

PNNL-19262 RPT-STMON-002, Rev. 0

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Assessment of the Building 3430 Filtered Exhaust Stack Sampling Probe Location

JA Glissmeyer

April 2010

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576 5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@nits.fedworld.gov online ordering: <u>http://www.ntis.gov/ordering.htm</u>

Assessment of the Building 3430 Filtered Exhaust Stack Sampling Probe Location

JA Glissmeyer

April 2010

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Completeness of Testing

This report describes the results of work and testing specified by test plan TP-STMON-001. The work and any associated testing followed the quality assurance requirements outlined in the test specification/plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

. a. Glissmeyer John A. Glissmeyer

Stack Monitoring Project Manager

<u>Feb. 17, 201</u>D Date

Summary

Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Exhaust Stack. The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles.

Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack.

The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Exhaust stack. Therefore, this new system also meets the qualification criteria given in the ANSI/HPS N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliance to the requirements.

Acronyms

acfm	actual cubic feet per minute
AD	aerodynamic diameter
ANSI	American National Standards Institute
CFR	Code of Federal Regulations
COV	coefficient of variance
D	duct diameter
DOE	U.S. Department of Energy
DV	product of duct diameter times mean air velocity
EPA	U.S. Environmental Protection Agency
HDI	"How Do I?"
HPS	Health Physics Society
NQA	Nuclear Quality Assurance
PNNL	Pacific Northwest National Laboratory
QA	quality assurance
R&D	Research and Development
scfm	standard cubic feet per minute
STMON	Stack Monitoring Project

Contents

Sum	mary		iii
Acro	nyms	5	v
1.0	Intro	oduction	1.1
	1.1	Qualification Criteria	1.1
	1.2	Building 3430 Filtered Exhaust Stack Configuration	1.2
2.0	Test	Strategy	2.1
	2.1	Criteria for Applicability of Model Results	2.1
	2.2	Test Matrix	2.2
3.0	Test	ing	
	3.1	Flow Angle Test	
	3.2	Velocity Uniformity Test	3.4
	3.3	Quality Assurance	
4.0	Test	Results	4.1
	4.1	Velocity Uniformity Results	4.1
	4.2	Flow Angle Results	4.1
5.0	Con	clusions	5.1
6.0	Refe	erences	6.1
Appe	endix	A: Data Sheets	A.1
Appe	endix	B: Applicable Qualification Results from Model Stack	B.1

Figures

1.1.	Plan View of 3430 Building Filtered Exhaust Stack	. 1.3
1.2.	Scale Model Tested by Glissmeyer and Droppo (2007)	. 1.4
1.3.	3430 Building Filtered Exhaust Air Diagram	. 1.5
3.1.	Layout of Test Ports and Other Duct Features	3.1
3.2.	Sampling Probe Assembly	3.2
3.3.	Flow Angle Indicator and Pitot Tube Installed	3.3
3.4.	Slant Tube Manometer on Inspection Hatch Cover	3.4
3.5.	Electronic Manometer Connected to Pitot Tube	3.5

Tables

1.1.	Comparative Stack Dimensions	. 1.6
2.1.	List of HV-C2 Velocity Uniformity Test Results with Dampers Installed	. 2.1
2.2.	Calculation of AccepRanges of Diameter × Velocity Products	. 2.2
2.3.	Minimum Test Runs to be Performed for 3430 Qualification	. 2.2
4.1.	Test Port Depth Measurements	. 4.1
4.2.	Building 3430 Filtered Exhaust Stack Velocity Uniformity Test Runs	. 4.1
4.3.	Building 3430 Filtered Exhaust Stack Flow Angle Test Runs	. 4.2

1.0 Introduction

Pacific Northwest National Laboratory (PNNL) determined that emissions monitoring must be conducted for radionuclides in the exhaust air discharge from the new 3430 Building. The performance of the air monitoring system must conform to the applicable federal regulations (40 CFR 61, Subpart H). This regulation requires that a sampling probe be located in the Building 3430 Filtered Exhaust stack according to the criteria of the American National Standards Institute/Health Physical Society (ANSI/HPS 1999). This standard requires that a series of tests be performed to demonstrate the acceptability of the location of the air sampling probe in the system. The test series includes flow angle, velocity uniformity, gas tracer uniformity, and particle tracer uniformity as measured in the stack cross section at the sampling probe nozzle location.

A facility may choose to perform the demonstration using one of the following three approaches:

- 1. Perform the full test series on the actual exhaust system.
- 2. Perform the full test series of a scale model of the exhaust system, followed by a partial test of the actual exhaust system to verify the validity of the model results.
- 3. Adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of the previously performed tests.

It was the last approach that was selected to be used for this facility. Consequently, a limited series of tests were performed on the actual exhaust system, and the results were compared to those of the previously tested system. This report describes the tests performed on the actual system and also presents the results from the previously tested system that serves as the basis for compliance with the standard as concerns the location of the sampling probe.

The tests conducted by PNNL during January 2010 on the 3430 Building filtered air exhaust system are described within this report. The test results indicate that the proposed air sampling location meets the criteria of the standard.

