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Abstract—Computers are becoming increasingly parallel.
Many applications rely on OpenMP to divide units of work
between a set of worker threads. Typically, this is done using
parallel for-loops or tasking. Grain graphs is a recent method
for visualizing program execution from a program perspective.
It shows the control flow of a program in terms of fork and join
points. Between such points, one can find grains, which are task
instances or for-loop chunks. Attached to these grains are a set
of metrics that inform the programmer of how they well they
perform.

However, generating grain graphs means using the MIR
runtime system, as it is the only one designed to provide all
the needed metrics. In this paper, I look at the OpenMP Tools
API as an alternative. I show what data can be immediately
obtained from the interface. Furthermore, I look at whether any
metrics require extensions to OMPT. I find that most task-related
metrics are available, but that information about for-loop chunks
is missing from the API. I propose that an event for chunk
scheduling is introduced, as well as an event denoting the end of
task creation.

I. INTRODUCTION

Computers are rapidly moving towards architectures with
multiple processing units. This necessitates creating programs
that can utilize these units by having them perform work in
parallel. Many techniques exist for doing this, one of which
is OpenMP, an industry-standard for parallel shared-memory
programming[1]. OpenMP allows programmers to insert direc-
tives into their code that lets the compiler generate programs
that perform work in a parallel manner. Two common ways
of doing this is by parallelizing for-loops and structuring a
program as a set of tasks, which are units of work that can be
distributed to worker threads.

In general, understanding the precise behaviour of paral-
lel programs is hard[2][3], and OpenMP programs are no
exception. While OpenMP makes it simple to parallelize
programs, it can still be hard to identify and fix program
bottlenecks. It has been pointed out that existing sampling
based tools are insufficient for identifying problematic tasks, as
they investigate task constructs defined in source code and not
the task instances[4]. This makes certain optimizations harder,
such as eliminating tasks with low parallel benefit. A similar
problem exist for parallel for-loops, where uneven distribution
of work can lead to load imbalance[5].

The grain graph is a recent visualization method for
OpenMP programs[5]. Its main focus is visualizing program
execution from a program perspective. This is done by creating
a graph displaying the structure of the program, in terms of

tasks, for-loop portions, and synchronization points. Further-
more, certain properties of tasks and for-loop portions, collec-
tively called grains, are visually encoded in the graph. Using
this visualization, the programmer can inspect the performance
characteristics of each individual grain. Muddukrishna et al.
use an in-house runtime system named MIR to obtain the
grain-level metrics needed by the graph. More widely used
runtime systems, such as those in LLVM, Intel ICC and GCC,
have thus far not been able to provide such metrics.

There is currently an ongoing effort to extend the OpenMP
standard with an API for performance analysis of OpenMP
programs[6]. This API is called OpenMP Tools (OMPT).
A key motivation for OMPT is the inherent tight coupling
between performance analysis methods and runtime systems.
Grains graphs and the MIR runtime system is an example
of this. OMPT supports both sampling- and instrumentation-
based measurement, as well as blame shifting[7], which is a
technique that enables sampling-based tools to put the blame
for waiting on the context that caused the waiting. Moreover,
it is already implemented in recent versions of the Intel
and LLVM compiler suites, and at the time of writing it is
being considered for inclusion in the upcoming OpenMP 5.0
standard.

Until recently, OMPT has been in a continuous state of
change, and as such I have found no other tools that visualize
performance problems using measurements taken with OMPT.
A tool that generates grain graphs using data collected through
OMPT could fill this gap. However, it is apparent that OMPT
does not provide all information required by grain graphs, one
example being for-loop chunk information.

This paper builds upon this observation and presents an ex-
haustive examination of the raw information needed generate
grain graphs and its derived metrics. Subsequently, the OMPT
interface is studied in detail. I then describe what is missing
and how OMPT can be extended to correct its shortcomings
while respecting its expressed design objectives.

This work contributes a thorough answer on how to obtain
from OMPT the data required to draw grain graphs. I show
what data can be immediately obtained from OMPT, and what
data needs extensions to OMPT. The proposed extensions
would let the interface facilitate more detailed visualizations,
a prime example being grain graphs. Hopefully, this will
convince the OpenMP Architecture Review Board to extend
the API to support this method.



II. BACKGROUND

A. OpenMP
Creating programs that can fully utilize modern multipro-

cessors with shared memory can be a complex and frus-
trating process. OpenMP was designed to ease this process,
specifically for high performance programs. It has become an
industry-standard API for creating parallel programs on shared
memory systems, using the C, C++ and Fortran programming
languages[1]. It uses a compiler-assisted approach where the
programmer inserts directives into the program to let the
compiler know how a portion of the program is to be paral-
lelised. The compiler then performs a code transformation that
includes inserting calls to an OpenMP runtime. The runtime is
a library that the program calls during execution, responsible
for tasks such as thread management and work distribution.

Initially, OpenMP only supported worksharing constructs
such as for-loops and sections. These let the runtime divide
chunks of a for-loop, or non-iterative sections of code, among
threads. The OpenMP 3.0 specification introduced tasks to
better accommodate task-parallel programs. Tasks are inde-
pendent units of work that themselves can create more tasks.
They are more general and flexible compared to sections, as
they allow dynamic generation of work and synchronization
of child tasks. Task synchronization is different from barriers,
which work on the thread-level to synchronize teams of worker
threads. This makes implementing task-parallel algorithms
simpler, as the programmer is distanced from runtime-centric
abstractions like threads and barriers.

B. Performance Profiling
In order to pinpoint bottlenecks and improve program

performance, programmers often need to perform profiling.
Generally, this entails monitoring program execution in order
to attribute various metrics such as execution time to program
entities, of which functions are an example. There are two
popular, distinct approaches for doing this.

The first is sampling, in which the profiler will perform
measurements in regular intervals, and subsequently derive
some performance metrics from these measurements. This
approach can among other things reveal the time spent inside
each function as well as the time spent executing application
code and time spent on spin and overhead. Examples of
tools using this approach are HPCToolkit[3] and Intel VTune
Amplifier.

