflict if, according to
t, two trains occupy simultaneously a non-sharable railway resource. So, in order to be implemented,
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a schedule must be conflict-free.

Dispatching horizon. The dispatching horizon is the time window which is taken in account for de-
cision making. The real-time nature of the problem implies that the origin of the time window is the
current instant in time. There are several, conflicting factors which have an impact on defining its
duration. Since, in principle, each re-scheduling or re-routing decision may have an impact on future
events, considering a wider time window may have its advantages. On the other hand, the need for fast
computation and the growing uncertainty related to events lying in the future suggest that choosing a
narrower time window may be more appropriate. In other words, the dispatching horizon is a delicate
and open topic which, in any case, must be thoroughly discussed and agreed with the infrastructure
manager.

Objective Function Conformity to the official timetable is generally identified as the main factor in
determining the quality of the real-time schedule ¢. In this case, the cost function c(¢) is defined as a
sum of terms associated with trains, where each term is convex and piece-wise linear with the delay of
the associated train. Furthermore, each train may be assigned a specific weight in the objective, based
on its relative priority. Typical examples of trains which are assigned high priority are airport trains or
freight trains carrying special goods. Many other, alternative objectives can also be taken into account.
Some examples are:

¢ To minimize the number (or cost) of lost connections (as in [14]).
* To minimize the average travel times of passengers.
* To minimize the (estimated) socio-economic cost of delays.

¢ To minimize the number (or cost) of cancellations.

The Train Dispatching problem (TD) We are now able to state the TD problem:

Problem 2.1 Given a railway infrastructure and its current status, a set of trains and their current
position, find a route for every train from its current position to the destination, and find an associated
real-time timetable so that the cost function c(t) is minimized.

Observe that, in order to solve the TD problem, we need to solve both a routing and a scheduling
problem. In this model, the routing problem is restricted to stations, as connections are either single-
track or double-track with a fixed direction. The TD problem can be easily modeled by Mixed Integer
Linear Programming (MILP) formulations (as in [9] or [4]). However, TD instances of practical interest
are typically too large to be attacked directly by state-of-art commercial solvers, and most authors resort
to heuristic approaches or to simplified versions of the problem.

We have followed a different path, developing a decomposition technique which makes it possible
to apply classical MILP techniques and solve to optimality instances of the TD problem of practical
interest. To do so, we identify two major sub-problems: the real-time Line Dispatching problem,
which amounts to establishing a schedule for the trains so that they only meet in stations or in double
track regions (or they do not meet at all), minimizing a given cost function; and the real-time Station
Dispatching problem, a feasibility problem which amounts to finding suitable routes in the station and
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a schedule which matches the given timetable. In the next sections we will show how the TD problem
can be formulated as a MILP where the 0,1 variables (say x) are associated with decisions of type
“where train a and train b shall meet” or "which platform is to be assigned to train 7 in station s”. The
schedule is represented by a real vector r. Now, the MILP associated with a TD problem typically
exhibits a block structure as follows:

min c(t)

s.t.

(i) AxL+ Bt > b, )
(if) Dt + ExS >q

(iii) treal, xL,xS binary

where the first block (i) (plus (iii)) is associated with the Line Dispatching problem and the second block
(ii) (and (iii)) is associated with Station Dispatching problem. Remarkably, the two blocks ”communic-
ate” through a small subset of the continuous variables 7, namely those associated with the timetable.
In other words, fixing trains arrival and departure times at and from the stations, perfectly decomposes
the original MILP into (many) smaller programs. Our methodology can be described as an adaptation
of the classical Benders’ reformulation to cope with integer slave problems - as discussed in [16]. First,
block (ii) is neglected, the problem restricted to (i) and (iii) is solved to optimality, and a schedule ¢* is
found. If #* can be extended to a solution satisfying (ii) and (iii), then we are done. Otherwise a suit-
able feasibility cut - a combinatorial analogue to the classical feasibility Benders’ cut in the Benders’
decomposition approach (see [10]) - is generated, added to the restricted problem and the process is
iterated. Combinatorial Benders’ cuts for the general case are introduced and discussed in [3]; in this
paper, however, the slave problem is a linear program and the combinatorial cut may be viewed as a
strengthening of the standard Benders’ feasibility cut.

In the next sections we describe in detail the two problems in this decomposition and how combinatorial
feasibility cuts are generated.

