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Abstract 

Optimality principles have been used for investigating physical processes in different 

areas. This work attempts to apply an optimal principle (that water flow resistance is 

minimized on global scale) to steady-state unsaturated flow processes. Based on the 

calculus of variations, we show that under optimal conditions, hydraulic conductivity for 

steady-state unsaturated flow is proportional to a power function of the magnitude of 

water flux. This relationship is consistent with an intuitive expectation that for an optimal 

water flow system, locations where relatively large water fluxes occur should correspond 

to relatively small resistance (or large conductance). Similar results were also obtained 

for hydraulic structures in river basins and tree leaves, as reported in other studies. 

Consistence of this theoretical result with observed fingering-flow behavior in 

unsaturated soils and an existing model is also demonstrated.    
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1.Introduction 

   Optimality principles refer to that state of a physical process is controlled by an optimal 

condition that is subject to physical and/or resource constrains. For example, Eagleson 

(2002) demonstrated that under natural conditions and in water-limited areas, vegetation 

tends to grow under maximum-productivity and unstressed conditions. He called function 

and forms of vegetation, following the optimality principle, results of “Darwinian 

expression”. After studying a variety of natural phenomena characterized by tree-like 

structures, Bejan (2000) proposed “constructal theory” that states that “for a finite-size 

open system to persist in time (to survive) it must evolve in such a way that it proves 

easier and easier access to the currents that flow through it”. While the definition of “easy 

access” is not always clear, Bejan (2000) demonstrated that tree-like structures are direct 

results of minimization of flow resistance across whole flow systems under consideration. 

Over the past 30 years, the maximum entropy production (MEP) principle has been 

successfully applied, in a heuristic sense, to the prediction of steady states of a wide 

range of systems (Niven, 2010; Kleidon, 2009). The MEP principle states that a flow 

system subject to various flows or gradients will tend towards a steady-state position of 

maximum thermodynamic entropy production (Niven, 2010).  However, the theoretical 

connections between these optimality principles and the currently existing fundamental 

laws are not well established. The alternative point of view is that these principles are 

actually self-standing and do not follow from other known laws (Bejan, 2000).        

    The role of optimality principles in forming complex natural patterns has been 

recognized for many years in the surface hydrology community (Leopold and Langbein, 

1962; Howard, 1990; Rodriguez-Iturbe et al, 1992; Rinaldo et al., 1992; Liu, 2010). For 

example, Leopold and Langbein (1962) proposed a maximum entropy principle for 

studying the formation of landscapes. Rodriguez-Iturbe et al (1992) postulated principles 

of optimality in energy expenditure at both local and global scales for channel networks. 

While previous studies mainly use spatially “discrete” approaches as a result of 

considering energy dissipation through channel networks only, Liu (2010) develop a 

group of (partial differential) governing equations for steady-state optimal landscapes 

(including both channel networks and associated hillslopes) using calculus of variations.  
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      The importance of optimality principles has also been intuitively recognized in the 

vadose-zone hydrology community for a long time. For example, it seems to be well 

known that fingering flow is due to a fact that unsaturated water tends to form flow paths 

corresponding to the minimized flow resistances. However, rigorous applications of this 

optimality principle have not been fully explored. Fingering flow results in that liquid 

water propagates quickly to significant depths while bypassing large portions of the 

vadose zone, and solute travel times from the contamination source (located in soil 

surface or vadose zone) to groundwater are shorter than a prior expected. Because of the 

important effects of this flow process on groundwater contamination (an important issue 

for water resources management), preferential flow has been a major research area in the 

vadose zone hydrology community for a number of years and considered probably the 

most frustrating processes in terms of hampering accurate predictions of contaminant 

transport in the vadose zone (e.g., Glass et al., 1988; Flury et al., 1995; Liu et al., 2003; 

Simunek et al., 2003; Nimmo, 2010).  

   This note presents a conductivity relationship for unsaturated flow derived from a 

principle that energy dissipation rate (or flow resistance) is minimized for the entire flow 

system. Preliminary evaluation of this relationship is conducted by comparing it with 

relevant experimental observations and the currently existing models. The potential 

limitations and further improvements of this work are also briefly discussed.     

 

2.  Theory 

     As the first step, we consider a relatively simple, steady state unsaturated flow system 

associated with a homogeneous and isotropic porous medium. From the water mass 

(volume) conservation, the steady-state water flow equation is given by 
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where x and y are two horizontal coordinate axes, z is the vertical axis,  and qx, qy  and qz  

are water fluxes along x , y  and z directions, respectively.  