1.1 Qualification Criteria

The qualification criteria for a stack air monitoring probe location are taken from ANSI/HPS N13.1-1999 and are paraphrased as follows:

1. <u>Uniform Air Velocity</u>—It is important that the gas velocity across the stack cross-section where the sample is extracted be fairly uniform. Consequently, the velocity is measured at several points in the stack at the position of the sampling nozzle. The uniformity is expressed as the variability of the measurements about the mean. This is expressed using the coefficient of variation (COV),^(a) which is the standard deviation divided by the mean and expressed as a percentage. The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be $\leq 20\%$ across the sampling plane.

⁽a) *Coefficient of variation* is considered "dated" terminology. The modern terminology is *percent relative standard deviation*. However, because the standard uses the older terminology, it will likewise be used here.

- 2. <u>Angular Flow</u>—Sampling nozzles are typically aligned with the axis of the stack. If the air travels up the stack in cyclonic fashion, the air velocity vector approaching a sampling nozzle could be sufficiently misaligned with the nozzle to impair the extraction of particles. Consequently, the flow angle is measured in the duct at the proposed location of the sampling probe. The average air-velocity angle must not deviate from the axis of the duct by more than 20°.
- 3. <u>Uniform Concentration of Tracer Gases</u>—A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration within the duct. The uniformity of the concentration is first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fan provides worst-case results. The acceptance criteria are that 1) the COV of the measured tracer gas concentration is $\leq 20\%$ across the sampling location and 2) at no point in the sampling location does the concentration vary from the mean by > 30%.
- 4. <u>Uniform Concentration of Tracer Particles</u>—The second set of tests addressing contaminantconcentration uniformity at the sampling position uses tracer particles large enough to exhibit inertial effects. Tracer particles of 10- μ m aerodynamic diameter (AD) are used by default unless it is known that larger contaminant particles will be present in the airstream. The acceptance criterion is that the COV of particle concentration is $\leq 20\%$ across the sampling location.

It was determined that compliance with these criteria was already demonstrated for a similar stack configuration by testing a scale model as reported by Glissmeyer and Droppo (2007).

To be able to apply the results of the scale model tests, Section 5.2.2.2 of the ANSI/HPS N13.1-1999 standard sets additional criteria for applying the results as a substitute for the actual Building 3430 Filtered Exhaust stack.

- The scale model and its sampling location must be geometrically similar to the actual Building 3430 Filtered Exhaust stack.
- The product (mean velocity) × (hydraulic diameter) for the scale model must be within a factor of six of the product for the actual Building 3430 Filtered Exhaust stack.
- The Reynolds number for the actual and model stacks must be > 10,000.

The scale-model results are considered valid if it is shown by testing, on the actual stacks, that:

- The velocity profile in the actual Building 3430 Filtered Exhaust stack meets the uniformity criterion.
- The velocity uniformity COV values for the actual and model stacks agree within 5% COV.
- The flow angle criterion (with a mean value less than or equal to 20°) is met.

1.2 Building 3430 Filtered Exhaust Stack Configuration

Figure 1.1 shows a crude plan view of the Building 3430 Filtered Exhaust stack on the roof of the 3430 Building. Figure 1.2 shows the scale model stack (designated HV-C2) tested by Glissmeyer and Droppo (2007).

Figure 1.1. Plan View of 3430 Building Filtered Exhaust Stack

Figure 1.2. Scale Model Tested by Glissmeyer and Droppo (2007)

The difference between the two designs is that the model stack (except for the bend upwards at the discharge end) is rotated 90° around its long axis so that the air from the fans enters the straight section from the side rather than from the bottom. This should have no effect on the uniformity of tracers and the air velocity uniformity and flow angles. The model stack was tested with one and both fans operating, which covers the possible operating modes.

Figure 1.3 is a diagram of the discharge end of the 3430 Building Filtered Exhaust system. Both fans draw air from the same plenum; therefore, the air flow from both fans is from the same stream.

Figure 1.3. 3430 Building Filtered Exhaust Diagram

Table 1.1 lists key dimensional and flow parameters for both the model stack and the 3430 Building Filtered Exhaust stack.

Operating Parameters	Model	Bldg. 3430
Duct diameter at sampling probe	12 in.	43.75 in.
Number of duct diameters from upstream duct junction to sampling probe or test ports	Port 2—9.4 Port 3—14.5	20.4
Number of duct diameters from sampling probe or test ports to downstream bend	Port 3—2.25	3
Discharge diameter	12 in.	38 in.
Number of operating fans	1 and 2	2
Total available fans	2	2

Table 1.1. Comparative Stack Dimensions

2.0 Test Strategy

2.1 Criteria for Applicability of Model Results

The velocity uniformity test results from the model stack are a factor in the formulation of one of the criteria for the applicability of the model results to any other stack. Table 2.1 lists the results from the velocity uniformity tests performed on the model using Test Ports 2 and 3 for both one and two operating fans. The average velocity uniformity (% COV) results were 4.8 and 4.9 for one and two operating fans, respectively. Therefore, the acceptance range for velocity uniformity results for the 3430 Building Filtered Exhaust stack is 0 to 9.9 %COV ^afor the results from the HV-C2 scale model to be considered applicable.