3 The Line Dispatching problem

First we discuss the Line Dispatching problem. In this problem, every station is modeled as a black
box and the precise movements of trains within each station are ignored, except for the (minimum)
time necessary to the train to cross the station. What matters at this stage is only when trains enter and
exit the station, namely the real-time timetable. So, for each train i € T and each station s € S(i), we
introduce two continuous variables @’ and d!, representing, respectively, the arrival and departure time
of i at and from s. The vector (a,d) € ]RE'T| is the real-time timetable.

Single Train Simple Precedence Constraints. Denoting by W/ the minimum time necessary for i to
cross station s (including the time needed to embark and alight passengers)!, we have

di —al = Wi (2)

ITo simplify the description we assume here that the arrival time is the time the train enters the station, and the departure
time is the time the train leaves the station
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Also, denoting by Q! the minimum running time for train i to run the track from station s; to station
Si+1, We have:

a,  —di >0l 3)

Modeling meet and pass events. For any pair of trains {i,j} € Opp U Foll and every station s €
S(i,j) we introduce a binary variable yJ which is 1 if and only if / and j meet in s. Meetingins € S(i, /)
implies that i enters s before j leaves s and vice versa. This can be expressed by the following pair of
constraints:

(i) di-di>0V-1)M {i,j} € Opp U Foll,s € S(i, ) "
(i) d—a>0Y-1)M  {i,j} € OppUFoll,s € S(i,j)

where M is a suitably large constant so that the constraints become redundant when y’{ =0.

Meet vectors and meet graphs. The vector y plays a crucial role in our decomposition approach. The
subvector y, corresponding to the components of y associated with a given station s is called station s
meet vector. We associate with y, an undirected graph G(y,), the station s meet graph, with vertex set
V =T and edge set E(y,) = {{i,j} €V : yij = 1}, i.e. there is an edge connecting node i and node j
in G(y,) if and only if the corresponding trains meet in s according to y,. It is not difficult to see that
G (y,) is an interval graph and y, is then the incidence vector of the edges of an interval graph (see for

example [8]).

Opposite Trains. Opposite trains can also cross in double-track connections. For each pair of opposite
trains {i,j} € Opp and every double track d € DT (i,j) we introduce a binary variable zg which is 1
if and only if i and j cross in d. Denoting by f(d) and s(d) the first and the second station (according
to the ordering of S(i,j)) at the ends of the double track connection d, we have a pair of constraints
similar to its station counterpart (4) but "centered” on track d:

(i) dig-d =G -DM  {ij) € Opp.d € DC(ij) "
(ii)  dpg —dig = (25 - 1)M  {i.j} € Opp,d € DC(i,j)

The above pair of constraints ensure that when i and j meet in d, i enters d before j leaves it and

viceversa.

Note that since S(i,) also contains the external, uncontrolled regions, any pair of opposite trains must

actually meet somewhere, and we have

W+ Y =1 ({i.jye0opp (6)
s€S(iy) deDC(iy)
Next, we have to ensure that if trains i and j do not meet in station s, then the leading train exits s before
the trailing one enters s. It is not difficult to see that this condition is always satisfied by opposite trains
for any real-time timetable satisfying (5) and (6). The situation is different for followers.
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Followers. For any {i,j} € Foll, the above condition must be enforced somehow on the real-time
timetable. First, we assume without loss of generality that i is the leading train when the trains first
appear in the common region. Then, for each station s € S(i,j) we introduce a binary variable oV
0¥ = 1if i enters s before j and oY = 0if Jj enters s before i. Now, let stations s, g € S(i,j) with g next
to s in the routes of i and j. Then the relative order when entering ¢ can differ from the relative order
when entering s only if the trains meet in s. This fact can be easily expressed by the following pair of
constraints:

(i) 03 < of;j +y§j {i,j} € Foll, se€ S_(i,j), q = succ;(s) )
U _ (7
(i) of <og +yd {i,j} € Foll, se€S(i,j), q=succ;(s)
where S(i,j) is S(i,j) without its last station, and succ;(s) is the station immediately after s according
to >i‘ . ..
Now if i and j do not meet in s (y{ = 0) and i is ahead of j in s (0§ = 1), then i exits s before j enters s:

di—di > (0 -y - 1)M {i,j} € Foll,s € S(i,)) (8)