    Accordingly, the energy expenditure rate for a unit control volume, E , can be 

expressed as 
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The above equation simply states that for a given unit volume, the energy expenditure 

rate at that location is equal to the energy carried by water flowing into the volume minus 

the energy carried by water flowing out of the volume. The E (a function of x, y and z) 

represents the total energy including both potential (corresponding to elevation z) and 

(capillary) pressure energy: 
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where g  is gravitational acceleration, P is capillary pressure,   is water density, and h is 

capillary pressure head. A combination of Equations (1) and (2) yields  
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    The water flux is generally given by Darcy’s’s equation   
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where K is hydraulic conductivity and given by 

),( ShKK                                                                                   (5d) 
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In Equation (5d), hydraulic conductivity is assumed to be a function of both capillary 

pressure head (h) and the square of the energy gradient (S). Previous studies for optimal 

landscape (Liu, 2010) and hydraulic structure of water flow in tree leaves (Liu, 

unpublished manuscript) indicate that water-flow conductance is function of water flux in 

these systems. That is the motivation for assuming K to be function of water flux in 

Equation (5d). (Note that assuming K to be a function of water flux is equivalent to 
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assuming it to be a function of energy gradient, because water flux, energy gradient and 

K are related through Darcy’s law.)  Function form of Equation (5d) is a subject of study 

in this work. 

     When we combine Equations (4) and (5), the global energy expenditure rate through 

domain    is given by 

dzdxdyKSEdxdydz 
 
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      The optimality principle in our problem is to minimize the absolute value of the 

above integral. To do so, we employ the calculus of variations that seeks optimal 

(stationary) solutions to a functional (a function of functions) by identifying unknown 

functions (Weinstock, 1974). 

    Based on Equations (1), (5) and (6), the Lagrange for the given problem is given by 
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Note that the first term is from Equation (6) and other terms are constraints from 

Equations (1) and (5). Use of these constraint terms allows considering related functions 

to be independent when determining the optimal solution to Equation (6). The   

functions are Lagrange multipliers. A mathematically equivalent way to define L to avoid 

the use of some (or all) constraints is to directly insert Equations (1) and (5) into the first 

term of Equation (7) (Pike, 2001). In this case, the number of independent functions will 

be reduced. However, the use of Equation (7) is more straightforward and easier to 

handle for the given problem.  

   The following Euler-Lagrange equation is used to determine an unknown function w 

associated with L to minimize the integral defined in Equation (6) (Weinstock, 1974): 
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where wx, wy and wz are partial derivatives with respect to x, y and z, respectively. In this 

study, w corresponds to K, qx, qy, qz,  S and h (or E), respectively. (Also note that 

application of the Euler-Lagrange equation to Lagrange multipliers will recover 

Equations (1) and (5).)  

      Replacing w with qx, qy  and qz, respectively, in Equation (8) yields  
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     Replacing w with S in Equation (8), we have  
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    Again, replacing w with h in Equation (8) and using Equation (1), we obtain 
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    Replacing w with K in Equation (8) gives 
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Based on Equations (5e) and (9), solution to equation (12) can be given as 

E1                                                                                                                (13) 

Then combining Equations (9), (10), (11) and (13) and using the continuity equation, we 

obtain the following equation 
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  A comparison between the above equation with the continuity equation (Equations (1) 

and (5)) yields 
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where A is a constant. 

   To get practically useful results, we further consider K(h, S) to be further expressed by 
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Substituting (16) into (15) results in 
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Based on Darcy’s law, (17) can be rewritten as 
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where q  is the magnitude of water flux given by 
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     Combining (18) and (16) gives our final conductivity relationship as follows 
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where a = A/(2+A). It is very interesting to note that although the mathematical 

derivation processes are considerably complex and involve solving a group of partial 

differential equations, the final result (Equation (20)) is amazingly simple.  

 

3. Discussion 

    Under optimal flow conditions corresponding to the minimum energy dissipation rate 

(or flow resistance), the derived conductivity is a power function of water flux (Equation 

20). This result physically makes sense. For the positive power values, the smallest flow 

resistance occurs within flow paths with the largest water flux. Intuitively, it is easy to 

understand that this conductivity distribution will result in total flow resistance globally. 

