
Contract No. and Disclaimer:

This manuscript has been authored by Savannah River Nuclear 
Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. 
Department of Energy. The United States Government retains and the 
publisher, by accepting this article for publication, acknowledges that 
the United States Government retains a non-exclusive, paid-up, 
irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for United States 
Government purposes.



1 
*Corresponding author (shuyu@clemson.edu) 

Numerical Modeling of Contaminant Transport in Fractured Porous Me-

dia using Mixed Finite Element and Finite Volume Methods 

Chen Dong1, Shuyu Sun1,*, Glenn A. Taylor2 

1
Department of Mathematical Sciences, Clemson University 

Clemson, SC 29634-0975, USA 

2
Savannah River National Laboratory 

Aiken, SC 29808, USA 

Abstract.  A mathematical model for contaminant species passing through fractured porous media is 
presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite 
element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment 
of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities 
field for both the fractures and matrix which are crucial to the convection part of the transport 
equation. The finite volume method and the standard MFE method are used to approximate the 
convection and dispersion terms respectively. The model is used to investigate the interaction of 
adsorption with transport and to extract information on effective adsorption distribution coefficients. 
Numerical examples in different fractured media illustrate the robustness and efficiency of the 
proposed numerical model. 
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1. Introduction 
It is well known that fractures play an important role in flow and transport processes through 
saturated and unsaturated geologic media. By fracture, we mean the opening in the media that 
is small in one direction (the fracture aperture) and relatively large in two directions along the 
plane of fracture. A fracture to be modeled in this paper could be any local separation or 
discontinuity plane (such as joint or fault) in a geologic formation; it could also be the small-
scale cracks in concrete barriers. Because fracture permeability is generally much greater than 
cementitious matrix permeability, fracture networks have the potential for being highly 
effective pathways for conducting fluid containing contaminant species. 
 
Since the fracture geometry and connectivity of fractured rock is complex, flow behavior 
through saturated and unsaturated fractures is difficult to characterize for a given site (Bodvars-
son et al., 2002). Even with the significant progress made in the last two decades, many aspects 
of flow and transport processes in fractured rocks are currently still poorly understood. The 
main challenge arises from technical difficulties in observing details of flow processes and accu-
rately describing such phenomena within fractured rocks. However, flow processes occurring at 
this scale are crucial to many field-scale applications. 
 
In recent years, through field studies as well as mathematical simulations, considerable progress 
has been made in understanding convection-dominated processes within fractured matrix. Glass 
et al. (1996) demonstrated that the main flow mechanism for a vertical fractured is fingering 
which results from gravitational instability and aperture heterogeneities. Tokunaga and Wan 
(1997) showed that film flow could be an important mechanism at low fracture saturations. In 
their laboratory experiments, Su et al. (1999) demonstrated intermittent flow behavior not con-
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sidered by classical theory. However how to incorporate this small-scale mechanism into field-
scale models remains a challenge. Bodvarsson et al., (2002) used an approach to investigate the 
development of flow focusing and discrete paths that may occur through fractures. To quantify 
flow-focusing behavior, their stochastic fracture-continuum models incorporated fracture data 
measured from the welded tuffs to study flow-allocation mechanisms and patterns. 
 
A number of approaches are available in the literature to model flow and transport in saturated 
and unsaturated fractured matrix. In general, these modeling approaches fall in to one of the 
two categories: the continuum approach and the discrete fracture network approach. Excellent 
reviews on these approaches which have been developed and used in different fields (including 
oil reservoir engineering, groundwater hydrology, geothermal engineering, and soil physics), 
which can be found in Bear et al.(1993), National Research Council (1996), and Pruess et al. 
(1999). The dual-porosity model (Warren and Root, 1963; Kazemi, 1969; Thomas et al., 1983; 
Arbogast et al., 1990) is widely used in the flow simulators in fractured media. This model is nu-
merically efficient since computations are performed separately for the matrix and for in the 
fracture-equivalent media. However, because appropriate transfer functions are not well estab-
lished, the model is inadequate to describe the compositional effects in fractured media. Anoth-
er limitation is the lack of taking into account the discrete fractures specifically, since this model 
assumes the medium to be described by a dense connected fractured network. One can also use 
the single-porosity model with explicit grid blocks to describe the fractures in the same way as 
the matrix is described. An alternative is the discrete fracture model, which can be considered as 
a simplification of the single-porosity model. Assuming that the fracture aperture is small com-
pared to the matrix scale, fractures are represented by (n-1)-dimensional elements in an n-
dimensional domain (Noorishad and Mehran,1982; Baca et al., 1984; Granet et al., 1998). 
 
Recent works in fractured porous media simulation are more relevant to our project. Kim and 
Deo (1999, 2000), Bastian et al. (2000), Karimi-Fard and Firoozabadi (2003) have studied immisc-
ible fluid flow excellently and extensively. H. Hoteit and A. Firoozabadi (2005) demonstrated the 
possibility of modeling multi-component compressible flow in discrete fractured media. The re-
liability and efficiency of this approach are conditional to two essential approximations, the ma-
trix fracture and the fracture-fracture fluxes. The pressure in a fracture element is assumed to 
be equal to the pressure in the surrounding matrix elements, based on the cross-flow equili-
brium concept. 
 