In all other cases the above constraint becomes redundant.
Similarly, if i and j do not meet in s and j is ahead of i in s, then j exits s before i enters s:

ai —dl > (=0 =y )M  {i,j} € Foll,s € S(i,j) 9)

Finally, followers’ timetable must respect headway safety rules. This requires the leading train always to
be at least one section ahead of the follower. So, letd € C(i,j) be a connection common to followers i
andj and let as before f (d) and s(d) denote the first and the second station at the extremes of connection
d, respectively. Since we only consider single section tracks, the leading train must leave d, so entering
station s(d), before the follower enters d, so exiting f (d). Note that the leading train in station s(d) is
also leading in track d. Then we have:

&gy — alig) = (0%, — DM {i,j} € Foll,d € C(i,)) (10)
and:
di g — g = —M 0%, {i.j} € Foll,d € C(i,}) (11)

3.1 Enhancing the model

The model so far introduced contains in general a large number of binary variables and, even worse,
Big_M constraints. As mentioned in the introduction and discussed in detail in a next section, we
tackle this problem by delayed variable and constraint generation. The binary variables are needed
to model decisions in order to avoid conflicts between pairs of trains and to pick among precedence
constraints in disjunctions. Now, simple tests immediately reveal that most difficulties in the solution
process are caused by pairs of opposite trains. In fact, a slight delay from the official plan for a given
train is not likely to produce effects on many other trains running in the same direction. Indeed the
number of take-overs is typically very small. On the other hand, a small deviation may result in many
potential conflicts with trains running in the opposite direction. Next, we introduce a new modeling
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idea to tackle conflicts for opposite trains which effectively contributes to reducing the computational
burden.

If we consider a pair of opposite trains {i,j} and a connection ¢ € C(i,j), then i and j may either cross
(i) before c, i.e. in a station or in a double track encountered by i before c, or (ii) after c. If c is a
double-track connection, then case (ii) also includes the possibility that i and j meet in c¢. In order to
model these two possible options, we introduce a blnary variable w¢ for each pair of opposne trains
{i,j} € Opp and each connection ¢ € C(i,j), withw{ = 1ifi andj meet before c and w¢ = 0 otherwise
(i and j meet after c or in c). Denoting by f (c) (s(c)) the station which immediately precedes (follows)
connection c¢ in the usual ordering, then we have:

e Case w/ =1 (i and J meet before track c) implies that train j enters f(c) before i exits f(c)
which is modeled by the following constraint:

+wl - OM  (i,j) € Opp, < Cli,)) (12)

e Case w = 0 (i and j meet in track c or after). If ¢ is not double-track then i and j meet after ¢, and
train 7 enters s(c) before j exits s(c). This can be modeled by the following Big_M constraint:
&

s(c)

>a(c wim {i,j} € Opp, c < C(i,j) \DC(i,j) (13)

If ¢ is double-track, then i and j can also meet in ¢ and the above constraint must be amended as
follows:

& 2d - wl+z)M  {ij} € Opp, ceDC.)) (14)

S'
In fact, if i and j meet in ¢ (ZU = 1), then d < a’;( holds, and (14) becomes redundant. In

other words, &’

() 2 S(C holds only if i and] do not meet "before” ¢ (i.e. w? = 1) orin ¢ (i.e.
g _
zd =1).

Adding these new variables and constraints to the model allows us to neglect the y variables and drop
the associated constraints (4) and (6). Also, we can easily strengthen the model by observing that, if
c,d € C(i,j) and track d is after c, then, if two opposite trains i and j meet before c, they meet before
d as well. So we have

\%

wY, {i,j} € Opp, c,d € C(i,j), d>;c (15)

&k.

A final observation concerns the meet vector y, which plays a crucial role in the Station Dispatching
problem to be discussed in the next section. Even if the y variables are neglected for opposite trains,
they can be easily derived from the w and the z variables.
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4 Modeling the real-time Station Dispatching problem

In our decomposition scheme, a solution to the Line Dispatching problem provides a timetable for the
trains in 7, namely the arrival and departure time of every train at and from each station of its route. We
now need to verify if such timetable is actually achievable, that is, for any station s € S and every train
i € T through s, we need to find a routing and a scheduling of all of the movements of i through s so that
all arrival and departure times match with the timetable and no conflicts in the use of resources arise.
This problem closely resembles its off-line version, the Train Platforming problem, see [1]. Actually,
in most small/medium sized stations, there is only one path from the entry point to a given platform
and from the given platform to the exit point. So, there is a unique route from the entry point to the
exit point through a given platform. This assumption is acceptable for the Stavanger-Moi line, but may
not yield good decision support on other lines (with larger stations).

