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Abstract

We present a Bayesian model for acceptance sampling where the population consists of two groups,

each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may

be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to

be identified (and sampled) using expert judgment, while the remaining low-risk items are sampled

randomly. We focus on the situation where all observed samples must be acceptable, where the objective

of the statistical inference is to quantify the probability that a large percentage of the unsampled items in

the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling

and simpler Bayesian formulations of the problem are essentially special cases of the proposed model.

We explore the properties of the model in detail, and discuss the conditions necessary to ensure that the

required sample size is a non-decreasing function of the population size. The methodology is applicable

to a variety of acceptance sampling problems, including environmental sampling where the objective is

to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal

agent.

KEY WORDS: compliance sampling, upper tolerance limit, judgmental sampling, environmental sampling
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1 Introduction

Consider a population of independent items, each of which, upon sampling, can be identified as either

possessing or not possessing a particular attribute of concern. Based on this attribute, each item will be

classified as being ‘acceptable’ or ‘unacceptable.’ Suppose also that the population consists of two groups,

or sub-populations, of units, wherein the units from the first group have a higher propensity to reflect the

attribute of concern than units from the second group. While the two groups have different levels of risk,

we desire that information obtained from sampling one of the groups will influence our belief about the

other, and vice versa. In other words, sample results from either group influence our belief about the entire

population. We presume that the size of the high-risk group is considerably smaller than the low-risk group,

and that all of the items in the high-risk group are correctly identified and sampled. A random sample is

then drawn from the low-risk group to augment the results of the census of the high-risk group. In practice,

it is likely that the professional judgment of a subject matter expert would be used to distinguish between

the groups. For this reason, we refer to samples from the high-risk group as ‘judgmental,’ or ‘targeted,’

samples, and samples from the low-risk group as ‘random’ samples. After taking both judgmental and

random samples, if none of the inspected items are unacceptable, we wish to calculate the probability that a

high percentage of the remaining, unsampled items of the population are also acceptable. For example, we

may desire a probability of 0.95 that 99% of the total population is acceptable, given that all the samples

were acceptable. We present a Bayesian formulation of this problem, wherein required sample sizes may be

calculated to satisfy a desired level of posterior confidence in the acceptability of a high percentage of the

population items.

Wright (1992), Grieve (1994), and Axelrod (2005) present a Bayesian model which addresses a very

similar problem to the one considered here, except the population is homogeneous, i.e. the risk is the same

for all members of the population. Traditional frequentist approaches to acceptance sampling (Schilling and

Neubauer, 2009; Bowen and Bennett, 1988) also do not consider sub-populations with different levels of

risk. Graves et al. (2007) addresses a somewhat related problem in estimating a proportion using biased

convenience and unbiased random samples. However, our objective differs in that we esteem the ‘bias’

incurred from judgmentally sampling the high-risk group (and finding those observations to be acceptable)
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to be advantageous in demonstrating that a high fraction of the population is acceptable. After all, if the

goal is to demonstrate that most items are acceptable, it only makes sense, as a starting point, to inspect

the items that are most likely to be unacceptable.

There are a number of contexts in which the proposed methodology could be employed: acceptance

sampling (Schilling and Neubauer, 2009), discovery or audit sampling (Guy, Carmichael, and Whittington,

1998), or even the sampling of network packets which may pose cyber-security threats (Valgenti, Shaikot, and

Kim, 2010). The approach may also be applied in the context of indoor environmental sampling (Emanuel,

Roos, and Niyogi, 2008). While this methodology ignores spatial correlation among the population members,

the simplifying assumption of independence turns out to be conservative, a point we discuss in more detail

in Section 4.2.

One of the principal motivations for this work stemmed from evaluation by the U.S. Government Ac-

countability Office (GAO) of the sampling efforts that were conducted in response to the anthrax incidents

in the United States during 2001 (GAO, 2005). The GAO reported that sampling efforts based on judg-

mental samples alone were insufficient to provide a quantified level of confidence when no contamination

was detected. They addressed the need to use “probabilistic” sampling, that is, sampling designs based on

statistical models that quantify the confidence associated with sample results. The work presented herein

was developed to address that concern, while creating a framework that would permit investigators to sample

high-risk locations judgmentally and still quantify the confidence in negative results with a statistical model.

Furthermore, the model we present permits investigators to leverage their prior belief and their judgment

regarding the locations where contamination is most likely to be present in order to reduce the total number

of samples required to achieve the desired level of confidence. Naturally, quantifying the level of prior belief

and the exercise of judgment can be subjective and prone to error. However, in many instances, carefully

(and conservatively) accounting for these quantities can improve the feasibility of sampling plans by requiring

fewer samples than frequentist approaches.
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2 Methods

Suppose the population of interest has N items, consisting of nh high-risk items and n` low-risk items (nh +

n` = N), where we typically expect nh to be considerably smaller than n`. We presume that members of the

two sub-populations can be correctly distinguished prior to sampling. In the context of the indoor sampling

problem, this infers that investigators can correctly identify the high-risk locations. (The consequences of

less than perfect distinction between the high and low-risk sub-populations is a topic of current research).

Given that all the samples are acceptable, we desire to calculate the probability C that a desired fraction of

the population, λ, is acceptable (where 0 < λ ≤ 1). Under the presumption of perfect distinction between

the two groups, the number of required samples will be minimized if all the nh high-risk items are sampled,

along with a random sample of size n from the n` low-risk items.

Let each of the N items be modeled as independent Bernoulli variates with probability θh or θ` of

being unacceptable, depending on whether the item belongs to the high-risk or low-risk sub-population,

respectively. Naturally, we expect θh, on average, to be greater than θ`. The prior distribution(s) for

θh and θ` will involve the Beta distribution, which we discuss in detail below. Let the binomial variates

Xh|θh and X`|θ` denote the numbers of unacceptable high-risk and low-risk items observed in the sample,

respectively. Specifically, we write the distributions of these random variables as Xh|θh ∼ Bin(nh, θh) and

X`|θ` ∼ Bin(n, θ`). The Bayesian confidence in the acceptability of a large fraction of the population, C,

is calculated using the posterior predictive distribution of the number of unsampled, unacceptable low-risk

items, denoted by Y`. The confidence function

C = P (Y` ≤ (1− λ)N | Xh = 0, X` = 0) (1)

may be solved for the number of random samples, n, required to achieve a desired level of confidence, C ′.

The Beta-binomial prior, hypergeometric likelihood, and Beta-binomial posterior are the natural choice

for a Bayesian model that describes sampling from a finite, dichotomous population without replacement.

This approach was used by Wright (1992), Grieve (1994), and Axelrod (2005). We chose instead a model

which uses Beta priors, binomial likelihoods, Beta posteriors, and the posterior predictive distribution, be-

cause this approach facilitates accounting for the two levels of risk in the same population. It is interesting to
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note that for a homogeneous population with only one level of risk, our approach yields the same posterior-

predictive distribution of the number of unobserved, unacceptable items, as that obtained by Wright (1992)

and Grieve (1994) (See Appendix A for details). Because this posterior-predictive distribution is the founda-

tion for inference and sample size determination, our approach and the Wright/Grieve approach are virtually

identical when the population is homogeneous.

Let θ ∼ Beta(α, β) indicate that the random variable θ follows a Beta distribution with density p(θ) =

[B(α, β)]−1
θα−1(1 − θ)β−1, where B(a, b) =

∫ 1

0
ta−1(1 − t)b−1dt denotes the complete beta function. The

density has support on (0, 1) and Eθ = α/(α + β). While the two shape parameters α and β of the Beta

family of distributions provide a variety of density shapes, we are typically interested in convex, exponential-

type shapes that place most of the weight near zero, reflecting a prior belief that a large fraction of the

population will be acceptable. These shapes can be achieved with α < 1 and β = 1 or by setting α = 1 and

β > 1. We prefer the latter of the two, because α < 1 places so much weight near zero that the prior can

easily overwhelm the likelihood. In addition, the fact that limθ→0+ p(θ) = ∞ when α < 1 can contribute

to numerical instability in calculating C and n. For the Beta(α = 1, β ≥ 1) family, specifying the a priori

expected value of θ is a natural way to initialize the prior and choose a starting value for β.

A non-informative prior may be obtained by setting α = 1 and β = 1, resulting in a uniform distribution

for θ. While some investigators may prefer a non-informative prior, Axelrod (2005) makes a compelling

argument for employing at least some prior belief in this type of acceptance sampling. Specifically, the

uniform prior implies the assumption that P (θh < 0.01) = P (θh > 0.99). If we really believed that a large

value of θh was just as likely as a small value, why would we be trying to demonstrate that a large fraction of

the population is acceptable, especially when that inference will be conditional on observing no unacceptable

items in the sample? Given the context and objectives of the sampling, a uniform prior is likely to be unduly

conservative.

