

SINTEF Building and Infrastructure Gunrid Kjellmark (editor)

Concrete innovation in Norway 2007– 2014, COIN Final Seminar, Trondheim, Norway, 2–3 December 2014

COIN project report 82 - 2015

SINTEF Building and Infrastructure

Gunrid Kjellmark (editor)

Concrete innovation in Norway 2007–2014, COIN Final Seminar, Trondheim, Norway 2–3 December 2014

COIN Project report no 82 Gunrid Kjellmark (editor)

Concrete innovation in Norway 2007-2014, COIN Final Seminar, Trondheim, Norway 2-3 December 2014

Keywords:

Concrete innovation; COIN; Final seminar

Project no.: 102000442

Photo, cover: Sinsen underground station, Oslo. Vetle Houg

ISSN 1891–1978 (online) ISBN 978-82-536-1499-1 (pdf)

© Copyright SINTEF Building and Infrastructure 2015

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Building and Infrastructure, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment.

Address: Forskningsveien 3 B

POBox 124 Blindern N-0314 OSLO Tel: +47 73 59 30 00 Fax: +47 22 69 94 38

www.sintef.no/byggforsk www.coinweb.no

Cooperation partners / Consortium Concrete Innovation Centre (COIN)

Kværner Engineering

Contact: Jan-Diederik Advocaat Email: Jan-Diederik Advocaat@kvaerner.com Tel: +47 67595050

Saint Gobain Weber

Contact: Geir Norden Email: geir.norden@saint-gobain.com Tel: +47 22887700

Norcem AS

Contact: Terje Rønning Email: terje.ronning@norcem.no Tel: +47 35572000

NTNU

Contact: Terje Kanstad Email: terje.kanstad@ntnu.no Tel: +47 73594700

AS isqeM

Contact: Trond Hagerud Email: trond.hagerud@mapei.no Tel: +47 69972000

SINTEF Building and Infrastructure

Contact: Tor Arne Hammer Email: tor.hammer@sintef.no Tel: +47 73596856

Skanska Norge AS

Contact: Sverre Smeplass Email: sverre.smeplass@skanska.no Tel: +47 40013660

Norwegian Public Roads Administration

Contact: Kjersti K. Dunham Email: kjersti.kvalheim.dunham@vegvesen.no Tel: +47 22073940

Unicon AS

Contact: Stein Tosterud Email: stto@unicon.no Tel: +47 22309035

Veidekke Entreprenør ASA

Contact: Christine Hauck Email: christine.hauck@veidekke.no Tel: +47 21055000

Preface

This study has been carried out within COIN - Concrete Innovation Centre - one of presently 14 Centres for Research based Innovation (CRI), which is an initiative by the Research Council of Norway. The main objective for the CRIs is to enhance the capability of the business sector to innovate by focusing on long-term research based on forging close alliances between research-intensive enterprises and prominent research groups.

The vision of COIN is creation of more attractive concrete buildings and constructions. Attractiveness implies aesthetics, functionality, sustainability, energy efficiency, indoor climate, industrialized construction, improved work environment, and cost efficiency during the whole service life. The primary goal is to fulfil this vision by bringing the development a major leap forward by more fundamental understanding of the mechanisms in order to develop advanced materials, efficient construction techniques and new design concepts combined with more environmentally friendly material production.

The corporate partners are leading multinational companies in the cement and building industry and the aim of COIN is to increase their value creation and strengthen their research activities in Norway. Our over-all ambition is to establish COIN as the display window for concrete innovation in Europe.

About 25 researchers from SINTEF (host), the Norwegian University of Science and Technology - NTNU (research partner) and industry partners, 15 - 20 PhD-students, 5 - 10 MSc-students every year and a number of international guest researchers, work on presently eight projects in three focus areas:

- Environmentally friendly concrete
- Economically competitive construction
- Aesthetic and technical performance

COIN has presently a budget of NOK 200 mill over 8 years (from 2007), and is financed by the Research Council of Norway (approx. 40 %), industrial partners (approx 45 %) and by SINTEF Building and Infrastructure and NTNU (in all approx 15 %).

For more information, see www.coinweb.no

Tor Arne Hammer Centre Manager

Summary

COIN was initiated as a Centre for research based innovation (SFI) by The Research Council of Norway. The COIN-programme started in 2007 and lasted for eight years and ended in 2014.

A closure seminar was arranged in Trondheim 2 and 3 of December 2014 to mark the end of this period and to present results from the research, focusing mainly on its usefulness.

This report assembles the presentations from these two days.

Table of contents

1	INTRODUCTION	6
	WELCOME	7
	INTRODUCTION	13
	ABOUT COIN	18
2	TECHNICAL PERFORMANCE	23
	CRACKFREE CONCRETE STRUCTURES	24
	Introduction	24
	Test rig development	
	Crack TeSt COIN and education of the industry	
	RELIABLE DESIGN AND PROLONGATION OF SERVICE LIFE.	
	Introduction	
	Alkali-silica reactions	
	Corrosion	
	STRUCTURAL PERFORMANCE	
	Ice abrastion	
•	COMPETITIVE CONSTRUCTIONS	
3		
	ROBUST AND HIGHLY FLOWABLE CONCRETE WITH CONTROLLED SURFACE QUALITY	89
	Introduction	
	Surface classification tool	
	Assessment of SCC stability – lab and field DUCTILE HIGH TENSILE STRENGTH FIBRE REINFORCED CONCRETE	
	Fibre concrete guideline and possibilities with fibre reinforcement	
	HIGH QUALITY MANUFACTURED SAND FOR CONCRETE	
	Introduction	
	Utilisation of local low grade manufactured sand	
	Crushed sand, manufactured sand and "engineered sand"	
	Transportation and sustainability	
4	ENVIRONMENTAL FRIENDLY CONCRETE STRUCTURES	
	BINDERS WITH LOW EMISSION AND REDUCED RESOURCE CONSUMPTION	
	Fly ash - limestone synergy	
	Accelerators for fly ash cement	
	Calcined clay	
	Calcined marl	
	Plasticizers for SCMs	165
	UTILISATION OF CONCRETE IN LOW ENERGY BUILDING CONCEPTS	167
	Concrete and Passive House	167
	ZEB concrete and LCA	
	Insulating concrete	
5	THE ROAD TOWARDS NEW CONCRETE RESEARCH AND INNOVATION	N176
	INTRODUCTION TO THE PANEL DEBATE BY T.A. MARTIUS-HAMMER	177
	CONCLUDING REMARKS BY T. RØNNING	180

1 Introduction

December 2nd 2014

Chairman: Tor Arne	Chairman: Tor Arne Martius-Hammer					
12.00 – 12.10	Welcome	Tor Arne Martius-Hammer, COIN's centre manager				
12.10 – 12.20	Introduction	Terje F. Rønning, COIN's chairman of the board				
12.15 – 12.30	About COIN	Einar A. Hansen, COIN's originator				

Betonginnovasjon i Norge

Resultater fra forskningssenteret COIN (2007-2014)

Sub-contractors:

Past Partners:

Financing

Total: NOK 250 mill

RCN: NOK 76 mill

Partners: NOK 30 mill in cash

NOK 140 mill in-kind

() SINTEF

PhD-students - status Dec 2014

Name	FA	Subject	8tart	End/ Defence
Klaartje de Weerdt	1.1	Cements with low CO2 outlet	Jan 2007	Feb 2011
Ueli Angst	3.2	Modelling critical chloride content and corrosion proc.	Apr 2007	May 2011
Sindre Sandbakk	2.2	Fibre reinforced concrete	Aug 2007	Nov 2011
Håvard Nedrelid	3.3	LWAC - testing and modelling	Jan 2007	Apr 2012
Kien Hoang	1.2	Controlling hydration development	Aug 2009	Deo 2012
Markus Bernhard	3.3	Development of super LWA	Aug 2010	Aug 2013
Linn Grepstad	3.3	Hybrid structures	8ep 2007	8ep 2013
Jan Lindgård	3.2	AAR: Lab. testing vs field performance	Jan 2007	Oot 2013
Ya Peng	2.1	Rheology and stability of concrete	Apr 2010	Mar 2014
Egil Møen	3.3	Ice abrasion	Aug 2007	Mar 2016
Giedrius Zirgulis	2.2	Fibre	8ep 2010	Mar 2016
Mahdi Kiumarsi	3.2	Structural effects of reinforcement corrosion	Aug 2011	Mar 2016
Rolands Cepuritis	2.3	Industrially produced aggregates	Aug 2011	Nov 2016
Karla Hornbostel	3.2	Electrical resistivity	Nov 2009	Oot 2016
Anja B. E. Klausen	3.1	Crack-free concrete structures	Oot 2009	Oot 2016
Elena V. Sarmiento	2.2	Flowable concrete/ fibre concrete	Aug 2011	Oot 2016

() SINTEF

Did we reach the goals?

The RCN-application:

"The vision of COIN is creation of more attractive concrete buildings and constructions. Attractiveness implies aesthetics, functionality, sustainability, energy efficiency, indoor climate, industrialised construction, improved work environment, and cost efficiency during the whole service life.

The centre will strive to fulfil this vision by developing advanced materials, efficient construction techniques and new design concepts combined with more environmentally friendly material production".

Did we reach the goals?

The RCN-application:

"The vision of COIN is creation of more attractive concrete buildings and constructions. Attractiveness implies aesthetics, functionality, sustainability, energy efficiency, indoor climate, industrialised construction, improved work environment, and cost efficiency during the whole service life.

The centre will strive to fulfil this vision by developing advanced materials, efficient construction techniques and new design concepts combined with more environmentally friendly material production".

Did we reach the goals?

CRI-objectives:

- stimulate innovation through long-term research
- attract research activities to Norway
- create an active co-operation between industry and research institutions
- promote development of internationally leading research environments
- stimulate education of researchers in important fields for the industry

() SINTEF

Results - reported in nearly 150 scientific publications

- Products
- Patent
- Guidelines
- Simulation tools
- Test methods
- o Workshops/conferences

() SINTEF

 "Belite calcium sulfoaluminate ternesite (BCT)" - a new environmentally friendly binder, by HeidelbergCement Technology Center in Germany

- "Smart dynamic casting" robotized casting of complex concrete elements, by ETH Zürich
- "ZÜBLIN Earthquake Column" a novel solution to design earthquake resistant columns, by Ed. Züblin AG, Germany
- "Climbing robot for corrosion inspection and monitoring" a climbing robot for condition control, by ETH Zürich

() SINTEF

Focus Areas

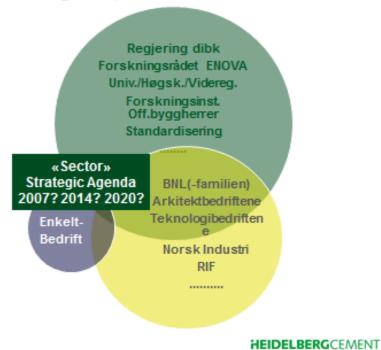
- Environmental friendly concrete structures
 - Binders with low emission and reduced resource consumption
 - Utilisation of concrete in low energy building concepts
- Competitive construction
 - Stable and robust highly flowable concrete with controlled surfaces
 - High tensile ductile strength concrete
 - High quality manufactured sand for concrete

- Technical performance
 - Crackfree concrete
 - Service life
 - Structural performance

() SINTEF

More information on www.sintef/coin.no

COIN Seminar: Introduction


COIN December 2™ 2014 - Terje F. Ranning

HEIDELBERGCEMENT

COIN "Assets"

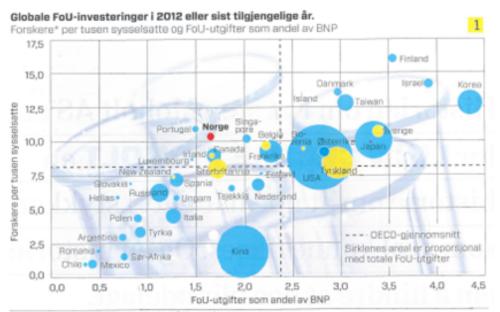
- Research with innovation focus
- Addresses <u>public & sector</u> strategic agenda
- <u>Joint venture</u> Research & Industry:
- <u>Mutual involvement</u> = precondition for success
- Consortium > Value chain >> ∑ [single actions]
- External interest / publicity (From whom ..?)
- International <u>levelling</u> of research & <u>Co-op</u>.
- Public <u>funding</u> support
- Volume / Critical mass
- Ability to address flexibility & organisational issues
- Adequate <u>support functions</u>
- AND some challenges, but today we celebrate!

All have their own agenda, but?

General targets & functions

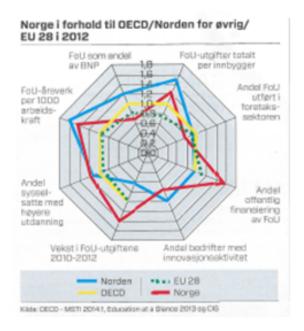
- Arena for innovation
 - Between Industry & Research & Education
 - Cross-enterprise joint venture
 - Enterprise AND Sector strategic issues
 - Value creation
- Arena for developing ORGANISATIONAL environment

Arena for recruitment & education (PhD) development



– I mitt neste liv skal jeg bli bygningsingeniør

- · Ønsker en felles organisasjon i byggenæringen
- Lengstsittende direktør for børsnoterte selskaper


HEIDELBERGCEMENT

Nos. of researchers per 1.000 employees

* FoU-Broverk utfart ev universitiete- og høyskolautdannst FoU-parac Kilde: 06:00 - MSTI 20141

COIN Significance?

HEIDELBERGCEMENT

Industrialized Construction Sector Can we manage

Industriell byggenæring?

Industrialisering må til for å bygge bedre og billigere – ikke bare for okt inntjening, men også for det samfunnsansvar vi som delvis skjermet næring har. Men kan byggenæringen bli industriell? Samlet er vi i dag ingen industri – vi er en næring med håndverkere forsøkt satt i system.

Oyvind Skarholt 30.08.2012 Adm. direktor i Byggevareindustriens forening

Now - what?

Meld. St. 28 (2013-2012) Melding til Stortinget

Gode bygg for eit betre sam Ein framtidsretta bygningspolit

Sammen bygger vi framtiden

En strategi for en konkurransedyktig bygg- og elendomsnæring

HEIDELBERGCEMENT

New arena for joint strategies discussions?

- · Interim group at work.
- · Watch Follow Attend!

Today

ENJOY & Pose questions

Thankyou!

TRONDHEIM KOMMUNE

- Low public image
- The industry talks about technology and volume sales
 - not addressing solutions
- Criticized for a lack of understanding of their customers needs
- "We have made enough research time to implement"
- No funding from the Research Council

Yet:

- A major concrete research effort in the period 1980 2000
- Documented a yield rate of 19 on R&D investments (2002)
- Innovation can release a huge value creation potential (BAE-∞uncil, 2002)
- Concrete Day October 2004. Goal: pride, inspiration and motivation.
 The message: "We have just started the possibilities are endless"

() SINTEF

Winter 2005 The SFI Scheme is launched

Objectives:

- Promote innovation by supporting long-term research
- Make it attractive for enterprises that work on the international arena to establish R&D activities in Norway
- Support close cooperation between R&D intensive companies and prominent research institutions
- Promote the development of industrially oriented research groups that are on the cutting edge of international research
- Stimulate researcher training in fields of importance to the business community

SINTEF

The birth of COIN

Spring 2005: Design of overall objective and topics
 June 2005: Promoting the dream to Norcem and NTNU

Summer 2005: Discussion with companies;

participation and R&D strategies

October 2005: SINTEF and NTNU Information Day – Final decision

Attractive Concrete Buildings

() SINTEF

Spring 2005: Design of overall objective and topics
 June 2005: Promoting the dream to Norcem and NTNU

Summer 2005: Discussion with companies;

participation and R&D strategies

October 2005: SINTEF and NTNU Information Day - Final decision

November 2005: Writing the application

December 1st: Application sent on deadline

Vision of COIN

Attractive Concrete Buildings!

Attractiveness implies aesthetics, functionality, sustainability, energy efficiency, indoor climate, industrialized construction, improved work environment, and cost efficiency during the whole service life.

The centre will strive to fulfill this vision by developing advanced materials, efficient construction techniques and new design concepts combined with more environmentally friendly material production.

Our over-all ambition is to establish COIN as the display window for concrete innovation in Europe.

Spring 2005: Design of overall objective and topics
 June 2005: Promoting the Dream to Norcem and NTNU

Summer 2005: Discussion with companies;

participation and R&D strategies

October 2005: SINTEF and NTNU Information Day - Final decision

November 2005: Writing the application in two weeks

December 1st: Application sent on deadline

Winter 2006: Promoting COIN in conferences, seminars etc.

June 16th 2006: COIN announced as SFI

15 januar 2007 - Kick-off

Dag Kavlie, Norwegian Research Council:

"It caused enthusiasms in the international evaluation committee by such a vigorous application from a traditional field like concrete."