We state now the Station Dispatching problem for a station s € S. Remark that the solution to the Line
Dispatching problem provides us, besides a timetable, also the associated meet vector y,, which is the
incidence vector of the train pairs meeting in s, and the corresponding meet graph G(y,) = (T, E(yy)).
Actually, the timetable for s immediately provides an interval representation of G(y,), where for each
train the extremes of the associated interval are the arrival and departure time, respectively.

Problem 4.1 (Train Platforming) Let P be the set of platforms of station s, let T be the set of con-
trolled trains and let y; be a meet vector in station s. For every train i € T denote by P(i) C P the set
of platforms that can accommodate i. Assign to each i € T a platform in P (i) so that i and j receive a
different platform whenever y'J =1 (ie. {i,j} € E(y,)), or prove that no such assignment exists.

It can easily be shown that the above problem is NP complete by reduction from list coloring of interval
graphs (see [7]). The problem can be formulated as a MILP by introducing a binary variable g, for
each i € T and each p € P(i) which is 1 if and only if platform p is assigned to train i. Then ¢ is a
feasible assignment if and only if it satisfies:

(i) g +qp <1, {i.j} € E(vy),p € P(i) N P())
(i) g, €{0,1}, ieT,peP()

(16)

However, the problem becomes easy ([8]) when P(i) = P for all trains 7, i.e. every train can be
accommodated in any of the platforms of the station (we call this case the all-good Station Dispatching
problem). In fact, an assignment exists if and only if G(y,) can be colored with |P| colors, which in
turn can be done easily since G (y) is interval. Namely, G (y) can be colored with |P| colors if and only
if G(y,) does not contain a clique K with |K| > |P|. Since G(y;) is interval, this test can be performed
in polynomial time. When P (i) # P holds for some i € T, then the condition is not sufficient anymore,
but stays necessary, that is a feasible assignment exists only if G(y,) does not contain a clique K with
|K| > |P|. We will use this necessary condition in our solution algorithm.

Finally, observe that if G(y,) is not connected, then we can decompose the original problem into in-
dependent sub-problems, each associated with a connected component. This situation often occurs in
small stations, as it occurs if there are periods of the dispatching horizon when the station is empty of
trains.
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4.1 An algorithm for the Station Dispatching problem.

We first remark once more that the Station Dispatching problem is a feasibility problem, which means
that any feasible assignment is a solution to the problem. Next, we summarize the solution algorithm:

1. Find all connected components in G (y;).

2. For each connected component H do:

(a) Find a maximum cardinality clique K in H. If |K| > |P| return FALSE
(b) Find an assignment gy by applying a heuristic method.
(c) If g5 not found

Solve system (16) associated with H. If infeasible, return FALSE.

3. A feasible assignment ¢ is found. Return TRUE.

We discuss now in detail each step of the above algorithm.

Find all connected components in G(y,). Since G(y,) is interval and an interval representation is at
hand, this problem can be solved in linear time in |T|.

Find a maximum cardinality clique K in H. Since H is an interval graph, also this step can be per-
formed in linear time in |7T|, see [13].

A heuristic search for Station Dispatching. The Station Dispatching problem is a list coloring prob-
lem, and thus any algorithm for list-coloring on (interval) graphs may be applied. In our current imple-
mentation, we simply resorted to a greedy algorithm. Namely, we visit trains by ascending cardinality
of available platforms, assign to the current train the first available platform and adjust all other avail-
able platforms accordingly.

Solve the 0,1 program associated with the problem. To solve this problem we use IBM ILOG
CPLEX (R) as commercial solver. The solver implements a branch&cut algorithm. Since we deal
with a feasibility problem, the search can be halted as soon as a feasible solution is found. In any
case, the real-life instances of our test-bed are easily tackled by CPLEX, as the number of platforms is
relatively small.