Specifying either the joint or marginal prior distribution(s) of θh and θ` must be done carefully to ensure

that information obtained from sampling the high-risk group will influence our belief about the low-risk

group, and vice versa. For example, if all 20 high-risk items were found to be acceptable, we desire the

updated marginal distributions of both θh and θ` to have more weight closer to zero than they did prior to
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sampling. The same would be true if, say, 30 samples were selected from the low-risk sub-population and

found to be acceptable. Hence, some type of linkage between θh and θ` is required. A joint prior for θh and

θ` with the linkage induced by the positive correlation between θh and θ` would be desirable. Specifically,

we would like this bivariate beta distribution to have a high correlation with marginal distributions of

Beta(1, βh) and Beta(1, β`).

However, the various bivariate beta distributions we have considered result in analytic or computational

challenges that make it difficult to 1) calculate the required sample size, n, without Bayesian simulation

techniques, and/or 2) specify the correlation between θh and θ`. For example, Gupta and Wong (1985)

presented a bivariate beta distribution based on Morgenstern’s (1956) system, but these variables can, at

most, have a positive correlation coefficient of 1/3 (Schucany, Parr, and Boyer, 1978), which is too low for

our purposes. Lee (1996) describes another type of bivariate beta distribution based on the Sarmanov family

(Sarmanov, 1966). However, we observed that the correlation (given by Danaher and Hardie (2005)), of

the joint density given by Lee (1996) that has Beta(1, βh) and Beta(1, β`) marginals is typically small

(< 0.50). Shubina and Lee (2004) discussed the maximum attainable correlation for Sarmanov families, and

this approach, subject to further investigation, might lead to the properties we desire for a bivariate beta

density.

Olkin and Liu (2003) proposed a bivariate beta distribution constructed from a transformation of three

gamma variates. While this approach can give rise to high correlation between θh and θ`, it does not

provide a mechanism to specify the correlation, and it leads to a posterior distribution that does not appear

to be readily integrable, thus requiring Bayesian simulation techniques, i.e. Markov Chain Monte Carlo

(Gelman, Carlin, Stern, and Rubin, 2004) in order to estimate posterior probabilities. This, in turn, would

make calculation of the sample size complex and unwieldy for practitioners. Last of all, Magnussen (2002)

presented an algorithm to draw from a beta bivariate distribution with known marginal distributions and a

specified correlation–but once again, simulation would complicate the objective of determining sample sizes

for practitioners. Despite these challenges, the use of a bivariate beta prior is an appealing and natural

choice for a Bayesian model such as this, and would provide an interesting subject for future research.
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2.1 An initial model for combining judgmental and random samples

We consider instead an explicit link between the high and low-risk sub-populations by defining θ` = θh/ρ,

for ρ ≥ 1. Thus, θh and θ` have densities

p1(θh) = β(1− θh)β−1I{0, 1}(θh)

p1(θ`) = ρβ(1− ρθ`)β−1I{0, 1/ρ}(θ`)

where the subscript ‘1’ designates the initial model. The value of β can be obtained by using historical data

or expert opinion to estimate the a priori expected value of θh and solve for β as follows:

β := (1− Eθh)/Eθh (2)

We can interpret Eθh as the rate of unacceptable items we expect in the high-risk sub-population. We may

interpret ρ as a factor indicating how much more likely a high-risk item is unacceptable than a low-risk item.

We note parenthetically that it may be desirable to model β and ρ as random variables with their own

distributions. For example, β and ρ could each be modeled as independent Gamma variates with support

on [1,∞). This would make it possible to account for the uncertainty in specifying a priori values for β and

ρ. However, we elected not to do this primarily to avoid added complexity for the practitioner. In addition,

adding distributions for β and ρ would induce two additional integrations in the confidence functions (5)

and (14), as we would need to average over the measures of β and ρ.

Expressing the likelihoods only in terms of θh gives Xh|θh ∼ Bin(nh, θh) and X`|θh ∼ Bin(n, θh/ρ). We

have by Bayes’ rule and the independence of Xh and X`:

p1(θh | Xh = 0, X` = 0) ∝ P (Xh = 0 | θh)P (X` = 0 | θh)p1(θh)

∝ (1− θh)nh(1− θh/ρ)n(1− θh)β−1 (3)

and normalizing the posterior density gives

p1(θh | Xh = 0, X` = 0) =
(1− θh)nh+β−1(1− θh/ρ)n

∫ 1

0
(1− θh)nh+β−1(1− θh/ρ)ndθh

(4)

8
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Because Y` ∼ Bin(N − nh − n, θh/ρ), we can then write the Bayesian confidence (1) as

C =
∫ 1

0

P (Y` ≤ (1− λ)N | θh) p1(θh | Xh = 0, X` = 0) dθh

=

∫ 1

0

b(1−λ)Nc∑
y=0

(
N − nh − n

y

)(
θh

ρ

)y (
1− θh

ρ

)N−nh−n−y

p1(θh | Xh = 0, X` = 0) dθh (5)

Sample sizes can then be determined by numerically searching (5) for the smallest value of n that achieves

a desired level of confidence, C ′. This initial model was first discussed by Sego et al. (2007).

2.2 Drawbacks of the initial model

While the initial model provides a good starting point for the problem at hand, the approach has four

immediate drawbacks. First, the integrals in (4) and (5) are difficult to accurately calculate with standard

numerical integration routines because their integrands are mostly constant (near 0) over the unit interval.

This is especially true for large values of β. Second, defining θh = ρθ` results in truncating the support of

the prior distribution of θ` to (0, 1/ρ), which may not be desirable. Third, because the distribution function

of Y` is discrete, the required sample size can oscillate strongly for increasing values of N , as illustrated in

Figure 1.

Fourth, in situations where the prior evidence is strong (i.e. which is reflected in large values of β and/or

ρ) relative to the desired fraction of acceptability, λ, the confidence function (5) is not necessarily a decreasing

function of N . The practical implication is that more samples may be required for a smaller population than

for a larger population to achieve the same level of confidence—an undesirable and non-intuitive result. This

phenomenon results from an interesting characteristic of the binomial distribution function. To illustrate,

let g(N) = P (W ≤ (1 − λ)N) for W ∼ Binomial(N, ϕ). Then, for values of ϕ that are small relative to

1− λ, we observe g(N) is not a decreasing function of N . However, larger values of ϕ result in a decreasing

function of g. This phenomenon is illustrated in Figure 2. One of the factors that induces this phenomenon

is the dependence of the distribution of W on N . Thus, one way to avoid it would be to make inference to a

specific number of unacceptable items, rather than a fraction of the population size. For example, we could

desire a high probability that no more than, say, 10 items in the population be unacceptable. Nonetheless,

in many applications, it is often desirable to make inference to a quantile of the population (in this case,
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Figure 1: Number of random samples, n, required by the initial model, versus the population size, N , when
C ′ = 0.95, nh = 20, Eθh = 0.02 (β = 49), ρ = 2, and λ = 0.99. The random sample size was calculated using
(5). Vertical, broken lines appear at values of N evenly divisible by 100. Note how the required sample size
drops at these vertical lines, because λ = 0.99 results in an additional unacceptable item being tolerated at
each increment of 100 items in the population.

λN), especially because it provides a standard level of confidence that would be applicable when sampling

populations of different sizes. We note that this phenomenon affects the models we propose here, as well

as those discussed by Wright (1992), Grieve (1994), and Axelrod (2005) when inference is made to λN (as

opposed to a specified number of unacceptable items). In Section 3.2, we discuss this phenomenon in greater

detail, along with an approach to avoid it.

2.3 A refined model

We therefore propose an alternative to the initial model discussed in Section 2.1 which addresses these four

concerns. This refined model is also a reasonable approximation to the initial model and provides similar

random sample sizes, which we discuss in Section 3.3. Hereafter, for simplicity, we refer to this refined

model as the Combined Judgmental and Random (CJR) model. We begin by specifying independent prior

distributions θh ∼ Beta(1, β) and θ` ∼ Beta(1, φ(β)), with densities p2(θh) and p2(θ`), where the subscript

‘2’ designates the refined model and

φ(β) = ρ(β + 1)− 1 (6)
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Figure 2: Plot of g(N) = P (W ≤ (1 − λ)N) versus N where λ = 0.99 and W ∼ Binomial(N,ϕ). Note
how the smaller values of ϕ can cause g(N) to increase. Points are plotted at values where (1 − 0.99)N is
integer-valued (increments of 100) to avoid oscillation that results from the discrete distribution function of
W .

for ρ ≥ 1. Note that (6) is the solution to

Eθh = ρEθ` (7)

a relationship we assume holds both before and after sample collection. As it is used in (7), we may

interpret ρ as a factor indicating how much more likely, on average, a high-risk item is unacceptable than

a low-risk item. We refer to φ as the linkage function which expresses the relationship between the high

and low-risk items. Note that θh and θl share a common parameter, β. This approach addresses the first

concern discussed in Section 2.2 by yielding conjugate Beta posterior distributions which result in a posterior

predictive distribution function for Y` that is easily calculated using gamma functions. The second concern

is also addressed because the prior on θ` is Beta with support on the entire unit interval. While it is not

necessary to collect the data in stages—with high-risk judgmental samples first, followed by low-risk random

samples—it is illustrative to consider two stages of sampling to motivate the approach.