One thing to note is that current OpenMP runtimes do not
come with functions for performance inquiries, as it is not
a part of the OpenMP standard. Therefore profilers must use
own methods to collect this data. In the case of HPCToolkit,
programs are compiled with a signal handler that will record
the current calling context. During sampling, signals are sent
periodically to the program[3]. When the program is complete,
the samples are analysed to present aggregated information,
for instance in which functions or instructions most of the
execution time is spent.

The second way to collect performance data is instrumenta-
tion. With this approach, the profiling system will receive calls

at certain program events. The canonical manner in which this
is done is to insert calls to the profiling system in the source
code of the program that is to be profiled. This method is,
among others, used in TAU[8] and Scalasca[9].

Using this approach, it is up to the programmer to find suit-
able instrumentation calls. If one is interested in the duration
of a specific event, a typical approach is to invoke calls before
and after the event. For another event, a single call might be
sufficient. This enables much more fine-grained monitoring of
the program. However, should the degree of instrumentation
become too high, the behaviour of the program might change,
yielding inaccurate performance analysis results[8]. This can
be prevented by limiting the amount of instrumentation calls,
as well as ensuring that the calls themselves do not incur
unnecessary overhead.

Sampling can be combined with light-weight instrumenta-
tion to implement blame shifting[7]. Traditional sampling will
often yield samples that show a thread waiting. This can be
due to lack of work, synchronization, mutual exclusion, or
something else. From the sample it is not trivial to identify the
reason for waiting. Blame shifting is a technique for placing
blame for waiting on the context that caused it.

This is done by using instrumentation calls that notify
the profiling system that a thread is about to start waiting,
along with information about the reason. For instance it can
specify the lock that caused it to wait. The profiler can then
record which thread is currently holding that lock. After this,
whenever the profiler is doing sampling and observes that the
thread is waiting, it can blame the thread holding the lock.

C. OpenMP Profiling APIs

In the past there have been multiple attempts to define a
standard OpenMP profiling API. Two such efforts have been
especially influential[10] in the design of OMPT, so they are
introduced briefly here. OMPT is discussed separately later.

One of the efforts was the POMP API[11]. This is an
instrumentation-based solution. It is proposed that the degree
of instrumentation is controlled through compiler directives.
It is argued that this is natural, as OpenMP programmers
are already used to inserting directives into their programs.
Moreover, monitoring of events is achieved by having the
compiler insert extra calls to the OpenMP runtime.

The second effort was the Sun/Oracle Collector API[12].
While this proposal also contain instrumentation functionality,
it was primarily designed to support statistical sampling of
call stacks. Because the call stacks will be different across
OpenMP runtime implementations, the authors also show how
to construct a program-centric call stack that is independent
of the runtime. Furthermore, this task is left up to the perfor-
mance tool in order to keep the API lightweight.

III. GRAIN GRAPHS

The recently proposed OpenMP visualization grain graphs
studies task instances and for-loop chunks, which the authors
generalize as grains. It combines program structure with per-
grain performance metrics to identify poor-performing grains.



Fig. 1: A trimmed example of the grain graph of a recursive
Fibonacci sequence program.

The program structure is presented as a directed acyclic graph.
The graph’s nodes are either grains, program fork points, or
join points. Edges show the relationships between grains, fork
points, and join points.

Moreover, the graph is supplemented with visual cues
related to performance, some of which can be seen in Figure
1. The length of grain nodes denote their execution time, while
the set of red edges shows the critical path of the grains. The
graph can be further annotated with measurements of memory
system behaviour such as cache miss ratios, or one of many
derived metrics which will be discussed shortly. Should any
of these metrics surpass reasonable values, the fill colour of
the responsible grains can be used to separate poor-performing
grains from well-performing ones. Favourable grains can also
be dimmed, to further isolate the grains that should be opti-
mized first.

Grain graphs necessitate collecting a set of properties per
grain during program execution. Some properties are needed
to uniquely identify grains. Others are used to generate the
structure of the graph. Finally, some properties are necessary
to derive performance metrics. The properties that must be
collected during execution are italicized for clarity when first
introduced. From these, other properties or metrics can be
derived during the post-processing stage.

The following properties are enough to produce full, unre-
duced grain graphs. An unreduced graph shows grains further
divided into fragments. It also shows bookkeeping nodes
associated with parallel for-loops. As shown in [5], a grain
graph is typically visualized in a reduced state to improve
information density. A reduced graph is created by grouping
nodes found in the unreduced graph.

A. Graph structure

The visual structure of a grain graph shows synchronization
points, fork- and join-points. A fork is the result of a parent

grain generating children grains. When the children complete
their execution they synchronize with the parent, yielding
a join point. For grains associated with task instances, this
can be captured by storing its parent, child number and
synchronization point number.

The child number indicates a grain’s birth order. The syn-
chronization point number is necessary in cases where a grain
contains more than one implicit or explicit synchronization
point. An example is when a task creates some children tasks,
synchronizes with them, and then creates more. On a reduced
grain graph, this will appear as a join followed by a fork, with
no grain nodes in-between. Children that synchronize at the
n-th synchronization point are shown to join at the n-th join
point.

Parallel for-loops require some extra information. On the
graph, n worker threads will give an n-way fork. On the graph,
each branch will contain a series of bookkeeping nodes and
chunk grains. Each grain is treated as the child of the grain
that encountered the loop.

To generate the bookkeeping nodes, the bookkeeping time
associated with each grain is collected as described later. To
place grains on the correct fork branch, the identifier of its
thread is used. To correctly order the grains on the same
branch, the grains are placed in order of increasing child
number. In other words, the successor of a chunk grain is
the next sibling executed on the same thread.

B. Identification of grains

A simple way to identify grains is with an increasing
numeric identifier. While uniquely identifying each grain
present in a particular run of the program, this identifier is
not guaranteed to correspond to the same grain across runs.

A run-independent unique identifier is necessary to compare
grains in graphs generated from different program executions.
Grains are either task- or for-loop chunk instances. Different
identification schemes are used for these two cases.