Barriers which this paper considers consisting of porous media, i.e. cement, grout, rock, etc., are 
important for the sequestration of radioactive waste. Contaminant transport through these bar-
riers is typically calculated using a bulk material property known as the distribution coefficient, 
Kd, which represent the distribution of contaminant between the solid and liquid phases. The 
amount of solute adsorbed on the solid part of the porous media is expressed per unit mass of 
the bulk medium in a dry state.  A unit mass of the porous medium is used as a reference quan-
tity. The effect of the Kd is to show a retardation in the breakthrough curve of a contaminant. 
The retardation of the contaminant front is relative to the bulk water. A more mechanistic, but 
more difficult to implement, approach would be to use a unit surface area of the porous me-
dium as the reference quantity. Adsorption reactions are more closely related to surface area 
than to mass so using surface area would be an improvement in the definition of the distribu-
tion coefficient. Retardation is extremely important in the analyses and design of barriers to ra-
dioactive waste migration.  Regulations and laws which govern permissible releases from shal-
low land burial of low level radioactive wastes typically have some period of performance.  That 
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is, at some time in the future, say 1,000 or 10,000 years, the peak release from a burial facility 
must be below some performance measure.   
 
In this work, we employ discrete fracture model to describe flow and transport processes in 
fractured media.  Unlike the classical discrete fracture model where (n-1)-dimensional elements 
are used to represent the cracks, our discrete fracture model still use physically meaningful n-
dimensional elements. We address the numerical difficulty arising from the fracture by using 
mesh adaptation rather than by using (n-1)-dimensional elements. A numerical scheme based 
on mixed finite element (MFE) method is developed to approximate the second-order partial 
derivate terms in the flow and transport equations.  The convection term in the transport is 
treated using an upwind finite volume method (FVM), and the adsorption is modeled via effec-
tive porosity.  
 
This paper is organized as follows: First, the differential equations describing the contaminant 
diffusion and transport in the fractured cementitious matrix are presented. Second, a numerical 
model in saturated fractured media is described. We discuss in detail various components of our 
numerical approach, which include the MFE method for the flow equation, the combined FVM-
MFE method for the transport equation and the numerical discretization in time. We then 
present numerical examples in fractured media with various fracture distributions.  For each 
example, we provide and discuss simulated concentration profiles at different times, together 
with pressure and velocity fields. Finally, we numerically carry out a sensitivity analysis of para-
meters in our model and investigate the relationship between the intrinsic Kd value and effective 
Kd value which will help to design barriers that is protective of the public and environment while 
at the same time not being so over-designed as to be prohibitively expensive. 
 

2. Mathematical model 
Modeling equations for contaminant species through cracked porous media consists of two 

coupled differential equations, one is the flow equation and the other is reactive transport equ-

ation. 

Flow Equation: 

The flow equation is obtained from the conservation of total fluid volume and Darcy’s law. 

                                                                                 

Here K is the conductivity defined by  

 

 

The unknowns are  𝑝 (the pressure in the fluid mixture) and u  (the Darcy velocity of the mixture, 

i.e. the volume of fluid flowing cross a unit cross-section per unit time).  The conductivity 𝐾 is 

assumed to be uniformly symmetric positive definite and bounded. 

We assume our domain   is a polygonal and bounded in 𝑅𝑑  (d = 1, 2, or 3) with boundary 

D N    . Here D is the Dirichlet boundary and N  
is the Neumann boundary. The 

boundary conditions are taken as: 

(K ) 0,p   u .x

permeability
K .

viscosity

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,                                       ,B Dp p x 

  
 

             
,                                    .B Nu x  u n  

Reactive Transport Equations: 

The reactive equation system is obtained from the conservation of considered contaminant spe-

cies.  The contaminant concentrations in the fluid and in the solid as well as their relation can be 

described by   

( ( ) ) ( , ),
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Here the unknown 𝑐 is the concentration of the interested species within the fluid (i.e. the 
amount of the species per unit volume of the fluid mixture) and cs the concentration of the in-

terested species in the solid. T is the final simulation time. The parameter 𝐾𝑑  is the partitioning 
coefficient of the considered species between the fluid and the rock.  
      
Summation of the two concentration equations above (one in fluid and another one in solid) 
yields: 
 

 
 

Where eff

dK   
 
is the effective porosity and it is calculated separately for the matrix and 

for the fractures:  

In the matrix:           
matrix  , eff

dK     

 

In the fracture:         1  , 0dK  , 1.0eff    

 
We impose the following boundary conditions: 
 
 
 
 
 

Here inflow is the inflow boundary and outflow is the outflow boundary, i.e, 

inflow { : ( ) 0},x x     u n  

outflow { : ( ) 0}.x x     u n  

We specify an initial concentration: 

0( ,0) ( )c x c x . 

( ( ) ) 0,
eff c

c D c
t


   


u u

( ( ) ) ,Bc D c c    u u n u n inflow ,x

( ) 0,D c   u n outflow .x



5 
 

The porosity 𝜙 is assumed to be time-independent, uniformly bounded above and below by 
positive numbers. The dispersion-diffusion tensor D 𝐮  has contributions from molecular diffu-
sion and mechanical dispersion, and can be calculated by 

 

where  E 𝐮  is the tensor that projects onto the 𝐮  direction, whose (𝑖, 𝑗)  component 

is (E 𝐮 )ij =
u i u j

|u|2 ;  𝑑𝑚  is the molecular diffusivity and is assumed to be strictly positive; αl  and 

αt  are the longitudinal and the transverse dispersivities, respectively, and are assumed to be 
nonnegative.  