Combinatorial cuts. Since the feasibility of program (16) only depends on trains meeting in s, if (16)
is infeasible for some meet vector y, then at least two of the trains meeting in s (according to y,) cannot
meet there. In other words, any feasible meet vector y, must satisfy the following linear constraint:

Y W<IE-1 (17

{ij}eE

where E is the set of edges of G(¥,).
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In principle, the above constraint may contain a large number of variables, since many pairs of trains
may meet in a station s during the control horizon. However, in many practical situations, the infeas-
ibility is caused by a small set of trains. This is the case, for example, when the infeasibility arises
because G(y,) contains a clique K with |K| > |P|, which can be tested efficiently. In this case we may
let E in (17) be the edges in clique K and we may rewrite (17) as:

Z Vi< ('12(') -1 (18)
{ijyck
In many cases, typically arising in small stations s € S for regional or minor lines, the graph G(y)
is the union of several connected components, namely there are periods when the station is empty of
trains. Then, if the problem is infeasible, for at least one connected component H a feasible assignment
does not exist. In this case, we may restrict (17) to the edges in H.

5 Solution Algorithm

We apply the classical master-slave decomposition approach to tackle the Train Dispatching problem.
The master role is played by the Line Dispatching problem, more precisely by the MILP problem
defined by the inequalities from (2) to (15) and by the combinatorial cuts generated by the slave. In
turn, the slave corresponds to the solution of |S| Station Dispatching problems, one for each station: if
not feasible, the slave will return one or more new combinatorial cuts to be included into the master
problem. The master-slave pair is solved in sequence several times, until the last slave problem will
be feasible - in which case the current solution is the optimal one - or until the current master turns
out to be infeasible, which implies that there exists no solution to the overall TD problem. At iteration
k the master program also contains a family E* of constraints of type (17): each constraint in E* is
associated with a set of train pairs E. We denote? by EX = (EX, EX, ...} the family of sets associated
with the combinatorial cuts at iteration k and we have @ = E° C E' C ...

Solving the current master problem. A major difficulty arises in solution of the master problem.
Indeed, the pairs of opposite (|Oppl|) and follower trains (|[Foll|) grow quadratically with the num-
ber of trains. Consequently, when dealing with a large number of trains, the number of Big_M con-
straints from (4) to (15) and the number of related variables y, w, z grows very large. The relaxations
of the resulting MILPs tend to be very weak making them very hard to solve in practice. To cope with
this, we apply delayed row and column generation. Namely, we solve a sequence of restricted MILPs
MO M', ... containing only subsets of the variables and constraints of the problem. In order to repres-
ent the programs in the sequence, observe that each of the constraints from (4) to (15) is completely
identified either by a set of opposite train pairs Opp, or by a set of follower pairs Foll. On the other
hand, constraints (17) are identified

So, we denote a restricted master program by M (O, F,E), where O C Opp, F C Foll, and E is a
family of sets of train pairs. The MILP M (O, F, E) is defined by including all the inequalities (2) and
(3) along with the corresponding variables, all combinatorial cuts associated with the sets in E and the
subset of inequalities (and variables) (4) to (15) associated with sets O and F.

2With a slight abuse of notation, we let EX denote both the family of constraints and the family of sets of train pairs in
one-to-one correspondence with the constraints.
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At each iteration of our algorithm we solve the current restricted master M = M(O,F,E). If M is
infeasible, then it is easy to see that the original TD problem has no solution Otherwise, let t* = (a*, d*)
be the current optimal schedule. By inspection one can easily verify if #* generates conflicts for some
pairs of opposite trains O. Similarly, we can identify a subset F € Foll of follower pairs involved in
conflicts generated by ¢*. If at least one of the two sets O, F is non-empty, we add O to O, F to F,
construct the new restricted master problem associated with such sets (and the former E) and iterate.
Otherwise, t* is conflict-free for the Line Dispatching problem and we need to check if it is possible
to fulfill the associated timetable for every train and station by solving the slave problem. Namely, for
each station s € S, a timetable? 5 is extracted from #* and |S| Station Dispatching problems are solved
to test the feasibility of each individual #*. If one or more timetables are not feasible, the slave problem
returns a set E of combinatorial cuts violated by the current solution. The set E is added to E, a new
restricted master is generated and the method iterates. Next, we summarize our Master-Slave approach
to the TD problem:

OptimalTrainDispatching
0. Seti=0;SetO=0,F=0,E=0
1. Solve M (O, F, E) to optimality. If M is infeasible, STOP (the TD problem is infeasible)

2. Let t* be the current optimal schedule. Find all line conflicts generated by ¢*.

3. If no conflicts exist

3.a Solve the slave problem associated with 1*. Let E be the violated combinatorial cuts.
3.b If E is empty, STOP (¢* is the global optimal schedule)
3c AddEto E

4. If some line conflicts exist
Let O and F be the set of opposite and follower train pairs involved in the current line conflicts.