Task instances are identified by the path one must travel to
reach the task node from the starting node. This is enabled
by the fact that the shape of the graph will not change for
deterministic task-based programs, irrespective of the number
of threads used. This is not true for grains corresponding to
for-loop chunk instances, as the shape of the graph depends on
the number of worker threads and the order in which chunks
are assigned to workers. In this case, the grains are identified
by the thread that started the loop, a parallel for-loop sequence
counter, and the iteration range[5].

A grain might also be partially identified by its source
code location. This identifier is important, because there is
no point in finding poor-performing grains if the source origin
of that grain is unknown. Alternatively it is possible to record
the location of the grain code in the generated executable.
Typically this will be an outline function pointer. Using this
approach, the executable must contain the required information
to link the function address to a source code location, for
instance by examining the symbol table.
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Fig. 2: Task 1 encounters a taskwait region, which causes task
2 to be scheduled on the same thread.

C. Grain performance

In order to indicate poor-performing grains, it is necessary
with per-grain bookkeeping. Many raw properties are collected
to calculate derived metrics. Here, I present these raw metrics
in the context of the derived metrics that depend on them.

Firstly, the execution time is needed as it decides the
length of grain nodes. The execution time of a grain is the
accumulated time spent executing the grain. Grains associated
with task instances may have their execution suspended at
task creation and task synchronization points. As such, it is
not sufficient to simply measure the time between the start
and end of a task. The time a task spends in a suspended state
should not count towards its execution time. In Figure 2, the
execution of a taskwait region is shown. In this example,
the time between the start and end of task 2 would not be
counted in the execution time of task 1.

Execution time is also used to derive other metrics. One
such metric is parallel benefit. It is a grain’s execution time
divided by the costs of parallelization as seen in the parent.
This cost is defined as the grain’s creation time plus average
synchronization overhead. The latter is time used by the parent
to synchronize with its children divided by the number of
children. This metric introduces the need to collect creation
time and synchronization overhead time per grain.

Another derived metric is instantaneous parallelism. It quan-
tifies the degree of parallelism exposed at different times in
the program at the fragment level. A fragment is a consecutive
slice of grain execution. In Figure 2, the grain associated with
Task 1 is shown as two fragments. This necessitates measuring
a grain’s creation instant relative to its parent’s execution, its
synchronization instants, and its execution time.

It is also necessary to record the CPU identifier for every
grain. This is needed by the derived metric scatter. It is the
median pair-wise NUMA distance of processors executing
sibling grains.

Furthermore, Muddukrishna et al. suggest measuring grains’
memory system behaviour[5]. This includes collecting cache
miss ratios and stalled cycles counts. The latter can be
used together with execution time, if measured in cycles, to
calculate memory hierarchy utilization, which is the ratio of
cycles used for computation to cycles spent on stalls.

Finally, each chunk grain is subject to some chunk assign-

T/F Grain property Purpose

St
ru

ct
ur

e

�� Parent identifier Connect children with parents
�� Child number Order children, place chunks in exe-

cution order
�� Sync. point number Grain position relative to sync. points
�� Thread identifier Place chunks in order, uniquely iden-

tify chunks

Id
en

tifi
ca

tio
n �� Numeric identifier Simple grain identification

�� Code location Associate grains with source con-
structs

�� Loop sequence counter Uniquely identify chunk grains
�� Chunk iteration range Uniquely identify chunk grains

Pe
rf

or
m

an
ce

�� Execution time Node length, multiple derived metrics
�� Chunk overhead times Bookkeeping nodes, derive parallel

benefit
�� Creation time Derive parallel benefit
�� Sync. overhead time Derive parallel benefit
�� Create instant Derive instantaneous parallelism
�� Sync. instants Derive instantaneous parallelism
�� CPU identifier Derive scatter
�� Cache miss ratio Describe memory system behaviour
�� Stalled cycles Derive memory hierarchy utilization

TABLE I: The per-grain properties collected during program
execution. The T/F column shows whether a property applies
to tasks, for-loop chunks, or both.

ment overhead. This is shown on the graph as bookkeeping
nodes. The time spent on chunk assignment is encoded as the
length of the bookkeeping nodes. It is also needed to calculate
parallel benefit for chunk grains. This requires collecting chunk
overhead times.

A summary of properties that must be collected during
execution can be seen in Table I.

IV. THE OPENMP TOOLS API

The OpenMP Tools API, called OMPT for short, is a
recently proposed addition to the OpenMP standard. It is
designed to enable the creation of portable, first-party perfor-
mance analysis tools[10]. First-party means that the tool lives
in the profiled program’s address space. As there is currently
no standard performance analysis API, performance tools are
tightly integrated with specific OpenMP runtime implemen-
tations. By including performance measurement functionality
directly in OpenMP, tools can be used with any standard-
compliant OpenMP implementation. OMPT is likely to be
included in the upcoming OpenMP 5.0 standard.

OMPT combines elements from the earlier POMP and Sun
Collector APIs. It supports both instrumentation and sampling.
OMPT also includes events intended to enable blame shifting.
In this section, its design objectives, architecture and profiling
capabilities are summarized.

A. Design objectives

The API is intended to allow high-quality tools with low
overheads. Furthermore, its design objectives state that tools
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Fig. 3: Overview of an OMPT environment. The tool must
exist in the address space of the program. Placing the tool
in the address space can be done in three different ways: (a)
static linking, (b) dynamic linking, or (c) library injection.

should be able to associate costs with both the program and
the OpenMP runtime and that incorporating OMPT support
in an OpenMP runtime should add negligible overhead if no
tool is using it. It also states that the API should not impose
an unreasonable development burden on runtime developers
or tool implementers, and that profilers that use call stack
unwinding should be able to differentiate user- and runtime-
imposed stack frames.

B. Environment

In order to make use of the OMPT API, the tool must reside
in the application’s address space. The OpenMP runtime will
then call the tool’s initialization function immediately after it
has initialized itself. This allows the tool to set up its data
structures, retrieve pointers to OMPT functions and register
event callbacks. There are three distinct ways to place the
tool in the address space. It may be statically linked into
the executable, dynamically linked as a shared library, or
injected into the process before the OpenMP runtime starts
initialization.