			Control				
			Damper	Back Flow			
Test	Operating	Run	Setting	Damper Setting	Flowrate	Velocity	
Port	Fans	No.	(degrees)	(degrees)	cfm	fpm	% COV
2	А	VT-16	90	70	973	1239	3.6
2	В	VT-19	90	70	977	1244	6
3	А	VT-17	90	70	1002	1276	3.4
3	В	VT-18	90	70	959	1221	6
				Average	977.8	1245.0	4.8
2	A & B	VT-13	90	70	2094	2666	6.1
2	A & B	VT-23	90	70	2132	2715	5.1
2	A & B	VT-24	90	70	2126	2706	4.4
3	A & B	VT-14	90	70	2117	2696	4.4
3	A & B	VT-21	90	70	2136	2720	5.1
3	A & B	VT-22	90	70	2180	2775	4.5
				Average	2130.8	2713.0	4.9

 Table 2.1. List of HV-C2 Velocity Uniformity Test Results with Dampers Installed (from Glissmeyer and Droppo 2007)

Table 2.2 shows calculations of the acceptable range of the diameter \times velocity criterion that also determines the applicability of the scale-model results to the actual stacks. The product of duct diameter times air velocity (DV=113,750) is within the acceptable 6× factor of six of the scale model's DV product (195,336) for two operating fans.

^a 4.9 $\pm 5.0 = 0 - 9.9$

	Diameter		Mean. velocity,	Product DV, in ×	
Stack	in.		fpm	fpm	$6 \times \text{limit}$
Model	12	One fan	1245	14940	89640
Model	12	Two fans	2713	32556	195336
3430	43.75	Two Fans	2600	113750	

 Table 2.2.
 Calculation of Acceptable Ranges of Diameter × Velocity Products

2.2 Test Matrix

Table 2.3 lists the minimum matrix of tests needed for the 3430 Building Filtered Exhaust stack. Also included in the list are the optional tests that may be required if the applicable criteria for velocity uniformity and diameter/velocity product are not met as presented above.

Table 2.3. Minimum Test Runs to be Performed for 3430 Qualification

	Fest Cor	ofiguration		Estimated Number of Test Runs					
Fans	#	Injection Port	Test Port	Flow Angle	Velocity	Gas Tracer (optional) ^(a)	Particle Tracer (optional)		
Maximum flowrate	1	Junction	At Probe	2	2	7	2		
Minimum flowrate	2	Junction	At Probe	1	1	1	1		
	Te	otal		3	3	8	3		
Grand Total 17									
(a) Five of the s	(a) Five of the seven runs involve injecting the tracer gas in the four corners and center of the cross section at								

the injection location. The two additional runs are replicates of the test with the worst-case result.

3.0 Testing

The test methods for the flow angle and velocity uniformity are outlined below. Tracer tests are not currently planned. Figure 3.1 shows the layout of the duct in the location of the air sampling probe and the test ports used in the testing.

Figure 3.1. Layout of Test Ports and Other Duct Features

Figure 3.2 shows the inside of the duct looking downstream (inspection hatch removed). A shrouded nozzle and flow sensor are part of the sample probe assembly.

Figure 3.2. Sampling Probe Assembly

3.1 Flow Angle Test

The air-velocity vector approaching the sample nozzle should be aligned with the axis of the nozzle, within an acceptable angle, so sample extraction performance is not degraded (see Section 2). The test method is based on 40 CFR 60, Appendix A, Method 1, Section 2.4, American National Standards Institute/Health Physical Society

The term "flow angle" is the angle between the air velocity vector and the axis of the sampling nozzle. The flow angle was measured at a grid of points in a cross section of the Building 3430 Filtered Exhaust stack at the test ports just a few inches upstream of the actual sampling probe. The grid is an array of points in an x-pattern in the cross section of the duct. One line of points is aligned in the same direction as the sampling probe assembly. The other line was perpendicular to the sample probe assembly. The number and distance between measurement points is based on the U.S. Environmental Protection Agency's (EPA's) method in 40 CFR 60, Appendix A, Method 1.

Measurements were made using a type-S Pitot tube, a slant tube manometer, and an angle-indicating device. PNNL operating procedure EMS-JAG-05,^(a) "Test to Determine Flow Angle at the Elevation of a Sampler Probe," was used for determining the mean flow angle.

Figure 3.3 is a view looking upstream from the test ports toward the exhaust fans. The S-type Pitot tube is installed in the duct attached to an angle-indicating device threaded to the top test port. Figure 3.4 shows the slant-tube manometer.

Figure 3.3. Flow Angle Indicator and Pitot Tube Installed

⁽a) EMS-JAG-05, Rev. 2, March 27, 2009. "Test to Determine Flow Angle," internal operating procedure, Pacific Northwest National Laboratory, Richland, Washington.

Figure 3.4. Slant Tube Manometer on Inspection Hatch Cover

3.2 Velocity Uniformity Test

To determine uniformity, air velocity is measured at the same grid of points used for the flow angle test. The method used is based on 40 CFR 60, Appendix A, Method 1.