5. AddOto O and F to F. GoTo 1

In order to provide an initial upper bound to the master-slave algorithm we developed a simple, heuristic
algorithm. In a similar fashion, we decompose the problem into a Line Dispatching problem and a
Station Dispatching problem: however the master and the slave problems are solved by a heuristic
procedure briefly described in [7]. A practical implementation of our heuristic algorithm is currently
operating several regional railway lines in Italy*.

A final interesting remark is that our decomposition and row generation approach mimics, in some
sense, the actual behaviour of human dispatchers which detect potential conflicts and prevent them
by establishing a suitable meeting point for the conflicting pairs. Dispatchers then make the drivers
follow their decisions by switching traffic signals. Adding a violated constraint to the master is the
mathematical equivalent of activating a red signal.

3The timetable associated with a station s is simply the vector #* of all arrival and departure times of the trains arriving
and leaving the station.

“In the current implementation the solutions generated are displayed to the dispatchers, which can accept them or refuse
them.
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6 Animplementation on the Stavanger-Moi line (Jaerbanen) in Norway

The first operative system based on the ideas presented in this article was implemented in Norway
in February 2014, backed by the network operator (Jernbaneverket[6]) and train operating companies
(NSBJ[11], Flytoget[5], CargoNet[2]). Such system was developed at SINTEF([15]) for the purpose
of providing decision support to Norwegian dispatchers. After a first, positive test campaign in the
Trondheim area’, the main line in the Stavanger region (Jeerbanen®) was agreed by all stakeholders to
be a suitable candidate for the first real-life implementation in a Norwegian dispatching central. Figure
1 is a graphical representation of the Jerbane taken from the 2013 OpenTrack infrastructure model.
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Figure 1: Jerbanen (OpenTrack® infrastructure model 2013)

The Jerbane (123 km, 16 stations) is one of the few lines in Norway with both single- and double-tracks
and is among the most trafficked lines in Norway. This is due mostly to the number of local passenger
trains which connect Stavanger and Sandnes, which amounts to around 40% of the line’s traffic.

We present a brief description of the current setting: first of all, a server continuously acquires real-
time data from the Traffic Management System. Each time an event occurs on the line (train reaches

SNamely, the Dovrebane, line which connects Trondheim to Dombés, northern gateway to Oslo
¢ Actually, the Jeerbane technically comprises the region between Stavanger and Egersund, while the system also controls
the part of the network which extends past Egersund to Moi
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signaling point, delays are registered, etc.) the algorithm is run to identify a solution to the current
problem, which is then displayed on a screen in the Stavanger control center. Figures in Table 1 show
that, in most cases, the solution found is optimal. Furthermore, we have noticed that, in the cases
when this does not occur, corrupt real-time data in input is generally identified as main cause. While
techniques and tools, critical for providing sound advice to the dispatchers, has been developed for
this in the Prioritization of trains-project, a thorough description of these are beyond the scope of
this report. Dispatchers interact with the system by confirming or modifying solutions and updating
parameter settings such as slowdowns, interruptions, delays, cancellations, etc.

In Table 1 we present figures regarding the actual runs of the algorithm in March 2014, which show
how most instances are solved to proven optimality within the time limit ("% Optimal”). Figures are
presented for different days and include the number of runs considered’, the mean number of controlled
trains ("# Trains”), mean and standard deviation of computation times ("Time”, expressed in seconds).
Last column (’Objective”) indicates average objective value of the identified solutions. Optimization
time horizon is set to 12 hours as agreed with the operator and train companies. Time limit for each
run was set to 60 seconds by default.

Day || # Runs || % Optimal || # Trains Time(s) Objective
Mean ‘ Std Dev

[ 26 ]| 3588 || 855% || 70 | 654 | 759 [ 2511.27 |

[ 27 ] 3659 || 790% || 76 [[10.73 ] 1229 [ 6453.03 |

[ 28 || 4986 || 89.1% [ 63 | 341 | 330 [ 1259.09 |

[ 29 || 3461 || 996% | 30 [ 045 | 029 [ 1117.72 |

[ 30 || 2859 || 999% || 34 [ 125 | 123 [ 125572 |

Table 1: Figures for system performance on 5 days in March 2014.
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