Figure 3a shows a high-level overview of the application,
the tool, the OpenMP runtime, and lower levels of a computer
system. The OpenMP runtime is shown to interface with the
operating system to create one or more threads, as this is one
of its key responsibilities. The tool is shown to interface with
a shared OpenMP runtime for OMPT functionality, but note
that OMPT can also be fully compiler-implemented[10]. In
Figure 3c, the tool is injected into the process. The advantage
of this approach is that the application executable does not
need to re-linked before doing performance analysis.

In order to let tools map instances of threads, parallel
regions, tasks, and so forth to tool data structures, a data type
called ompt_data_t is introduced. It is a union type that can

OMPT subset Functions or events

Mandatory in-
quiry functions

ompt_enumerate_states
ompt_enumerate_mutex_kinds
ompt_get_thread_data ompt_get_state
ompt_get_parallel_info
ompt_get_task_info

Mandatory
events

ompt_event_thread_begin
ompt_event_thread_begin
ompt_event_parallel_begin
ompt_event_parallel_end
ompt_event_task_create
ompt_event_task_schedule
ompt_event_implicit_task
ompt_event_runtime_shutdown
ompt_event_control

Selected
optional events

ompt_event_sync_region_wait
ompt_event_sync_region
ompt_event_worksharing

TABLE II: Relevant excerpt from the OMPT interface.

represent an integer or a pointer, and it is passed by reference.
This allows tools to either attach tool-specific data directly
such instances, or alternatively maintain its own unique integer
identifier.

C. Core functionality

A small set of mandatory features are required for an
OpenMP environment to be minimally compliant. These
mandatory features are roughly as follows: Unique identi-
fiers must be maintained for instances of threads, parallel
regions, tasks and so on. It must support classification of
stack frames as user- or runtime-generated. After the OpenMP
runtime has been initialized, it must call the tool’s initialization
routine unless the environment variable OMP_TOOL is set to
disabled. It must also implement several async signal safe
inquiry functions to retrieve information from the OpenMP
runtime, maintain a state for each thread, and support a core set
of event callbacks. These are what enable most performance
measurements, so they are discussed in more detail below.

D. Mandatory functions

Every compliant implementation must support a set of
inquiry functions, which among other things can be used for
sampling. These functions are all listed in Table II. Their most
important functionality is providing information about what a
thread is doing.

A core set of event callbacks are also mandatory. During
initialization, the tool must register callbacks for the events it
is interested in. All callbacks are synchronous, meaning the
program will not continue until the callbacks have completed
execution. The event associated with the callbacks are listed in
Table II. The ompt_control event allows the user program
to send signals to the tool, as it is triggered when the program
calls the function ompt_control.

Note that in addition to what is presented above, OMPT
also contain inquiry functions and event callbacks related to
features for programming heterogeneous systems. As these
features are not needed here, they are omitted.



1) Optional functions: Optional features include a set of
additional events for blame shifting and instrumentation. As
these are quite numerous, they are not all listed here. However,
there are three instrumentation events that are particularly
relevant.

The first is ompt_event_worksharing. It is invoked
when a worksharing construct, such as a parallel for-loop, is
started, and when it is finished. The second is ompt_event_
sync_region. This event is invoked before and after a task
encounters a barrier, taskwait or taskgroup. The last event
is ompt_event_sync_region_wait. It differs from the
previous event in that the event starts when the a task is waiting
inside a synchronization region, and ends when another task
is scheduled on the thread, or when the region is exited. It
can therefore generate multiple pairs of begin/end callbacks
within the same region.

Note also that the specification is also lenient on the timing
of observable state transitions and event callbacks. It states that
for some states, the OpenMP runtimes have flexibility about
whether to report the state early or late. It is up to the tool
to account for this. For event callbacks, some might be called
when an event occurs, when it is convenient, or never[10]. The
return value for event callback registration must signal if and
when a callback will be invoked.

V. USING OMPT TO CREATE GRAIN GRAPHS

I will now describe how to use the OpenMP Tools interface
to acquire the raw properties needed to generate grain graphs.
A summary of what and how the various properties can
be obtained is shown in Table III. As I will demonstrate
below, some properties are easy to collect while others rely
on some nontrivial methods. Specifically, the ompt_event_
control event can be used to extend the instrumentation
capabilities of OMPT.

The ompt_event_control event allows the program
to send signals to the tool via the ompt_control func-
tion. The function has two parameters named command and
modifier, both unsigned 64-bit integers. These are passed
to the tool when the corresponding event callback is invoked.
This allows the programmer to implement some basic source
code instrumentation. If this is combined with some creative
methods in the tool, it is possible to obtain every property that
the API cannot provide directly.

Experimental verification

The highest authority regarding the OpenMP Tools API
is, at the time of writing, the technical report available in a
public GitHub repository[10]. The API descriptions from this
document are used to devise methods to collect the needed
data. A tool has also been developed to verify that the methods
work as expected. Like any tool using the OMPT interface,
it registers relevant callbacks and maintains its own set of
profiling data. It has been especially useful for more intricate
methods that rely on accurately interpreting the terse API
descriptions in the OMPT technical report.

Excluding empty lines, the tool is around 600 lines of C++
code. It is attached with the report. It was used together with
the LLVM OpenMP runtime, as there is no OMPT reference
implementation. The LLVM runtime’s OMPT implementation
follows the older OpenMP Technical Report 2[6] from 2014,
with some changes from the more recent document[10]. It is
therefore very similar to the updated OMPT proposal. The
runtime supports 8/8 mandatory events, 10/14 blame shifting
events, and 29/42 instrumentation events. One of the events
needed to generate grain graphs was unsupported, namely
ompt_event_sync_region_wait.

I shall now describe how to obtain each property step by
ustep.

A. Graph structure

The structure is different in the case of task-based programs
and programs with parallel for-loops. For the latter, the OMPT
interface is lacking. How to acquire the properties needed for
task-based programs will now be described.