Observing Xh = 0 in the first stage and applying Bayes’ theorem, we write the resulting posterior density
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of θh without the constant of integration, where f denotes the binomial likelihood:

p2(θh | Xh = 0) ∝ p2(θh)f(Xh = 0 | θh)

∝ (1− θh)β−1(1− θh)nh (8)

= (1− θh)nh+β−1

which gives the well-known (Gelman et al., 2004) conjugate posterior of θh|(Xh = 0) ∼ Beta(1, nh +β). The

information obtained by observing Xh = 0 is reflected in the updated value of the shape parameter: nh + β.

By inserting this updated value into the prior on θl, we allow the outcome of Xh = 0 to increase our prior

belief in the acceptability of the low-risk samples. Therefore, substituting the updated shape parameter into

the prior for θl via (6) gives

θ` ∼ Beta(1, φ(nh + β)) (9)

We abuse the conditioning notation and denote this updated prior density of θ` as p2(θ` | Xh = 0) to reflect

the information obtained by the nh acceptable judgmental items. Alternatively, we could view the first stage

sampling of the high-risk items as an approach to elicit the prior distribution for θ` before sampling the

low-risk group.

Upon observing X` = 0 in the second stage, we arrive at the posterior distribution for θ` by combining

the binomial likelihood of n acceptable low-risk items with the updated prior, p2(θ` | Xh = 0), in a manner

similar to (8). This gives θ`|(Xh = 0, X` = 0) ∼ Beta(1, β′) where

β′ := n + φ(nh + β) = n + ρ(nh + β + 1)− 1 (10)

Note that β′ has a natural interpretation: the nh acceptable, judgmentally sampled items are weighted ρ

times more than the n acceptable, randomly sampled items.

Having observed Xh = 0 and X` = 0, the number of low-risk, unsampled items which are unacceptable,

Y`, is Binomial with N − nh − n trials and probability θ`|(Xh = 0, X` = 0). Letting FY`
(y | θ`) denote the

distribution function of Y`|θ`, i.e.

FY`
(y | θ`) = P (Y` ≤ y | θ`) =

y∑

i=0

(
N − nh − n

i

)
(θ`)i(1− θ`)N−nh−n−i (11)

12
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we write the Bayesian confidence as

C = P (Y` ≤ (1− λ)N | Xh = 0, X` = 0)

=
∫ 1

0

FY`
((1− λ)N | θ`) p2(θ` | Xh = 0, X` = 0) dθ` (12)

We address the third drawback discussed in Section 2.2 by using the relation of the incomplete beta

function to the binomial expansion (Abramowitz and Stegun, 1972, eq. 6.6.4) to provide a continuous

approximation of FY`
:

FY`
(y | θ`) ≈ 1− [B(y + 1, N − nh − n− y)]−1

∫ θ`

0

ty(1− t)N−nh−n−y−1 dt := F ?
Y`

(y | θ`) (13)

Note that

FY`
(y | θ`) = F ?

Y`
(y | θ`) for y ∈ N

FY`
(y | θ`) ≤ F ?

Y`
(y | θ`) for y ∈ R

Informally, this approximation of FY`
results in not requiring the number of unacceptable items, (1− λ)N ,

to be a whole number. Replacing FY`
with F ?

Y`
and applying some calculus, (12) can be written as

C ≈
∫ 1

0

F ?
Y`

((1− λ)N | θ`) p2(θ` | Xh = 0, X` = 0) dθ`

= 1− (Γ(A1)Γ(A2)) / (Γ(A3)Γ(A4)) (14)

where

A1 = N − nh − n + 1

A2 = λN − nh + ρ(nh + β + 1)− 1

A3 = λN − nh − n

A4 = N − nh + ρ(nh + β + 1)

(15)

A detailed derivation of (14) is provided in Appendix B. In what follows, it will be useful to refer to the

approximation of the confidence function in (14) as a function of a single variable with the remaining variables

held constant. Specifically, let

h(·) = 1− exp (log Γ(A1) + log Γ(A2)− log Γ(A3)− log Γ(A4)) (16)

13
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generically represent this function, where, for example, h(N) denotes the confidence as a function of N , h(n)

denotes the confidence as a function of n, etc. Note that (14) and (16) apply only for sensible values of the

variables, which we refer to as the parameter space

P = {N, λ, ρ, β, nh, n : N ≥ 1, 0 < λ ≤ 1, ρ ≥ 1, β ≥ 1, and 0 ≤ nh + n ≤ λN} (17)

As discussed by Axelrod (2005), the Bayesian confidence, C, for an infinite population can be calculated

directly from the posterior of θ` itself, without using the posterior predictive distribution of Y`. Specifically,

because

θ`|(Xh = 0, X` = 0) ∼ Beta(1, β′) (18)

the confidence for an infinite population is given by

P (θ` ≤ 1− λ | Xh = 0, X` = 0) =
∫ 1−λ

0

β′(1− θ`)β′−1 dθ` = 1− λβ′ (19)

It is straightforward to show that an application of Stirling’s approximation (Abramowitz and Stegun, 1972,

eq. 6.1.39) to h(N) and some algebra corroborate the result from (19):

h(N = ∞) := lim
N→∞

h(N) = 1− λβ′ (20)

2.4 Sample size determination

To determine the required number of random samples for the CJR model, let C ′ denote the desired confidence

and let h(n) denote the Bayesian confidence in (16) expressed as a function of n. The required random

sample is given by the smallest integer value of n which satisfies h(n) ≥ C ′. When solving for n, note

that if h(0) ≥ C ′, no random samples are required, as the prior belief and the outcome of the nh acceptable

judgmental samples already provide sufficient probability that (1−λ)×100% of the population is acceptable.

Otherwise, because h(n) is continuous, it is straightforward to solve for n numerically and then round up

the result to the nearest integer. More formally,

n =





0 if h(0) ≥ C ′

⌈
h−1(C ′)

⌉
o.w.

(21)

14
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where h−1(C ′) is the solution to h(n) = C ′. When λ = 1, it is straightforward to derive a closed form

solution for h(n) = C ′:

n = max
(
0, dN − nh − (1− C ′)(N − nh + ρ(nh + β + 1)− 1)e

)
(22)

It is interesting to note that the value of n given by (22) agrees exactly with Grieve’s solution (1994) if the

population has homogeneous risk, i.e., nh = 0 and ρ = 1. Details are provided in Appendix C. A closed

form solution for the infinite population case is easily obtained by solving (19) for n:

n = max
(

0,

⌈
log(1− C ′)

log λ
− ρ(nh + β + 1) + 1)

⌉)
, 0 < λ < 1 (23)

When λ = 1, we have found that (22) works nicely even for very large N .

3 Analysis

3.1 Properties of the refined model

Analysis of the confidence function given by (16) demonstrates the refined CJR model behaves as we would

expect. For example, h(nh) should be increasing, which we confirm with the partial derivative:

∂h

∂nh
= (h− 1) (−Ψ(A1) + (ρ− 1)Ψ(A2) + Ψ(A3)− (ρ− 1)Ψ(A4)) (24)

where Ψ(x) = d
dx log Γ(x) is the digamma function. Because log Γ(x) is convex, Ψ(x) is increasing, which

implies Ψ(A3)−Ψ(A1) < 0 and (ρ− 1) (Ψ(A2)−Ψ(A4)) ≤ 0. This, combined with the fact that 0 ≤ h ≤ 1,

implies that ∂h
∂nh

≥ 0 over P. In like manner, it is straightforward to show that ∂h
∂n ≥ 0, ∂h

∂ρ ≥ 0, ∂h
∂β ≥ 0,

and ∂h
∂λ ≤ 0, also over P. These results are consistent with how we would expect the confidence function to

behave. However, the behavior of h(N) is not consistently increasing or decreasing, due to the characteristics

of the binomial distribution function discussed in Section 2.2 and illustrated in Figures 2 and 3. Note that

the partial derivative of h with respect to N is

∂h

∂N
= (h− 1) (Ψ(A1) + λΨ(A2)− λΨ(A3)−Ψ(A4)) (25)
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For λ = 1, we can apply the recurrence relation, Ψ(x+1) = Ψ(x)+1/x, (Abramowitz and Stegun, 1972, eq.

6.3.5) to show

∂h

∂N
= (h− 1)

(
Ψ(A3) +

1
A3

−Ψ(A3) + Ψ(A2)−Ψ(A2)− 1
A2

)

= (h− 1)
(

1
N − nh − n

− 1
N + nh(ρ− 1) + ρ(β + 1)− 1

)
≤ 0 (26)

over the subset of P induced by λ = 1. This finding is intuitive: given the same prior belief (reflected by

β), the same number of acceptable samples nh and n, and the same ρ, we would expect, for a population of

size 100, the confidence that 100% of the items being acceptable should be greater than for a population of

one million items. However, for λ < 1, the behavior of h(N) depends upon other variables in the parameter

space, P, and in particular, it is most sensitive to β.