The air velocity is measured three times at each grid point, and each measurement is recorded. The measurements at each grid point are averaged to determine the mean velocity at each grid point. The average values for each grid point in the center $^{2}/_{3}$ of the stack are used to calculate the mean and standard deviation of velocity for the sampling location. The % COV is calculated as 100 times the standard deviation divided by the mean. This value should be less than or equal to (9.9% for the scale model tests to apply to this stack.

The test equipment used included an S-type Pitot tube and a calibrated electronic manometer as shown in Figure 3.5. The Pitot tube is inserted in the duct as shown in Figure 3.4, except an electronic manometer is used in place of the slant-tube manometer. The electronic manometer indicates actual air velocity, assuming a Pitot tube correction factor of 1. Because the S-type Pitot tube has a correction factor is 0.84, the recorded values were corrected after the test. PNNL operating procedure EMS-JAG-04,^(a) "Test to Determine Uniformity of Gas Velocity at the Elevation of a Sampler Probe," was used for this test.

Figure 3.5. Electronic Manometer Connected to Pitot Tube

3.3 Quality Assurance

The PNNL Quality Assurance (QA) Program is based upon the requirements as defined in the U.S. Department of Energy (DOE) Order 414.1C, Quality Assurance and 10 CFR 830, Energy/Nuclear Safety Management, Subpart A—Quality Assurance Requirements (a.k.a., the Quality Rule). PNNL has chosen to implement the following consensus standards in a graded approach:

- ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part 1, Requirements for Quality Assurance Programs for Nuclear Facilities.
- ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software for Nuclear Facility Applications.

⁽a) EMS-JAG-04, Rev. 2, March 27, 2009. "Test to Determine Uniformity of Air Velocity at a Sampler Probe." internal operating procedure, Pacific Northwest National Laboratory, Richland, Washington.

• ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality Assurance Requirements for Research and Development.

The procedures necessary to implement the requirements are documented through PNNL's "How Do I...?" (HDI).^(a)

The Stack Monitoring Project (STMON) implements an NQA-1-2000 Quality Assurance Program, graded on the approach presented in NQA-1-2000, Part IV, Subpart 4.2. The STMON Quality Assurance Manual (QA-STMON-0002^(b)) describes the technology life cycle stages under the STMON Quality Assurance Plan (QA-STMON-0001^(c)). The technology life cycle includes the progression of technology development, commercialization, and retirement in process phases of basic and applied research and development (R&D), engineering, and production and operation until process completion. The life cycle is characterized by flexible and informal QA activities in basic research, which becomes more structured and formalized through the applied R&D stages.

- BASIC RESEARCH—Basic research consists of research tasks that are conducted to acquire and disseminate new scientific knowledge. During basic research, maximum flexibility is desired to allow the researcher the necessary latitude to conduct the research.
- APPLIED RESEARCH—Applied research consists of research tasks that acquire data and documentation necessary to make sure that results can be satisfactorily reproduced. The emphasis during this stage of a research task is on achieving adequate documentation and controls necessary to be able to reproduce results.
- DEVELOPMENTAL WORK—Development Work consists of research tasks moving toward technology commercialization. These tasks still require a degree of flexibility, and there is still a degree of uncertainty that exists in many cases. The role of quality on Development Work is to make sure that adequate controls to support movement into commercialization exist.
- RESEARCH AND DEVELOPMENT SUPPORT ACTIVITIES—Support activities are those that are conventional and secondary in nature to the advancement of knowledge or development of technology, but allow the primary purpose of the work to be accomplished in a credible manner. An example of a support activity is controlling and maintaining documents and records. The level of quality for these activities is the same as for developmental work.

The work described in this report has been completed under the QA Technology level of Development Work. STMON addresses internal verification and validation activities by conducting an independent technical review of the final data report in accordance with STMON's procedure QA-STMON-601,^(d) *Document Preparation and Change*. This review verifies that the reported results are

⁽a) A system for managing the delivery of laboratory-level policies, requirements, and procedures.

⁽b) QA-STMON-0002, Rev. 0. January 2, 2010. "Pacific Northwest National Laboratory Stack Monitoring Project Quality Assurance Manual." Pacific Northwest National Laboratory, Richland, Washington.

⁽c) QA-STMON-0001, Rev. 0. January 2, 2010. "Pacific Northwest National Laboratory Stack Monitoring Project Quality Assurance Plan." Pacific Northwest National Laboratory, Richland, Washington.

⁽d) QA-STMON-0601, Rev. 0. January 2, 2010. "Document Preparation and Change." Pacific Northwest National Laboratory, Richland, Washington.

traceable, that inferences and conclusions are soundly based, and the reported work satisfies the Test Plan objectives.

The tests were conducted according to an approved test plan and test instructions. Data transcription and calculations were independently reviewed.

4.0 Test Results

Independent reviews were performed to verify the data transcription and calculations. The final data sheets are attached in Appendix A.

The duct diameters were field measured at the test ports and found to be 43.75 inches as listed in Table 4.1. The distance from the test ports to the nearest upstream disturbance (the junction of the ducts from the fans) was 74.5 ft. Therefore, in terms of duct diameters (distance divided by the duct diameter), the tests were performed 20.4 duct diameters (D) downstream of duct junction. In comparison, the test ports in the model tested by Glissmeyer and Droppo (2007) were 4.45 D, 9.47 D, and 14.5 D for test ports 1, 2, and 3, respectively, downstream of the junction.