() SINTEF

Lessons learned

- Research must be a long-term strategic investment rooted in the company management
- The research groups must be on the cutting edge of international research
- The companies should cooperate and concentrate their research contributions to SINTEF and NTNU
- SINTEF and NTNU need to demonstrate added value from research

The future:

- The competition in the marked will be even tougher
- The industry need to increase their research efforts in order to be in front

() SINTEF

2 Technical performance

December 2nd 2014

Chairman: Tor Arne Martius-Hammer

Crackfree concrete structures

12.30 – **Introduction** Øyvind Bjøntegaard

(Norwegian Public Roads

Administration)

Test rig development Anja Estensen Klausen,

PhD student (SINTEF/NTNU)

- 13.15 Crack TeSt COIN and education of the

industry

Sverre Smeplass (Skanska)

Reliable design and prolongation of service life

13.15 – Introduction Mette Geiker (NTNU)

Alkali-silica reactions Terje F. Rønning (Norcem)

Jan Lindgård (SINTEF)

- 14.00 **Corrosion** *Karla Hornbostel, PhD student*

(NTNU)

Chairman: Ya Peng

Structural performance

14.15 - Ductility of lightweight concrete Jan Arve Øverli (NTNU)

Ice abrasion Stefan Jacobsen (NTNU)

-15.00

COIN P3.1 Crackfree Concrete Structures

A) Background / Usefulness

Øyvind Bjøntegaard, NPRA

B) Lab equipment (and tests/calculations)

Ph.D. Candidate Anja E. Klausen, NTNU/SINTEF

C) Implemetation and transfer of knowledge

- New program and course

Sverre Smeplass, Skanska Norge AS

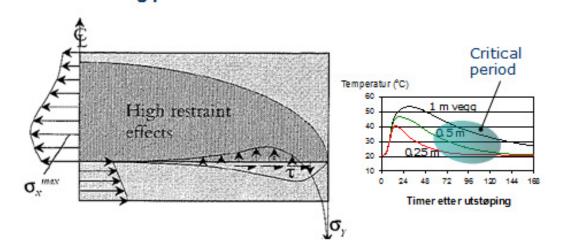
() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

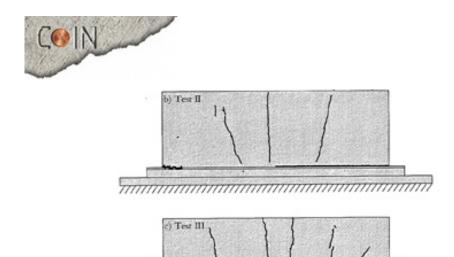
- Earlier projects
- Earlier genuine Norwegian projects on curing technology / "thermal cracking"
 - NORCON 1993-1996 (NTNU)
 - NOR-IPACS 1996-2000 (Skanska),
 - NOR-CRACK 2001-2005 (NTNU) (supported by the Norw. Res. Council)
- Brite-EuRam project IPACS 1997-2001 (Scancem AB)
 - several Norwegian participants
- COIN 3.1, 2007-2014 (Sintef Byggforsk)

() SINTEF

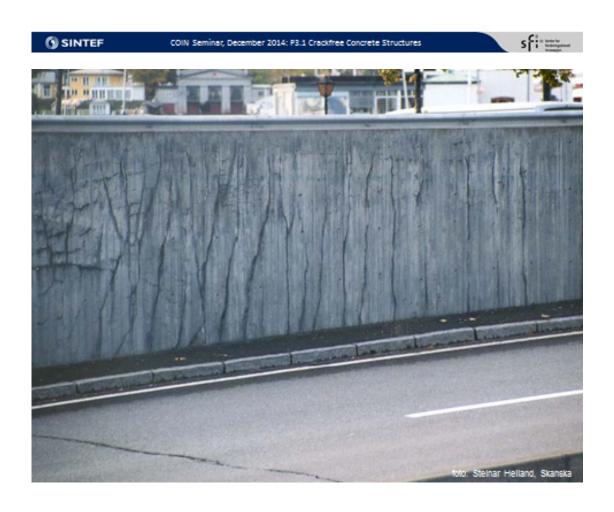
- Norwegian Public Roads Administration (NPRA)
- We have participated in all the listed projects why?
- We own today about 17.000 bridges, including submerged/underground culvert structures. In addition, supporting wall structures, and numerous other structures...
- Our structures are often massive and the exposure is generally severe (XD3, XS3) - meaning:
 - v/c < 0,40</p>
 - high strength
 - high cement contents
 - significant heat of hydration and high cracking tendency



COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures



- Volume changes and stress build-up in the hardening phase



() SINTEF

Example of crack-pattern in walls due to external restraint from the bottom slab

- what controls stresses and cracking
- Hydration heat
- Coefficient of thermal expansion
- Autogenous shrinkage
- E-modulus
- Creep/relaxation
- Tensile strength
- Temperature sensitivity
- Structural case (L/H-ratio, area of structural parts, etc.)

() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

- Requirements to avoid/minimize thermal cracking

 ΔT

(Limits on temperature difference between adjoining structures)

For special cases

- ∆T + Low-heat (LH) concrete
 - The definition of LH set by NPRA in an upcoming revision of Prosesskode-2 is directly taken from work in COIN 3.1
- Full crack-risk evaluation with advanced curing technology

(1) SINTEF

Active participants COIN 3.1 (2014)

- K O Kjellsen NORCEM AS (manager sub-project 3.1)
- E Heimdal Veidekke
- A Klausen NTNU/SINTEF
- T Kanstad NTNU
- G Kjellmark SINTEF
- S Smeplass Skanska
- Ø Sæther Unicon
- N Al-Manasir Mapei
- Ø Bjøntegaard NPRA

() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

Reports

- Autogenous deformation and relative humidity Concrete with Aalborg Portland cement and fly ash.
 - Kjellmark G, COIN report 24 2010.
- Basis for and practical approaches to stress calculations and crack risk estimation in hardening concrete structures, state-of-the-art report.
 - Bjøntegaard Ø., COIN report 31 2011
- Property development and cracking tendency in hardening concrete: Effect of cement type and fly ash content.
 - Bjøntegaard Ø. and Kjellsen K.O., COIN report 40 2012
- Temperature development in on-site curing boxes.
 - Klausen, A.B.E. and Bjøntegaard Ø., COIN report 2014 (In press)
- Crack-risk evaluated with Crack-TeSt COIN
 - Smeplass S., Berget O. .., COIN-report 2014 (close to press)
- Mechanical properties and calculation of model parameters for concrete with variable fly ash content.
 - Kjellmark G., Klausen A., COIN-report 2014 (close to press)

() SINTEF

Conference papers

 Updated Temperature-Stress Testing Machine (TSTM): Introductory tests, calculations and verification. Proceedings of XXII Nordic Concrete Research Symposium, Iceland 2014

Klausen, Anja Birgitta Estensen; Kanstad, Terje; Bjøntegaard, Øyvind.

 Structural Analysis and Crack Assessment of Restrained Concrete Walls - 3D FEM-Simulation and Crack Assessment. Proceedings of Concrete Innovation Conference 2014 - CIC 2014, Oslo Norway.

Dirk Schlicke, Nguyen Viet Tue, Anja Klausen, Terje Kanstad, Øyvind Bjøntegaard.

On materials testing and crack risk evaluation of hardening concrete structures.
 Workshop Proceedings "Understanding the Fundamental Properties of Concrete"
 Celebrating Professor Erik J. Sellevold on his 75th birthday, 25th-26th April 2013, Trondheim, Norway.

Bjøntegaard, Øyvind; Klausen, Anja Birgitta Estensen; Kanstad, Terje.

 Updated Temperature-Stress Testing Machine (TSTM): Introductory test results and determination of material properties development. Proceedings of XXI Nordic Concrete Research Symposium. Finland 2011.

Kanstad, Terje; Kjellmark, Gunrid; Klausen, Anja Birgitta Estensen; Bjøntegaard, Øyvind.

() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

User-manual for the TSTM-system

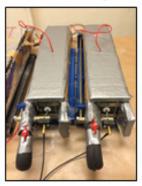
Klausen, A B E (2014)

 Autogenous shrinkage measured during different test series and projects 1996-2006

Bjøntegaard, Ø (2013)

 TSTM: Description of mode of action and algorithm for the new control system

Bjøntegaard, Ø (2009)



SÌ

COIN P3.1 Crackfree Concrete Structures - Lab Equipment

The Free Deformation System The Temperature-Stress Testing Machine

Ph.D. Candidate Anja E. Klausen, NTNU/SINTEF

Supervisor: Terje Kanstad, NTNU

Co-Supervisor: Øyvind Bjøntegaard, NPRA

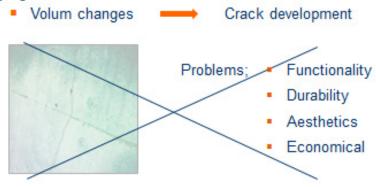
() SINTEF

COIN Seminar, December 2014; P3.1 Crackfree Concrete Structures



Content

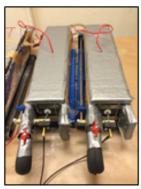
- Background
- Lab Equipment
 - Free Deformation (FD) System
 - Temperature-Stress Testing Machine (TSTM) System
- Performed Tests and Calculation Approaches
- Results
- Conclusion

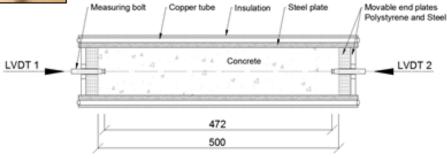


Background

Early age concrete

How can we control/reduce crack development?:


= Material properties + Pre-calculations

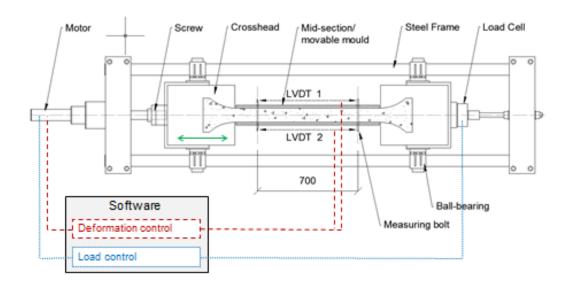

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

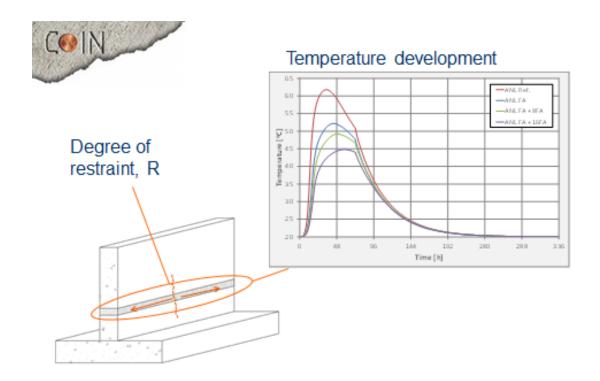
The Free Deformation System (FD-System)

- Measures free deformation
 - > Thermal dilation
 - > Autogenous deformation
- 7 Rigs
- Temperature controlled

The Temperature-Stress Testing Machine (TSTM) - System

Dilation Rig


Built in 1995, updated in 2009 - 2013



COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

The TSTM

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

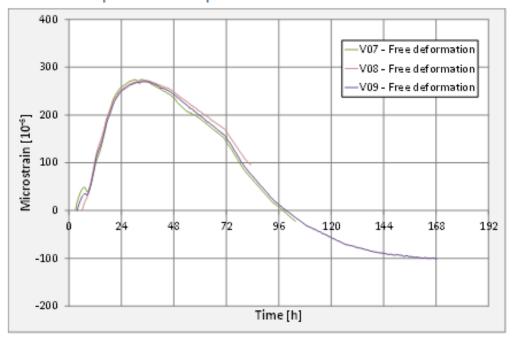
Performed Tests and Calculation Approaches

- Isothermal 20 °C, R = 100 %
- Realistic temperature development, R = 50 %
- Concrete:
 - Portland Cement
 - Water-to-binder (w/b) ratio 0.4
 - Varying amount of fly ash
- Calculations
 - Excel
 - CrackTeSt COIN
 - DIANA

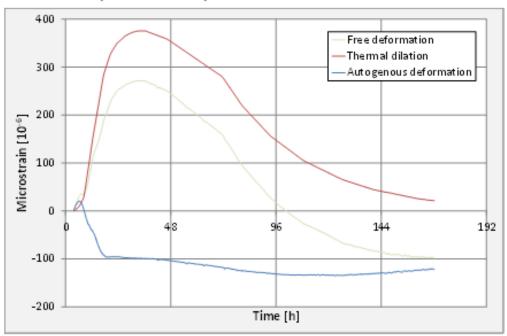
() SINTEF

Results

- Measured free deformation Dilation Rig
- Measured stress development TSTM
- Calculated stress development

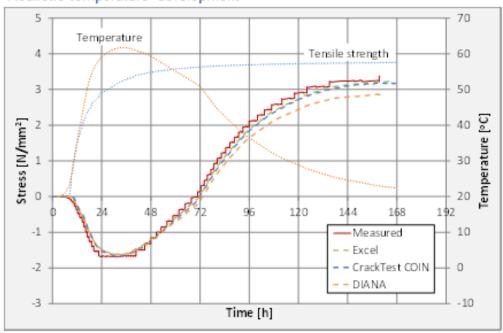

() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

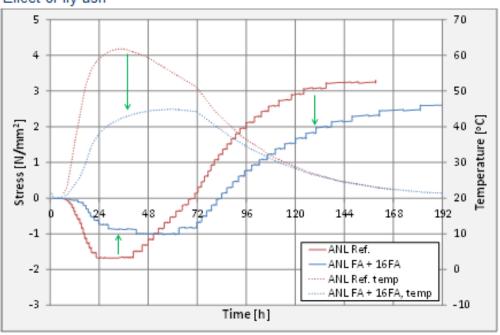

Measured free deformation

Realistic temperature development

Measured free deformation

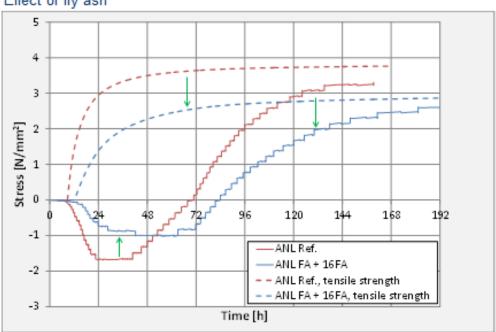

Realistic temperature development

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures


Measured stress development, R = 50 %

Realistic temperature development

Measured stress development, R = 50 %


Effect of fly ash

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

Measured stress development, R = 50 %

Effect of fly ash

Conclusion

- The TSTM-System shows good reproducibility
- Measured stress development in the TSTM offer good agreement with corresponding calculated stress development
- Solid material knowledge based on materials testing in the laboratory, combined with reliable calculations (CrackTeSt COIN) makes us able to predict, and thus control, the crack risk in concrete structures caused by early age volume changes.

COIN Seminar, December 2014; P3.1 Crackfree Concrete Structures

SKANSKA

One of the deliveries of COINFA 3.1:

Crack TeSt COIN

2D tool for assessment of crack risk in massive structures subject to thermal restraint

() SINTEF

() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

SKANSKA

() SINTEF

Crack TeSt COIN can be used to:

- Improve structural design to avoid or limit thermal restraint effects
- Detail contract specifications in order to avoid harmful cracking
- 3. Select the most suitable concrete mix design
- Plan and select curing and protection measures, including insulation, heating and cooling
- Documentation of obtained crack risk

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

SKANSKA

Implementation and transfer of knowledge?
-The Crack Test COIN course!

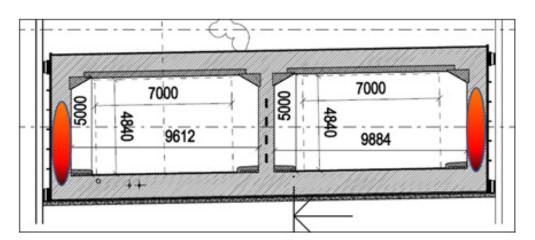
Target group for the CrackTeSt COIN course

- Consulting engineers
- 2. Developers / Clients
- 3. Contractors
- 4. Material suppliers

Contents -CrackTeSt COIN course

- Basic curing technology Maturity principle

 - Material models
 - Thermal and autogenous restraint
 - Recognition of restraint cases
- 2. Introduction to software and data base
- 3. Training through case study individual analysis and report
- 4. Discussion of results


() SINTEF

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

SKANSKA

CrackTeSt COIN course - case: The Møllenberg tunnel (Trondheim)

() SINTEF

Status

- 1 course conducted, 2014 (Multiconsult and Veidekke)
- 1-2 courses planned, winter/spring 2015

Course committee: Sverre Smeplass, Skanska Terje Kanstad, NTNU Øyvind Bjøntegaard, SVV/NPRA

COIN Seminar, December 2014: P3.1 Crackfree Concrete Structures

SKANSKA

Further development

- More material data should be provided
- Mandatory use in SVV / NPRA projects?
- Other types of massive structures?
 Railroad structures

 - Concrete dams
 - Harbour structures

COIN Seminar 2nd and 3rd December 2014

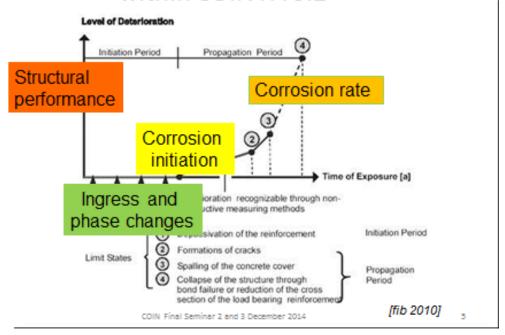
Focus area 3.2 Reliable design and prolongation of service life (of concrete structures)

Mette R. Geiker NTNU

COIN Final Seminar 2 and 3 December 2014

Focus Area 3.2 Activities

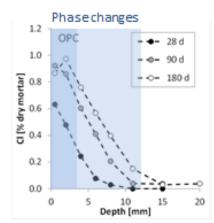
- 1. Modelling (see also 7)
- 2. Critical chloride content
- Electrical resistivity
- 4. Alkali-silica reaction Performance testing
- Preventive measures
- 6. Residual Service life
- Improved service life modelling of reinforced concrete structures
- 8. Impact of corrosion on structural performance


COIN FA 3.2 - Activities

	Topics	PhD / Post Doc	Main partners	Visitors
1	Modelling		SKANSKA, SINTEF, DTU, Stanford	Al exander Michel Madeleine Flint
2	Critical chloride content	UeliAngst	ETH	
3	Electrical resistivity	Karla Hornbostel	SVV, ETH	
4	Alkali-silica reaction – Performance testing	Jan Lindgård	NORCEM New Brunswick	
5	Preventive measures		SINTEF	
6	Residual Service life		SKANSKA SINTEF	
7	Improved service life modelling of reinforced concrete structures	KlaartjeDe Weerdt	SVV, DTU, DTI	Denisa Orsakova Arnaud Müller Ulla H. Jakobsen
8	Impact of corrosion on structural performance	Mahdi Kioumarsi	cember 2014	

COIN FA 3.2 Publications and presentations

		Journal	Conference	Reports	Others
1	Modelling & general	6	6	4	4
2	Critical chloride content	9	6	0	6
3	Electrical resistivity	1	3	0	3
4	Alkali-silica reaction – Performance testing	5	4	2	11
5	Preventive measures	0	0	1	0
6	Residual Service life	1	0	1	0
7	Improved service life modelling of reinforced concrete structures	4	8	0	3
8	Impact of corrosion on structural performance	1	2	0	0
	Total	27	29	8	27


Research on reinforcement corrosion within COIN FA 3.2

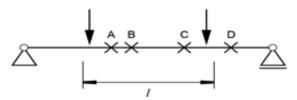
Chloride ingress and phase changes

Post Doc Project Klaartje De Weerdt

Summary

- Phase changes affect chloride binding and are part of the explanation for D(t) and Cs(t)
- Pore solution chemistry should be considered when quantifying the impact of binder composition on chloride ingress

Initiation of chloride induced reinforcement corrosion


PhD Project Ueli Angst

Supervisors

Øystein Vennesland
Claus K. Larsen, SVV/NTNU
Bernhard Elsener, ETH

Summary

The "characteristic structural length" should be taken into account when determining the critical chloride content for a given structural element

COIN Final Seminar 2 and 3 December 2014

-

Impact of concrete resistivity on corrosion rate

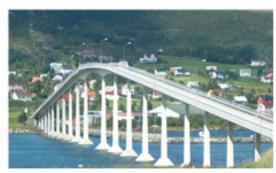
PHD Project

Karla Hornbostel

Supervisors

Mette R. Geiker Claus K. Larsen, SVV/NTNU Bernhard Elsener, ETH Ueli Angst, ETH

COIN Final Seminar 2 and 3 December 2014


8

Impact of corrosion on structural performance

PHD Project Mahdi Kioumarsi

Supervisors Mette R. Geiker Max Hendriks Terje Kanstad

Nerlandsøybrua, Photo by Larsivi http://commons.wikimedia.org

Summary

- A 3D numerical model was established to investigate the possible impact on carrying capacity of localized corrosion on adjacent rebars
- Interference of localised corrosion within a critical distance

COIN Final Seminar 2 and 3 December 2014

Alkali-silica reaction (ASR) - Performance testing

PhD Project Jan Lindgård

Supervisors
Harald Justnes, NTNU
Erik J. Sellevold, NTNU
Michael D.A. Thomas, UNB, Canada

"Alkali-silica worms" (ASR gel) escaping from a test sample...