3. Numerical Algorithms: 

In this work, the system contains two parts: a flow equation involving the pressure and Darcy 
velocity, and a contaminant species transport equation for describing the evolution of concen-
trations. We first generate a triangular mesh containing fractures represented by long and thin 
rectangles consisting of small triangles. Based on this triangular mesh, we solve the flow equa-
tion by a mixed finite element method (MFE); then we solve the reactive transport equation 
semi-implicitly (explicitly for convection and implicitly for diffusion and adsorption) in time by 
using the combination of a finite volume method (FVM) and MFE method.   
 
Mesh generation for fractured media 
Creating a mesh is the first step in our algorithm. Since the fractures are distributed randomly in 
the domain, not just vertical to the boundaries, the triangular mesh is better to fit the fractured 
media than the rectangular mesh which is easier to generate. The mesh quality is important 
here since a low mesh quality will significantly affect the efficiency and accuracy of the algo-
rithm. There are several mesh generation methods including the TRIANGLE (J. Shewchuk, 1996), 
DISTMESH (P. -O. Persson and G.Strang, 2004) and MESHGEN (L. Ju, 2007).  Although all of these 
methods yield good results in most cases, the two methods later are proved to have better 
mesh quality than the first one (H. Nguyen, J. Burkardt, M. Gunzburger, L. Ju, Y. Saka, 2009). In 
this paper, we modify the code of DISTMESH for the 2D fractured media. At first, several frac-
tures are randomly distributed in the 0.6m × 0.6m rectangular domain. The length of each frac-
ture is randomly chosen from 0.02m to 0.2m. The angle between each fracture and the lower 
boundary is from 0 to 2π. The aperture of fractures is set to 0.3mm (Liu and Bodvarsson 2001). 
We constrain the center of each fracture to lie in the region 0.5m × 0.5m so that there is no frac-
ture out of the domain in the worst case. Next, we generate conforming triangular mesh to fit 
these fractures. We refine the triangular mesh with small triangles near fractures for it is where 
several parameters including concentration and velocity of contaminant species would change 
significantly during the simulation. In our model, each fracture is represented in two-dimension, 
which means all fractures consist of triangles but have much lower porosity. We keep the mesh 
fixed during our simulation for simplicity. 
 
Mixed Finite Element method: 
We apply a mixed finite element method for the treatment of the flow equation.  MFE methods 
(Brezzi & Fortin, 1991) are based on a variational principle expressing an equilibrium or saddle 
point condition that can be satisfied locally on each finite element.  The MFE formulation for the 
flow equation involves solving for both the scalar variable (pressure) and the flux vector (total 
velocity). Approximating spaces for the MFE method can be chosen to satisfy three important 
properties: local mass conservation, flux continuity, and the same order of convergence (and in 

( ) { ( ) ( ( ))},m l tD d I E I E    u u u u
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some cases superconvergence) for both the scalar variable and the flux (Ewing, Lazarov, & Wang, 
1991). Because of the finite element setting, MFE can readily accommodate full permeability 
tensors. By using a mixed formulation, the MFE method is more accurate in flux calculation than 
the conventional finite volume and finite element methods.  
 

Let (.,.)D  
denote the 2 ( )L D  inner product over a domain , 1,2,3dD d  for scalar functions 

and the 2( ( ))dL D  inner product for vector functions. We use (.,.) , when D  . And the ( )PL D

norm for a scalar function or the ( ( ))P dL D  norm for a vector function is denoted by  

( )
|| || ,1p

L D
p     

We define the following standard spaces: 

2( )W L   

2 2( ; ) { ( ( )) : ( )}dV H div L L       v v  

0 { ( ; ) : 0 }V H div on     v v n  

0 { ( ; ) : 0 on }N NV H div     v v n  

 
MFE for Flow equation: 
Weak formulation 

The weak formulation of the flow equation is to find 0 ( ),N BV E u p W  u such that: 

                   

1 0(K , ) ( , ) ,                 , (0, ],

( , ) (0, ),                                                , (0, ],

D
B Np p ds V t T

w w w W t T





        

    

u v v v n v

u

                    (1) 

Here ( )BE u  is the velocity extension such that its normal component agrees with 
Bu on 

N .  

MFE scheme 

We now employ the Raviart-Thomas (RT) space [Raviart,R.A. 1977] to approximate the Darcy 

velocity. 

 For a two-dimensional triangular element, the r-th order RT space is defined by 

2

1 2( ) ( ( )) (( , ) ( )),h r rV K P K x x P K   

( ) ( ),h rW K P K  

Restricted to the element K , ( )rP K  is the space of polynomials degree less than or equal to r. 

In our numerical examples below we use RT0 space. The MFE method for approximating the flow 
equation is to find (., )h hp t W  and 0 0(., ) ( )h h h h Bt V V V E u  u , such that 
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1(K , ) ( , ) ,               ,

( , ) (0, ),                                              .