	Measurement	Measured Duct
Side of duct	Port	Depth, in.
Тор	1	43.75
West Side	2	43.75

 Table 4.1.
 Test Port Depth Measurements

4.1 Velocity Uniformity Results

The measured air velocity % COV values are summarized in Table 4.2. For the high and low flow conditions, the average result was 3.5% COV. This was well within the acceptance criterion derived in Section 2.1 (<9.8 % COV) for verifying that the Building 3430 Filtered Exhaust stack configuration is represented by the model tests of Glissmeyer and Droppo (2007).

 Table 4.2.
 Building 3430 Filtered Exhaust Stack Velocity Uniformity Test Runs

		Measured	
Fan operating configuration	Run Nos.	acfm	% COV
Maximum	VT-1	27147	3.2
Maximum	VT-2	26961	3.5
Minimum	VT-3	17712	3.7

4.2 Flow Angle Results

The results for the flow angle tests are listed in Table 4.3. For the high and low flow conditions, the average flow angle of 2.6° was acceptable and much less than the acceptance criterion of 20° .

Fan Operating Configuration	Run Nos.	Airflow Displayed in Sampling Cabinet scfm	Mean Absolute Flow Angle
Maximum	FA-1	27400	2.8
Maximum	FA-2	27300	2.2
Minimum	FA-3	17000	2.9

 Table 4.3.
 Building 3430 Filtered Exhaust Stack Flow Angle Test Runs

5.0 Conclusions

Velocity uniformity tests were performed on the 3430 Building Filtered Exhaust stack and show acceptable agreement with the scale model tests performed previously (Glissmeyer and Droppo 2007). Consequently, the location for the air sampling probe meets the qualification criteria given in ANSI/HPS-1999. The gas and particle tracer qualification results of the scale model apply equally to the full size stack. Those results from Glissmeyer and Droppo (2007) are appended to this report. The results for the flow angle test on the Building 3430 Filtered Exhaust stack also show compliance with the flow-angle criterion.

6.0 References

10 CFR 830, Energy/Nuclear Safety Management, Subpart A – "Quality Assurance Requirements." *Code of Federal Regulations*, U.S. Department of Energy.

40 CFR 60, Appendix A, Method 1, Section 2.4. 1971. "Sample and Velocity Traverses for Stationary Sources." *Code of Federal Regulations*, U.S. Environmental Protection Agency.

40 CFR 61, Subpart H. 2002. "National Emission Standard For Emissions of Radionuclides other than Radon from Department of Energy Facilities." *Code of Federal Regulations*, U.S. Environmental Protection Agency.

ASME NQA-1-2000, "Quality Assurance Requirements for Nuclear Facility Applications, Part 1, Requirements for Quality Assurance Programs for Nuclear Facilities." *American Society of Mechanical Engineers*, New York, New York.

ASME NQA-1-2000, Part II, Subpart 2.7, "Quality Assurance Requirements for Computer Software for Nuclear Facility Applications." *American Society of Mechanical Engineers*, New York, New York.

ASME NQA-1-2000, Part IV, Subpart 4.2, "Graded Approach Application of Quality Assurance Requirements for Research and Development." *American Society of Mechanical Engineers*, New York, New York.

ANSI/HPS—American National Standards Institute/Health Physical Society. 1999. Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. N13.1-1999. Health Physics Society, McLean, Virginia.

DOE Order 414.1C. "Quality Assurance." U.S. Department of Energy, Washington, D.C.

Glissmeyer JA and JG Droppo. 2007. Assessment of the HV-C2 Stack Sampling Probe Location. PNNL-16611, Pacific Northwest National Laboratory, Richland, Washington.

Appendix A

Data Sheets

Appendix A: Data Sheets

FLOW ANGLE DATA FORM			FlowAngleRev0.	xls	4-Aug-06	Based on	CCP-WTPSP-1	78	
	Site	3430 Stack				Run No.	FA-1		
	Date	1/6/2010				Fan Setting	Maximum	•	
	Tester	JAG/JEF			Fa	an configuration	2 fans		
	Stack Dia.	43.75	in	-		Approx. air vel.	2670	sfpm at side ce	nter
Stack X-Area 1503.3 in2						Units	degrees (clock	wise > pos. nos.)
Elevation N.A. ft						Port	1&2		
Distance to	disturbance	74.5	ft			Stack Temp	55	F	
Start/End Time 1055/1140								-	
Order>		1st]			2nd			
Traverse>			Sid	le			То	р	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	1.40	8	8	8	8.0	2	3	2	2.3
2	4.58	0	0	5	1.7	-5	-2	-1	-2.7
3	8.46	-2	0	0	-0.7	1	1	1	1.0
4	14.09	-5	-4	0	-3.0	0	0	-1	-0.3
Center	21.81	-4	0	0	-1.3	-1	-1	-1	-1.0
5	29.53	-4	-1	-5	-3.3	-2	-1	-2	-1.7
6	35.16	-5	-3	-4	-4.0	-3	-3	-3	-3.0
7	39.04	-4	-3	-3	-3.3	-4	-4	-4	-4.0
8	42.23	-3	-4	-2	-3.0	-6	-5	-5	-5.3
Mean of absolute values of all data:				3.1				2.4	
w/o points by	wall:				2.5				2.0
								all	2.8
Instuments U	Jsed:			Cal. Due		_		w/o wall pts	2.2

Instuments Used:		Cal. Due			w/o wa
S-type pitot	Dwyer 72-inch S-type Pitot	#11 160S-72-A30U	Cert. of confe	ormance	
Velocity sensor	TSI VELOCICALC 209060		7/14/2010		
Angle indicator	Shop built	Cat. 3			
Manometer	Dwyer 400-5, S36N	Cat. 3			
		Notes:	Air sampler M	asstron shows 27	,400 scfm stack flow.