1) Parent: For task-based programs, a pointer to the parent
task’s ompt_data_t is passed as a parameter in the callback
for the event ompt_event_task_create. For programs
with parallel for-loops, the parent is the initial task, found as
a parameter to the ompt_event_parallel_begin.

2) Child number for task grains: The child number is
equivalent to the order in which children are created. There-
fore, the tool must keep track of the order in which the
ompt_event_task_create callback is invoked. This can
be done by maintaining a child sequence counter per grain
during execution.

3) Child number for loop chunk grains: The OMPT inter-
face does not provide any information about parallel for-loop
chunks at all. To obtain data about chunks, I have designed
a mechanism based on ompt_control. By insering a call
to ompt_control inside the loop, it is possible to map out
which iteration ranges ran on which threads. Each iteration
range is then associated with a chunk.

A command value named CHUNK_ITERATION is defined.
The current iteration counter is passed as the modifier
for each iteration. By calling ompt_get_thread_data
function inside the ompt_event_control callback, per-
thread lists of iterations are created. One can then map
iterations to ranges as a post-processing step. This can be
done as shown in Algorithm 1. In simple terms, the algorithm
finds the loop iteration increment from the two first iterations
performed. After this point, whenever the difference between
two iterations is not equal to the expected increment, one
chunk is said to have ended while another one has started.

Figure 4 shows a for-loop where chunks are divided between
two threads. The iteration increment is found to be two. While
performing Algorithm 1 on the iterations of the first thread,
one would find the iteration counter value jumping from 7 to
17. This would indicate the end of the first iteration range and
the start of the second.

The algorithm works because OpenMP requires that parallel
for-loops have a constant increment. A limitation of the



T/F Grain property Obtainable How or why not
St

ru
ct

ur
e �� Parent identifier Yes Parameter of ompt_event_task_create and ompt_event_parallel_begin

callbacks.
�� Child number Yes, ompt_control Maintain own sequence counter per grain. Need ompt_control mechanism for chunks.
�� Sync. point number Yes Maintain own sequence counter per task.
�� Thread identifier Yes By using ompt_get_thread_data.

Id
en

tifi
ca

tio
n �� Numeric identifier Yes, ompt_control Maintain own sequence counter per grain. Need ompt_control mechanism for chunks.

�� Code location Yes Use return address parameter together with symbol table and debugging information.
�� Loop sequence counter Yes Maintain own sequence counter.
�� Chunk iteration range Using ompt_control Create list of iterations per thread, map to ranges late.

Pe
rf

or
m
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�� Execution time Yes, ompt_control Note grain start, end, and suspensions times. Do bookkeeping to accumulate time.
�� Chunk overhead times Using ompt_control Calculate differences between loop start, chunks, and loop end.
�� Creation time Using ompt_control Insert begin/end calls before and after a task construct.
�� Sync. overhead time Yes Using the ompt_event_sync_region_wait callback.
�� Create instant Yes, ompt_control Calculate parent’s elapsed execution time when grain created.
�� Sync. instants Yes Calculate elapsed exec. time inside ompt_event_sync_region callback
�� CPU identifier Yes Using system calls inside event callbacks
�� Cache miss ratio Yes, ompt_control Using hardware counters together with begin/end callbacks. Need ompt_control mech-

anism for chunks
�� Stalled cycles Yes, ompt_control Using hardware counters together with begin/end callbacks. Need ompt_control mech-

anism for chunks

TABLE III: Properties collected for each grain during execution, and how they can be obtained. The T/F column shows whether
a property applies to tasks, for-loop chunks, or both.

Algorithm 1: Map iterations to chunk iteration ranges
Input: List L with n iterations
Output: List R of iteration ranges

∆← L[2]− L[1] /* Iteration increment */

rf ← L[1] /* First iteration in range */

R← ∅
for iteration L[i] with i = 2 . . . n do

if L[i]− L[i− 1] 6= ∆ then
/* Irregular increment means start of

new chunk iteration range */

R← R + { rf , L[i− 1] }
rf ← L[i]

end
else if L[i] is last iteration then

R← R + { rf , L[i] }
end
else

continue
end

end

algorithm is that it will treat chunks with successive iteration
ranges as one large chunk if they are scheduled right after each
other on the same thread. It will also give erroneous results
if the chunk size is 1, as this makes the increment calculation
impossible. To account for these two cases, one could set the
chunk size manually for the loop using the schedule clause,
and give this information to the tool through another call to

1 3 5 7 17 19 21 23

9 11 13 15 25 27 29 31

Book-keeping overhead Thread 1 Thread 2

Fig. 4: A parallel for-loop iterating from 1 to 31, with an
iteration increment of two and a chunk size of 4

ompt_control.
Algorithm 1 is described as a post-processing algorithm

because it simplifies its definition. However, as shown in
section V-D, it can be altered to create chunks during program
execution instead. This is important, because it allows an
OMPT tool to collect properties for chunks during program
execution.

With this sorted out, I can finally answer how to obtain a
chunk’s child number: Whenever a new chunk is created, the
per-grain sequence counter for the loop’s parent task is used,
and subsequently incremented.

4) Synchronization point number: To keep track of multi-
ple synchronization points within a grain, the event ompt_
event_sync_region can be used. It lets the tool know
that a task is about to start synchronization. By maintaining
a sequence counter per grain, a child grain’s synchronization
point number can be read from the parent grain’s sequence
counter at create-time.

5) Thread identifier: Getting the identifier of the thread that
started executing a grain can be acquired by calling the inquiry
function ompt_get_thread_data inside the callback for



either ompt_event_task_schedule or ompt_event_
worksharing, for tasks and chunks respectively.

B. Identification of grains

1) Numeric identifier: For a particular run, each grain
corresponding to task instances can be identified using the
ompt_data_t type. This type can represent an increasing
integer identifier or a pointer to tool data for the grain. For
programs with parallel for-loops, whenever the tool detects that
a new chunk grain has started, it can get its numeric identifier
from a global grain sequence counter.

To uniquely identify grains across runs, the identification is
a bit more involed. For a grain associated with a task instance,
it is sufficient to simply enumerate the path from the root to
the grain. This path is a consequence of the graph structure.
This structure can be generated as described in section III-A.
As shown above, the OMPT interface can be used to retrieve
the necessary properties for task-based programs.