Summary

- The test procedure (i.e. specimen "pre-treatment", "exposure conditions" and prism cross-section) dramatically influences the outcome of an ASR performance test
- Alkali leaching is the main source of error during accelerated ASR performance testing

COIN Final Seminar 2 and 3 December 2014

10

Presentations - Selected findings

Alkali silica reactions

Terje Rønning (NORCEM) Jan Lindgård (SINTEF)

Reinforcement corrosion

Karla Hornbostel (NTNU) Claus Larsen (SVV)

COIN Final Seminar 2 and 3 December 2014

Acknowledgements

Funding

- COIN
- SVV
- NRC
- NTNU

Collaboration

- Colleagues in COIN
- Colleagues at DTU, ETH, New Brunswick University and Stanford University

ASR vs. Heidelberg Cement NE innovation What & How

December 2~2014, Terje F. Ranning & Jan Lindgård

List of content

- Specification vs. Performance based requirements
 - and industrial needs
- Role of NB 21
- Role of RILEM TC
- Spin-offs to other markets
- DRAFT CONCEPT
- TEST RESULTS EXTRACT
 - · Overview of research activities
 - PhD study
 - Follow-up study
 - · Main results and conclusions
 - · Main recommendations future research

Silda 2 - ASR HC NE Innovation

HEIDELBERGCEMENT

ASR Specifications vs. Performance Approach

How they differ

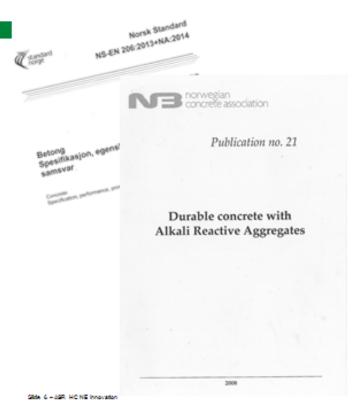
- Specs:
 - Normative
 - Simple (normally)
 - Sometimes "copied" from abroad
 - Non-transparent w r t risk / safety margins
 - Often discriminate certain construction materials, i.e.;
 - Do not provide equal playing field leverage
 - Prohibits product and marketing development, i.e.;
 - Prevent innovation

Side 3 - ASR HCNE Innovation

ASR Specifications vs. Performance Approach

How they differ

- Performance approach
 - Must be NORMATIVE
 - May be combined with Specs ...
 - Allow assessment of construction products in combination, i.e.;
 - Address functional properties & inter-dependency
 - Provides product value leverage
 - Sometimes disturbs established market shares ...
 - i.e. Provides FLEXIBILITY
 - Requires assessment criteria
 - Assumes lab/field alignment
 - Need mtrl. (constituent) characterisation & Concrete Performance Testing
 - Representative Accelerated Testing
 - Penetration assumes intl. accepted principles


Side 4 - JGR HCNE Innovation

HC NE – ASR Targets & Tasks Differentiation

Side 5 - ASR HC NE Innovation

HEIDELBERGCEMENT

NB 21

- Spec with «Performance extension»
- PT used for product application rules
- Fits product declaration needs
- Norw. CPT amongst «the best» but test application rules & formal interface in need of up-date
- Technical issues (probably;) due for update, following RILEM & new KPN project

HEIDELBERGCEMENT

PetrographyChem/AMBT(+A. release?)

RILEM Draft procedure

		Concrete	prism testing		
Aggregate fraction(s)			Performance testing :		
			Combinations of binder(s) and aggregate(s)		
Potential W	Alkali	Aggregate	Specific	Specific binder/	Job mix
reactivity *	threshold level	combinations	aggregate(s)	cement	combinations
		with pessimum	characterisation	characterisation	characterisation
Potential objectives :		Potential objectives :			
Detection reactive a character possibly Re-exam aggregat testing m Assessma including pessimur "Aggrega" Input to g	n of reactive or po aggregates, follow risation by petrog other tests, includ- ination and –clas es based on pre-	ving initial raphy and ling; sification of stage screening in of aggregates ng alkali leclaration" s of aggregates	Charactei product o cement/b threshold performal Charactei product o regionally ("Cement Charactei concrete constructi to avoid a constituei	risation of specific ombined with specific ombined with specific inder, including more declaration II") risation of specific ombined with (refer reactive aggregate (reactive aggregate) in the risation/tuning of constituents for a prion project, but at a reference, and formatic quality variation uidelines / NAD 13s	cific/general odified alkali oder ("Aggregate cement/binder rence;) te type te declaration") ombinations of particular a fixed w/c-ratio al handling of

¹ National Application Document, i.e. regulations valid in place of use

Side 7 - 69R HC NE Innovation

HEIDELBERGCEMENT

TC AAR Subject matter

Develop/promote <u>performance based testing concept</u> for preventing ASR

- Finalize and validate testing methods (Alkali boosting, Pessimum, Binder/Aggregate kinetics (T), RRT & Lab/Field)
- Potential aggregate alkalis release assessment and alkali household implications (Finalizing testing method and developing application procedure, Alkali "re-cycling"?)
- Flow chart proposal
- Standardisation input NO, SE, CAN, ASTM, Balt, CEN

HEIDELBERGCEMENT

Side 8 - ASR HC NE Innovation

Previous "WP 1 related" Deliveries

- "Information mapping" lab/field studies (no success)
- Attempt to quickly address key issues and proceed with draft procedure (failed;) – Need to step back and;
- Prepared comprehensive STAR on various influencing parameters on lab/field relation. Formal report & CCR Publication. Work intensive, substantial individ.contrib.
- Identified critical issues & Research issues
 - <u>Leaching/Threshold</u>; Substantial support from JL PhD
 - Substantial general research information exchange
 - Boosting of alkalis (draft programme & sampling) / Limitations;
 Boosting trial procedure developed. Weimar-HC-Sintef issue.
 Test samples for trial.
 - Improved focus on lab/field relation investigations
 - Pre-curing (C-type); JL, F(C/Aggr)? < Coin WP2
 - Remaining issues must be solved by "convention" / "lack of precision"

Side 9 - ASR HC NE Innovation

HEIDELBERGCEMENT

PetrographyChem/AMBT(+ A. release?)

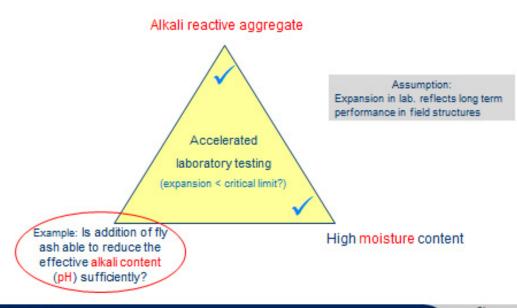
Draft procedure

		Concrete	prism testing			
Aggregate fr	action(s)		Performance te	sting : f binder(s) and a	ggregate(s)	
Potential V reactivity	Alkali threshold level	Aggregate combinations with pessimum	Specific aggregate(s)	Specific binder/ cement characterisation	Job mix combinations	
Potential objectives : Detection of reactive or potentially reactive aggregates, following initial characterisation by petrography and			Potential objectives :			
 Characterisation ≠ Performance Testing method ≠ Assessment Assessment = Char. + Performance T. + T. Criteria (locally or mineral dependant testing limits) 						
• Ass	essment =	d ≠ Asses Char. + F	ssment Performan	olider perionilari	ue uturaranium)	

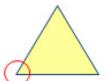
¹⁾ National Application Document, i.e. regulations valid in place of use

ASR - Performance testing

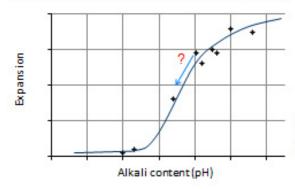
Extract from research within COIN


Jan Lindgård

Overview of research activities


- PhD study (WP1)
 - Main question:
 - Are national and international ASR test methods developed for assessment of alkali-silica reactivity of aggregates suitable for general ASR performance testing of concrete?
 - Extensive lab. program
 - ✓ Modified various test procedures <u>detect any sources of errors</u>
 - Recommendations for performance testing
 - Papers in journals and at conferences
 - ✓ Input to RILEM TC 219-ACS on ASR

() SINTEF

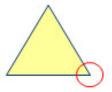


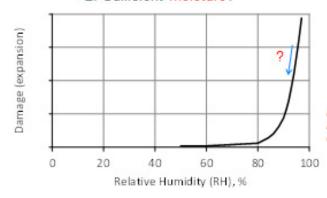
Important technical questions

1. Are the alkalis kept in the system? (pH?)

Principle illustration of the relation between alkali content (pH) and expansion due to ASR

Questions:

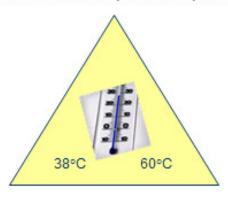

- 1a. Rate and extent of alkali leaching for various test procedures? ("no" alkali leaching in field)
- 1b. Influence on the ASR expansion?


SINTER

2. Sufficient moisture?

Principle illustration of the relation between RH and damage due to ASR

Questions:


- 2a. Internal RH when testing concrete with low w/cm?
- 2b. Internal RH when adding Supplementary Cementing Materials (SCMs)?
- 2c. Influence on the ASR expansion?

() SINTEF

3. Any influence of the exposure temperature?

Questions:

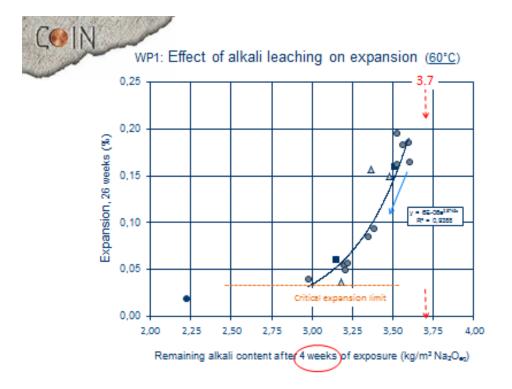
- 3a. Influence on rate and extent of alkali leaching?
- 3b. Influence on internal moisture state?
- 3c. Influence on the ASR expansion?

() SINTEF

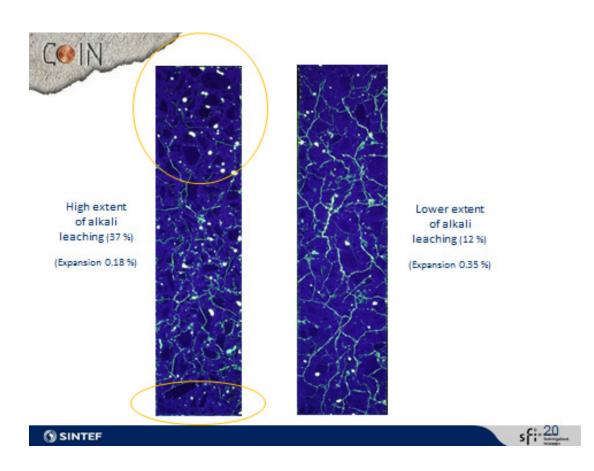
Overview of research activities

- Follow-up study (WP2, 2010-2014)
 - Focus on the lab./field correlation
 - Extensive test program
 - Selection of the most promising test procedures from WP1
 - Selected aggregate/binder combinations (115 test series)
 - Two field exposure sites established

() SINTEF


Main results

- Summary results for different concrete recipes?
 - NO
- WP1: Identical concrete composition (ŒM I, WIC 0.45). Result of modifying:
 - Prism size (70 or 100 mm)
 - Specimen "pre-treatment" (Incl. pre-curing)
 - "ASR storage conditions" (38/60°C, wrapping or not, ...)



() SINTEF

S SINTEF

Main conclusions

- Specimen "pre-treatment", "exposure conditions" and prism cross-section dramatically influences the outcome of an ASR performance test
- Alkali leaching the most important source of "error"
 - Early age alkali leaching of particular importance totally controls expansion at 60°C
 - . Urgent: Limit, compensate for, or preferably eliminate alkali leaching
- Internal moisture state becomes of importance for more dense binders (low w/b)

() SINTEF

Main recommendations to RILEM

- Remove the wrapping procedure from the RILEM ASR aggregate test methods
 - Wrapping leads to high extent of alkali leaching in the early age
 - Immediately adopted by RILEMTC 219-ACS (two of the three RILEM test procedures withdrawn in 2010)
- Adopt the "Norwegian concept" for performance testing (NB21)
 - Several applications (reactivity of aggregates, alkall threshold for aggregates, doc. of "safe binders", ...)
 - Focus on testing at 38°C (lack of correlation lab/field for 60°C testing)
 - . Increase the prism cross section (reduces the extent of alkall leaching)
 - Adopted in the draft RILEM performance test procedure (2012)
- Avoid testing of low w/b concretes
 - Must secure access to sufficient water supply during testing (avoid "false negative" test results)
 - Adopted in the draft RILEM performance test procedure (2012)
- New RILEM TC "AAA" on ASR (2014-2019)
 - . Norway have taken the leadership (chair, secretary, leader of performance task group,)

() SINTEF

- ASR Reliable concept for performance testing (BIA/KPN, 2014-2019, 18.5 MNOK)
 - Focus on the lab./field correlation (structures, field exposure sites)
 - Lead by SINTEF
 - Partners: Norcem, NTNU, owners, aggregates producers, international collaborators
 - Input to future regulations (NB21, RILEM TC "AAA")
 - Also basis for research on repair actions

Summary

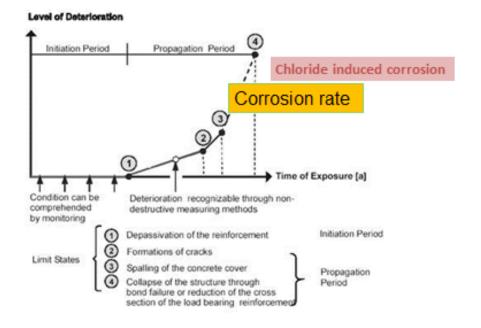
- ASR based innovation is feasible
- Norwegian (COIN+) based research is well reputed and contributes to the development of a sustainable performance concept on international level
- Research needs still exist, but we believe that;
 - Threshold items have been identified and are adequately dealt with / are in the pipeline
 - NB 21 main principles are sound (but modifications due)

() SINTEF

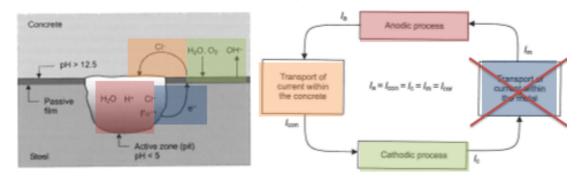
COIN Seminar 2nd and 3rd December 2014

Focus area 3.2
Reliable design and prolongation of service life

Impact of concrete resistivity on corrosion rate


COIN Final Seminar 2 and 3 December 2014

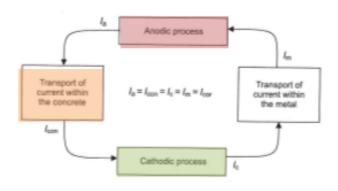
PhD project Participants


Supervisors

Mette Geiker (NTNU - main) Claus K. Larsen (SVV) Bernhard Elsener (ETH) Ueli Angst (ETH)

PhD project Background

PhD project Background



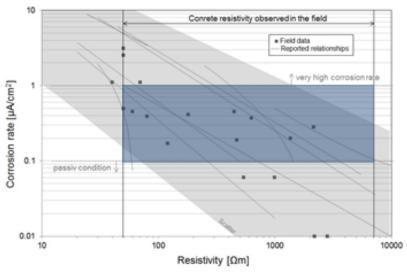
Bertalini, L., S. Elsener, et al. (2004). Corresion of steel in concrete. Weinheim, WILEY VCH

PhD project Background

Electrical resistivity

... characterizes ion transport in concrete

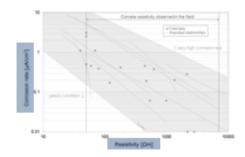
COIN Final Seminar 2 and 3 December 2014


PhD project Objectives and approach

Identify and quantify parameters affecting the relationship between corrosion rate and concrete resistivity

Approach

- Literature review -> hypotheses
- · Laboratory testing
- Conclusions


Literature Review

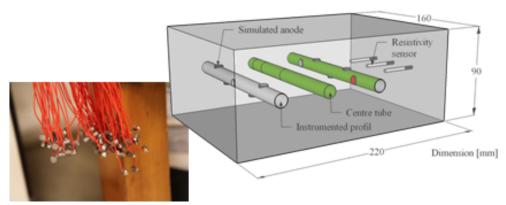
[K. Hombostel, C.K. Larsen, M.R. Geiker, Relationship between concrete resistivity and corresion rate - A literature review, Coment Concrete Comp., 39 (2013) 60-72.

COIN Final Seminar 2 and 3 December 2014

Hypotheses

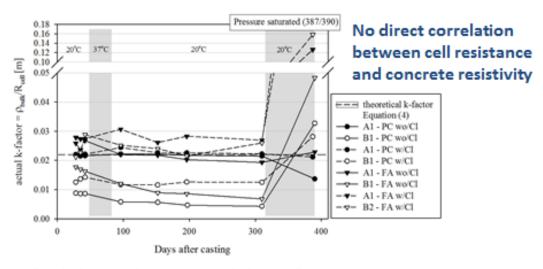
Improved parameter determination

- · Corrosion rate
- · Electrical resistivity


Improved understanding

· Rate limiting step

Experimental setup

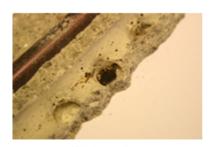

Simulating macrocell corrosion

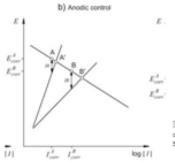
Artificial anodes in a large network of cathodes

COIN Final Seminar 2 and 3 December 2014

Results 1

[K. Hombostol, U. Angst, S. Elsonor, C.K. Larson, M.R. Goikor (in proparation)]


Results 1



COIN Final Seminar 2 and 3 December 2014

Results 2 + 3

Corrosion process not under resistance control

Corrosion process is under anodic control

[U. Angst, S. Elsonor, C.K. Larson, Ø. Vonnesland, Chloride induced reinforcement corresion: Rate limiting step of early pitting corresion, Electrochim Acta, 56 (2011) 5877-5889.]