Note:

To assure similar hose connections

between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

All hood sashes open

Entries made by:	John Glissmeyer	Technical Data Review performed by:	J. Matthew Barnett
Signature/date	1/6/2010	Signature/date	1/18/2010
	signature on original		signature on original

	-		VELOCITY	RAVERSEI					
	Site	3430 Bldg			Run No.	VT-1			
	Date	1/6/10		Fan C	Configuration	Fans 1&2			
	Testers	JAG/JEF			Fan Setting	Maximum			
	Stack Dia.	43.75	in.		Stack Temp	57.8	deg F		
S	tack X-Area	1503.3	in.2	Sta	art/End Time	1324/1509			
	Test Port	1&2		Ce	nter 2/3 from	4.01	to:	39.74	
Distance to	disturbance	74.5	ft	Points i	n Center 2/3	2	to:	7	
V	elocity units	<u>ft/min</u>		Pito	t corr. Factor	0.84			
Order>		1st				2nd			
Traverse>			Sid	le			Top)	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth. in.		Velo	citv			Veloc	city	
1	1.40	2196	2024	2176	2131.9	2396	2342	2327	2354.8
2	4 58	2545	2511	2512	2522.8	2675	2672	2680	2675.7
2	8.46	2629	2633	2706	2655.8	2603	2012	2000	2010.1
	14.00	2023	2000	2700	2000.0	2000	2134	2101	2171.5
4 Contor	21.09	2090	2753	2733	2721.3	2027	2039	2014	2020.9
Center	21.01	2733	2731	2701	2740.2	2009	2797	2790	2790.0
5	29.55	2770	2774	2740	2703.9	2010	2000	2790	2003.0
6	35.16	2754	2763	2724	2746.8	2778	2785	2780	2781.0
/	39.04	2604	2619	2600	2607.6	2667	2630	2551	2616.0
8	42.23	2285	2234	2291	2270.0	2386	2390	2367	2380.8
Averages	>	2579.0	2560.2	2583.6	2574.3	2671.1	2672.8	2651.2	2665.0
		All	<u>ft/min</u>	Dev	<u>. from mean</u>	Center 2/3	<u>Side</u>	Bottom	<u>All</u>
		Mean	2619.6			Mean	2680.9	2750.0	2715.4
		Min Point	2131.9		-18.6%	Std. Dev.	89.8	77.0	88.0
		Max Point	2826.9		7.9%	COV as %	3.3	2.8	3.2
Flo	w w/o C-Pt	27147	acfm		Instuments	Used:			Cal Due
Vel Av	g w/o C-Pt	2600	fpm		Fisher Scien	ntific	SN 9093681	8	9/29/2010
	•	Start	Finish		Zephyr II+		SN 80355		9/18/2010
Stack temp		58.5	57	F	TSI Velocica	alc	SN 209060		7/14/2010
Equipment te	amp	N.A.	N.A.	F	Dwver Pitot	t Tube	160S-72-A3	30U C	ert. of Conf.
Ambient tem	, ,	45	42	F -					
Stack static	-	0.10	0.10	mbars	ipm				
Ambient pres	SUIRA	1021	1022	mbars	30	000			
Total Stack n		1021	1022	mbars					
Ambiont hum	idity	27%	1022		25	500 📃			
Ambient num	liuity	5176	42 /0						
					20	000			
Nataa									
Notes:					1	500			
					1	000			
						500			$\overline{}$
						6		ਗ਼ਗ਼ੑਗ਼	
						0	╯╼┤╟╵╤╴		Sido
								- /	Side
						Bottom			
Entries made	by:	John Glissme	yer		Technical Da	ata Review perfo	rmed by:	J. Matthew E	Barnett
Signature/dat	te	1/6/2010			Signature/da	ate		1/18/2010	
		signature on o	original					signature or	original