D
h h B h

h h

p p ds V

w w w W





       

   

u v v v n v

u
                          (2) 

Since the original MFE formulation leads to a saddle point problem for elliptic equations, we use 
the Mixed-Hybrid algorithms [Brezzi and Fortin, 1991; Chavent and Roberts, 1991] for the pres-
sure equation. The main idea is to add unknowns which represent the edge pressure averages, 
such that the reduced linear system we solve includes a symmetric and positive definite matrix 
and thus it has advantages in iterative linear solvers. 
 
Matrix formulation 

On the basis of RT0 space, the 
hu  in the linear system (2) can be expressed as 

                                                                      , ,h K E K E

E K

u v


 u                                                                   (3) 

Where ,K Ev is a RT0 basis function, ,K Eu is the total flux across an edge E . For convenience, we 

first consider a single element K. Substituting v  with the test function ,K Ev , the total flux can be 

expressed as 

                                                                    ,K K K KEA U p e P                                                                  (4) 

Where  

1

, ' , ' , ' , , '[( ) ] ,   ( ) KK K E E E E K K E E K E K E

K

A A A v v

   , 

, , ,[ ] ,   [1] ,   [ ] .K K E E K E K K E K E E KU u e P p      

Thus equation (4) expresses the flues ,K Eu  through each edge as a function of the cell pressure 

average 
Kp and edge pressure average ,K Ep , 

 , , , , ' , '

'

,K E K E K K E E K E

E K

u p p 


      

where,  1

, , '

'

( )K E K E E

E K

A 



  ,
1

, , ' , '( ) .K E E K E EA   

In the second equation in linear system (2), 0( ) ( )hw W K P K  . Together with equation (3), 

we have 

                                                                         0,K KB U                                                                             (5) 

where 



8 
 

, , ,[( ) ],   ( ) ( ) ,   1.K K K E K K E K E K K

K

B B B v w w     

Equations (4) and (5) lead to  

                                                          1 1 0.K K K K K KEp B A e B A P                                                           (6) 

Thus  

                                                         1 1 1( ) .K K K K K KEp B A e B A P                                                           (7) 

The continuity of the fluxes across the inter-element boundaries provides 

                                            
, '

,

                if      ',

                     if      .

K E

K E N

E N

u E K K
u

u E

  
 



                                            (8) 

Then equations (4), (7) and (8) lead to the following algebraic linear system with main unknowns, 

the pressure edge averages in EP . 

                                                                           T EA P V ,                                                                          (9) 

where 

T

TA Q R M  , 

, , , ,[ ] ,   ,   ,
K EK E N N K E K EQ Q Q E K    

1 1 1[ ] ,   ( ) ,
KK N K K K K KR R R B A e B A     

, ' , , ' , , '

, '

[ ] ,   ,   E ,
E EE E N N E E K E E D

E E K

M M M 


    

The KN denotes the number of cells in the mesh and EN is the number of edges in the mesh not 

belonging to 
D . V is a vector of size EN which represents the boundary conditions. 

MFE and FVM for reactive transport equation: 
 
Weak formulation 

The weak formulation of transport equation is to find the concentration solution c W
 
and the 

diffusive flux solution 0Vv
 
such that: 
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* *

1 0

0

( , ) ( , ) ( , ) 0,     , (0, ],

ˆ ˆ ˆ( , ) ( , ) 0,                                                         , (0, ],

( , ) ( , ),                              

eff

K KK

c
w w w c ds c w w W t T

t

D c V t T

c w c w








         



      



 v u n u

v v v v

                                            , 0.w W t








   

    (10) 

Here *c  denotes the upwind value of the concentration on an edge.  
 
MFE scheme 
Now the continuous-in-time MFE method for approximating the transport equation is to find

h hc W , 0

h hVv  such that: 

       

* *

1 0

0

( , ) ( , ) ( , ) 0,   , (0, ],

ˆ ˆ ˆ( , ) ( , ) 0,                                                       , (0, ],

( , ) ( , ),                         

eff

h
h h h h

K KK

h h h

h

c
w w w c ds c w w W t T

t

D c V t T

c w c w








         



      



 v u n u

v v v v

                                                , 0.hw W t








   

  (11) 

Now for the transport equation, we consider a fully discretized algorithm. We partition the si-

mulation time [0, ]T  into m subintervals: 0 1 10 m mt t t t T      . We let 
1k k kt t t    ,

max kt t   . Assuming that there exists a constant C satisfying that min kt C t   , the 

transport equation can be solved by semi-implicit Euler method in time and the combined FVM-
MFE method in space. The fully discretized approximation is to find 

,h k hc W  and 0

,h k hVv , for 

k=0,1,2,…,m, such that 
      

, , 1 * *

, , 1 , 1

1

, ,

( , ) ( , ) ( , ) 0,     , (0, ],

ˆ ˆ( , ) ( , ) 0,                                                                                

eff eff

h k h k

h k h k h k h

K KK

h k h k

c c
w w w c ds c w w W t T

t

D c

  

 






         



    

 v u n u

v v v
0

,0 0

ˆ , (0, ],

( , ) ( , ),                                                                                                    , 0.

h

h h

V t T

c w c w w W t






 


    

v

(12) 
 
Matrix formulation 
We use standard MFE algorithm to solve this reactive transport equation. For the second equa-
tion in the linear system (10), similar to the algorithm solving the flow equation, we have that on 

the basis of RT0 space, the hv  in linear system (2) can be expressed as 

                                                                  , ,
ˆ

h K E K E

E K

v v


 v                                                                    (13) 
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Where ,
ˆ