Preliminary conclusion

Chloride induced reinforcement corrosion is under anodic control

Corrosion rate not only dependent on bulk resistivity

... Improves Service Life prediction

Acknowledgements

Funding

- COIN
- SVV
- NTNU

Collaboration

· Colleagues in ETH, COIN

Ductility of Lightweight Aggregate Concrete

Confinement Effects of Fibres

Jan Arve Øverli Norwegian University of Science and Technology

FA 3 Technical performance

FA 3.3 Structural Performance

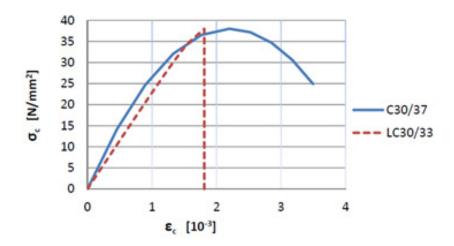
- High performance LWAC
- Ice abrasion
- Hybrid structures
- Ductility of LWAC structures
 - A project initiated and in cooperation with KV/=RNER

People:

- Tore Myrland Jensen, SINTEF
- Helge Brå, SINTEF
- Gunrid Kjellmark, SINTEF
- Tore Arne Martius-Hammer, SINTEF
- Knut Lervik, SINTEF
- Jan Arve Øverli, NTNU
- Ove Loraas, NTNU
- Steinar Seehuus, NTNU
- Gøran Loraas, NTNU

SINTEF ONTNU

Lightweight aggregate concrete


- Advantages
 - Reduced dead load
 - Reduced inertia forces
 - Easier handling and transportation
 - Improved durability properties and fire resistance
 - Low thermal conductivity
- Disadvantages
 - Brittleness in compression
 - Price

SINTEF ONTNU

Lightweight aggregate concrete

SINTEF ONTNU

Construction of GBS

Photos: Norsk Oljemuseum

Construction of GBS

Pnotos: Norsk Oljemuseum

SINTEF ONTNU

Construction of GBS

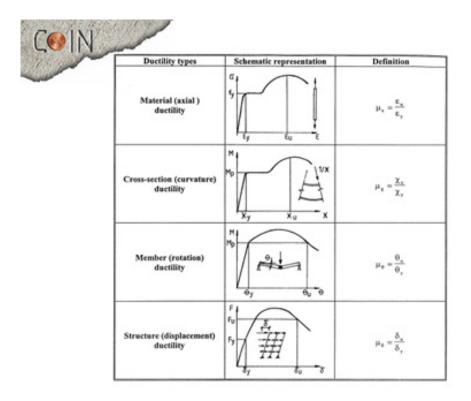
Photos: Norsk Oljemuseum

SINTEF ONTNU

Construction of GBS

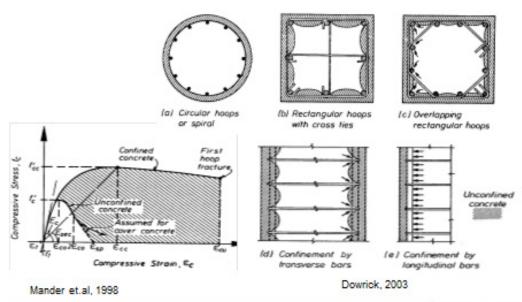
Photos: Norsk Oljemuseum

SINTEF ONTNU



Ductility

- Ductility is defined as individual structural members or entire structures ability to sustain significant inelastic deformations after peak load without a significant loss in the capacity prior to failure.
- Of great importance in redistribution of forces and a major consideration in design of structures subjected to dynamic loading.


Gioncu, 2000

SINTEF ONTNU

Confinement

SINTEF ONTNU

Motivation for project

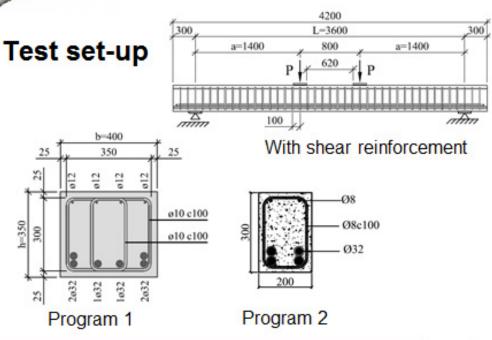
- Increase ductility in lightweight aggregate structures
- Focus on large structures, GBS offshore structures, LNG terminals
- Flexural ductility in heavily reinforced cross-sections
- Effect of fibres and stirrups on the ductility

Experimental program

- Four point bending of beams
- Configurations of confinement, two beams each

Test series 1

- Only LWAC
- Steel fibre
- Stirrups with spacing 100mm
- Stirrups + steel fibre


Test series 2

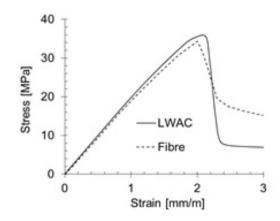
- Only LWAC
- Steel fibre 60mm
- Steel fibre 35mm
- Basaltic fibre

() SINTEF O NTNU

- Density ~1800 kg/m³
- Maximum size of lightweight aggregate 8mm (LECA)
- Compressive strength 30-40 MPa
- 1% fibre

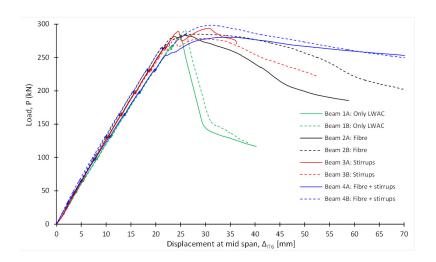
SINTEF ONTNU

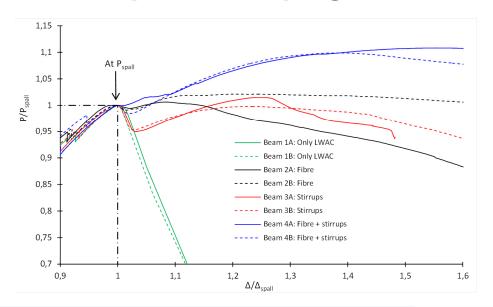
COIN



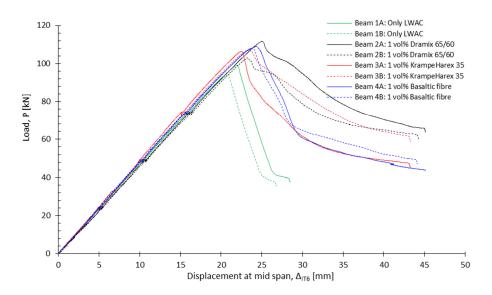
SINTEF ONTNU

sfirm



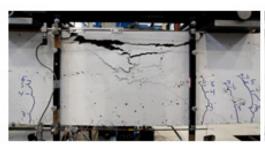

Load-displacement, program 1

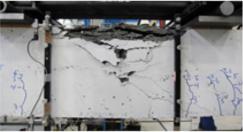
Load-displacement, program 1



SINTEF INTNU

Load-displacement, program 2


SINTEF INTNU



Failure mode

LWAC only

At peak load

At end of loading

Failure mode

Steel-fibre

At peak load

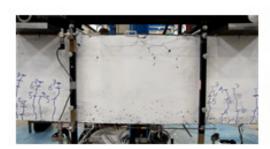
At 90% of spalling load

Failure mode

Stirrups

At peak load

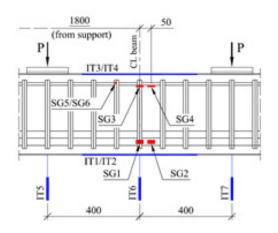
At 90% of spalling load

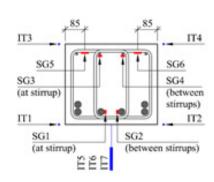


Failure mode

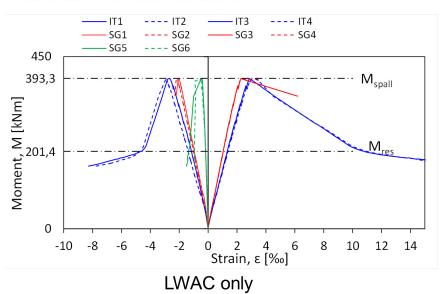
Steel fibre+Stirrups

At peak load


At 90% of spalling load

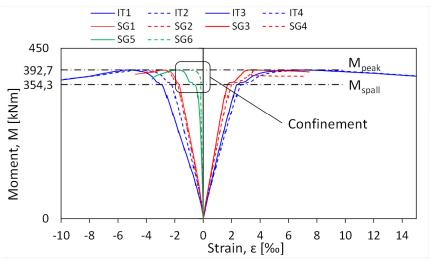

SINTEF ONTNU

Strain measurements



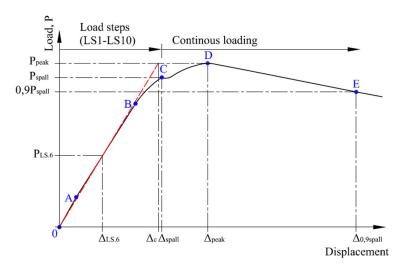
SINTEF ONTNU

Strain distribution



SINTEF INTNU

Strain distribution



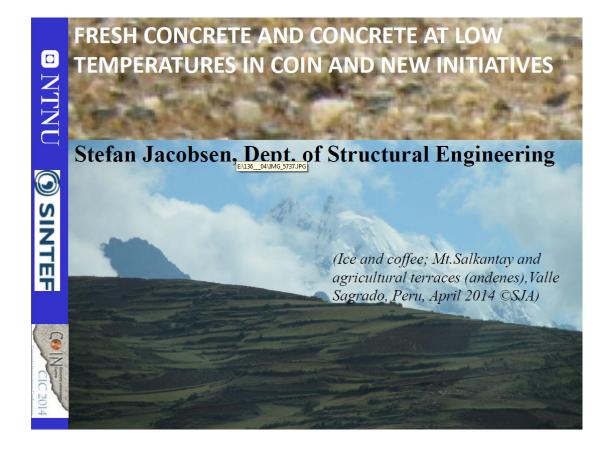
Fibre + stirrup

SINTEF INTNU

Ductility

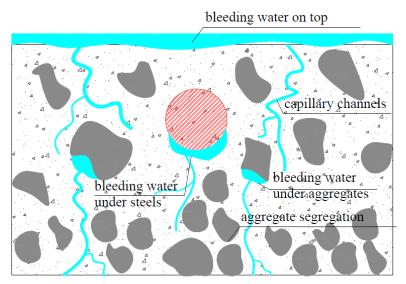
Beam:	f _c	$\Delta_{\sf spall}$	Δ_{peak}	$\Delta_{0.9,\text{spall}}$	$\Delta_{0.9,\text{spall}}$
Configuration	(MPa)	(mm)	(mm)	(mm)	Δ_{spall}
1A: Only LWAC	36.9	24.8	-	-	_
1B: Only LWAC	39.7	25.9	-	-	-
2A: Steel fibre	34.9	23.9	30.5	37.2	1.55
2B: Steel fibre	39.6	23.1	29.5	52.1	2.25
3A: Shear links	34.5	24.5	26.0	36.3	1.48
3B: Shear links	33.5	23.9	28.8	39.5	1.66
4A: Shear links + steel fibre	27.7	22.0	34.2	100.7	4.57
4B: Shear links + steel fibre	40.4	22.6	31.4	79.9	3.54

SINTEF ONTNU

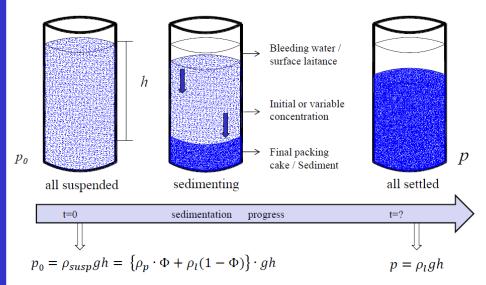


Conclusions

- Considerably increased flexural ductility of the beams when applying steel fibres and/or confinement reinforcement. Especially the combination of fibre and confinement reinforcement experienced a continuous response and the beams were able to maintain a high load level after reaching the maximum load
- No significant influence of the different confinement configurations on the response before initiation of spalling.
- The fibres introduce a softer transformation at spalling. There is no drop in the load response.

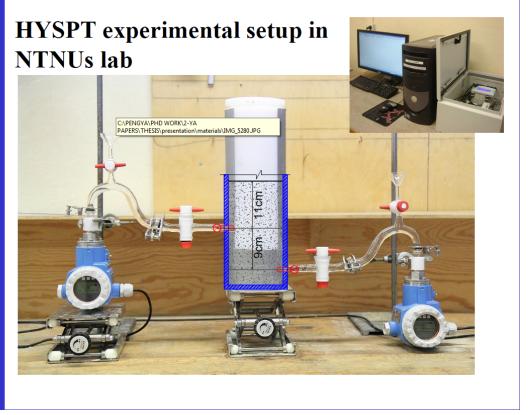


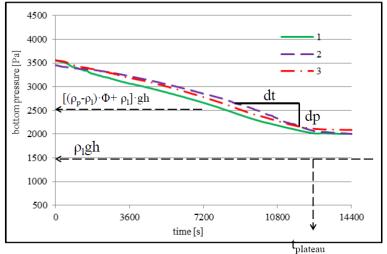
Research with COIN & new initiatives 2015 onwards:


- Fresh concrete
 - PhD 2014:89 -Ya Peng on Stability
 - PhD ongoing Rolands Cepuritis on Crushed aggregates and rheology
- Concrete exposed to ice and frost
 - Review, Kværner in Russia's Far East/Sea of Okhotsk
 - NTNU concrete ice abrasion lab
- New project proposals sent Research Council of Norway
 - Kværner et al BIA Innovation DaCS Durable advanced Concrete Solutions (stage 2 sent 15oct14)
 - NTNU et al BIA Kompetanse FLOC FLOwing stable and sustainable Concrete (stage 1 sent 19nov14)

2

By Peng Y., Jan. 2014


Hydrostatic Pressure Measurements to study Sedimentation of cement paste


Particles supported by liquid at terminal velocity: $\rho = p/gh \Leftrightarrow m/A = p/g$. So at a depth h with pressure p(t), initial **particle flow J** (kg/m²·s) = d/dt (m/A) = 1/g (dp/dt) and in sediment $p = \rho_i gh$ (hydrostatic pressure of water)

_

Hydrostatic Pressure measurement: dp/dt and $t_{plateau}$

PhD by YP: sedimentation in various powder/admixture combinations

Ongoing YP: further development of method by studies of:

- bleeding (combined with light scanning in turbid media)
- aggregate particles sinking higher plateau pressure than that of water detected

e

Rolands Cepuritis PhD characterizing fine crushed aggregate particles and their relation to rheology of fresh concrete:

- «ground truth» vs industrial application of controlled particle size distributions, specific surface, shape, mineralogy etc in crushed fines
- a little «pre-taste» of his work at NIST on μCT:

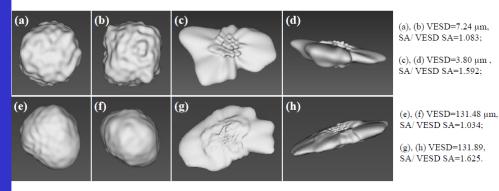


Figure 9: 3-D VRML images of selected crushed fine particles of basalt studied with μ CT scanning and spherical harmonic analysis

DaCS DP3 Concrete-Ice how can a soft material (ice) **Abrasion** abrade a hard material (concrete)? Lab and field: paste abrasion > aggregate abrasion Canadian Confederation bridge (McGuinn et al 2007) NTNU Concrete Ice Abrasion lab (Kirkhaug 2013, Greaker 2014 etc) Concrete Concrete-Ice Abrasion Mechanics (Jacobsen, Scherer, Schulson 2014)

DaCS DP3 Concrete Ice Abrasion

No.	Main activity, objectives and deliverables	Participating partners
3	Main activity: Concrete ice abrasion resistance	Kværner, Mapei, NTNU, Sintef
	Objectives/deliverables: To develop a test and calculation model for the wear of concrete due to abrading ice, investigate the effect of basic parameters (material, exposure, roughness etc), combined effect of abrasion and freeze/thaw damage and the effect of repair systems on new and damaged concrete.	

From AEA to foam to protective DaCS DP2 air voids Air entrained sustainable concrete н,с соон L-stoff + SP +vann + pulver adsorpsjon/ stabilisering/ skum Paste+aggregate =betong luftporer (hvitt) Frostbestandig betong

DP No.	Main activity, objectives and deliverables	Participating partners
2	Main activity: Frost resistant concrete for various purposes Objectives/deliverables: Identify requirements for frost durability for various purposes including air entrainment mechanisms and the reciprocal effects of cracking and scaling in freeze/thaw performance testing	Kvaerner Norbetong, Mapei, Statens Vegvesen, NTNU, SINTEF

New BIA KMB proposal – FLOC – 3p stage 1 sent BIA-RCN 19nov14

NB! Please note that the outline may only be uploaded and submitted once.

Outline for Knowledge-building Project for Industry (the BIA programme)

Working title of project	FLOwing stable and sustainable Concrete (FLOC)
Applicant institution	NTNU
Website of applicant institution	www.ntnu.no
Contact person for applicant institution	Stefan Jacobsen
Email address of contact person	stefan.jacobsen@ntnu.no
Telephone number of contact person	97666987

${\bf 1.}\ \ {\bf Is\ the\ project\ of\ relevance\ for\ Research\ Council\ programmes\ other\ than\ the\ BIA\ programme?}$

□X We have looked for other relevant programmes, but did not find any.
□ We are uncertain whether the BIA programme is the correct programme and would like an assessment. Relevant programme(s) may be

2. Have you submitted an outline to the BIA programme previously?

☐ Yes, with BIA outline number:

3. What is the objective of the Knowledge-building Project for Industry and what new expertise is the project expected to lead to within Norwegian research groups? How will the project be incorporated into the strategic plans of the applicant institution?