C

0.94

0.95

0.96

0.97

0.98

0.99

 β = 125
 β = 175
 β = 225
 β = 250

(A)

N

n

0 200 400 600 800 1000

0

25

50

75

100

125

150(B)

Figure 3: Plot (A): The confidence, C = h(N), versus N for various levels of β, where n = 0, λ = 0.99,
nh = 15, and ρ = 2, calculated using (16). Plot (B): The required random sample size, n, versus N for the
same values of β where λ = 0.99, nh = 15, ρ = 2, and C ′ = 0.99. The random sample size was given by (21).
As a reference for comparison, the target confidence level, C ′ = 0.99, is indicated by the horizontal gray line
in plot (A).
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Figure 3A demonstrates the influence of β on h(N) when no random samples are taken (n = 0). Figure

3B shows how the required sample size, n, varies as a function of N , with a desired confidence of C ′ = 0.99,

for the same values of λ, β, nh, and ρ as in Figure 3A. Note how the curves in the two plots are somewhat

reflective of each other. In particular, notice in Figure 3B how n can actually decrease as N increases for

higher values of β, a non-intuitive and undesirable result. This undesirable behavior in h(N) is likely to

occur when the posterior expectation of the fraction of acceptable items is too large relative to λ. This

typically occurs when the prior belief in the acceptability of the high-risk items is high (corresponding to

large values of β), and/or when ρ is large. It is illustrative to consider that before any samples are taken,

our prior belief in the fraction of the population that is acceptable, λp, is determined by β, nh, ρ, and N .

Specifically,

λp = E

(
1− Xh + X` + Y`

N

)
= 1− N + nh(ρ− 1)

Nρ(β + 1)
(27)

Details of the derivation of (27) are provided in Appendix D. When λp is too large relative to λ, the

prior belief, in a sense, already satisfies the intent to demonstrate (through sampling) that λ× 100% of the

population is acceptable. Hence, it is not surprising that large values of λp (relative to λ) are likely to result

in undesirable behavior in h(N).

3.2 Ensuring the Bayesian confidence is a non-increasing function of the popu-

lation size

Because h(n) is increasing, it follows that when h(N, n = 0) is decreasing, the number of random samples

given by (21) will be an increasing function of N . Consequently, choosing a ‘viable’ value of λ large enough

to ensure that h(N) is non-increasing will also ensure that, all things being equal, larger populations will

require more samples than smaller populations. This viable value of the fraction of acceptable items, λv,

could then be used to calculate the desired random sample size, n. The way in which λ influences the shape

of the confidence function is illustrated in Figure 4. Note how increasing the value of λ improves the profile

of h(N) until, at λv = 0.99, it is a non-decreasing function of N . Furthermore, for λ = 0.992, (in fact, for

all λ ≥ 0.99), h(N) is also non-increasing.

17



PNNL-19315

h(
N

)

λ = 0.98

0.975

0.980

0.985

0.990

2 3 4 5 6

λ = 0.985

0.96

0.97

0.98

0.99

2 3 4 5 6

λ = 0.987

0.94

0.95

0.96

0.97

0.98

0.99

2 3 4 5 6

λν = 0.99

0.90

0.92

0.94

0.96

0.98

2 3 4 5 6

λ = 0.992

0.85

0.90

0.95

2 3 4 5 6
log10N

Figure 4: Plots of h(N) for various values of λ where nh = 10, ρ = 2, and Eθh = 0.01 (β = 99). The broken
horizontal lines represent the asymptotic confidence, h(N = ∞).

A method for identifying λv is provided by the following theorem, whose proof is given in Appendix E.

Theorem 1. Assume N , nh, and n are integer valued. Consider the Bayesian confidence h as a function

of N and n, with all other parameters (λ, nh, ρ, and β) held fixed. Let V = {λ : ∂h
∂N ≤ 0 for all N ∈

P and for all n ∈ P} denote the set of ‘viable’ λ values. Furthermore, let k = 1
2ρ(nh + β + 1)− nh, and let

ρ(nh + β + 1) be integer valued. Then (i) for k ≤ 1, V = (0, 1], and (ii) for k > 1, V = [1− 1
k , 1].

Consequently, for integer valued ρ(nh + β + 1) and k > 1,

λv = 1− 2
ρ(nh + β + 1)− 2nh

(28)

Note that any λ ≥ λv will result in h(N) being non-increasing for all N ≥ 1 and all n ∈ P. For k ≤ 1, any

value of λ ∈ (0, 1] is viable. When ρ(nh + β + 1) is not integer valued, one could proceed conservatively by

rounding ρ(nh + β + 1) up to the nearest integer. However, it is best to avoid overestimating λv because

large values of λ have the greatest impact on the random sample size, as we discuss in Section 4.1. Simply

using a non-integer value of ρ(nh + β + 1) in (28) also gives an accurate estimate of λv, which we denote

λ
(1)
v . The larger the value of k, the better the approximation, because the exact incremental values of λv

(induced by integer valued ρ(nh + β + 1)) grow closer together as k increases.

Another way to estimate λv is to set ∂h
∂N

∣∣∣
N=106

equal to 0 and numerically solve for λ. We denote this

estimate as λ
(2)
v . Note that λ

(2)
v is determined by numerically solving a continuous function (25) and does

not depend on the assumption that ρ(nh + β + 1) be integer valued. It does depend, however, on the value

of N . Evaluating ∂h
∂N at N = 106 ensures that the outcome will be close to the asymptotic result that gives
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Figure 5: Plot of λ
(1)
v − λ

(2)
v versus 4,001 values of k.

rise to the definition of k in Theorem 1 (see the proof in Appendix E for more details). Figure 5 illustrates

how λ
(1)
v and λ

(2)
v differ for increasing values of k. The small amount of noise in the plot arises from solving

(25) numerically. As k increases, an asymptotic, systematic difference between the two estimates of about

2 × 10−6 occurs, due to the finite value of N = 106 used to calculate λ
(2)
v . The principal conclusion we

draw from Figure 5 is that the exact solutions of λv (shown as solid black circles), appear to be randomly

scattered in the noise of the plot. This suggests that estimating λv with non-integer valued ρ(nh + β + 1)

via (28) does not systematically differ from estimates obtained by solving (25), thereby corroborating the

accuracy of λ
(1)
v .

To calculate the random samples size or calculate the Bayesian confidence, when k = ρ(nh + β + 1)/2−

nh > 1, and regardless of whether ρ(nh + β + 1) is integer valued, we recommend using a value of λ ≥

1−2/ (ρ(nh + β + 1)− 2nh) in order to avoid the fourth concern discussed in Section 2.2, i.e., the confidence

not being a decreasing function of N , which can result in more samples being required for smaller populations

than for larger ones.

3.3 Agreement of the initial and refined CJR models

To investigate how well the CJR model discussed in Section 2.3 approximates the initial model presented

in Section 2.1, we calculated and compared the required sample sizes obtained from the two approaches for

over 1.2 million cases. The cases were constructed using all feasible combinations of

• λ = 0.95, 0.975, 0.99, 0.995, 0.999, 1,
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• C ′ = 0.90, 0.95, 0.99,

• eleven values of N ranging log-linearly from 1000 to 1.001 million,

• thirty different values of Eθh, increasing log-linearly on the interval (0.0001, 0.5],

• twenty-nine values of ρ: 1, 1.5, . . . , 9.5, 10, 11, . . . , 19, 20, and

• eight values of nh: 0, 10, 25, 50, 100, 250, 500, and 750. When ρ = 1, there is no distinction between

the high and low risk locations, and thus nh was set to 0 for those cases.

The values of N and λ were chosen so that (1−λ)N would be integer valued, thus ensuring that FY`
= F ?

Y`
.

For these cases, we did not use λv to calculate the sample sizes because it would have made it considerably

more difficult to ensure that (1 − λ)N was integer valued. However, simply using the six values of λ listed

above still allowed us to compare how the confidence functions given by (5) and (14) give rise to the required

random sample sizes.

For each of these cases, the random sample size given by the initial model, nInit, was obtained by

identifying the value of n such that the Bayesian confidence given by (5) was at least as great as C ′. For the

approximation approach of Section 2.3, the random sample size, nCJR, was obtained from (22) when λ = 1,

from (23) when N > 106, and from (21) for the rest (and vast majority) of the cases that were considered.

For roughly 70% of these cases, nInit and nCJR were both 0, indicating that prior belief represented by Eθh

and ρ combined with the outcomes from the nh acceptable judgmental samples provided sufficient evidence

to achieve the desired confidence level. The cumulative distribution of the absolute difference between the

sample sizes, ∆n = |nCJR − nInit|, is shown in Figure 6. Note that 96.5% of the cases had random sample

sizes that differred by no more than 5, and 98.6% of the cases had random sample sizes that differed by no

more than 10.

Figure 7 illustrates how the various input parameters λ, C ′, Eθh, ρ, nh, and N influence ∆n. Increasing

values of λ (except λ = 1) seem to be associated with increasing values of ∆n. Likewise, increasing values of

Eθh, increasing values of ρ, and increasing values of N also seem to be associated with increasing values of

∆n. The most striking patterns occur for ρ and Eθh, the two parameters which appear to have the greatest
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Figure 6: Cumulative distribution of the absolute difference between the random sample sizes required by
the initial model discussed in Section 2.1 and the refined CJR model discussed in Section 2.3.

influence on the shape of the posterior distribution θ`|(Xh = 0, X` = 0).