This finding is also consistent with our daily life experiences. For example, to maximize 

traffic transportation efficiency, our highways always have more lanes in locations with 
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high traffic fluxes. Also note that conductivity-flux relationships with similar 

mathematical forms are derived under optimal flow conditions for tree leaves and surface 

water flow (Liu, unpublished manuscript; Liu, 2010). That explains why fingering flow 

patterns in unsaturated soils are similar to geometries of blades of tree leaves and 

drainage networks in river basins.  

    There may be different interpretations of Equation (20). One interpretation is that F(h) 

is the local-scale hydraulic conductivity within the fingering-flow zone and that the 

power function of flux in the equation represents the fraction of fingering flow zone in an 

area normal to water flux direction. This is justified because h is a local-scale variable. In 

this case, our result is supported by the analysis results of Wang et al. (1998). On the 

basis of a number of laboratory-experimental observations of vertical fingering flow in 

soils (reported in the literature), Wang et al. (1998) presented a relation between flow 

conditions and a parameter, Fa, defined as the ratio of horizontal cross-sectional area 

occupied by gravity fingers to the total cross-sectional areas: 
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Obviously, Equation (21) is identical to our theoretical result with a = 0.5. In other words, 

our theoretical result agrees with laboratory observations cited by Wang et al. (1998). 

    Our theoretical result is also consistent with the active region model (ARM) proposed 

by Liu et al. (2005) that is an extension of the active fracture model developed for 

modeling unsaturated water in fractured rock (Liu et al., 1998). Both the active fracture 

model and active region model have been evaluated with a variety of experimental data 

and remarkable agreements between the models and the data have been observed (Liu et 

al., 1998, 2003, 2005; Liu and Zhang, 2009; Sheng et al., 2009). The ARM assumes a 

flow domain to be divided into an active region (fingering flow zone) and an inactive 

region. Flow occurs only in the active region. The volumetric portion of the active region 

is given as 

f                                                                                    (22) 
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Where   is the average effective water saturation across the whole flow domain 

(including both active and inactive regions), and   is a constant factor between zero and 

one. Note that f is equivalent to Fa in Equation (21).  

   By definition, the average water saturation is related to the effective water saturation 

( a ) within the active region by 

af                                                                                           (23) 

For gravity-dominated flow, the energy gradient equals one and the vertical water flux is 

the same as the hydraulic conductivity. Using the well-known Brooks-Corey relationship 

(1964) to describe hydraulic conductivity within the active region, we can write the total 

vertical water flux as 
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where   is the Brooks-Corey factor.  Combining Equations (22) to (24) yields 
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Thus, Equation (25) derived from the ARM is equivalent to our conductivity relationship 

with 
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In the other worlds, we demonstrate the equivalence between our Equation (20) and the 

ARM for gravity-dominated unsaturated flow under the condition that the power function 

in Equation (20) is interpreted as a volumetric fraction of fingering flow zones within 

soils. 

    It is of interest to note that for typical values of   = 4 and   = 0.7 (Brooks and Corey, 

1964; Sheng et al., 2009), a = 0.4 is close to the value of 0.50 given in Equation (21). 

Whether or not a single value for parameter a is valid for different soils needs further 

research based on experimental observations. Nevertheless, single parameter (a) values 

seem to be able to describe water flow in tree leaves (a=1.0) and river basin (a = 2.2), 

respectively (Liu 2010; Liu, unpublished manuscript). 
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   Finally, this work is the first step to incorporate the optimality principle into 

unsaturated flow. Consequently, some limitation of the current work still exists. For 

example, certain local-scale unsaturated-flow physics is not adequately incorporated yet. 

This physics requires that the upper limit of K in Equation (20) should be F(h), which, 

however, is not reflected in our theory except for gravity-dominated flow that 

automatically gives 1
satK

q
. This can be approximately accounted for in practice by 

limiting the K value calculated from Equation (20) to the corresponding F(h) value. 

Nevertheless, the major focus of this note is to highlight the potential for developing new 

unsaturated water flow theories based on the optimal principle. This principle may hold 

the key to resolving a number of problems associated with emerging patterns in 

unsaturated soils. 

 

4. Concluding remarks  

    Based on the calculus of variations, this work shows that under optimal conditions, 

hydraulic conductivity for steady-state unsaturated flow is proportional to a power 

function of the magnitude of water flux. It is consistent with an intuitive expectation that 

for an optimal water flow system, locations where relatively large water fluxes occur 

should correspond to relatively small resistance (or large conductance). Similar results 

were also obtained for hydraulic structures in river basins and tree leaves. Consistence 

between this theoretical result with observed fingering-flow behavior in unsaturated soils 

and the active region model is also demonstrated.    
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