The goal of this project is to increase knowledge and competence in the fields of particle packing and chemical admixtures to control the stability and rheology of fresh cement-based materials, such as Self-Compacting Concrete (SCC) and Fiber Reinforced Self-Compacting Concrete (FRSCC). The research aims to solve the scientific problems of optimizing particle size distribution, dispersion, stability and rheology, with the goal of avoiding the quality problems which are other encountered with SCC. This will fulfill the needs of Norwegian concrete industry and society by allowing industrial use of SCC made with sustainable manufactured mineral powders and non-spherical (or irregularly shaped) particles, such as crushed aggregate and steel fibers. Use of crushed aggregate and fibers in concrete production will also conserve natural sand and gravel resources and reduce cost of a significant part of the reinforcement work. SCC is one of the most innovative developments of the concrete industry due to its potential to reduce construction costs, facilitate placement, improve working environment and enhance surface quality. However, the amount of SCC cast in-situ in Norway has stagnated at a very low market share due to factors such

3 Competitive constructions

December 2nd 2014

Chairman: Ya Peng

-15.45

Robust and highly flowable concrete with controlled surface quality

15.00 - Introduction Klaartje De Weerdt

(SINTEF/NTNU)

Surface classification tool Tone Østnor (SINTEF)

Assessment of SCC stability – lab and field *Tor Arne Martius-Hammer*

(SINTEF) Sverre Smeplass

(Skanska)

Chairman: Gunrid Kjellmark

Ductile high tensile strength fibre reinforced concrete

16.00 – Fibre concrete guideline Terje Kanstad (NTNU)

16.45 "Pros and cons" and possibilities with

fibre reinforcement

High quality manufactured sand for concrete

16.45 – **Introduction** *Børge J. Wigum (Norcem)*

Utilisation of Local Low Grade Sverre Smeplass (Skanska)

Manufactured Sand

Crushed sand, Manufactured sand and Rolands Cepuritis, PhD student

"Engineered sand" (Norcem/ NTNU)

- 17.30 **Tranportation and Sustainability** *Svein Willy Danielsen (SINTEF)*

COIN FA 2.1

Robust and highly flowable concrete with controlled surface quality

Klaartje De Weerdt, NTNU/SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

SINTEF

- Tone Østnor
- Tor Arne Martius-Hammer
- Kari Aarstad
- Kristin Kaspersen
- Klaartje De Weerdt
- Knut Lervik
- Stia
- Erik
- Roger
- Chris
- Hedda Vikan
- Mari Bøhnsdale Eide

Mapei

Espen Rudberg

NTNU

- Stefan Jacobsen
- Ya Peng
- Ove Loraas
- Albertas Klovas

Norbetong

- Britt Marstander
- Ernst Mørtsell

Norcem

- Knut Kjellsen
- Rolands Cepuritis

Skanska

Sverre Smeplass

Veidekke

Lise Bathen

Statens Vegvesen

Eva Rodum

ICI

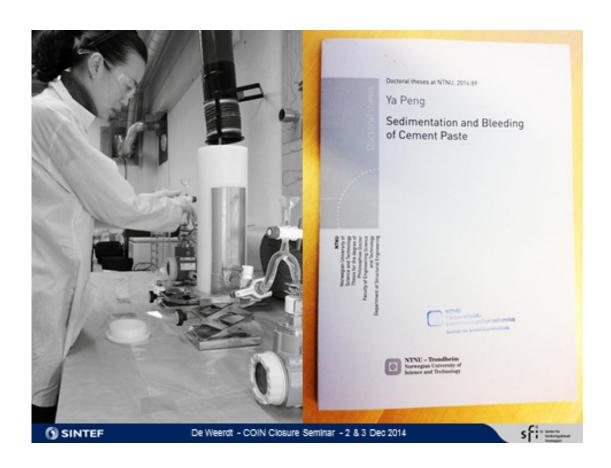
Jon Wallevik

External advisor

Olafur Wallevik

SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

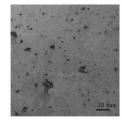


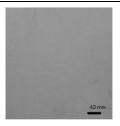
- Surface classification tool Tone Østnor
- Assessment of SCC stability lab and field Tor Arne Martius Hammer and Sverre Smeplass

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Classification of Exposed Concrete Surfaces


Kari Aarstad Kristin Kaspersen* Klaartje De Weerdt Tone Østnor


SINTEF Building and Infrastructure
*SINTEF Information and Communication Technology

(1) SINTEF

What happens if you end up with a concrete surface with an unacceptable number and size of pores?

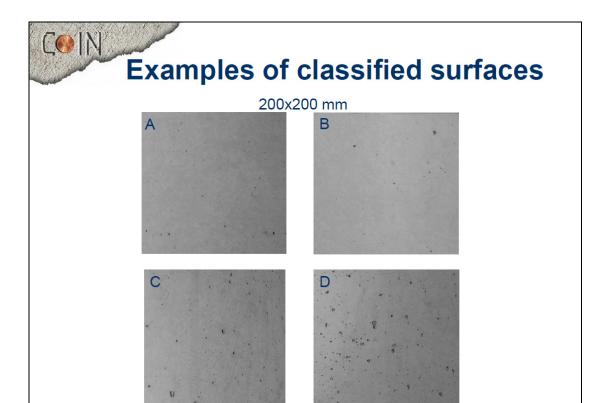
- Result in extra finishing costs and man hours
- Result in disagreements between the various parties
 - Who is responsible? Ready-mix concrete producer? Contractor? Architect?
- In the worst case: Start all over again

SINTEF

The need for a classification tool

- Be able to coordinate expectations on concrete surfaces in advance
 - A tool both for architects and contractors
- Get an objective measure of the amount and size of pores
 - Be an help in discussions between contractors, ready-mixed concrete producers, architects and building owners
- In future, make it easier to study how parameters affect the in-situ cast concrete surface

Pore diameter	Class A	Class B	Class C	Class D	Class E	Class 0
[mm]		Max	. amount o	f pores per	m²	
1-5	250	800	2500	5000	Project specific	No require- ments
5-10	5	20	50	100		
10-15	1	5	10	20		


S = Senter for forskningsdru

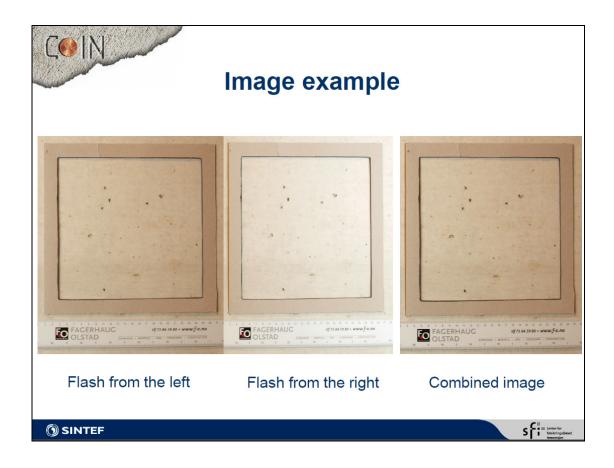
S = Senter for forskningsdr

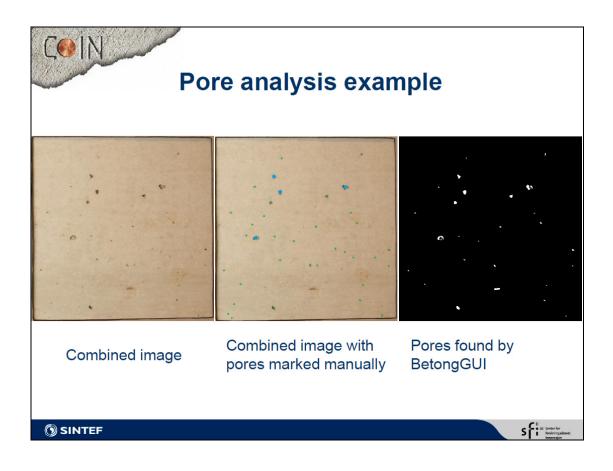
*Eide Bøhnsdalen, M. and Hegseth, I.: Klassifiseringsverktøy for forskalte betongflater, master thesis 2009.

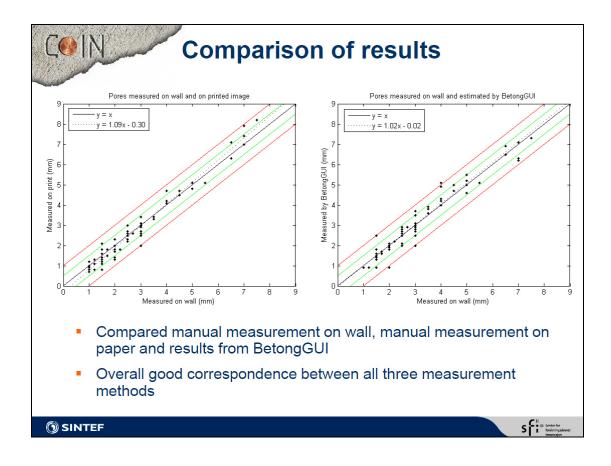
(1) SINTEF

BetongGUI

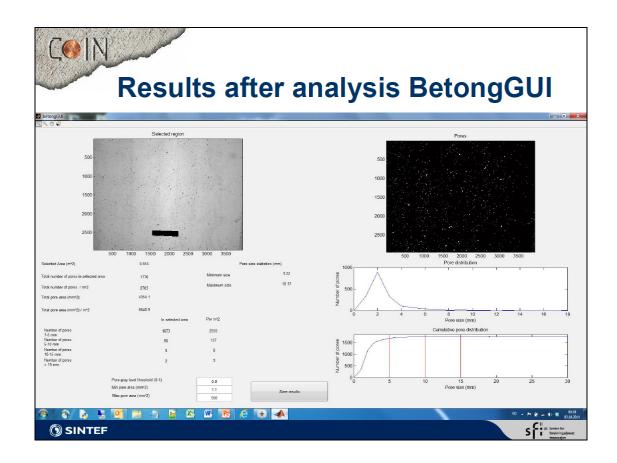
- Objective and quantitative tool
- Image analysis programme based on Matlab for analysing smooth concrete surfaces with regards to pores
- For the photographic procedure normal commercially available photo equipment is used
- The test area is about 60 x 60 cm and the scale is set with a ruler
- User friendly

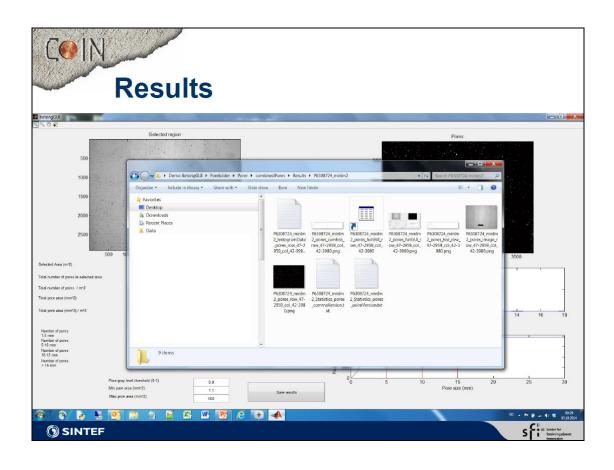

SINTEF





- Images are taken with flash from left and right angle (approx. 45°)
- The images are combined by choosing the darkest pixel for each position. This highlights the pores and evens out the background lighting.





Future

We now have a tool which allows objective quantification of pores on the concrete surfaces

- It gives a basis to establish the classification system
- It can be used in the description and evaluation of surfaces

We depend on you!

- A beta-version of BetongGUI is available on request
- We wish to test BetongGUI on a wider range of concrete surface qualities.

SCC - Stability assessment

<u>Goal</u>: To find a method to assess stability of SCC which is practical, reliable and representative for in situ stability problems

() SINTEF

SCC - Stability assessment

- Requirements
- Survey of test methods to find those with potential to fit the requirements
- Gain experience with them in lab
- 4. Test them against stability assessed in situ:
 - · Stone content along a 10 m long wall, at the top and bottom
 - One "stable" concrete; SF = 700 mm and one "unstable" concrete, SF = 740 mm

() SINTEF

The methods

Stable and homogenous concrete. Aggregates and paste flow towards the rim of

0.2 / 0.3 Stable and homogeneous concrete that flows well, but has become as hiny surface with possible black spots

O.4 / 0.5 Has additionally a hint of a pasterism at the outer edge of the spread, but the aggregates follow the flow towards the edge. Still stable.

O.6 / 0.7 Clear sim of paste at the outer edge of the spread. Coanse aggregates tend not to flow towards the edge of the spread (are left in the middle of the spread).

0.8 / 0.9 Additional separation of water/past eat the outer rim of the spread.

Complete separation

Settlement Pipe Segregation, SPSI

> Rheological Segregation, RSI

T-Box - penetration index, PDI, and volumetric index, VI

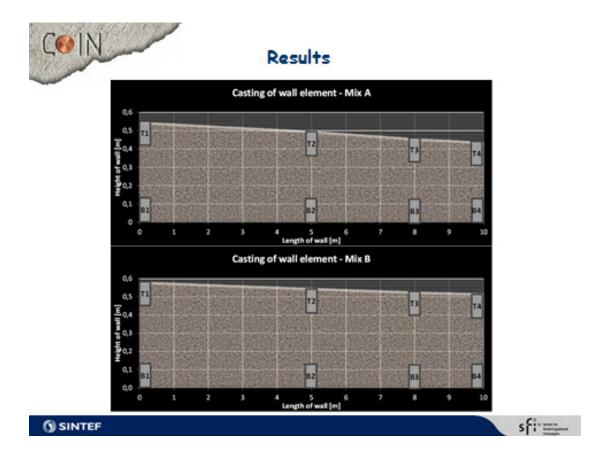
() SINTEF

In field

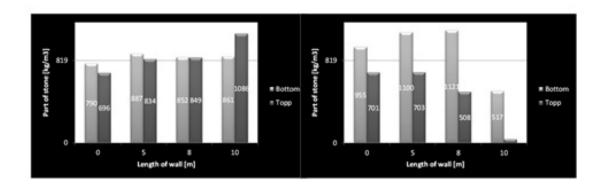
SINTER

In field

() SINTEF



In field


() SINTEF

Results

Results

Concrete	VSI ^b	RSI	SPSI	T-Box	
		INSI		PDI	VI
	≤ 0.6	≤ 0.5	≥ 0.88*	≤ 6 mm	≤ 25 %
A, SU=700, t ₅₀₀ = 0.8	0.5/0.6	0.5	0.88	4.5 mm	4.7 %
B, SU=740, t ₅₀₀ = 0.4	0.7/0.8	0.9	0.68	-6 mm	1.4 %

() SINTEF

Conclusion

Three methods seem to reflect segregation in a wall in a good way

The VSI-test is obviously the easiest and fastest one, also because slumpflow is measured in most cases anyway. Person dependency?

The RSI-test is relatively easy and fast, but power supply is needed and data has to be processed in a separate computer

The SPSI-test is the slowest and less easy one of the three, also because it includes flushing, drying and weighing of the coarse aggregates. But, fairly directly to the point; the difference in coarse aggregate content

Note: Limited investigation; more concretes (with higher viscosity?) must be tested

Nevertheless, the results show that these methods may be used to specify and control stability, and thus form a basis for revision of NB29

() SINTEF

COIN

COIN FA 2.2: Ductile high tensile strength fibre reinforced concrete

Terje Kanstad - Department of structural engineering, NTNU

Fibre concrete guideline - "Pros and cons" and possibilities with fibre reinforcement

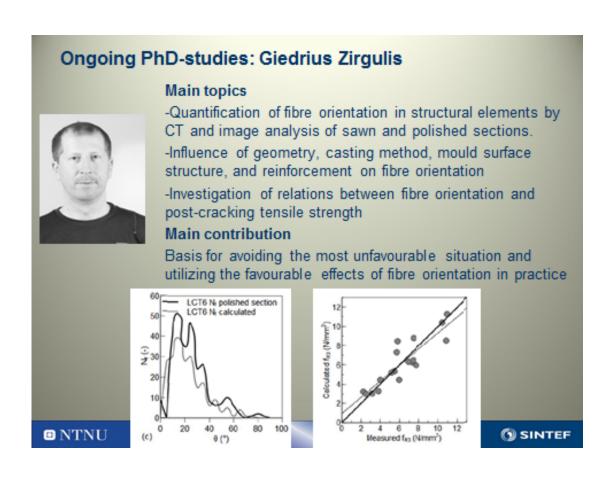
+Project overview:

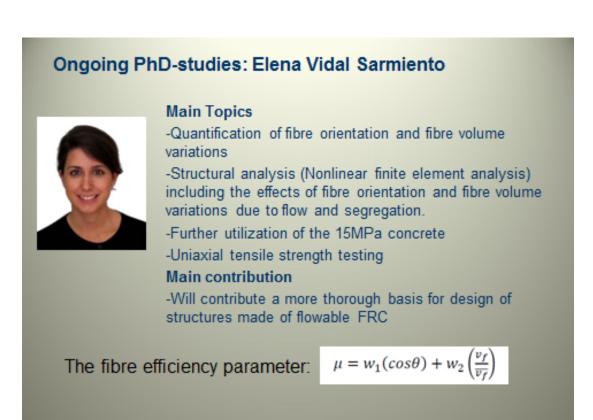
- (1) Fibres and concrete qualities with high tensile stress after cracking
 - (2) Development of regulations for design and execution of FRC
- (3) Tests of load carrying structural elements within or related to COIN

Overall objective: To do R&D work which stimulates and makes use of fibres possible in load carrying structures.