K Ev is a RT0 basis function, ,K Ev is the total diffusive flux across an edge E . Substituting

v̂  with the test function ,
ˆ

K Ev  and integrating by parts, then the total diffusive flux can be ex-

pressed as 

                                                                  ,conc conc

K K K KA V c B                                                                   (14) 

Where  

1

, ' , ' , ' , , '
ˆ ˆ[( ) ] ,   ( ) ,conc conc conc

K K E E E E K K E E K E K E

K

A A A v D v

    

,[ ] ,   K K E E KV v   

, , ,
ˆ[( ) ],   ( ) ( ) ,   1.conc conc conc

K K K E K K E K E K K

K

B B B v w w     

 
For the diffusion part in the first equation in linear system (10), 

                                                ( , ) ( , ) 0,  
eff

h
h

c
w w

t


  


v                                                               (15) 

We have 

                                                ( ) 0,conc conc TK
K K K

dc
M B V

dt
                                                                   (16) 

Where 

[( ) ],   ( ) ,   1.conc conc conc eff

K K K K K K K K

K

M M M w w w     

Then equations (14) and (16) lead to the following algebraic linear system with main unknowns, 

the concentration cell averages C and the diffusive flux V . 

                                                                0,T T

dY
M A Y

dt
                                                                     (17) 

where 

0 0
,   diag( ) ,

0 K

conc conc

T K Nconc
M M M

M

 
  
 

 

,
V

Y
C

 
  
 

 ,   diag( ) ,   [ ] .
( ) 0 K K

conc conc

conc conc conc conc

T K N K Nconc T

A B
A A A B B

B

 
   
 

 

For the advection part in the first equation in linear system (10), 
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                            * *( , ) ( , ) 0,  
eff

K KK

c
w w c ds c w

t






    


  u n u                                               (18) 

Since the space we consider is RT0, thus 0w  . Equation (18) can be simplified as  

                            *( , ) 0,  
eff

K K

c
w w c ds

t






  


  u n                                                                          (19) 

The velocity vector 
ru across each edge can be derived in equation (4).  Let 

, 1,2,..., .r r r Eu r N  u n  

rn is the unit normal vector of each edge. To find the upwind value of the concentration on each 

edge, let G  denote the edge-element signed adjacency matrices where the entry equals 1 if  

0ru   for each edge r, on contrary, the entry of G equals -1 if 0ru  . Then the upwind con-

centration on edges can be expressed as G C or G C .  Let [ ]
Er Nuu , max( ,0) u u ,

min( ,0) u u , taking account of the boundary condition, then the flux across edges can be 

expressed as  

( ) ( )( ).Bdiag G C diag G C BC     f u u  

Here B is the edge-boundary adjacency matrix and BC is the concentration on inflow boundary. 

Then the total divergence amount is  

( ( ) ( ) ) ( ) ,T T T

BG G diag G diag G C G diag BC      f u u u                        (20) 

Here G is the edge-element adjacency matrix, G G G   .  Equation (20) leads to an alge-

braic linear system 

ˆˆconc dC
M AC b

dt
                                                                                                      (21) 

Where  

diag( )
K

conc conc

K NM M denoted in equation (16) , 

ˆ ( ( ) ( ) ),TA G diag G diag G    u u  

ˆ ( ) .T

Bb G diag BC  u  
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The equation (17) and equation (21) lead to the final algebraic linear system for transport equa-

tion, 

ˆ
T T T

dY
M A Y A Y b

dt
                                                                                              (22) 

Where  

0 0
ˆ

ˆ0
TA

A

 
  
 

, 
0

.
ˆ

b
b

 
   
 

 

For equation (22), we can easily employ the backward Euler method and treating equation (17) 

implicitly and equation (21) explicitly, 

1
1

ˆ .k k
T T k T k

Y Y
M A Y A Y b

t





  


                                                                            (23) 

The trapezoid methods, high order Runge-Kutta methods can also be employed in solving ODE 

equation (22). 

4. Numerical Results: 
4.1. Simulation Examples  

All numerical examples presented in this paper are carried out on a computational domain of (0, 
0.6 m) × (0, 0.6m). We partition a (0, 0.6 m) × (0, 0.6m) rectangular domain with random frac-
tures into non-uniform and adaptive triangular mesh.  We apply densely refined triangles to the 
area close to fractures. All the results are for non-uniform conforming grids and standard para-
meters. 
 
We present seven numerical examples for contaminant species passing through 2D porous 
media on the domain of (0, 0.6 m) × (0, 0.6m). Example 1 is the base case to be compared with 
other six examples.  In this base case, we use a set of standard parameters arising in typical 
applications in SRNL (see Table 1). In Examples 2 and 3, we manually set the fractures with 
different lengths and distributions, but the fracture does not extend onto the boundary.  
Example 4 is the case that the crack starts at one boundary but does not penetrate the medium 
all the way to the other end. Examples 5 and 6 simulate the fracture networks that extend onto 
both inflow and outflow boundaries. Examples 7 represent a more realistic scenario where we 
randomly generated different number of fractures in the domain to investigate the effect of 
fracture density. In all examples, no-flow boundary conditions apply to the top (y=0.6m) and 
bottom boundaries (y=0m).  We specify a constant pressure of 0 (gauge pressure against a 
reference pressure) on the right boundary (x=0.6m).  Contaminant species is injected on the 
inflow boundary located on the left, where a higher pressure condition of 1 m-H2O is imposed.  
The medium is initially saturate with clean water.   
 