Grains associated with for-loop chunks have a different
scheme for unique identification. Three properties are needed,
one of which is the thread identifier which was also needed
for the graph structure. The two other properties are:

2) For-loop sequence counter: Maintaining a parallel for-
loop sequence counter is as simple as counting the number of
times the ompt_event_worksharing callback is invoked.

3) Chunk iteration range: This property cannot be obtained
directly using the OMPT API, but the ompt_control
mechanism described earlier relies on using iteration ranges
to find when one chunk instance has ended its execution, and
another one has started. As such, it has already been found.

4) Code location: To correlate grains with their originating
source code location, the callbacks associated with the task_
create and worksharing events can be used. They both
provide a pointer to the return address of the call to the
OpenMP runtime routine that triggered the event. To see which
compiled routine this address belongs to, the symbol table can
be inspected. Compiling the program with a line number table
is necessary to correlate a grain with a specific line number.

To inspect the symbol table of an executable on Unix-like
systems, the nm tool can be used. The equivalent tool for
Windows is DUMPBIN. Both tools can show line numbers if
that information is presented in the executable.

C. Grain performance

1) Execution time for task grains: The execution time of
a grain is the time spent executing the grain. For grains
associated with task instances, the runtime will notify the
tool that a task is getting scheduled for execution when it
appears as the next_task_data argument of the ompt_
event_task_schedule callback. When a task appears as
the prev_task_data argument, it has been completed or
suspended. We can measure the total execution time of a task
as follows: When a task is created, its execution time is set
to 0. Every time it is scheduled, the current time is noted.
When it is suspended or completed, the time since it was last
resumed is added to execution time.

2) Execution time for loop chunk grains: This property
cannot be obtained directly using the OMPT API, but the
ompt_control mechanism described earlier can be re-used.
A for-loop chunk instance will run uninterrupted over its
iteration range. As such, one can simply measure the time
elapsed from the chunk’s first iteration until the next chunk
is encountered. The last chunk on every thread will have to
instead use the end time of the loop to denote its end. This can
be found from the ompt_event_worksharing callback.

3) Task creation time: There is no pair of begin/end call-
backs for task creation. By inserting a call to ompt_control
before and after each task construct in the source code, the tool
can still measure creation time. Two distinct command val-
ues TASK_CREATE_BEGIN and TASK_CREATE_END are
defined. During the function call associated with TASK_
CREATE_END, the tool can use the inquiry function ompt_
get_task_info to find the current (parent) task. As the
creation time is a property of the child task that was just
created, it must be assigned to the last created child of the
current task.

4) Synchronization overhead time: This task-specific prop-
erty measures the time spent inside a taskwait region. In
Figure 2, it is the sum of the two grey regions spent inside
the runtime during a taskwait. This can be done with the
ompt_event_sync_region_wait callback. It is invoked
when a task starts or stops waiting in a barrier, taskwait, or
taskgroup region. One region may generate multiple pairs of
begin/end callbacks if multiple tasks are scheduled on the
waiting task’s thread while it is waiting. When a task is
created, its total synchronization overhead time is set to 0.
If it starts waiting in a taskwait region, the current time is
noted. When it stops waiting, we add the time since it started
waiting to the synchronization overhead time.

5) Creation instant for task grains: The creation instant
denotes when a grain is created relative to its parent’s ex-
ecution time. For grains associated with task instances, the
ompt_event_task_create event can be used. When this
callback is invoked, the duration of the interval since the
parent was last resumed must be calculated. This is done by
subtracting the parent’s last resumed time property with the
current time. This is then added to the parent’s execution time
to give the creation instant.

6) Creation instant for loop chunk grains: This property
cannot be obtained directly using the OMPT API, but the
ompt_control mechanism described earlier can be re-used.
Every for-loop chunk instance is said to be created when the
loop starts, because this is when they can start executing. As
with the creation instants of task grains, the creation instant
is relative to the parent task’s execution time.

7) Synchronization instants: This task-specific property
contains the all the times a taskwait region is entered relative to
the task instance’s execution time. Inside the ompt_event_
sync_region callback, the duration since the task instance
was last resumed is calculated. This is added to the execution
time property, giving the synchronization instant. The instant
is then added to the synchronization instants list.



8) CPU Identifier: The CPU Identifier can be collected
when a grain is scheduled. The OMPT interface does not
expose this information. However, for grains associated with
tasks, the ompt_event_task_schedule callback is in-
voked on the thread that is about to execute the task. A system
call can be used to get the identifier of the calling processor.
For the Linux and Windows operating systems, these are avail-
able as getcpu and GetCurrentProcessorNumber re-
spectively. In the case of untied tasks, it must be collected
every time a task is scheduled, and stored in a list. The same
system calls can be used whenever a new for-loop chunk is
created.

9) Cache miss ratio: The cache miss ratio of a grain is
the fraction of memory accesses within the grain that miss.
It is equal to one minus the hit ratio. The hit ratio is equal
to the number of hits divided by total accesses. To find the
cache miss ratio for a specific cache level, one must therefore
count the number of hits and misses to that cache. This can be
done by using hardware counters. When a grain is scheduled,
the counting starts. When it is suspended, the counts are
added to temporary variables. When the grain is complete, the
cache miss ratio is calculated. For task instances, the ompt_
event_task_schedule callback is called when tasks are
resumed, suspended, or completed. For for-loop chunks, the
ompt_control mechanism described earlier is used to find
when a chunk starts and ends.

10) Stalled cycle count: The stalled cycle count denotes
the number of cycles spent waiting for data. The procedure for
obtaining it is the same as for cache miss ratio - programmable
hardware counters.