■ NTNU

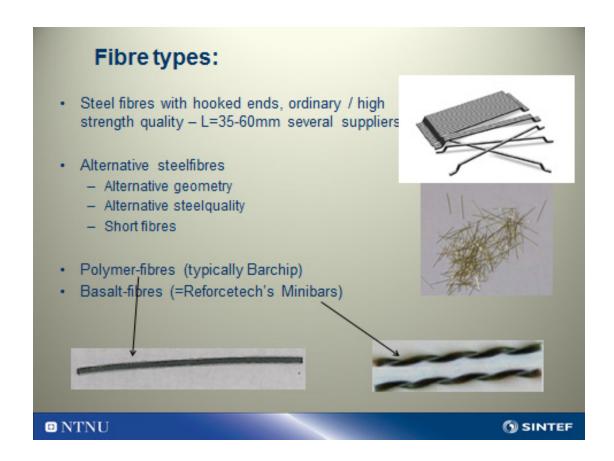
(1) SINTEF


Project Overview


- Industrial partners:
- Veidekke, Unicon, Mapei, Norwegian public roads admin, Reforcetech
- Outside COIN: Spenncon/Consolis, Thilt AS and Bekaert
- FA 3.3: Kværner and Weber St Gobain
- NTNU researchers: Giedrius Zirgulis, Elena Vidal Sarmiento, Håvard Nedrelid, Mette Geiker, Stefan Jacobsen, Max Hendriks, Jan Arve Øverli and Terje Kanstad
- Lab-engineers: Ove Lorås, Steinar Seehuus and Gøran Lorås
- Sintef researchers: Gunrid Kjellmark, Tor Arne Hammer, Helge Brå
- Ex Sintef-researchers: Sindre Sandbakk, Hedda Vikan, Bjørn Erik Jakobsen
- + 6 MSc students this spring (typical number for all years)
- Thanks to all who have contibuted, and to those who funded the project

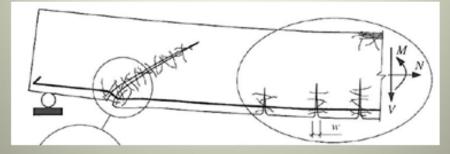
■ NTNU

(1) SINTEF



(1) SINTEF

■ NTNU

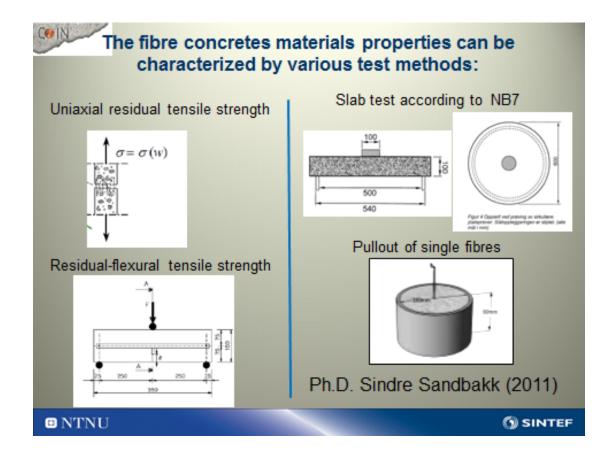

Traditional fibre concrete for slabs on grade and sprayed concrete:

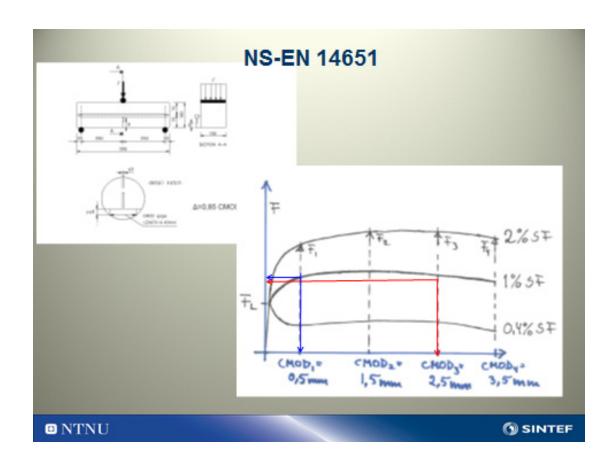
- Until 40kg steelfibres per m³ concrete (0,5 volum%)*
- Until 10kg polymerfibres per m³ concrete (1,0 volum%)*
- Until 12 kg Minibars per m³ concrete (0,6 volum%)*
- · Concrete composition as for ordinary concrete
- Suitable for floors, sprayed concrete for rock stabilization and for solutions combined with traditional longitudinal reinforcement
- *Based on the speakers personal experience and overview

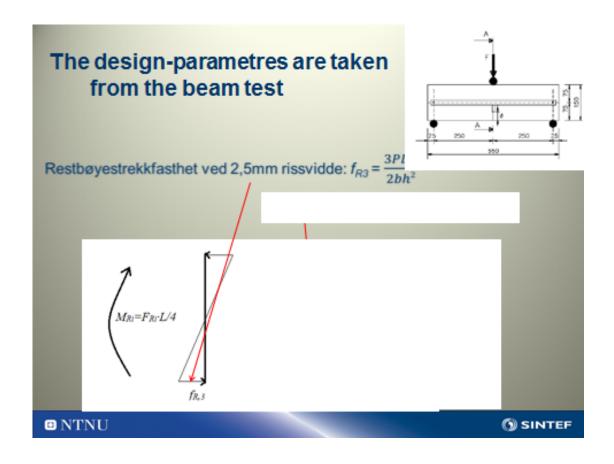
■ NTNU

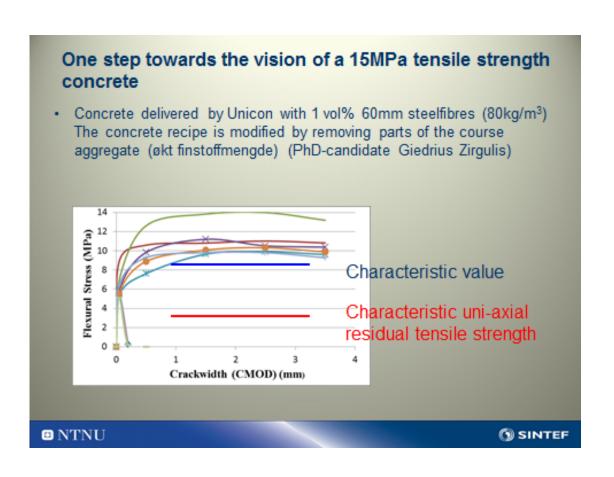
(1) SINTEF

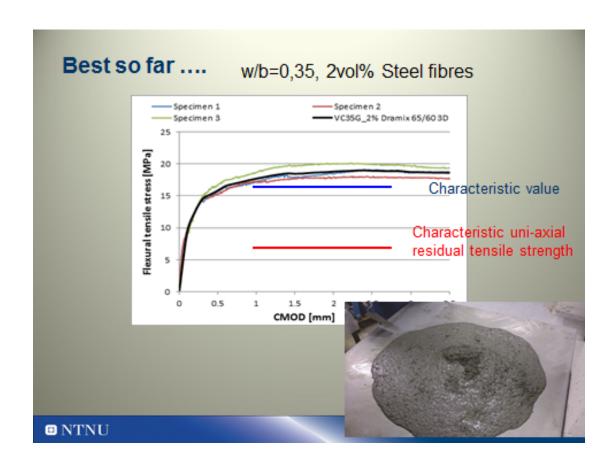
What is fibre concrete and how does the fibres work?




Together with longitudinal reinforcement can fibres contribute to:


Closer crack spacing and smaller crackwidths (invisible) Less deformations (increased stiffness) Increased moment and shear capasity


Traditional reinforcement can therefore partly be replaced by fibres


■ NTNU

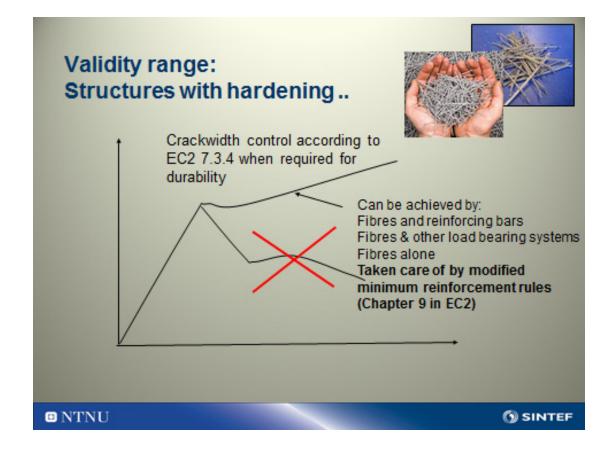
NB 38 Use of fibre reinforcement in load carrying concrete structures: Guidelines for design, execution and control

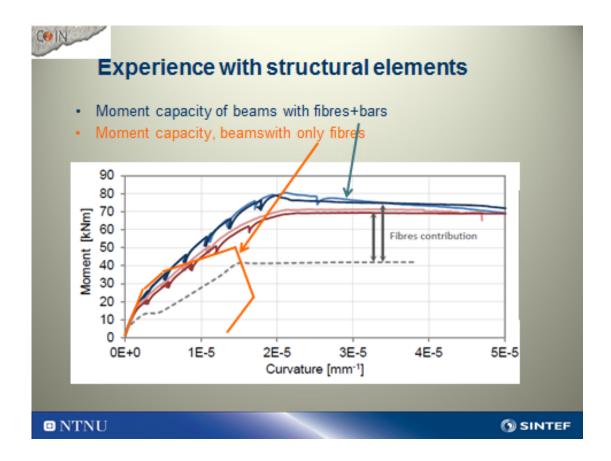
Committee:

Øivind Bjøntegaard, Statens Vegvesen, Vegdirektoratet Alf Egil Mathisen, Jernbaneverket (tidl Veidekke) Arne Vatnar, Skanska (tidl Unicon) Åse Lyslo Døssland, Multiconsult, Bergen Nils Leirud, Bekaert Dan Arve Juvik, Mapei Thor Sandaker, Norconsult Jorun-Marie Hisdal, Sintef Helge Brå, Sintef Terje Kanstad NTNU

Steinar Leivestad (NB representant og "godfather" for the commitee)

■ NTNU




Overview over standardizaton work Norwegian arena International arena	
COIN-rapporten Forslag til retningslinjer for dimensjonering, utførelse og kontroll av fiberarmerte betongkonstruksjoner ble gitt ut og oversendt Norsk Betongforening i 2011.	Fib Model Code ble ferdigstilt i 2011. Endelig trykt utgave i 2013,.
Komite for Norsk betongforenings- publikasjon etablert i 2012 Rapporten planlegges ferdigstilt i 2014	Etablering av Eurocode 2 komite CEN/TC 250/SC 2TG 2 "Fibre reinforced concrete" høsten 2012 (Norsk initiativ)
Praktisk erfaring med retningslinjene og videre verifikasjon og utvikling Flere referanseprosjekt er ønsket⊞	Tysk regelverk iht EC2: Steel fibre reinforced concrete. «Komplett» iht EN 206 og 13670. 2013: Forslag til Svensk Standard, SS 812310 Dimensionering av Fiberbetongkonstruktioner
	2014: Forslag til Dansk regelverk (DTI), Spesielt tilpasset SCC
Nytt annex til EC2 om Fiberbetong planlegges ferdig i 2015, og endelig utgave i 2020.	
□ NTNU	() SINTEF

Committee work organized within NB

- Based on a COIN-report (2011) but is rewritten to be similar to NB's sprayed concrete publication (NB7)
 - Specification (Spesifikasjon)
 - Test methods (Prøvingsmetoder)
 - Calculation methods (Dimensjoneringsregler)
 - Guidelines (Veiledning)
- To be finished in 2014
- Today:
 - Validity range (Gyldighetsområde)
 - Design-parameters & strength-classes
 - Test program for concrete producers
 - Control and documentation of execution

• NTNU () SINTEF

Minimum reinforcement (Chap 9 i EC2)

Bjelker skal ha en minste armeringsmengde på strekksiden :

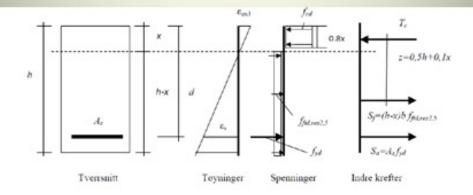
$$A_{s,min} = 0.26 \cdot \frac{f_{ctm} - f_{Ftsm}}{f_{yk}} \cdot b_t d \ge 0.0013 \cdot (1 - \frac{f_{Ftsm}}{f_{ctm}}) \cdot b_t d$$

For armerte betongbjelker er kravet til minimum skjærarmering [mm²/mm²]:

$$\rho_{w,min} = \left(0.1\sqrt{f_{ck}} - 0.2f_{Fstm}\right)/f_{yk}$$

About 0,7 volume % (50kg/m3) elliminates the need for minimum reinforcement according to these formulas

Minimum reinforcement (Chapter 9 i EC2)


Minimumsarmeringkravet for plater er i prinsippet de samme som for bjelker, men gjelder begge retningene. Hovedarmeringen og en gjennomgående minimumsarmering på tvers av denne skal derfor begge ha et tverrsnittsareal som svarer til:

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm} - f_{Ftsm}}{f_{yk}} \cdot A_c \ge 0.0013 \cdot (1 - \frac{f_{Ftsm}}{f_{ctm}}) \cdot A_c$$

About 0,7 volume % (50kg/m3) elliminates the need for minimum reinforcement according to this formula

NTNU
 SINTEF

Moment capacity

Figur 6.2: Spennings- og toyningsfordeling for rektangulært tverrsnitt av armert fiberbetong utsatt for ren bøyning. Betongens bruddtøyning for trykk, ϵ_{eut} , er gitt i tabell 3.1 i Eurocode 2.

$$M_{Rd} = S_f(0,5h+0,1x) + S_a(d-0,4x)$$

NTNU
 SINTEF

Addition rule for bending and axial forces:

For structural members exposed to moments and/or axial forces where a structural collapse can lead to loss of human life, or is of major social or economic importance

shall it in addition be verified that bending moments and the axial tensile forces can be carried by the cross section without contribution from the fibre reinforcement.

In this control all load and material coefficients shall be set equal to 1,0, and the combination factors $\psi_{o,i}$ (Table A1.1 EN 1990) be used for the accompanying variable actions.

■ NTNU

(1) SINTEF

From the specification part:

The specification to the concrete producer shall at least include:

- Strength class (Fasthetsklasse)
- Durability class (Bestandighetsklasse)
- Residual strength class (Reststrekkfasthetsklasse)
- Max aggregate class (Maksimal tilslagsstørrelse) D_{max}

The fibres shall be declared according to the following materials standards:

- NS-EN 14889 1 Fiber for betong Del 1: Stålfibere. Definisjonskrav, krav og samsvar, eller
- NS-EN 14889 2 Fiber for Betong Del 2: Polymerfibere. Definisjoner, krav og samsvar.
- Teknisk Godkjenning/ ETA (European technical approval)

Longtime-load and temperature stability

Uncertianty due to polymer fibers properties under longtime load and high temperatures For situations where this might be critical, these properties must be particularly verified

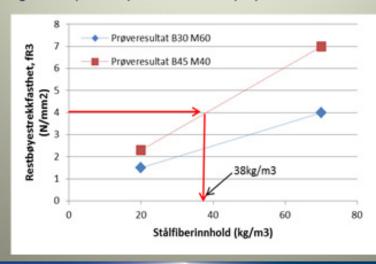
■ NTNU

SINTEF

Pre-documentation of the residual flexural strength

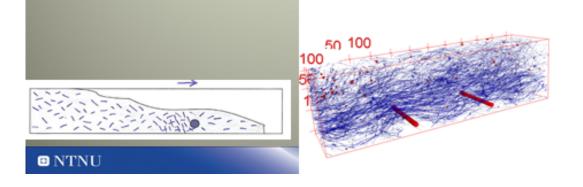
In addition to ordinary testing, the concrete producer shall document the residual flexural tensile strength (restbøyestrekkfastheten) using standard beams cast with the current concrete, mixing and transport equipment, and fibre addition method.

If the fibres are added directly in the automixer shall the mixing volume be at least 50% of the automixers total volume. Requirements for amount of fibres and distribution(minus- and plustolerances) shall also be controlled for the same volume.


Scope and procedures are described

(1) SINTEF

Test program for concrete producers


 The concrete producers shall verifify the residual flexural tensile strength. Scope and procedures are proposed:

■ NTNU

Control and dokumentation of execution:

- A risik evaluation regarding stability for the concrete deliveries and the casting works shall be carried out by the contarctor.
- It is for safety reasons extremely important that fibre-continuity between different casting batches is secured.
- Casting breaks which might give (separate) layers shall not occur.
 This is the contractors responsibility.
- It is very important that hindrances do not create weakness zones with low amounts of fibres.

Design-parameters & methods

Uniaxial residual tensile strength=0,37xResidual flexural strength $f_{flk,res,2,5} = 0,37 f_{R,3}$

Expressions for moment capacity
Moment and axial force
Shear force capacity
Torsion
Crackwidth calculations
Minimum reinforcement rules

Typical applications:

- Foundations
- Walls
- Beams
- Load carrying slabs and ground slabs on piles
- Pipes and culverts
- Design for concentrated loads on slabs on grade and design of sprayed concrete in special cases
- Others? For sure

■ NTNU

SINTER

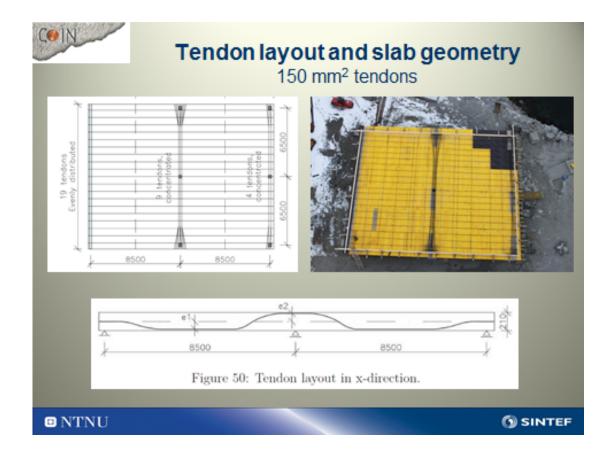
Design, testing and evaluation of a fullscale posttensioned steelfibre reinforced flat slab

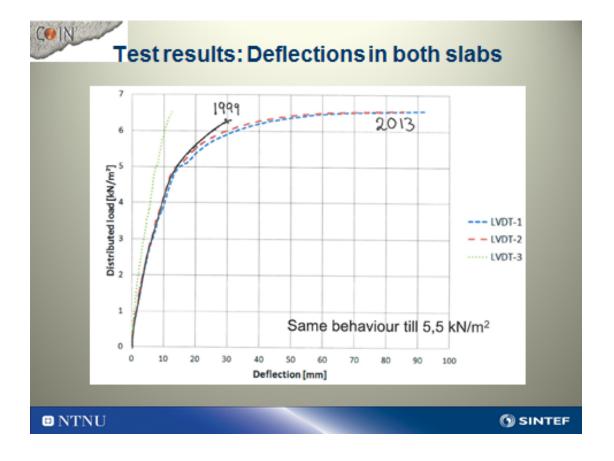
Ordinary reinforcement replaced by steel fibres (0,4% /30kg/m3)

Dr. Steinar Trygstad THiLT Engineering AS, Ålesund

Prof. Terje Kanstad Department of structural engineering, NTNU

Funded by Spennteknikk construction AS, Betong Øst, Dyrøy betong, Mapei, Innovation Norway, NTNU mfl)

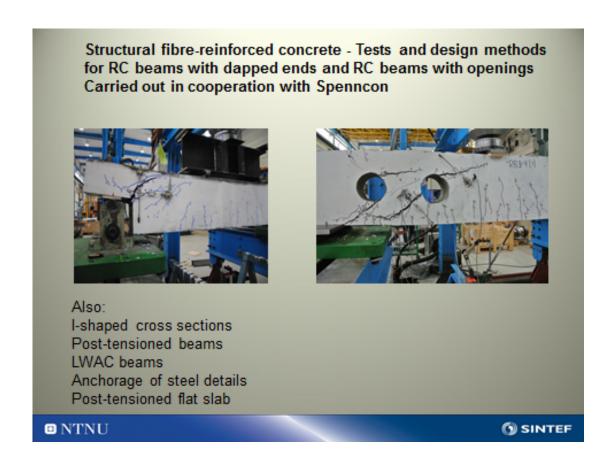


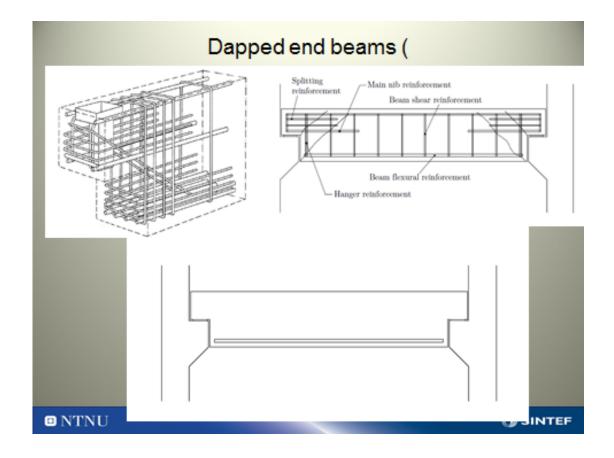


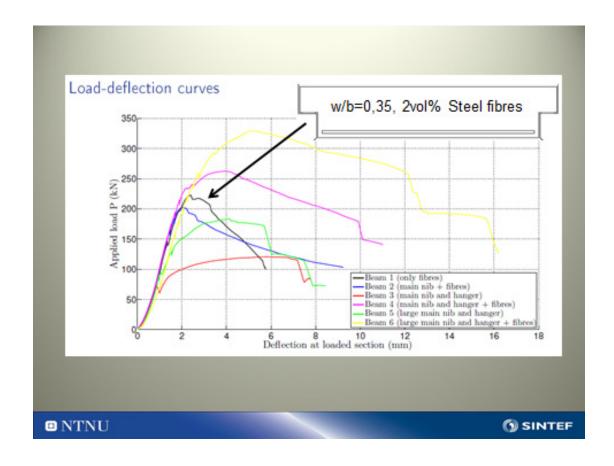
Objectives

- Stimulate use of fibres in load carrying structures
- · Verify Norwegian proposal for fibre concrete guidelines
- · Moment capacity
- Moment (re)distribution Elastic analysis vs yield line analyses
- · Shear capacity around central column
- · EN14651 strength vs in-situ residual strength
- Ductility & robustness as input to future Eurocode 2 annex for steel fibres