For practical purposes, the refined model and the initial model behave very similarly in terms of the

required random sample size, especially for smaller values of Eθh and smaller values of ρ. However, the

refined CJR model has desirable properties that eliminate the four drawbacks of the initial model which are

discussed in Section 2.2.

3.4 Comparison to traditional acceptance sampling

Traditional acceptance sampling based on the hypergeometric or binomial distributions is discussed by

(Schilling and Neubauer, 2009) and (Bowen and Bennett, 1988). This frequentist approach was designed

for homogeneous populations and makes no prior assumptions regarding the fraction of unacceptable items.

Using the hypergeometric distribution to model the number of unacceptable items in the population, we can

identify the smallest sample size such that the probability of observing zero unacceptable items, given that

at least λ× 100% of the items are acceptable, is at least as large as a given confidence threshold, Ca. While

certainly not equivalent, Ca is the conceptual analog of the Bayesian probability, C, given by (1). We present

this methodology in a way that differs somewhat from the explanation given by Bowen and Bennett (1988),

whose approach is slightly conservative (resulting in an achieved confidence that is higher than the desired
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Figure 7: Influence of the input parameters on ∆n = |nCJR − nInit| for the 1.2+ million cases that were
considered. Each plot represents the marginal counts of all the cases. That is, the counts of the cases
shown in an individual plot are the summation across the five other input parameters. The number of
cases represented by each point on the plot is indicated by the intensity of the shading, with darker points
indicating more cases.

level). To formalize the hypergeometric acceptance sampling model, let ϑ denote the unknown number of

unacceptable items in the population of size N , and let Z denote the hypergeometric variate which represents

the number of unacceptable items observed in a sample of size na. We develop the confidence statement

using a hypothesis test, where H0 and H1 denote the null and alternative hypotheses, respectively:

H0 : ϑ > (1− λ)N

H1 : ϑ ≤ (1− λ)N
(29)

We wish to reject H0 in favor of H1 with Ca × 100% confidence if we observe Z = 0 unacceptable items in

the sample. We arrive at the required sample size via the expression for the desired Type I error rate for
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this test:

1− Ca ≥ P (Reject H0 | H0 is true)

= P (Z = 0 | ϑ > (1− λ)N) (30)

≥ P (Z = 0 | ϑ = ϑ0)

where ϑ0 = b(1 − λ)Nc + 1 denotes the smallest whole number of unacceptable items that may be in the

population if H0 is true. Rewriting the last line in (30) using the mass function of Z, we have

1− Ca ≥

(
ϑ0

0

)(
N − ϑ0

na − 0

)

(
N

na

) =
(N − ϑ0)! (N − na)!
(N − ϑ0 − na)! N !

(31)

and thus the sample size is the smallest na which satisfies (31). Jaech (1973, pp 327) provided a convenient

approximation for the mass function of Z evaluated at 0:

P (Z = 0 | ϑ = ϑ0) =
(N − ϑ0)! (N − na)!
(N − ϑ0 − na)! N !

≈
(

1− 2na

2N − ϑ0 + 1

)ϑ0

(32)

which, when solved for na, gives

na = d0.5(1− (1− Ca)1/ϑ0)(2N − ϑ0 + 1)e (33)

The CJR method (when the population is assumed to be homogeneous and a non-informative prior is

used) requires virtually identical sample sizes as those required by the hypergeometric acceptance sampling

(AS) method. This is illustrated in Table 1, which gives the number of random samples required to achieve

a 95% probability (for the CJR method) or 95% confidence (for the AS method) that a high percentage

(95% or 99%) of the items in the population are acceptable. Sample sizes for the CJR model were calculated

using (21), with β = 1 (a uniform prior), nh = 0, and ρ = 1. For each of the CJR cases shown in Table 1,

the values of λ = 0.95 and 0.90 were viable, because k = 1 for these cases. Sample sizes for the AS approach

were calculated using (33), which, for the cases we tried, proved to be identical to samples sizes given by

solving (31).

Given the similarity in their sample sizes, it is not surprising that the confidence functions of the CJR

and AS models are also closely related. If we assume λN is a whole number, ϑ0 = N − λN + 1, and we can

write (31) as

Ca = 1− (λN − 1)! (N − na)!
(λN − na − 1)! N !

= 1− Γ(λN) Γ(N − na + 1)
Γ(λN − na) Γ(N + 1)

(34)
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λ = 0.95 λ = 0.99
N CJR AS CJR AS

100 38 39 78 78
1,000 55 56 237 238

10,000 58 59 290 291
100,000 58 59 297 298

Table 1: Sample sizes required by the CJR method and the hypergeometric acceptance sampling (AS)
method for C ′ = Ca = 0.95. For the CJR, nh = 0, Eθh = 0.5 (β = 1), and ρ = 1.

which bears a close resemblance to (14) when nh = 0, ρ = 1, and β = 1:

C = 1− Γ(λN + 1) Γ(N − n + 1)
Γ(λN − n) Γ(N + 2)

= 1− λN

N + 1

[
Γ(λN) Γ(N − n + 1)
Γ(λN − n) Γ(N + 1)

]
(35)

and thus 1− C and 1− Ca differ only by a factor of λN/(N + 1).

4 Discussion

4.1 Why requiring “100% acceptable” is not acceptable

Certainly it is most desirable to state with high probability that the population has no unacceptable items,

i.e. λ = 1. However, achieving that degree of certainty typically requires that almost the entire population

be sampled—unless there is very strong prior evidence that the items are acceptable. Table 2 shows the

number of random samples required for various levels of ρ, C ′, and λ. Note that larger samples sizes are

required to achieve higher confidence (i.e. higher C ′ and/or higher λ) and that larger values of ρ result

in fewer random samples. Most striking are the massive amounts of random samples required in order to

achieve high probability that none of the items in the population are unacceptable.

λ = 0.994 λ = 1.00
ρ C ′ = 0.95 C ′ = 0.99 C ′ = 0.95 C ′ = 0.99
1 345 578 4,721 4,925
2 231 471 4,714 4,923
3 118 363 4,708 4,922

Table 2: Values of n required by the refined model to achieve various levels of confidence for N = 5000,
nh = 25, and Eθh = 0.01. Note that λ = 0.994 is viable for the six cases shown on the left half of the table.

Even with very strong prior belief and a large difference in the risk between the two sub-populations,

the number of random samples required to show 100% acceptability is still untenable. For example, when

λ = 1, Eθh = 0.0001, ρ = 15, C ′ = 0.99, nh = 25, and N = 5, 000, the required sample size is 3,422.
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Figure 8: Random sample sizes, n, versus λ, for various values of ρ and for C ′ = 0.95, Eθh = 0.01, nh = 25,
and N = 5, 000. The solid circles indicate λv (the lowest viable λ) for the three cases.

The required number of random samples as a function of λ for various values of ρ is shown in Figure 8.

Note that as λ approaches 1, small increases in λ result in very large increases in n. In fact, among the six

input parameters for the refined model, n is the most sensitive to λ, which underscores the importance of

identifying the smallest viable λ possible, given by (28). While it would obviously be preferable to be able

to state with high confidence that 100% of the population is acceptable, such large sample sizes are rarely

(if ever) feasible in practice.

4.2 Application to environmental sampling

We now consider a population which consists of a defined spatial area, where units of the population can be

characterized by their location within that area. Such is the case for many types of environmental sampling,

where the objective is to demonstrate with high confidence that a large fraction of the decision area is

acceptable, given all of the sample results are acceptable. This type of sampling plan is especially relevant in

the context of the release of a lethal biological or chemical agent inside a building. The information obtained

from sampling the building is used to assess the risk to public health, formulate and validate remediation

plans, and to eventually certify the safety of the building for re-occupancy.

Discrete sampling units can be created by virtually superimposing a lattice of tessellating units on the

surface(s) of the decision area. The shape of the units within the lattice is typically (but not necessarily)

square. The size and shape of the unit would be chosen to accommodate the surface sampling methodology
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(Emanuel et al., 2008, Ch. 5). In practice, sample locations are often chosen from the units of the lattice based

on professional judgment from areas presumed most likely to be contaminated. For example, investigators at

the National Institute of Occupational Safety and Health (NIOSH) successfully used professional judgment

approaches to quickly identify the presence of Bacillus anthracis contamination during the 2001 anthrax

incidents. However, decisions that are based solely upon the results of judgmental samples rely heavily on

the accuracy of the professional judgment.

To achieve greater confidence that a decision area is acceptable, it is desirable to augment judgmental

samples with samples that are taken from randomly selected locations. Hence, judgmental samples are

presumed to come from the high-risk sub-population, whereas randomly selected samples are presumed to

come from the low-risk sub-population. The initial model and refined CJR model presented in Sections

2.1 and 2.3 were originally developed for this type of environmental sampling. We envision that the CJR

model would be especially applicable in situations where it is necessary to demonstrate the acceptability of a

decision area, but there is little reason to expect the presence of contamination—either because the decision

area is well-removed from the source of contamination, or perhaps because the area has been decontaminated.