11) Chunk overhead times: This property cannot be ob-
tained directly using the OMPT API, but the ompt_control
mechanism described earlier can be re-used. I have already
described how one can obtain chunk iteration ranges and their
corresponding execution times. If one also persist each chunk’s
start and end instants, one can find the overheads before, after,
and between chunks. Using Figure 4, the first book-keeping
node on each thread will be the difference between the start of
the loop and the start of the first chunk. The start instant of the
loop can be noted during the ompt_event_worksharing
callback. Subsequently, book-keeping nodes between chunks
are found by taking the difference between their respective
end and start instances. Finally, the last book-keeping node
has a duration equal to the end of the last chunk and the time
of the ompt_event_worksharing callback for the end of
the loop.

D. Inferring chunks during execution

Earlier in this section, I showed a way to way to find chunks
and their iteration ranges as a post-processing operation.
However, it is possible to do it during program execution as
well. The technique does not change much. Instead of looping
over a list, one must now check if the increment since last
iteration is equal to the expected iteration increment each time
ompt_control is called. When an irregular increment is
found, an iteration range has completed. This means that each

thread working on a parallel for-loop must additionally store
the iteration value of the last iteration.

It is now possible to have a chunk concept in the tool during
execution. Whenever a team of worker threads start a paral-
lel for-loop, as signalled by ompt_event_worksharing,
each thread will create an instance of a tool-defined grain data
structure. Whenever an iteration range has completed, the tool
can calculate any remaining chunk properties and create a new
grain data structure for the next chunk that is about to start.

VI. DISCUSSION AND FUTURE WORK

In this section, I discuss how well OMPT accommodate
the generation of grain graphs, how it could be extended, and
future work.

A. The good

The OpenMP Tools API is well thought out. In particular,
it provides almost every piece of data that grain graphs need
about task instances. The only exception is creation time, the
time spent creating a task. The event ompt_event_task_
create lets the tool know when a task is being created, but
there is no corresponding callback when the creation of the
task is complete.

However, by using the ompt_control function, it is
possible to obtain more data than what OMPT can otherwise
provide. In the case of the creation time property, one can
insert a call to ompt_control before and after every task
construct in the source code. The tool can then measure the
duration between these two calls. As shown in the previous
section, there are also other, more involved ways of using the
function.

B. The less good

All worksharing constructs share the same OMPT events.
When a parallel for-loop is encountered, the callback for
the ompt_event_worksharing event is invoked, and the
wstype argument indicates that the type of the worksharing
construct is a loop. As such, the concept of parallel for-loop
chunks does not appear anywhere in the OMPT interface.

I have devised workarounds for the lacking chunk infor-
mation that rely on inserting calls to ompt_control inside
each iteration. For tight loops, this could introduce significant
overhead. Furthermore, the workarounds rely on collecting
per-iteration data that is later used to find chunk iteration
ranges, execution times and overheads. For large loops, the
memory space needed could get quite large.

The workaround described in Algorithm 1 was initially
conceived as a post-processing algorithm that relied on record-
ing every iteration counter value executed on a thread and
mapping them to chunks after the program had finished. This
is obviously a sub-optimal solution, as it would require a lot
of memory, especially when also collecting other chunk data
that would also have to be assigned to chunks later. It was
therefore optimized as discussed in section V-D, which is still
not a perfect workaround. This illustrates that even with the



capabilities of ompt_control, extracting information about
chunks is tedious.

However, it is not optimal having to insert a great amount
of calls to ompt_control in your programs. It is also not
particularly fun to create new algorithms to extract chunk
properties, or to spend time optimizing those algorithms. One
of the explicit design objectives of OMPT is that the API
should not impose an unreasonable development burden on
tool implementers[10]. I would argue that it is unreasonably
clunky to extract information about for-loop chunks.

C. Proposing extensions to OMPT

I will now discuss how the OpenMP Tools API can extend
its functionality to accommodate detailed profiling and visu-
alization methods such as grain graphs. As shown above, it is
particularly cumbersome to implement profiling methods that
rely on obtaining information about parallel for-loop chunks.
As such, this is considered to be the most important extension.
A way of allowing the measurement of task creation duration
is also proposed.

1) Identification of chunks: It should be possible to identify
chunks. Like parallel and task regions, each individual chunk
would be identified by a unique ompt_data_t.

2) An event for chunk scheduling: To allow measuring the
duration of individual chunks, an event equivalent to ompt_
event_task_schedule should be introduced for chunks.
Whenever a chunk is about to start execution, the callback
associated with the event would be invoked. Its parameters
would at the very least include the task that encountered the
construct, the prior chunk, if any, and the next chunk, if any.
A natural extension would be to also pass the start and end of
the iteration range, as well as the iteration increment.

3) A begin/end event pair for task creation: Many callbacks
are associated with event pairs that denote the beginning and
end of an interval. One example is the worksharing construct.
Before the encountering task starts executing the first unit of
work, the ompt_event_worksharing callback is invoked
with the endpoint argument set to ompt_scope_begin.
After the last unit of work, the same callback is called with
endpoint=ompt_scope_end. I propose that the ompt_
event_task_create callback is changed to work in the
same way. I understand that the reason it is not currently so
is likely that the OpenMP Architecture Review Board believe
that it is not sufficiently useful, or that it would incur too much
overhead.

However, I have found that grain graphs is not the only
performance analysis method that relies on this information.
Qawasmeh et al. have recently created a method for adaptive
task scheduling that relies on characterizing, among other
things, how well a program is scheduled with regard to load
balancing[13]. To achieve this, they measure how long each
thread spends performing a set of low-level runtime events.
One such event is task creation.

In the case of grain graphs, the costs associated with task
creation are added to the costs of child synchronization to form
the total overhead of creating children. The parallel benefit of

each child task is then calculated. This allows programmers to
reason about whether creating certain tasks are worth the costs.
I believe that these two cases show that there are legitimate
reasons to consider extending OMPT to allow measuring task
creation duration.

VII. RELATED WORK

Here, I briefly summarize work related to interfaces similar
to OMPT, and other tools that use OMPT.

A. Similar interfaces

In addition to the interfaces mentioned as background
material, OPARI2 is a commonly used interface with similar
capabilities.

OPARI2 is a source-to-source instrumentor. It is included in
the Score-P instrumentation and measurement system[14]. It
works by automically wrapping OpenMP constructs like paral-
llel and task regions with calls to the performance monitoring
interface POMP. Like OMPT, it distinguishes individual task
instances and tracks their suspension and resumption points.