Example 1. Three horizontal and two vertical fractures  
The model parameters employed in this base case are listed in table 1 and we attempt to simu-
late up to 10,000 years. The fracture network involves three horizontal and two vertical frac-
tures that are interconnected (Figure 1).  We generate an adaptive triangular mesh for this frac-
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tured media with 43,384 triangles (Figure 2).  The triangles are densely and locally refined in the 
area close to the fractures.  As described before, we apply RT0-MFE for the flow equation, and 
semi-implicit FVM-MFE for the transport equation using a uniform time step of 100 years. The 
simulated pressure field (Figure 3) clearly indicates the influence of the fractures on the flow. In 
particular, two inlets of the fracture network have corresponding local pressure irregularities.  
The velocity fields are displayed in the streamline/quiver plot (Figure 3).  As expected, the mag-
nitude of the velocity is much smaller in the matrix as compared to it in the fracture.  Moreover, 
it can be observed that streamlines tend to converge into fractures in the left part of the domain 
but diverge from the fractures in the right part, which suggests that factures are the main path-
ways for transporting contaminants via convection.  Figure 4 are results of simulated concentra-
tion profiles at different times (100 years, 300 years, 1000 years, 2000 years, 5000 years, and 
10,000 years).  At 100 years to 1000 years, the contaminant transports mainly through the con-
vection within fractures.  This is clearly demonstrated by the concentration plume formed quick-
ly at the fracture outlets while the matrix closer to the inflow boundary is still quite clean.  After 
2,000 years, diffusion and convection via the matrix also start to play a significant role in the 
overall contaminant transport behavior. 
 
Example 2.  Single fracture  
We consider a single fracture in our domain with fracture inlet/outlet not touching the domain 
boundary. The fracture network is depicted in Figure 5. Even one fracture significantly affects 
the distribution of pressure and also the streamline (Figure 6). Since streamlines tend to con-
verge into fractures, within about 1,000 years, the concentration plume forms quickly at the 
outlet. For about ten thousand years, more than 90% of the region is polluted with the contami-
nant up to the injected concentration (Figure 7). 
 
Example 3. Two crossed fractures  
To compare with the single fracture case, we test another fracture distribution in which there 
are two crossed fractures in our medium (Figure 8). The other crossed fracture has little influ-
ence on the pressure distribution but highly affect the streamline field. More streamlines will be 
absorbed in this crossed fracture (Figure 9). However, since this fracture blocks pathways of flow 
around the cross point, the normalized concentration on the right side of the inclined fracture 
increases slower than it on the left (Figure 10).  
 
Example 4. Single fracture starting at inflow boundary 
In the above 3 cases, all fractures does not touch any domain boundary. We now generate a 
single fracture beginning on the inflow boundary but not reaching on the opposite boundary 
(Figure 11). The pressure field is significantly impacted by this inlet on the inflow boundary (Fig-
ure 12). Unlike the case in Example 2, the fracture attaching on the inflow boundary in this ex-
ample results into very small pressure drop along the fracture, which explains that the pressure 
around the fracture is close to the pressure near the inflow boundary. The interaction of this 
single fracture with the surrounding matrix leads to two low concentration areas downstream to 
the fracture inlet (Figure 13). 
 
Example 5. Single fracture extending through the domain 
Similar to the above example, we employ a single fracture, but we now extend it all the way to 
the outflow boundary (Figure 14).  Dramatically different pressure and velocity field are ob-
served from the simulation (Figure 15). One horizontal fracture extending all the way through 
the entire domain does not have much effect on the pressure pattern (Figure 15). Contaminant 
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species passed through the fracture quickly and flow out of our domain in a very short time. This 
single fracture plays an important role in the transport of chemicals but has less effect on the 
pressure, velocity and moving direction of normalized concentration in our domain (Figure16).   
 
Example 6. Two crossed fractures with one penetrating the entire domain 
When one of the two crossed fractures is penetrating the entire domain (Figure 17), the simu-
lated pressure and velocity (Figure 18) are now completed different from the one we observed 
in Example 5. Compared with the case in Example 3, the contaminant species convects through 
fracture much more quickly because the horizontal fracture here connects the inflow and out-
flow boundaries. As a result, we observe notable difference on the concentration profiles be-
tween this example (Figure 19) and Example 3 (Figure 10). 
 
 
 
Example 7. Fractures randomly generated in the domain 
In Example 7, we randomly generate 3, 6 and 20 fractures in the domain with fracture thickness 
0.38m, 0.92m and 2.18m respectively (Figure 20, 23 and 26). Since the fracture distribution is 
more realistic than the other examples above, the streamline and pressure filed are more com-
plicated (Figure 21, 24 and 27). In addition to crucial factors of pressure and streamline, the frac-
ture is also mainly pathways of contaminant species. The normalized concentration in the region 
enclosed by this fracture network is highly affected by this fracture pattern, since most part of 
streamlines tends to converge in fractures around. It will take significantly more time to reach 
the injected concentration level. We present concentration profiles for each example (Figure 22, 
25and 28), in which the fracture network highly affect the concentration and streamline distri-
bution during the simulation. 
 