We generally expect that data obtained from environmental sampling may exhibit spatial correlation,

where samples from locations that are proximal to one another exhibit higher positive correlation than those

that are separated by larger distances. If the structure of this correlation were known before sampling, it

could be used to potentially reduce the required number of acceptable random samples. More precisely, if

a sampled unit proves to be acceptable, it may be likely that adjacent units would also be acceptable, with

the positive correlation diminishing for units that are further away. Consequently, in a well-defined spatial

model, accounting for the correlation would reduce the risk for unsampled units that are proximal to the

acceptable, sampled locations, thereby increasing the overall confidence and reducing the required number

of random samples.

The CJR model does not account for spatial correlation, as all items (or units) in the population are

modeled as independent Bernoulli observations. Not accounting for spatial variability is conservative and

results in larger sample sizes than we would expect if some type of spatial correlation model were assumed for

the decision area. Because the inference made via the CJR model is conditional on observing no unacceptable
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items, modeling the structure of the spatial correlation (Cressie, 1993) from such data would be impossible,

and a spatial model would have to be inferred from other information, if it were available. Furthermore, in

cases when sampling is conducted to validate remediation efforts, the impact of the decontamination process

on the spatial correlation is likely to be unknown (or unknowable)—in which case a sampling design that

does not rely on the estimates of spatial correlation, such as the CJR model, would be appropriate.

4.3 Recommendations for practitioners

Sego et al. (2007) presents the initial model (from Section 2.1) in the context of environmental sampling, with

additional background and explanations that may be helpful to those less familiar with statistical models.

The CJR model is based on binary outcomes, such as 1) the presence or absence of a particular quality, 2)

a quantitative sample result being acceptable or unacceptable as defined by an action level threshold or the

limit of detection, 3) contamination being detected or not detected, etc. Consequently, it is important to

clearly define the criterion whereby sample outcomes will be labeled ‘acceptable’ or ‘unacceptable.’

In addition to choosing the desired confidence level (C ′ and λ), there are two parameters that must be

specified by the investigator before sampling begins. The first is Eθh, the expected rate of unacceptable

items in the high-risk sub-population. The second is ρ, the factor that indicates the ratio of the expected

probability of an unacceptable judgmental sample to the expected probability of an unacceptable random

sample.

In general, we recommend using values of Eθh between 0.001 and 0.5. If the investigator prefers to make a

neutral (non-informative) assertion regarding the prior belief on θh, setting Eθh = 0.5 results in the uniform

prior. However, for acceptance sampling, the uniform prior is very conservative (and even pessimistic)

because it essentially represents a prior belief where “the chance of a high-risk item being unacceptable is

1%” is just as likely as “the chance of a high-risk item being unacceptable is 99%.”

We recommend that ρ be chosen conservatively, so that investigators err on the side of underestimating

ρ. However, overly conservative estimates can result in large numbers of random samples required to obtain

the desired confidence level. In general, we recommend choosing values of ρ between 1 and 5. Choosing

a value of ρ = 1 makes the contribution of the judgmental samples equivalent to the random samples, in
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which case we recommend setting nh = 0. This ensures that the formulas presented in Section 2.3 collapse

to remove the distinction between θh and θ`, thereby modeling a homogeneous population. Consequently,

the prior would be elicited by specifying the fraction of the population that we expect to be unacceptable

prior to sampling, and this value would be used in place of Eθh in (2).
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Figure 9: Contours of the minimum viable fraction of the population that is acceptable, λv, as a function of
Eθh and ρ for various values of nh. The surface of λv falls very steeply and becomes flat (and equal to 0) in
the lower left corners of the plots, indicating a region where any value of λ ∈ (0, 1] may be used.

Of all the model parameters, the desired acceptable fraction of the population, λ, has the strongest impact

on the random sample size (see Figure 8). Consequently, investigators may wish to consider reducing the

choice of λ slightly. However, in order to ensure that larger populations require larger sample sizes, the value

of λ must be at least as large as λv, the minimum viable λ. The way in which λv varies as a function Eθh

and ρ over the recommended range of these two model parameters is illustrated in Figure 9. If a small value

of Eθh and/or a large value of ρ are chosen, the resulting large value of λv will lead to much larger sample

sizes (albeit with a stronger confidence statement) than would result from a smaller value of λv induced by

larger values of Eθh and/or smaller values of ρ. In other words, if λv results in an infeasible sample size,

increasing Eθh and/or decreasing ρ can lower the value of λv, which, in turn, will lead to smaller sample

sizes (at the expense of a weaker confidence statement due to the smaller value of λ).

We also recommend, in general, that λ be greater than C ′, because it results in much stronger confidence

statements than when λ < C ′. For example, being ‘95% confident that 99% of the population is acceptable’
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is a much stronger statement (and consequently, will require more samples) than being ‘99% confident that

95% of the population is acceptable.’
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Figure 10: Contours of n as a function of Eθh and ρ for N = 10, 000 and various values of C ′ and nh. For
each of the six plots, the value of λ was chosen to be viable for all the values of Eθh and ρ shown in the plot.

The relationship between Eθh and ρ and the required sample size, n, is illustrated in Figure 10. Note

that the impact of ρ relative to Eθh becomes more pronounced the larger the value of nh. Naturally, stronger

prior evidence in the acceptability of the high-risk samples leads to smaller sample sizes, as do larger values

of ρ, which effectively increases the contribution of the nh acceptable judgmental samples to the overall

confidence.

When the values of nh, Eθh, and ρ result in no random samples being required, we recommend that

practitioners increase C ′ and/or λ so as to augment the design with some random samples and thereby avoid

making inference solely based upon judgmental sampling and the model assumptions.
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4.4 Software implementation of the CJR method

The CJR methodology has been implemented in Visual Sample Plan (VSP), a freely-available software

tool for the design and analysis of environmental sampling plans (VSP Development Team, 2010). VSP

calculates the Bayesian confidence using (14) and sample sizes using (21), (22), or (23). It also calculates λv

and requires that the user’s choice of λ be at least as large as λv. The CJR method is presented in VSP in

two different modules, one in the context of environmental sampling and the other in the context of discrete

item sampling.

The algorithms for the implementation of the CJR method in VSP were extensively validated by compar-

ing VSP calculations to those produced by routines that were separately coded in the statistical language R

(R Development Core Team, 2010). In a manner similar to the study discussed in Section 3.3, over 163,000

cases were generated so as to span (as much as possible) the subset of P that might be encountered in prac-

tical use. The value of λv and the corresponding random sample size, n, were calculated for each case. The

R and VSP calculations of λv we carried out to 5 decimal places of accuracy and the resulting values were

found to be equivalent in all cases. The random sample sizes (rounded up to the nearest integer) computed

by R and VSP were equivalent in all but a single case, where machine error resulted in a difference of 1

sample.

4.5 Ideas for further research

There are several opportunities for additional research. One of the fundamental premises of the CJR method

is that the high and low-risk groups can be distinguished perfectly before sampling. As this distinction is

likely to be made using professional judgment, it is incumbent to consider what happens when the judgment

is partially, or even completely, wrong. There are a number of ways in which judgmental samples could be

incorrectly chosen—this is briefly discussed and illustrated in Sego (2007, Figure 8). The sensitivity of the

CJR method to misspecification of the high and low-risk groups is the subject of ongoing research.

It would also be advantageous to generalize the CJR method to accommodate more than two risk-based

sub-populations, especially in the context of indoor environmental sampling. Allowing for more than two

groups would make it possible to account for different levels of risk induced by the various factors that
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influence the likelihood of detecting a contaminant at a particular location. These factors may include the

spatial distribution of a contaminant, the persistence and interaction of the contaminant on a particular

surface material, the impact of decontamination, and the sensitivity of the sampling methodology itself.

Investigation of the optimal allocation of samples among the high and low-risk groups (or among multiple

groups) is another area of inquiry. MacQueen (2007) determined that the allocation of samples depends on

the certainty with which items in the population can be classified into the correct risk group. If the risk

groups can be determined with perfect certainty, allocating samples to the highest risk group (until it is

completely sampled), then to the next highest group, and so on, is optimal, in the sense that it will require

the fewest samples to achieve the desired confidence level. However, if the risk groups cannot be determined

with certainty, other types of sample allocation among the groups would be preferable.

The CJR method could also be adapted to account for the probability of false negative measurements,

perhaps using the approach discussed by Axelrod (2005). It would also be desirable to accommodate envi-

ronmental samples obtained via different sampling methodologies (Emanuel et al., 2008, Ch. 5) in the same

decision area. For example, wipe, swab, and vacuum samples each have sampling footprints of different sizes

and different limits of detection.

5 Conclusion

We present a Bayesian model for acceptance sampling where the population consists of two groups, each with

different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to

distinguish between the high and low-risk groups. The sampling scheme presumes that all the high-risk items

are sampled (judgmentally) and that a random sample is taken from the low-risk items. For this reason, we

call the approach the combined judgmental and random (CJR) method. Inference is made conditional on

all the observed samples being acceptable, in which case we may conclude with a specified probability that

a high percentage of the items in the population are acceptable.