A comparison between OPARI2 and OMPT was performed
by Lorentz et al. in 2014[15]. While OPARI2 excelled at
passing along all relevant source code information, OMPT
reflects the execution behaviour of the application more ac-
curately. The information they provide is complimentary. The
measurement overhead was found to be low for both, but
the source code instrumentation of OPARI2 can sometimes
interfere with compiler optimizations. Finally, Lorentz et al.
proposed making the events associated with the start of an
implicit task, and with a thread switching from one task
to another, mandatory. This resulted in their inclusion as
mandatory events in the current draft[10].

B. Program analysis based on OMPT

OMPT does not yet enjoy widespread use. The most im-
portant reason is likely that it has not yet been standardized.
I have found no visualization methods that use data collected
by OMPT.

Qawasmeh et al.[13] profiled a set of OpenMP programs
running on the OpenUH OpenMP runtime in order to char-
acterize how well they were scheduled. They collected, for
each thread, the time spent inside low-level runtime events.
Furthermore, they measured level 2 cache misses during the
aforementioned events. The events were task creation, execu-
tion, suspension, completion, parallel region, implicit/explicit
barrier, and loop/single/master region. The authors use an
extended version of the Sun/Oracle Collector API[12]. It is
not stated how time spent on task creation is measured.

Protze et al. attempt to use OMPT together with the
LLVM ThreadSanitizer to implement a low-overhead data race
detector[16]. However, it was found that this approach was
not compatible with the ThreadSanitizer annotation interface.
In addition, they rely on certain callbacks related to critical
regions being called just before a synchronization point. How-
ever, the specification say that they should be called just after
the synchronization point instead. Because of this, the authors



decided to integrate the required annotations directly into the
Intel OpenMP runtime.

VIII. CONCLUSION

I have showed how the OpenMP Tools API can be used
to obtain the data necessary to generate grain graphs. Some
information is readily available, while other information re-
quire using the ompt_control function for source code
instrumentation. When used to measure the time spent on
task creation, this is an OK solution. However, using the
function to extract information about parallel for-loop chunks
is not straight-forward, and for tight loops it is very likely to
introduce significant overhead.

A set of extensions to OMPT are proposed. In the case
of for-loop chunk information, the extensions should result
in considerably lower overhead when extracting per-chunk
metrics compared to the alternative solution using ompt_
control. The measurement of task creation duration is
shown to be needed by others as well, so it should also be
considered as an extension. In the future, I plan to examine
this further, by extending the LLVM OpenMP runtime with
the proposed extensions, and measuring how much overhead
is introduced.

IX. FUTURE WORK

As mentioned, a prototype tool was used to verify that the
methods described in section V worked as expected with the
LLVM OpenMP implementation. The tool is able to create a
slightly reduced grain graph for task-based programs. Because
of the lacking support for information about loop chunks in
OMPT, the tool is not yet able to create grain graphs for
programs that implement parallel for-loops.

In the future, I plan to first extend the LLVM OpenMP
runtime with the proposed functionality. I expect that the
overheads associated with these extensions are low. Whether
that assumption is correct will be revealed when I later
measure the overheads and present the results. After extending
OMPT, the aforementioned tool will be further developed, in
order to generate full-fledged grain graphs on the extended
LLVM OpenMP runtime.
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APPENDIX

A. Project Proposal Text

The project work involves extending OMPT, an API con-
ceived by the OpenMP Tools group, with new interfaces for
performance metrics that can be used to construct grain graphs.

The grain graph is a recent visualization method for di-
agnosing performance problems in OpenMP programs. Struc-
turally, the grain graph is a directed acyclic graph whose nodes
represent grains – task and parallel for-loop chunk instances,
and edges represent parent-child relationships between grains.
Performance crippling problems such as low parallelism, work
inflation and poor parallelization benefit at highlighted at the
grain level on the grain graph, enabling average programmers
to make portable optimizations for poor performing OpenMP
programs, reducing pressure on experts and removing the
need for tedious trial-and-error tuning. The grain graph is
constructed using per-grain metrics obtained from an in-
house runtime system called MIR – a decision that rules
out visualizing grain graphs of programs executed on popular
runtime systems such as those behind ICC (Intel) and GCC.

OMPT (OpenMP Tools) is an API conceived by the
OpenMP Tools group to standardize the development of first-
party performance analysis tools for OpenMP programs. One
of the main problems addressed by OMPT is the prevalent
tight coupling of performance analysis methods and runtime
systems as exemplified by the case of grain graphs and MIR.
OMPT functions allow first-party tools to profile program
execution through asynchronous sampling or instrumentation.
Recent versions of ICC and a version of LLVM forked by the
OpenMP tools group implement OMPT. At the time of writing,
OMPT is mature enough to be considered by the OpenMP
committee for addition to the upcoming revision 5.0 of the
OpenMP standard.

To the best of our knowledge, there are no first-party tools
that visualize performance problems using profiling metrics
generated by OMPT. Grain graphs can readily fill this void,
provided OMPT is used to generate the profiling metrics
required to construct grain graphs. However, it is unclear
whether OMPT can provide the required profiling metrics
for constructing grain graphs without modification. At present
we understand that OMPT lacks thread scheduling and for-
loop chunk information required by grain graphs. It is likely
that a deeper, grain graph-centric investigation of OMPT will
reveal more missing interfaces and opportunities for improving
existing interfaces.

The aim of the project work is to evaluate the hypothesis
that OMPT can be extended to generate the profiling metrics
required to construct grain graphs. The hypothesis will be eval-
uated using these high-level steps. First, the student conducts a
review of the state-of-the-art in OpenMP performance profiling
methods that are of relevance to OMPT. Next, the student
identifies the profiling metrics required for constructing grain
graphs that OMPT does not provide. Next, the student defines
new interfaces that provide the missing data while respecting
the API design philosophy of OMPT. If time permits, the stu-

dent implements one or more of the newly defined interfaces,
evaluates their overheads, and ensures that the overheads are
within reasonable limits.