VELOCITY TRAVERSE DATA FORM

			VELOCITY	RAVERSEI					
	Site	3430 Bldg			Run No.	VT-2			
	Date	1/6/10		Fan C	Configuration	Fans 1&2		_	
	Testers	JAG/JEF			Fan Setting	Maximum		_	
	Stack Dia.	43.75	in.		Stack Temp	56.5	deg F	_	
S	tack X-Area	1503.3	in.2	Sta	art/End Time	1525/1630		_	
	Test Port	1&2	1&2		nter 2/3 from	4.01	to:	39.74	
Distance to	disturbance	74.5 ft		Points i	in Center 2/3	2	to:	7	
V	elocity units	<u>ft/min</u>		Pito	t corr. Factor	0.84			
Order>		2nd				1st			
Traverse>			Sid	le			Тор	р	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Veloo	city	
1	1.40	2119	2187	2147	2151.0	2347	2410	2345	2367.4
2	4.58	2411	2507	2477	2465.1	2676	2659	2696	2677.1
3	8.46	2553	2600	2607	2586.4	2755	2751	2710	2738.7
4	14.09	2717	2691	2689	2698.9	2822	2755	2734	2770.3
Center	21.81	2752	2737	2725	2737.8	2793	2789	2713	2765.0
5	29.53	2773	2706	2747	2741.8	2763	2790	2737	2763.0
6	35.16	2748	2726	2745	2739.8	2774	2766	2744	2761.4
7	39.04	2527	2596	2583	2568.7	2638	2629	2611	2625.8
8	42.23	2276	2298	2278	2284.2	2434	2373	2336	2381.1
Averages	>	2541 7	2560.9	2555.3	2552.6	2666.8	2657.9	2625.2	2650.0
Averageo		2041.7	2000.0	2000.0	2002.0	2000.0	2007.0	2020.2	2000.0
		Δ11	ft/min	Dev	, from mean	Contor 2/3	Sido	Bottom	Δ11
		Moon	2601.2	Det	v. nom mean	Moon	2649.4	2729.9	2600 6
		Min Doint	2001.3		17.00/	Std Dov	2040.4	2120.0	2000.0
		Max Daint	2151.0		-17.3%		109.1	55.7	93.1
F lav			2//0.3		0.0%	COV as %	4.1	2.0	3.3
		26961	acim		Instuments	Used:	0110000004	0	Cal Due
vei Av	g w/o C-Pt	2583	īpm		Fisher Scien	TITIC	SN 9093681	8	9/29/2010
o		Start	FINISN		Zepnyr II+		SN 80355		9/18/2010
Stack temp		57	56		TSI Velocica		SN 209060		7/14/2010
Equipment te	mp	N.A.	N.A.		Dwyer Pitor		1605-72-A	300 C	ert. of Cont.
Ambient temp	C	42	35		fpm				
Stack static		0.10	0.10	mbars	20	00		_	
Ambient pres	sure	1022	1021	mbars	30				
Total Stack p	ressure	1022	1021	mbars	0				
Ambient hum	idity	42%	54%	RH	25	500			
					20				
Notes:									
					1:	500-			
					4				
					.1	000-			
						500			
						500-			
									/
						0		- /	Side
						Bottom			
				L					
Entries made	by:	John Glissme	ver		Technical De	ata Review perfo	rmed by:	.I Matthew F	Barnett
Signature/dat	~). to	1/6/2010	., 5,		Signature/da	ate	ou by.	1/18/2010	
Cignature/dat		signature on	original		Signature/uz			signature on	original

VELOCITY TRAVERSE DATA FORM

			VELOCITY	RAVERSE					
	Site	3430 Bldg			Run No.	VT-3			
	Date	<u>1/7/10</u>		Fan (Configuration	Fans 1&2			
	Testers	JAG/DMT		_	Fan Setting	Minimum		_	
	Stack Dia.	43.75	in.		Stack Temp	60.0	deg F		
S	tack X-Area	1503.3	in.2	St	art/End Time	1355/1550			
	Test Port	1&2		Ce	nter 2/3 from	4.01	to:	39.74	
Distance to	disturbance	74.5	ft	Points	in Center 2/3	2	to:	7	
V	elocity units	<u>ft/min</u>		Pito	t corr. Factor	0.84			
Order>		2nd				1st			
Traverse>			Sid	le			Тор	D	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Veloo	city	
1	1.40	1429	1389	1394	1403.9	1482	1564	1547	1531.0
2	4.58	1694	1685	1667	1682.2	1744	1774	1768	1762.0
3	8.46	1744	1754	1756	1751.4	1852	1850	1861	1854.4
4	14.09	1781	1758	1779	1772.7	1871	1891	1851	1871.0
Center	21.81	1802	1798	1798	1799.3	1837	1794	1797	1809.4
5	29.53	1812	1817	1803	1810.8	1809	1781	1793	1794.2
6	35.16	1798	1788	1804	1796.8	1713	1763	1740	1738.8
7	39.04	1636	1686	1643	1655.1	1659	1665	1672	1665.4
8	42.23	1525	1483	1523	1510.0	1538	1561	1538	1545.6
Averages	>	1691.1	1684.2	1685.4	1686.9	1722.7	1738.1	1729.8	1730.2
,		100111	100112	100011					
		All	ft/min	Dev	from mean	Center 2/3	Side	Bottom	All
		Mean	1708.6	<u></u>	<u>. nom noun</u>	Mean	1752.6	1785.0	1768.8
		Min Point	1403.9		-17.8%	Std Dev	61.1	70.5	65.6
		Max Point	1903.0		9.5%	$COV \approx \%$	3.5	10.5	3.7
Flo		17712	acfm		Instuments		0.0	4.0	Cal Due
	w w/o C-Pt	1607	form		Fisher Scier	useu.	SN 0002691	0	0/20/2010
VELAV	y w/0 C-r t	Stort	Finich		Zophyr II	lillic	SN 9095001	0	9/29/2010
Stock tomp		Start	E4	le			SN 200060		7/14/2010
Slack lemp	mn		54		Dwwor Dito	t Tubo	160S 72 A	2011 C	7/14/2010
	-	N.A.	N.A.		Dwyer Filo	l Tube	1003-72-A	<u>500 C</u>	
Ambient temp	þ	30	33		fpm	/			
Stack static		0.10	0.10	mbars	20)00			
Ambient pres	sure	1021	1020	mbars	20				
Total Stack p	ressure	1021	1020	mbars	16	500			
Ambient hum	idity	47%	52%	RH	16	500			
					14	400			
					1:	200			
Notes:					1	000			
RAES MASS	tron reads 1	7,300 scfm							
				800					
						600			
						400			
						200			
						0			
								- /	Side
						Bottom			
				L					
Entries made	e by:	John Glissme	eyer		Technical Da	ata Review perfo	rmed by:	J. Matthew E	Barnett
Signature/dat	te	1/7/2010			Signature/da	ate		1/18/2010	
J III		signature on	original					signature on	original