Special consideration must be taken to ensure the CJR method has desirable analytical properties. In

particular, the required sample size should be a non-decreasing function of the population size, which may

not be the case if the prior belief in the acceptability of the population is so strong that it already satisfies
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the intent to demonstrate (through sampling) that a high percentage of the population is acceptable. In

these situations, the desired fraction of acceptable items must be increased until the Bayesian confidence

function is non-increasing, which then ensures that larger populations will require larger sample sizes.

We demonstrated that the Bayesian acceptance sampling approach presented by Wright (1992) and Grieve

(1994), as well as hypergeometric acceptance sampling, are, in a sense, special cases of the CJR method.

We also illustrate how, even with strong prior belief in the acceptability of the population, attempting to

demonstrate that 100% of the population is acceptable results in unrealistically large sample sizes.

While applicable to a broad range of applications, the CJR method was developed to provide a statistical

model for environmental sampling, particularly inside buildings that may have been contaminated with a

biological or chemical agent. Because the CJR methodology is based on the assumption that all units of

the population are independent, any spatial correlation that may exist among the sampling units is ignored.

However, developing an accurate spatial model when all the sampled items are expected to be acceptable

may be difficult or even impossible. The assumption of independence is conservative, because accounting for

spatial correlation could be used to reduce the number of required samples.

Careful consideration must be made in determining the input parameters for the CJR model. We rec-

ommend that the expected rate of unacceptable high-risk items (Eθh) be chosen between 0.001 and 0.5.

Likewise, we recommend that the ratio of the expected probability of an unacceptable judgmental sample to

the expected probability of an unacceptable random sample, ρ, be chosen between 1 and 5. It is important

to choose a fraction of the population that we wish to demonstrate is acceptable, λ, to be at least as great

as a minimum value of λ that will ensure that the required random sample size increases as the population

size increases. This minimum value is easily calculated as discussed in Section 3.2. The CJR methodology

is implemented in Visual Sample Plan (VSP Development Team, 2010) software and is freely available.
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A Equivalence of the distribution of unobserved unacceptable items

Wright (1992) and Grieve (1994) use a Beta-binomial prior on the number of unacceptable items in the

population and a hypergeometric likelihood for the number of observed unacceptable items. This yields

a Beta-binomial posterior for the number of unacceptable items (Grieve, 1994, Eq. 1 · 3) and a Beta-

binomial distribution of the number of unobserved unacceptable items (Grieve, 1994, Eq. 2 · 1). In our

model we employ a Beta prior distribution and a Binomial likelihood, which gives rise to a Beta posterior.

We demonstrate below that the resulting posterior predictive Beta-binomial distribution of the number of

unobserved unacceptable items from our model is the same as that obtained by Wright and Grieve.

Let θ denote the probability of an item being unacceptable with prior distribution θ ∼ Beta(α, β). For

a population of size N , let X denote the number of unacceptable items observed in a sample of size n,

where X|θ ∼ Bin(n, θ). After observing X = x unacceptable items in the sample, we have by the standard

Beta/Binomial conjugacy (Gelman et al., 2004) that θ|(X = x) ∼ Beta(x + α, n − x + β), whose density

we write as p(θ|X = x). Let Y denote the number of unobserved unacceptable items among the unsampled

items of the population, where Y |θ ∼ Bin(N − n, θ). Equation (2 · 3) in Wright (1992) and Equation (2 · 1)

in Grieve (1994) give the posterior probability of exactly Y = y unobserved unacceptable items remaining in

the population after observing X = x unacceptable items. Note that our Y , y, X, and x and correspond to

Wright and Grieve’s d̃, d̃0, d, and d0, respectively. Using our model, we arrive at the same result obtained

by Wright and Grieve:

P (Y = y | X = x) =
∫ 1

0

P (Y = y | θ) p(θ|X = x) dθ

=

∫ 1

0

(
N − n

y

)
θy(1− θ)N−n−y [B(x + α, n− x + β)]−1

θx+α−1(1− θ)n−x+β−1 dθ

=
(

N − n

y

)
[B(x + α, n− x + β)]−1

∫ 1

0

θy+x+α−1(1− θ)N−y−x+β−1 dθ
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=
(

N − n

y

)B(y + x + α, N − y − x + β)

B(x + α, n− x + β)

B Derivation of the approximate Bayesian confidence function

We provide here the details of the derivation of (14). To simplify these expressions, let

a = (1− λ)N + 1

b = λN − nh − n

β′ = n + ρ(nh + β + 1)− 1

and let A1, A2, A3, and A4 be defined as in (15). Then:

C ≈
∫ 1

0

F ?
Y`

((1− λ)N | θ`) p2(θ` | Xh = 0, X` = 0) dθ`

=

∫ 1

0

(
1− [B(a, b)]−1

∫ θ`

0

ta−1(1− t)b−1 dt

)
p2(θ` | Xh = 0, X` = 0) dθ`

= 1− [B(a, b)]−1

∫ 1

0

(∫ θ`

0

ta−1(1− t)b−1 dt

)
β′(1− θ`)β′−1 dθ`

= 1− [B(a, b)]−1

∫ 1

0

∫ 1

t

ta−1(1− t)b−1β′(1− θ`)β′−1 dθ` dt

= 1− [B(a, b)]−1

∫ 1

0

ta−1(1− t)b−1(1− t)β′ dt

= 1− [B(a, b)]−1

∫ 1

0

ta−1(1− t)β′+b−1 dt

= 1−B(a, β′ + b)/B(a, b)

= 1− (Γ(a + b)Γ(β′ + b)) / (Γ(b)Γ(a + b + β′))

= 1− (Γ(A1)Γ(A2)) / (Γ(A3)Γ(A4))

C Sample size equivalence

When λ = 1, it is interesting to note that the value of n given by (22) agrees exactly with Grieve’s solution

(1994) if the population has homogeneous risk, i.e., nh = 0 and ρ = 1. Rewriting (14) by substituting nh = 0,

ρ = 1, and λ = 1 yields:

C ≈ 1− (Γ(N − n + 1)Γ(N + β)) / (Γ(N − n)Γ(N + β + 1))

= 1− (N − n)/(N + β)
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For a desired confidence level C ′, we want C ′ ≤ 1− (N − n)/(N + β) which can be expressed as

N − n ≤ (N + β)(1− C ′) (36)

Grieve’s (1994) expression for the sample size (equation 2 · 5) is given as

N − n ≤ (N + β){1− (1− ε)(1−δ)/(βδ)} (37)

Grieve defines δ = α/(α + β). In our context, α = 1, hence δ = 1/(1 + β). Our desired confidence level,

C ′, is equivalent to Grieve’s 1− ε. Thus, translating (37) to our notation demonstrates (36) is equivalent to

(37).

D Expected value of the fraction of acceptable items prior to sam-

pling

To motivate the derivation of the expected value of the fraction of acceptable items prior to sampling, λp,

we state below the framework of the refined CJR model presented in Section 2.3, which we assume holds

prior to the collection of judgmental and random samples:

θh ∼ Beta(1, β)

θ` ∼ Beta(1, ρ(β + 1)− 1)

Xh|θh ∼ Bin(nh, θh)

X`|θ` ∼ Bin(n, θ`)

Y`|θ` ∼ Bin(N − nh − n, θ`)

Thus,

λp = E

(
1− Xh + X` + Y`

N

)

= 1− 1
N

[
E[E(Xh|θh)] + E[E(X`|θ`)] + E[E(Y`|θ`)]

]

= 1− 1
N

[
E(nhθh) + E(nθ`) + E((N − nh − n)θ`)

]

= 1− 1
N

[
nh

1 + β
+

n

ρ(β + 1)
+

N − nh − n

ρ(β + 1)

]

= 1− N + nh(ρ− 1)
Nρ(β + 1)

E Determining the viable fraction of acceptable items

The viable fraction of acceptable items, λv, can be determined using Theorem 1, which is restated and proven

below.
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Theorem 1. Assume N , nh, and n are integer valued. Consider the Bayesian confidence h as a function

of N and n, with all other parameters (λ, nh, ρ, and β) held fixed. Let V = {λ : ∂h
∂N ≤ 0 for all N ∈

P and for all n ∈ P} denote the set of ‘viable’ λ values. Furthermore, let k = 1
2ρ(nh + β + 1)− nh, and let

ρ(nh + β + 1) be integer valued. Then (i) for k ≤ 1, V = (0, 1], and (ii) for k > 1, V = [1− 1
k , 1].

Proof. The partial derivative of the Bayesian confidence function h with respect to N is ∂h
∂N = (h − 1)M

where

M = Ψ(A1) + λΨ(A2)− λΨ(A3)−Ψ(A4)

and A1, A2, A3, and A4 are defined by (15). Because 0 ≤ h ≤ 1, if M ≥ 0, then ∂h
∂N ≤ 0.