4.2. Condition numbers of resultant linear systems 
The condition of the algebraic linear systems (9) and (22) is important to our simulation results. 

At first, we test the condition number of matrix 
TA in equation (9) with different mesh element 

quantity and quality (Figure 29).  When the mesh is generated uniformly without any fracture in 

the domain, the condition number of matrix TA maintains a low value as the number of ele-

ments is increasing. If some fractures are put into the domain and the mesh is still generated 
‘uniformly’ (the elements near or in the fracture will not be uniformly generated), the condition 

number of matrix 
TA is significantly increased to infinity which means it is nearly singular. Thus 

we need to use adaptive mesh to complete our simulation. The condition numbers of matrix TA

with different number of adaptive mesh elements are shown in (Figure 29). We can see that the 
condition of the matrix is slightly worse than the matrix of the uniform mesh without fractures, 
but much better than that of the uniform mesh with the same number of fractures. The relation 

between the fracture density and the condition number of matrix TA is also investigated in this 

paper (Figure 30). The condition of the matrix will become worse when the fracture density is 
increasing significantly. 
 
Then we consider the equation (22). When the whole system reaches its equilibrium, we only 

need to take care of the condition of matrix ˆ
T TA A A  . Figure 31 represents the condition 

numbers of this matrix as the mesh quality and the number of elements change. The same re-
sult as that in the equation (9) is concluded. The adaptive mesh significantly contributes to the 
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condition of matrix A and enhances the accuracy of our simulation results. Also as the number 
of elements increases, the condition of matrix A increases as expected (Figure 32). 
  
4.3. Sensitivity Analysis 
Effect of fracture thickness 
To analyze the effect of fracture pattern, we test three cases in Example 7. We use average ef-
fluent concentration to test the influence of fracture thickness. The average effluent concentra-
tion c  is defined as follows: 

 
u

u

outflow

outflow

ncds

c
nds













 

Different fracture thickness is employed and the average effluent concentration on outflow 
boundary versus time is plotted in Figure 33. The average effluent concentration on the outflow 
boundary for the case with higher fracture thickness increases more quickly during our simula-
tion time than those with lower fracture thickness. 
 
Effect of diffusion coefficient 
We use 20 randomly generated fractures media in Example 7 to analyze the effect of diffusivity. 
The saturated effective diffusion coefficient is changed from the low value 5×10-12m2/s to the 
high value 5×10-5m2/s (Figure 34).  It spends more time to reach 50% concentration with higher 
diffusivity, however, it takes less time to reach a higher value like 90% concentration. 
 
Effect of Kd value 
Kd, which represent the distribution of contaminant between the solid and liquid phases, is de-
fined as follows (Freeze and Cherry, 1979 and Burkholder, 1976), 
 

 
mass of solute on the solid phase per unit mass of solid phase

concentration of solute in solution
dK   

The effect of the Kd expresses as a retardation in the breakthrough curve of a contaminant. The 

retardation of the contaminant front relative to the bulk water is 

 

d

b

c

K
nv

v



1  

where v  is the average linear velocity of the groundwater, cv  is the velocity of the C/C0=0.5 

point of the concentration profile of the retarded constituent, b  is the bulk porous medium 

density, and n  is the porosity of the porous medium. 
 
We use the 20 randomly generated fractures media in Example 7 to test the effect of Kd value. 
The Kd value is changed from standard value 0 ml/g (no adsorption) to high value 0.5ml/g (high 
adsorption), with the results displayed in Figure 35.  It takes more time for the normalized con-
centration on the outflow boundary to reach any fixed concentration value with higher Kd value. 
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4.3 Lumping an entire fracture network into one equivalent crack via effective Kd  
Although the retardation equation for fractured media is quite simple, its application is quite 
difficult due to the issue of actually knowing how the fractures appear. This paper addresses the 
issue of how to apply this equation by numerically solving the transport equation for various 
combinations of fractures and then developing a relationship between intrinsic Kd value and ef-
fective Kd value. 
 
In this section, we calculate the effective Kd value by lumping a complicated fractured network 
into a simple network. We use average effluent concentration on the outflow boundary to build 
a relation between intrinsic Kd value of fracture network (Figure 26) and effective Kd value of 
fracture network (Figure 5). At first, we use our flow and contaminant transport simulator to 
obtain the relationship between 50% average effluent concentration time and intrinsic Kd values 
(Figure 36).  Next, we calculate the relationship between 50% average effluent concentration 
time and effective Kd values (Figure 36) for a single-fracture network. We find that both of these 
two relations appear to be linear in the range of Kd value from 0 ml/g to 5ml/g. Then, from these 
two linear relations, we can conclude that the relation between intrinsic Kd value and effective 
Kd value is also linear. To verify this conclusion, we test relationship between effective Kd and 
intrinsic Kd over the same 50% average effluent concentration time. The final result we obtained 
is depicted in Figure 37.  The relationship between the effective Kd is the intrinsic Kd appears to 
be strictly linear from 0 to 5. This investigation indicates that effective Kd can be computed from 
intrinsic Kd by applying a multiplier. 
 