VELOCITY TRAVERSE DATA FORM

Appendix B

Applicable Qualification Results from Model Stack

Appendix B: Applicable Qualification Results from Model Stack

These data are extracted from Glissmeyer and Droppo (2007).

Table B.1 lists the gas-tracer uniformity tests conducted on the scale model with the dampers installed at the fan outlets. Only the data for test ports 2 and 3 are shown, but even the model test port 3 was about 5 D closer to the nearest upstream disturbance than the test ports on the Building 3430 Filtered Exhaust stack. Therefore, the tracer uniformity results for the Building 3430 Filtered Exhaust stack would probably be even more favorable relative to the acceptance criteria.

The % COV was calculated for the measured gas concentration at the points in the center two-thirds area of the Building 3430 Filtered Exhaust stack. The percent deviation from the mean concentration was also calculated for any point in the measurement grid.

		Operating	Test		Control Damper Setting	Back Flow Damper Setting	Center $\frac{2}{3}$ %	% Deviation
Inje	ction Port	Fans	Port	Run No.	(degrees)	(degrees)	COV	from Mean
В	Center	A & B	2	GT-49	45.0	45.0	1.7	4.4
В	Center	A & B	3	GT-48	45.0	45.0	1.3	2.6
А	Center	А	2	GT-38	90.0	70.0	1.3	2.6
А	Center	А	3	GT-37	90.0	70.0	2.3	5.3
А	Center	A & B	2	GT-27	90.0	70.0	7.2	13.8
А	Center	A & B	3	GT-34	90.0	70.0	3.2	7.9
В	Center	В	2	GT-46	90.0	70.0	1.1	1.9
В	Center	В	3	GT-47	90.0	70.0	1.7	2.9
В	Center	A & B	2	GT-52	90.0	70.0	6.3	12.3
В	Center	A & B	3	GT-54	90.0	70.0	3.9	9.1
А	Far Left	A & B	2	GT-28	90.0	70.0	5.2	9.8
А	Far Left	A & B	2	GT-31	90.0	70.0	4.5	13.1
А	Far Left	A & B	3	GT-32	90.0	70.0	3.2	6.6
А	Far Right	A & B	2	GT-29	90.0	70.0	10.0	28.3
А	Far Right	A & B	3	GT-33	90.0	70.0	2.8	5.8
А	Near Left	A & B	2	GT-51	90.0	70.0	2.0	4.5
А	Near Left	A & B	3	GT-36	90.0	70.0	2.9	5.5
А	Near Right	A & B	2	GT-30	90.0	70.0	5.7	9.6
А	Near Right	A & B	3	GT-35	90.0	70.0	3.5	7.9

Table B.1. Summarized Results of Gas-Tracer Uniformity Tests with Dampers

Table B.2 lists the particle tracer uniformity results for the model stack. Only the data are shown for test ports 2 and 3, although the test ports on the Building 3430 Filtered Exhaust stack were about 5 duct diameters farther downstream of the duct junction thane even test port 3 on the model. The last column shows the uniformity results for the combination of operating parameters tested.

				Control	Back Flow	
Injection	Operating	Test		Damper Setting	Damper Setting	Normalized
Port	Fans	Port	Run No.	(degrees)	(degrees)	% COV
А	A & B	2	PT-12	90	70	13.75
А	A & B	2	PT-21	90	70	7.41
А	A & B	3	PT-13	90	70	9.72
А	A & B	3	PT-20	90	70	8.12
А	А	2	PT-15	90	70	2.46
А	А	3	PT-14	90	70	3.73
В	В	2	PT-18	90	70	3.02
В	В	3	PT-19	90	70	3.61

Table B.2. Particle-Tracer Uniformity Tests with Dampers

Distribution

No. of Copies

ONSITE

8	Pacific Northwest Nationa	l Laboratory
	JA Glissmeyer (3)	K3-54
	JM Barnett (2)	J2-25
	JE Flaherty	K9-30
	JT Hickman	J2-09
	RJ Steele	J2-53

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665) www.pnl.gov