Let β′ = n + ρ(nh + β + 1)− 1. To further characterize the components of M , we note the relationship

between Ψ(A4) and Ψ(A1):

Ψ(A4) = Ψ(β′ + A1)

= Ψ ((β′ + 1) + (A1 − 1))

=
1

β′ + A1 − 1
+

1
β′ − 1 + A1 − 1

+ · · ·+ 1
2 + A1 − 1

+
1

1 + A1 − 1
+ Ψ(A1) (38)

= Ψ(A1) +
β′∑

i=1

1
A1 − 1 + i

where the third equality arises from the recurrence relation of the digamma function (Abramowitz and

Stegun, 1972, eq. 6.3.6), so long as β′ is integer valued. Thus,

Ψ(A4)−Ψ(A1) =
β′

H(S1)
(39)

where S1 = {A1, A1+1, . . . , A1+β′−1} and H(S) denotes the harmonic mean of the elements of S. Applying

the same argument for Ψ(A2) and Ψ(A3) gives

λ(Ψ(A2)−Ψ(A3)) =
λβ′

H(S2)
(40)

where S2 = {A3, A3 + 1, . . . , A3 + β′ − 1}. Combining (39) and (40) gives

M = β′
(

λ

H(S2)
− 1

H(S1)

)
(41)

Using (41) it is straightforward to show that M ≥ 0 holds if and only if

λH(S1)−H(S2) ≥ 0 (42)

Note that adding (1 − λ)N + 1 to each element of S2 gives S1. Consequently, we have from Hoehn (1985,

eq. 8)

H(S1)−H(S2) > (1− λ)N + 1 (43)
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Thus

λH(S1)−H(S2) = H(S1)−H(S2) + (λ− 1)H(S1)

> (1− λ)N + 1 + (λ− 1)H(S1) (44)

= (1− λ)(N −H(S1)) + 1

where the inequality is implied by (43).

Let A(S) denote the arithmetic mean of the elements in S. Thus

A(S1) =
1
β′

β′∑

i=1

(N − nh − n + i) = N + kn (45)

where kn = (ρ(nh + β + 1)− 2nh − n) /2. From Niven (1981, Sec. 2.7) we have

A(S1) > H(S1) (46)

Continuing now with the last line of (44) we have from (45) and (46) that

(1− λ)(N −H(S1)) + 1 > (1− λ)(N −A(S1)) + 1 = 1− kn(1− λ) (47)

Note that kn is decreasing in n, and thus

1− kn(1− λ) ≥ 1− k(1− λ) (48)

where k ≡ k0. By combining (44), (47), and (48), we have for all N ∈ P and n ∈ P:

λH(S1)−H(S2) > 1− k(1− λ) (49)

and thus any λ which satisfies

1− k(1− λ) ≥ 0 (50)

will be an element of V.

When k ≤ 1, (50) is satisfied for any λ ∈ (0, 1], which proves case (i). When k > 1, (50) implies that any

λ ≥ 1− 1
k will be in V. To show that (1− 1

k ) = inf V, we need the following lemma:

Lemma. Using the following symbols as defined previously,

lim
N→∞

(λH(S1)−H(S2)) = 1− kn(1− λ) .

We provide the proof of the Lemma below. Because (49) demonstrates that (1 − k(1 − λ)) is a lower

bound for (λH(S1) −H(S2)) which holds for all N,n ∈ P, and (48) and the Lemma together demonstrate

(λH(S1) −H(S2)) achieves the lower bound in the limit, it follows that (1 − 1
k ) is the infimum of V, thus

proving case (ii).
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Proof of Lemma. We begin with a result from Hoehn and Niven (1985, eq. 16)

lim
x→∞

[H(S + x)− x] = A(S) (51)

where S + x indicates the set resulting from the addition of x to each element of S. Let

S3 = {−nh − n, −nh − n + 1, . . . , −nh − n + β′ − 1}

Note that

S1 = S3 + (N + 1)

S2 = S3 + λN
(52)

It is straightforward to show

A(S3) = kn − 1 (53)

We thus have by (51), (52), and (53):

limN→∞H(S1)− (N + 1) = kn − 1

limN→∞H(S2)− λN = kn − 1
(54)

By adding and subtracting certain terms, it follows that

λH(S1)−H(S2) = λ (1 + H(S1)− (N + 1))− (H(S2)− λN) (55)

By applying (54) and the well-known properties of limits, the limit of the right-hand side of (55) as N →∞
is given by

λ(1 + kn − 1)− (kn − 1) = 1− kn(1− λ)

F Glossary of symbols

A(S) The arithmetic mean of the elements of S

α The first shape parameter of the Beta distribution; In the models considered here, α is typically 1

β The second shape parameter of the Beta distribution; Sometimes it has various subscripts to indicate

high risk, h, or low risk, `

β′ The value of the second shape parameter for the posterior beta distribution of θ`; It is equal to n +

ρ(nh + β + 1)− 1
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B(a, b) The complete beta function, given by
∫ 1

0
ta−1(1− t)b−1dt

Beta Indicates the Beta distribution

Bin Indicates the Binomial distribution

C The confidence level (and for Bayesian models, the probability) that a high percentage of the population

will be acceptable

C ′ The desired confidence level that is used to determine the random sample size

Ca The desired confidence level that is used to determine the random sample size for hypergeometric

acceptance sampling (Section 3.4)

∆n The absolute difference of the random sample sizes prescribed by the initial model (Section 2.1) and

the CJR model (Section 2.3)

Eθh The expected value of θh which is equal to (1 + β)−1; It is also the expected rate of unacceptable

items in the high-risk group; Used to choose the value of β

f The Binomial likelihood (or mass) function, where f(x) =
(

n

x

)
px(1− p)n−x for x successes in n indepen-

dent Bernoulli trials, each with probability of success p

FY`
The distribution function of Y`

F ?
Y`

A continuous approximation of the distribution function of Y`

Γ(x) The Gamma function, given by
∫∞
0

tx−1e−tdt ; Note that Γ(x+1) = xΓ(x) for x ∈ R and Γ(n+1) = n!

for n ∈ N

h(·) A generic representation of the Bayesian confidence function of the CJR model, defined in (16)

H(S) The harmonic mean of the elements of S

k A constant used in Theorem 1 to determine λv, equal to 1
2ρ(nh + β + 1)− nh

λ The fraction of the population that we desire to be acceptable with C ′ × 100% confidence

λp For the CJR model (Section 2.3), the expected value of the fraction of acceptable items in the population

prior to sampling, defined by (27)
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λv The minimum viable λ; The smallest value of λ that will ensure that h(N) will be non-increasing for

all possible n and N ; When determining the sample size, choosing λ ≥ λv will ensure that the required

sample size, n, is a non-decreasing function of N ; It follows as a result of Theorem 1 and is given by

(28) for k > 1.

log The natural (base e) logarithm

log10 The base 10 logarithm

N The number of items (or units) in a population

nh The number of high-risk items in the population; Also the number of judgmental samples

n` The number of low-risk items in the population

n The number of random samples from the low-risk sub-population; If clarification is needed, subscripts

(described below) are added

na The number of random samples required by the hypergeometric acceptance sampling method described

in Section 3.4

nCJR The number of random samples required by the CJR method described in Section 2.3

nInit The number of random samples required by the initial model as described in Section 2.1

P The parameter space of the CJR model which defines the acceptable ranges of the model parameters,

defined in (17)

p1(θh), p1(θ`) The prior distributions used for θh and θ` in the initial model described in Section 2.1

p2(θh), p2(θ`) The prior distributions used for θh and θ` in the CJR model described in Section 2.3

φ(β) The linkage function that results from Eθh = ρEθ` in the CJR model (Section 2.3)

Ψ(x) The digamma function, equal to d
dx log Γ(x)

ρ For the initial model (Section 2.1), the ratio of θh to θ`; For the CJR model (Section 2.3), the ratio of

Eθh to Eθ`

θ The probability that an item is unacceptable
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θh The probability that a high-risk item is unacceptable, follows a Beta distribution

θ` The probability that a low-risk item is unacceptable, follows a Beta distribution

V For given values of β, nh, and ρ, the set of λ that ensure that h(N) is decreasing over all N ≥ 1 and all

n ∈ P.

ϕ The probability of being unacceptable for the binomial variate W

ϑ For the hypergeometric acceptance sampling model (Section 3.4), the unknown number of unacceptable

items in the population

ϑ0 For the hypergeometric acceptance sampling model (Section 3.4), equal to b(1 − λ)Nc + 1; It is the

smallest whole number of unacceptable items that can exist in the population if the null hypothesis,

H0 : ϑ > (1− λ)N , is true

W A binomial variate used to illustrate the phenomenon that the Bayesian confidence may not be a

decreasing function of N

Xh A binomial variate of the number of unacceptable items in the sample of size nh from the high-risk

group (the judgmental samples)

X` A binomial variate of the number of unacceptable items in the random sample of size n from the

low-risk group

Y` A binomial variate of the number of unacceptable items in the unsampled, low-risk group of size

N − nh − n

Z A hypergeometric variate used in frequentist acceptance sampling (Section 3.4) indicating the number

of unacceptable items in the sample
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