5. Conclusions and future work 
In this paper, an efficient and robust simulator has been developed for the solution of contami-
nant species passing through a fractured cementitious matrix. We first presented our mathe-
matical model consisting of two differential equations, i.e. the flow equation and the reactive 
transport equation. A numerical scheme based on the mixed finite element (MFE) method is 
developed to approximate the second-order partial derivate terms in the flow and transport 
equations. The convection term in the transport equation is treated using an upwind finite vo-
lume method (FVM). With the MFE method, the fluxes through fractures are accurately approx-
imated using the adaptive conforming triangular mesh since the triangular grids have the poten-
tial for effective mesh adaptation. Various patterns of fractures are simulated and compared. In 
the triangular computation, we locally refine the elements in the areas close to fractures for im-
proved accuracy and efficiency of the numerical solution. Sensitivity analysis has been carried 
out for the simulations by perturbing several parameters. The effective Kd calculation for lump-
ing an entire crack network to an equivalent single-fracture system has been proposed and car-
ried out using our contaminant transport simulator.  In a near future, we will investigate the re-
lationship between lumped effective Kd and fracture density, which we believe is meaningful 
and useful and plays a crucial rule in the contaminant transport system and it tightly interacts 
with many other parameters in our mathematics model such as conductivity, porosity and in-
trinsic Kd, thus affecting the lumped effective Kd. Moreover, we also plan to study more effective 
mesh adaptation for our triangular discretization, especially the adaptivity guided by physical 
quantities important to our system such as flow rate and concentration gradients.   
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Table 1.  Standard parameters 

Saturated Hydraulic 
Conductivity, Ks 

(cm/s) 

Saturated Effective  
Diffusion Coefficient, 

De (cm2/s) 

Effective 
Porosity 

(%) 

Kd value 

1.0E-12 5.0E-11 18.4 0 

 
 
 

 
Figure 1.  Enlarged fracture and conductivity distribution for base case 
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Figure 2. Adaptive triangular mesh for base case 

 

  
Pressure distribution Streamline field 

Figure 3. Pressure distribution and Streamline filed for Example 1 
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Concentration distribution at 100year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 4. Concentration at different time within ten thousand years 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 5. Fracture network for single fracture with no begin at any boundary 
 
 

  
Pressure distribution Streamline field 
Figure 6. Pressure distribution and Streamline field for single fracture 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10,000 year 

Figure 7. Concentration at different time within ten thousand years of single fracture 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 8. Fracture network for two crossed fracture with no begin at any boundary 
 

  
Pressure distribution Streamline field 

Figure 9. Pressure distribution and Streamline filed for two crossed fractures 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 10. Concentration at different time within ten thousand years of two crossed fracture 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 11. Fracture network for single fracture cross inflow boundary 
 
 

  
Pressure distribution Streamline field 

Figure 12. Pressure distribution and Streamline filed for one fracture cross inflow boundary 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 13. Concentration at different time within ten thousand years for one fracture cross in-
flow boundaries 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 14. Fracture network for single fracture cross two boundaries 
 
 

  
Pressure distribution Streamline field 

Figure 15. Pressure distribution and Streamline filed for one fracture cross two boundaries 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 16. Concentration at different time within ten thousand years for one fracture cross two 
boundaries 
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Enlarged fracture and conductivity distribution Triangular mesh for two crossed fracture 

Figure 17. Fracture network for two crossed fractures extends to two boundaries 
 
 

  
Pressure distribution Streamline field 

Figure 18. Pressure distribution and Streamline filed for two crossed fractures extends to two 
boundaries  
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 19. Concentration at different time within ten thousand years for one fracture cross two 
boundaries 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 20. Fracture network for 3 randomly generated fractures  
 
 

  
Pressure distribution Streamline field 

Figure 21. Pressure distribution and streamline filed for 3 randomly generated fractures 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 22. Concentration at different time within ten thousand years for 3 randomly generated 
fractures 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 23. Fracture network for 6 randomly generated fractures 
 
 

  
Pressure distribution Streamline field 

Figure 24. Pressure distribution and streamline filed for 6 randomly generated fractures 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 25. Concentration at different time within ten thousand years for 6 randomly generated 
fractures 
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Enlarged fracture and conductivity distribution Triangular mesh for single fracture 

Figure 26. Fracture network for 20 randomly generated fractures 
 
 

  
Pressure distribution Streamline field 

Figure 27. Pressure distribution and streamline filed for 20 randomly generated fractures 
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Concentration distribution at 100 year Concentration distribution at 300 year 

  
Concentration distribution at 1000 year Concentration distribution at 2000 year 

  
Concentration distribution at 5000 year Concentration distribution at 10000 year 

Figure 28. Concentration at different time within ten thousand years for 30 randomly generated 
fractures 
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Figure 29. Natural logarithm of condition numbers of AT vs Numbers of elements  

 

 
Figure 30. Natural logarithm of condition numbers of AT vs Fracture density 
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Figure 31. Natural logarithm of condition numbers of A vs Numbers of elements 

 
Figure 32. Natural logarithm of condition numbers of A vs Fracture density 
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Figure 33. Average effluent concentration on outflow boundary vs time with different fracture 

density 
 

 
Figure 34.  Average effluent concentration on outflow boundary vs time with different diffusivity 
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Figure 35.  Average effluent concentration on outflow boundary vs time with different Kd value 

 

 

Figure 36. Intrinsic and effective Kd value vs time 
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Figure 37. Intrinsic Kd value vs effective Kd value  

 