■ NTNU

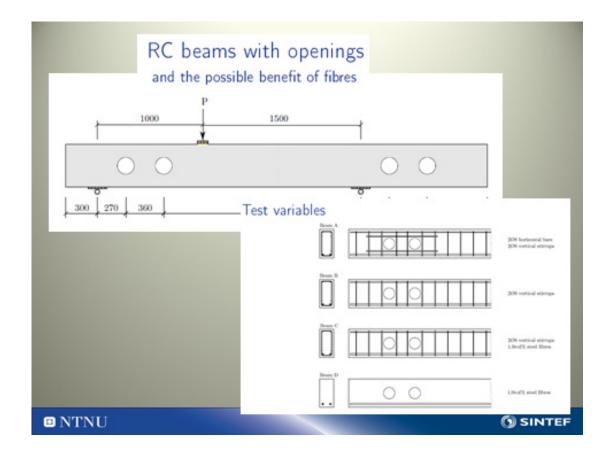





Summary and conclusions

- The results are considerably at the safe side if characteristic strength values and elastic theory for calculation of moment and shear forces are used – This holds independently of which guidelines are used
- If yield line analysis and redistribution of forces is accounted for nice agreement between theory and experiment is achieved
- The ductility seems to be sufficient
- The current approach with a relatively low degree of prestressing and low amount of fibres can be recommended for further use in practice
- A reference projects has been carried out (Munkvold Trondheim)
- · A technical approval is in progress at Sintef

Conclusions


- The proposed calculation model agrees well with experimenteal behaviour
- Dapped end beam reinforcement can be considerably reduced if fibres are used
- · Only main tensile bars is possible, but not recommended

One hanger should be included for practical and economical reasons

And nib tensile reinforcement for robustness and uptake of horizontal forces

Summary beams with openings

- It has been shown that the shear reinforcement in the region of the openings can be replaced by 1.0 vol% hooked-end steel fibres
- Simple shear design formulas for RC beams with openings based on the EC2 expressions for solid beams have been proposed

Final comment The use of fibres in load carrying structures will increase ... And COIN has contributed to this ... And thank you for listening ..

COIN – Concrete Innovation Center

Concrete innovation in Norway 2007- 2014

December 2nd & 3nd , 2014

Realfagsbygget, Auditorium R9, NTNU Høgskoleringen 5, Trondheim

COIN FA 2.3

High quality manufactured sand for concrete

Børge J Wigum - Norcem/NTNU

Side 1 - Describe 1rd 1010 Fred Sides informer Viscon

The outcome; 2008 - 2014

COIN FA 2.3

High quality manufactured sand for concrete:

New <u>aggregate processing methods</u> (crushing and classification) - along with new sophisticated ways of <u>concrete mix design</u> - have enabled the production of various types of concrete containing 100% crushed aggregates.

These <u>innovative</u> new processes and products provide a better utilization of natural resources; reducing transportation and environmental impacts, and lead to improved sustainability in the building sector.

Bide 3 - Desember 1rd 1016 Frof. Bidrys Johannes Vilgam

8-Deserter 1rd 1016

Why manufactured sand?

Frai. Birgs Inflames Vigues

Natural resources are depleting

NORCEM

Transportation of aggregates in Norway (2012); 110.000 tonn CO₂

- 1.1% of all transport
- 10% of cement

Side 8 - December 1rd 1016 Fref. Bürge Jeflennes Vigum

Increased transportation

Manufactured sand Utilisation and Innovation – both by low- and high quality

Side 8 - Desember 1rd 1016 Frail Bürge Jahannas Vigum

This session

18:45-17:00 Introduction & Background - Børge Johannes Wigum

17:00-17:10 Utilisation of Local Low Grade Manufactured Sand - Sverre Smeplass

17:10-17:20 Crushed sand, Manufactured sand & «Engineered sand» - Rolands Cepuritis

17:30-17:30 Transportation and Sustainability - Svein Willy Danielsen

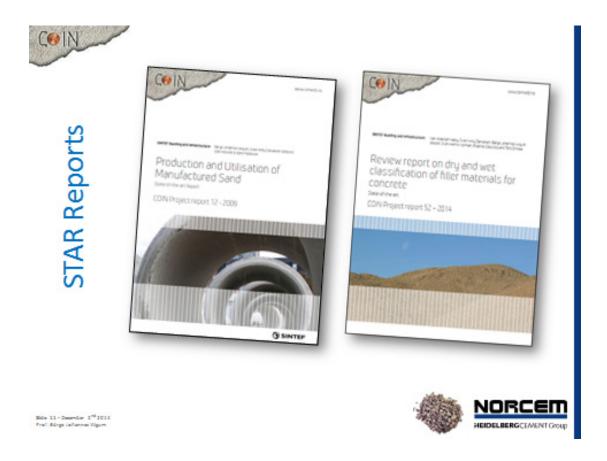
Side 7 - Desember 1rd 1016 Fred Sidner informer Viscon

Nordic Concrete Rheology Workshop & Nordic SCC Net Meeting, 3-4 October 2011, Trondheim

NORC

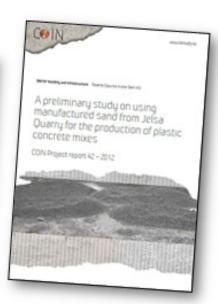
Workshops

Side 9 - December 1rd 1016 Frail Effect Inforces Movem


Manufactured sand – Seminar, Stavanger, Norway, October 20th and 21st 2014

Workshops

Bide 10 - Desember 1rd 1014 Fraf. Bidge Jaffannas Vigum



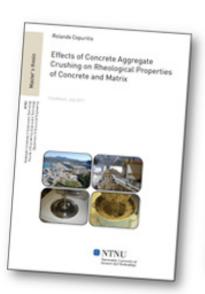
Practical cases

Side 18 - Desember 1rd 101 Frei: Bürge Leitennes Wigsen

Scientific Articles

Nic 16 - December 1rd 1016

Trade journals - newspapers



Bide 18 - Desember 1rd 1016. Fraf. Bidrge Jaffannes Vilgom

Theses

Side 18 - Desertor 1rd 1010 Frail Street Informat Vigoro

Værnes Airport Commuter Terminal - concrete slabs

- 28800 m² slabs, 350 mm thick
- ➤ 10000 m³ concrete
- Non-reactive aggregates
- Low-alkali binder or CEM II/A-V
- High flexural strength requirement
- > Frost resistance

Problem: local crushed rock and local natural sand are both alkali reactive!

Solution developed in cooperation between Skanska and Norbetong

- Non- reactive crushed rock from Nord-Fosen
- Combined sand
 - > 60 % non-reactive manufactured sand from Nord-Fosen
 - 40 % reactive local natural sand
- CEM II/A-V binder
- "Normal" binder content
- Relatively high dosage of SP
 - > Slightly retarded concrete
- Prolonged mixing time

() SINTEF

SKANSKA

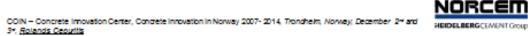
Manufactured sand from Nord-Fosen

- Low grade no processing after crushing
- High content of fines, 11% < 0,125 mm

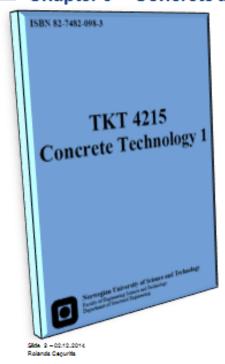
Slab production

- > Bidwell paver
- > Slump measure 220 mm
- > Placing of concrete in front of paver by concrete pump
- Brushed finish
- > Extensive use of curing membrane

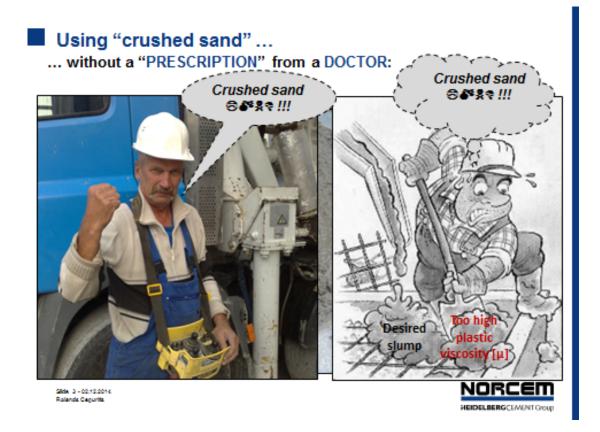
Challenge: Very viscous concrete. Normal slump for this production process is approx. 140 mm

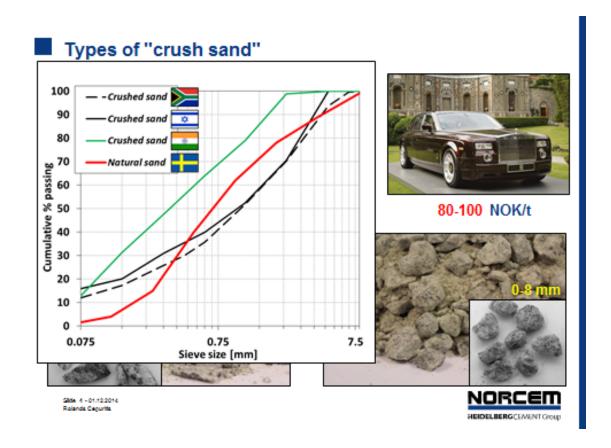

Results and conclusion

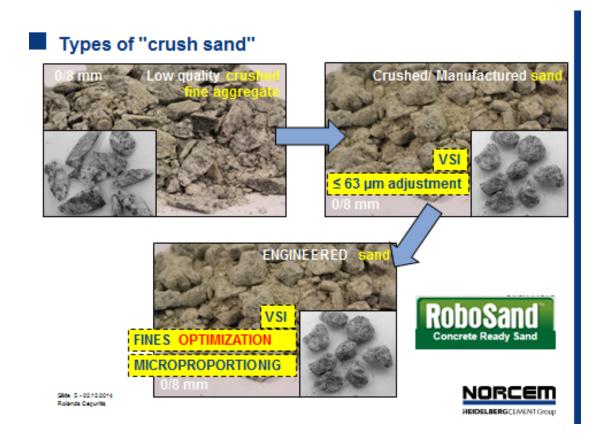
- > High quality slabs
 - > No separation or segregation
 - Superb wear properties
- High flexural strength
- Acceptable variation in fresh and hardened concrete properties
- Low grade manufactured sand can be used successfully for special purposes
- Production must be adapted to "deviating" concrete properties

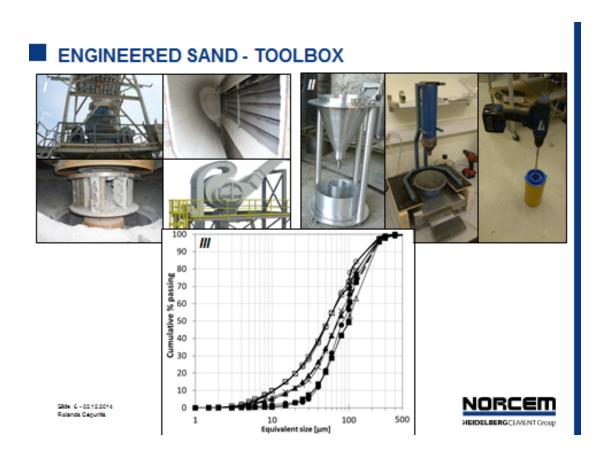


Crushed sand, Manufactured sand & "Engineered sand"




Chapter 9 – Concrete aggregates

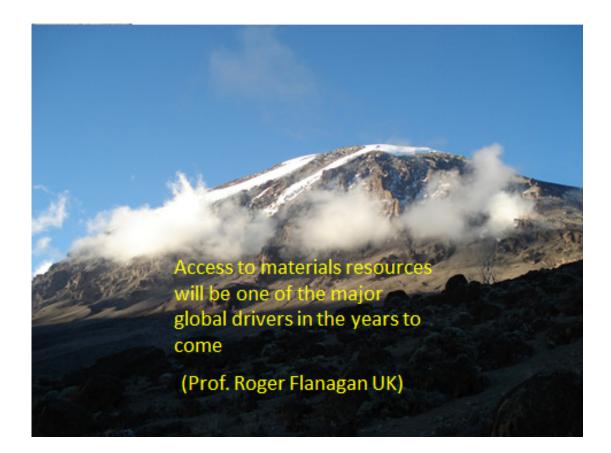



- Both in the PAST and TODAY it is MOST COMMON to use sand aggregates from NATURAL gravel deposits [...]
- In more recent years, it has also become common with partial mix of sand produced from CRUSHED ROCKS (the so so-called "CRUSHED SAND/ MACHINE SAND" [...]

COIN - Concrete Innovation Center

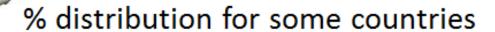
COIN FA 2.3

High quality manufactured sand for concrete


Transportation and sustainability

Svein Willy Danielsen SINTEF

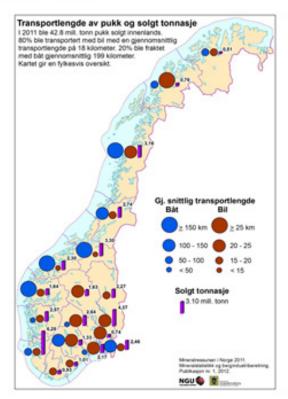
Bile 1 - Desember 1rd 1014

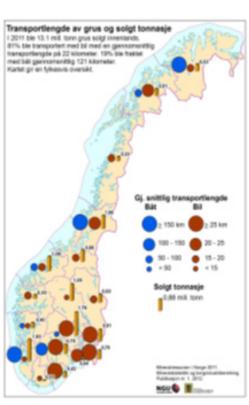


Some international key figures

- Global demand for aggregates is some 15 billion tons/year
- Expected to increase to 22 billion, where China alone will account for some 6 billion
- European aggregate industry produced >3 billion tons in 2005, at a value of >40 billion €
 - 47 % sand/gravel, 45 % crushed hard rock
 - The remaining part was recycled and artificial materials
 - Production took place in 28.000 quarries
- European concrete production is almost 600 mill m3, and uses approx 1,2 billion tons of aggregates per year

86+ 0-0**4**-0+ 1⁻⁶1010


%	Crushed	Recycled	Of European total prod.	Of Eur. no. of quarries
Norway	83	<1	3,2	16
Sweden	77	10	3,1	6,5
Netherlands	0	42	1,6	0,7
Germany	48	9	20	11
UK	62	20	6,8	4,6
France	57	2,5	15	9,5
Spain	71	<1	7,5	6,8


man a comman and a comman

Transport and emissions – Norway

Transport	Domestic market, million tonnes	Million tonne - km	Ktonn CO2
Car, crushed rock	34	616	80
Car, sand/gravel	11	233	30
Ship, domestic	11	2000	30
TOTAL, domestic	56	2850	140

In addition: 22 million tonnes for export and off-shore

Sources: NGU and Odd Hotvedt

.

Side 9 - Describer 1rd 1014

NORWEGIAN AGGREGATE EXPORTED IN 2011

Total production export 21 mill, tonnes aggregate, armourstone, sand and gravel, plus 1.4 mill, tonnes aggregate for offshore use. Exportproduction values for 2010 in parentheses.

360 10 - December 1rd 1016

Local production – less transport – less emissions

Tunnels

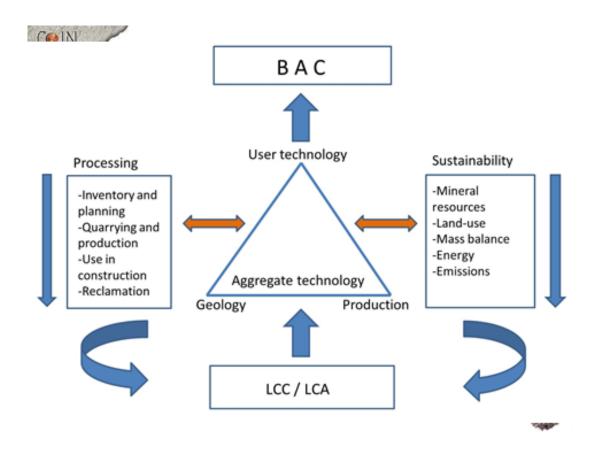
Sub-surface quarrying

MASS BALANCE

Excavations

Less predictable rock properties

Sustainability concept


Requirements

Bile 18 - December 1rd 1016

4 Environmental friendly concrete structures

December 3nd 2014

Chairman: Serina Ng

Binders with low emission and reduced resource consumption

09.10 – Fly ash-limestone synergy Klaartje De Weerdt (SINTEF/NTNU)

Knut O. Kjellsen (Norcem)

Accelerators for fly ash cement Klaartje De Weerdt (SINTEF/NTNU)

Espen Rudberg (Mapei)

Calcined clay Klaartje De Weerdt (SINTEF/NTNU)

Calcined marl Klaartje De Weerdt (SINTEF/NTNU)

Geir Norden (Saint-Gobain Weber)

- 09.55 **Plasticizers for SCMs** *Klaartje De Weerdt (SINTEF/NTNU)*

Utilisation of concrete in low energy building concepts

09.55 – Concrete and Passive House Olafur Wallevik (SINTEF)

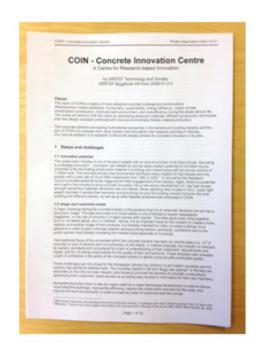
ZEB-concrete and LCA Kristin Holthe (Byggutengrenser)

-10.35 Insulating concrete Olafur Wallevik (SINTEF)

COIN FA 1.1

Binders with low emission and reduced resource consumption

Klaartje De Weerdt, NTNU/SINTEF


() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

- Reduced CO₂ emissions
- High tensile strength
- 3. High flowability and stability
- Low permeability

FA 1.1 objective (COIN application)

The overall goal:

To identify and document general purpose cementing materials that will decrease CO₂-emissions by at least 30% compared to an average Portland cement clinker (about 900 kg CO₂ per ton).

A sublime idea from the project leader:

Combining fly ash or blast furnace slag (aluminate rich) with limestone filler to form a ternary blend. This would lead to a larger fraction of the limestone reacting to calcium carboaluminate hydrate, Ca₃Al₂O₆·CaCO₃·11H₂O, which might result in a strength increase.

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

- Fly ash-limestone synergy (PhD Klaartje De Weerdt)
 - → Knut O. Kjellsen, Norcem
- Accelerators for fly ash cement (PhD Kien Dinh Hoang)
 - + further work (Harald Justnes)
 - → Espen Rudberg, Mapei
- Calcined clay (PhD Tobias Danner)
- Calcined marl (Tone Østnor)
 - → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

- Fly ash-limestone synergy (Klaartje De Weerdt)
 → Knut O. Kjellsen, Norcem
- Accelerators for fly ash cement (Kien Dinh Hoang)
 + further work (Harald Justnes)
 → Espen Rudberg, Mapei
- 3. Calcined clay (Tobias Danner)
- Calcined marl (Tone Østnor)
 → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

() SINTEF

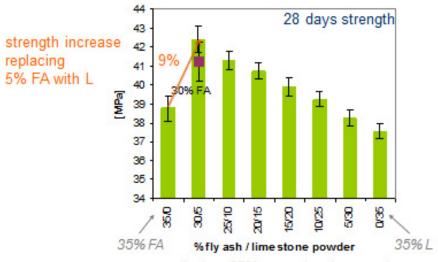
De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Fly ash – limestone synergy

«Blended Cement with Reduced CO₂ Emission – Utilizing the Fly Ash-Limestone Synergy"

- Higher strength for cement with fly ash+limestone than clinker replacement with fly ash alone.
- Fly ash contributes with more aluminates when combined with limestone:
 - → calcium carboaluminate hydrates ↑ (proposal)
 - → stabilizes ettringite (voluminous) ↑
 - → lower porosity ↓

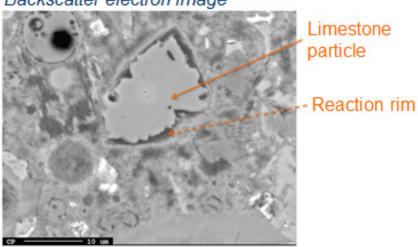
→ higher strength ↑


() SINTEF

Fly ash - limestone synergy

all mixes 35% cement replacement

() SINTEF


De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Fly ash – limestone synergy

Backscatter electron image

SINTEF

Fly ash – limestone synergy

Norcem experience

Knut O. Kjellsen, R&D Manager, Norcem

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Fly ash - limestone synergy

- Hypothesis by Harald Justnes (SINTEF): Fly-ash + limestone => chemical reaction
- The 'fly ash limestone synergy' activity was very successful:
 - Scientific idea
 - Excellent researchers
 - Scientific work within the frame of the Cement Standard

() SINTEF

Fly ash – limestone synergy

- Norcem product development project
 - 'Fly ash limestone synergy effect' forms an important technical basis for a new cement product

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

- Fly ash-limestone synergy (Klaartje De Weerdt)
 → Knut O. Kjellsen, Norcem
- 2. Accelerators for fly ash cement (Kien Dinh Hoang)
 - + further work (Harald Justnes)
 - → Espen Rudberg, Mapei
- Calcined clay (Tobias Danner)
- Calcined marl (Tone Østnor)
 → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

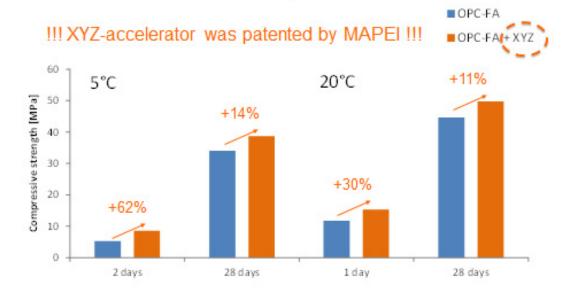
Accelerators for fly ash cement

"Hardening Accelerator for Fly Ash Blended Cement"

- Fly ash is much slower reacting than cement
 → finding a good hardening accelerator
- Kien found a ternary hardening accelerator for cement with 30% fly ash

fulfilling EN 934-2:

- >120% compr. strength at 24 h and 20°C
- >130% compr. strength compared 48 h and 5°C
- · strength >90% at 28 d for both

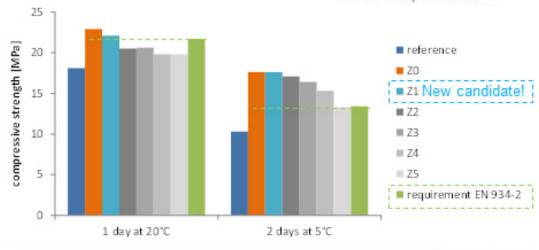

Dr. Kien Dinh Hoang NTNU thesis 2012:366

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Accelerators for fly ash cement

() SINTEF



Further accelerator development

MAPEI wished to replace the «Z» in the XYZ-formulation

ref. COIN report nov 2014

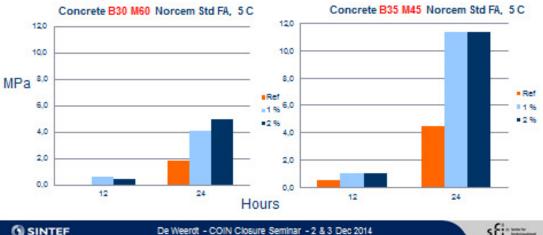
() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Accelerators for fly ash cement

Mapei experience

Espen Rudberg


() SINTEF

Product development at Mapei

- New accelerator tested in M45 and M60 concrete at low temperature and room temperature (also for other cements)
- This work has given ideas for new products (also in other business) areas)

() SINTEF

- Fly ash-limestone synergy (Klaartje De Weerdt) → Knut O. Kjellsen, Norcem
- Accelerators for fly ash cement (Kien Dinh Hoang) + further work (Harald Justnes) → Espen Rudberg, Mapei
- Calcined clay (Tobias Danner)
- 4. Calcined marl (Tone Østnor) → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

Calcined clay as SCM

"Reactivity of Calcined Clays"

- Fly ash is slowly reacting Need to look for alternative supplementary cementing materials (SCMs)
- A COIN State-of-the-Art report concluded that calcined clays could be promising
- Initial tests of calcined "ordinary blue clay" dug out of the ground were so interesting that partner Saint Gobain Weber financed a separate PhD study

Dr. Tobias Danner NTNU thesis 2013:218

() SINTEF

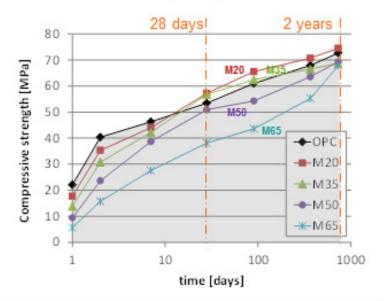
De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

- Fly ash-limestone synergy (Klaartje De Weerdt)
 → Knut O. Kjellsen, Norcem
- Accelerators for fly ash cement (Kien Dinh Hoang) + further work (Harald Justnes)
 - → Espen Rudberg, Mapei
- Calcined clay (Tobias Danner)
- Calcined marl (Tone Østnor)
 → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

Calcined marl (CM) as SCM

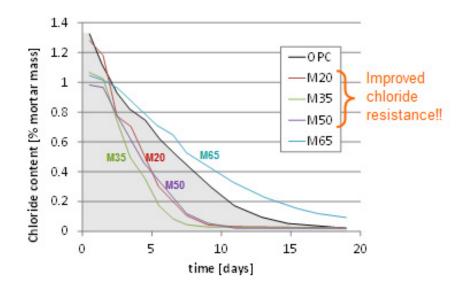
- Marl is a clay containing some calcium carbonate making it unsuitable for expanded clay products
- · Large and unexploited resource

Tone A. Østnor done sufficient work on marl to warrant a PhD..


() SINTEF

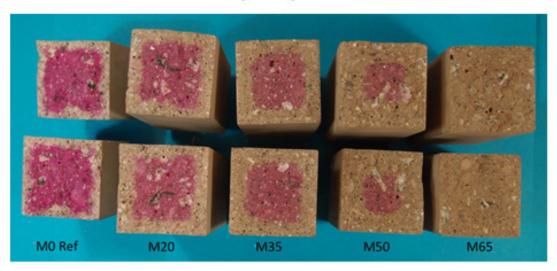
De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Calcined marl (CM) as SCM



() SINTEF

Calcined marl (CM) as SCM


() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Calcined marl (CM) as SCM

SINTEF

Conclusion: Calcined marl is an effective pozzolan

- Good compressive strength at both 1 and 28 days, even for 50 % cement replacement; Strength continues to increase to 2 year
- + Chloride ingress significantly decreased up to 50% marl
- Carbonation rate increase with increased cement replacement as for most blended cements.

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Calcined clay and marl as SCM

Saint Gobain Weber experience

Geir Norden

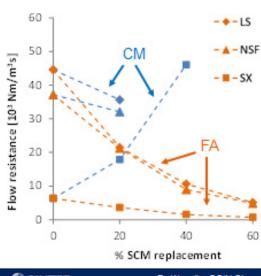
- Fly ash-limestone synergy (Klaartje De Weerdt)
 → Knut O. Kjellsen, Norcem
- Accelerators for fly ash cement (Kien Dinh Hoang)
 + further work (Harald Justnes)
 → Espen Rudberg, Mapei
- 3. Calcined clay (Tobias Danner)
- Calcined marl (Tone Østnor)
 → Geir Norden, Saint Gobain Weber
- Plasticizers for SCMs (Serina Ng)

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

Plasticizers for SCMs

- SCMs will affect the workability of mortar and paste
- The activity focused on finding the best plasticizer for mortar with SCM such as fly ash (FA) and calcined marl (CM) as two extremes in terms of water demand
- A range of plasticizers were tested: lignosulphonate and naphthalene based plasticizers were compared with 3 modern polycarboxylate super-plasticizers


Dr. Serina Ng employed SINTEF since Jan 2013

SINTEF

Cement replaced by FA and CM

Different SPs (LS, NSF, SX) 0.2% for different FA and CM replacement

- → More FA lower flow resistance
- → More CM higher flow resistance SPs could not plasticize >40%CM

Hypothesis:

- FA interacts little with SP
- CM interacts strongly with SP

() SINTEF

De Weerdt - COIN Closure Seminar - 2 & 3 Dec 2014

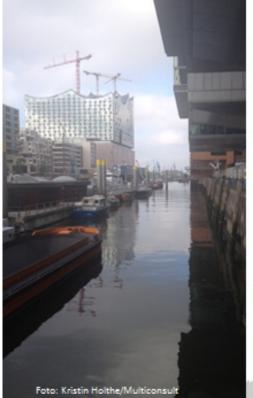
Harald Justnes

"Nobody knows where the rabbit jumps" as we say in Norway, without further comparison.... ©

SINTER

COIN - Concrete innovation in Norway 2007-2014 Closure seminar - Trondheim 2 and 3 of December 2014 Utilisation of concrete in low energy building concepts – Industry initiatives and

perspectives


Concrete innovation in Norway 2007- 2014

December 3, 2014 in Trondheim

Kristin Holthe, Multiconsult / Coordinator CEAP

multiconsult.no

Low energy / Zero Emission Buildings challenge the materials

- · GHG emissions of production
- GHG emissions over the whole life cycle: Production –
 Building use phase End of life
- Environmental documentation
- The concrete industry is working on several areas

Low carbon cement

environmental cement

low carbon concrete

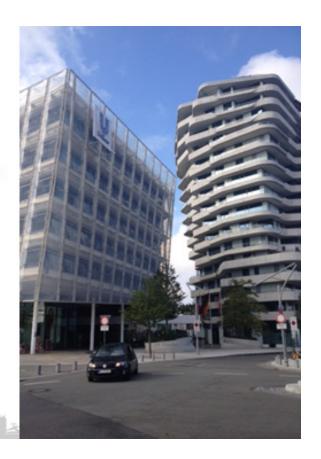
environmental concrete

green concrete

10000 P To 1

Environmental documentation of concrete

- EPD-generator: 3. parts verified environmental documentation according to international agreed standards
- The industry itself may develop EPDs for own products



Concrete in buildings - Use phase

- Potential for CO₂ uptake in concrete constructions, both during use and concrete recycling
- Thermal mass in buildings and its potential for contributing to reduction in energy use, and thus GHG emissions.
- Solutions that combine sound absorption and energy storage/use of thermal mass in buildings

The second of the

Thermal mass

 T-BOX concept - increased knowledge of usage of thermal mass in concrete structures

- Developed by the Norwegian Precast Concrete Federation in cooperation with their members prior to CEAP
- Under the CEAP, the concept was further developed to meet future regulatory requirements for energy performance

multiconsult.no

Energy efficiency of buildings | Storage of thermal mass

Multiconsult	BREKKE III STRANI
RAPPORT Norsk betongforening - Utvikling	
Opposition Action (III	Desc 45 of 2014
	Serv. et el illus Naciprosent: 31 si illus
Reporter: Artife Religios de Esperapercarig Arleitasse	

- The cooperation between Concrete Innovation Centre (COIN) and the CEAP started in late 2013:
- Thermal mass:
 - Collate current results from pilot buildings and assess the need for further work
- Life cycle assessments:
 - Collate experiences from LCA and greenhouse gas assessments of pilot buildings and identify methodological challenges for future work
- The cooperation has resulted in e.g. a workshop in 2013 which involved both themes, where state-of-the art solutions on both themes were given and resulting in spin-off ideas for further R&D projects.

Thermal Mass | Future needs for R&D

- Some results exits, on use of thermal mass / use of concrete (pilot buildings)
- Future needs regarding thermal mass:
 - Bring forward more lessons learned from pilot projects and use of energy calculation tools
 - Calculations results on kWh, GHG emissions, costs for different design solutions
 - Establish simplified models and tools for how to further exploit thermal mass
 - Establish guidelines for design for optimal use of thermal mass / also based on pilot experiences

The Concrete Environmental Action Plan (CEAP) 2012-2015

Why and who

- Create a **new arena** for cooperative approach to common challenges
- Main organizations with long traditions in developing new knowledge about concrete for a large number of members

multiconsult.no

Goal/vision of the CEAP

- Agreed goals, priorities and actions will give the concrete industry a high awareness of the environmental performance of its final products and of the production phase of these.
- By promoting existing initiatives and projects, as well as establishing a specific amount of new research and development projects (R&D projects), CEAP's goal are to be achieved through:
 - Building on existing knowledge
 - Contribute to new knowledge
 - Implement plans and results

Financing organizations and industry own efforts

The CEAP is financed by three organizations:

- The Norwegian Ready Mixed Concrete organization
- The Norwegian Concrete Association, NCA
- The Norwegian Precast Concrete Federation

Secretary

 Brilliant Building Financing

- Allows a project coordinator to contribute to overview and create arenas for synergies and initiate and conduct projects
- Important industry own effort (hours) and financing own specific projects and activities under the CEAP (in addition)

Information to be found here: www.miplan.no

COIN - Concrete innovation in Norway 2007-2014 Closure seminar - Trondheim 2 and 3 of December 2014

5 The road towards new concrete research and innovation

10.50 – 11.50 Panel debate – concrete innovation and dissemination

Kjell Skjeggerud (Norcem), Jan Eldegard (Byggutengrenser), Elisabeth Schjølberg (Multiconsult), Anders Sjaastad (Yngres Betongnettverk) and Tor Arne Martius-Hammer, introducer (SINTEF)

Moderator: Lisbeth Alnæs, SINTEF

11.50 – 12.00 Summary and concluding remarks

Terje F. Rønning

Innovation

RCN's success factor concerning innovation:

"Created opportunities for innovation and increased competitiveness among user partners and expectations of social impacts".

SINTEF

Innovation

is

a new product, a new service, a new production process, application or organisation

that is launched in the market or used in production to create economic values. A new idea or invention is not an innovation until it has come to practical application and creates value.

() SINTEF

COIN innovations

Products:

Cement(s)
Hardening accelerator
Calcined clay

Services:

CrackTestCoin FRC guideline

Production processes/applications:

Fibre reinforced walls
Artic sea structures without abrasion casing
Manufactured sand

() SINTEF

COIN innovation opportunities

Products:

Calcined marl
Admixtures
Low thermal conductivity structural concrete
Technology for production of advanced LWA

Services

Surface quality classification system Guidelines Utilization of thermal mass Performance based spec./test. (e.g. ASR)

Production processes/applications:

FRLWAC Hybrid concrete SCC?

For debate

- How can we contribute to that what is created in COIN becomes innovations?
- How can we, as an industry, in the future ensure that ideas and research results become innovations?
 - o How to get research inst. and industry together to develop research topics with sufficient innovation and implementation potential?
 - o Dissemination and implementation of R & D results in general
 - o Organizing of R & D projects where innovations are the target

() SINTEF

COIN Seminar Concluding remarks

COIN December 3* 2014 - Terje F. Ranning

HEIDELBERGCEMENT

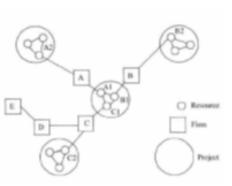
What did we learn in school today

.....

■ BUT we had great fun!

HEIDELBERGCEMENT

Construction industry


 Often considered as assembling of standard components

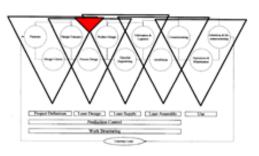
But

 Frequently we need tailor made solutions

And, generally

 The only way to improve value creation for a construction project is to interact

HEIDELBERGCEMENT


IF

- We want to innovate
- We want to learn

THEN

- We must do so outside the normal tendering process of the construction sector
- We must create an organisational environment
- We must involve the Sector and Academia
- Everybody needs a strategy of its own and one of interaction
- Influence the RCN & EU (funding;) Calls!
- JOINT TARGETING & CREATIVE PROCESSES

HEIDELBERGCEMENT

Thankyou!

&

Welcome back at some occasion ...?

HEIDELBERGCEMENT

SINTEF Building and Infrastructure is the third largest building research institute in Europe. Our objective is to promote environmentally friendly, cost-effective products and solutions within the built environment. SINTEF Building and Infrastructure is Norway's leading provider of research-based knowledge to the construction sector. Through our activity in research and development, we have established a unique platform for disseminating knowledge throughout a large part of the construction industry.

COIN - Concrete Innovation Center is a Center for Research based Innovation (CRI) initiated by the Research Council of Norway. The vision of COIN is creation of more attractive concrete buildings and constructions. The primary goal is to fulfill this vision by bringing the development a major leap forward by long-term research in close alliances with the industry regarding advanced materials, efficient construction techniques and new design concepts combined with more environmentally friendly material production.

