
LLNL-TR-441596

Model verification: synthetic single pattern
simulations using seismic reflection data

A. Ramirez, K. Dyer, D. White, Y. Hao, X. Yang

July 12, 2010



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Theme 3B: Storage Monitoring Methods 
Task 3b.11: Forward-Tuned Stochastic Modeling 
 
Model verification: synthetic single pattern simulations 

using seismic reflection data 
 

Abelardo Ramirez1, Kathleen Dyer1, Donald White2, Yue Hao1,  
 Xianjin Yang1 

 
1-Lawrence Livermore National Laboratory 

2-Geological Survey of Canada 
 

LLNL-TR-441596 

Abstract 
During Phase 1 of the Weyburn Project (2000-2004), 4D reflection seismic data were 
used to map CO2 migration within the Midale reservoir, while an extensive fluid 
sampling program documented the geochemical evolution triggered by CO2-brine-oil-
mineral interactions. The aim of this task (3b.11) is to exploit these existing seismic and 
geochemical data sets, augmented by CO2/H2O injection and HC/H2O production data 
toward optimizing the reservoir model and thereby improving site characterization and 
dependent predictions of long-term CO2 storage in the Weyburn-Midale reservoir. 
 
Our current project activities have concentrated on completing and testing a stochastic 
inversion method that will identify reservoir models that optimize agreement between the 
observed and predicted seismic response. This report describes the results of a validation 
test that uses synthetic seismic data to identify optimal porosity/permeability distributions 
within the reservoir. The report partially fulfills deliverable D3: “Model verification: 
synthetic single pattern simulations” in the project’s statement of work. A future 
deliverable will describe verification activities related to the geochemical inversion 
algorithm. 
 
This work has been performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
 
 

Introduction 
When completed, our completed stochastic inversion tool will explicitly integrate 
reactive transport modeling, facies-based geostatistical methods, and a novel stochastic 
inversion technique to optimize agreement between observed and predicted storage 
performance. Such optimization will be accomplished through stepwise refinement of: 1) 
the reservoir model—principally its permeability magnitude and heterogeneity—and 2) 
geochemical parameters—primarily key mineral volume fractions and kinetic data. We 



anticipate that these refinements will facilitate significantly improved history matching 
and forward modeling of CO2 storage. Our tool uses the Markov Chain Monte Carlo 
(MCMC) methodology. 
 
Deliverable D1, previously submitted as a report titled “Development of a Stochastic 
Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic 
Response To CO2 Injection/Migration in the Weyburn-Midale Project” (Ramirez et al., 
2009), described the stochastic inversion approach that will identify reservoir models that 
optimize agreement between the observed and predicted seismic response. The software 
that implements this approach has been completed and requires that its performance be 
verified.  
 
This document contains deliverable D3, a report that summarizes verification activities 
that evaluate the performance of the software and its ability to recover reservoir model 
permeabilities that optimize agreement between measured and predicted seismic 
reflection data. A future deliverable will describe verification activities that ensure 
recovery of geochemical parameters (mineral volume fraction, kinetic parameters) that 
optimize agreement between measured and predicted aqueous chemistry data. 
 

Testing approach 

Introduction 
   
The software validation approach we followed consisted of the following steps. First, we 
generated random realizations of porosity/permeability. In this document, we call these 
realizations reservoir models.  These models honored geostatistical trends in Cenovus’ 
model calibrated against several decades of production data. Realizations also honored 
lithology designations and layer boundariesin Cenovus’ model.  
 
We then arbitrarily selected one of these reservoir models as the “true” model. The next 
step was to run the flow simulator while honoring the CO2 injection and fluid production 
rates used in the field; this step predicted various reservoir parameters such as fluid 
densities, CO2 saturation and pore pressure. We then predicted seismic velocities 
throughout the model using the calculated reservoir parameters and Gassmann’s equation 
(see Ramirez et al., 2009, for details). The velocity model was then used to compute 
seismic reflectivities and and zero-offset, 1D seismograms. The seismograms became the 
“observed data” used by the stochastic inversion to find the optimal permeability models. 
We then ran the MCMC inversion software to find those permeability models that best fit 
the seismic data. The permeabilities recovered by the inversion were then compared to 
the “true” model to assess their similarity. 
 
Figures 1 and 2 show details of the reservoir region assumed for the test. The region 
consisted of pattern 16 (location shown in Figure 2) and included a CO2 injector, oil 
producers and water injectors as shown in Figure 1. The size of the region is 1.17 km by 
1.17 kilometers by 1.46 km.  



 
The reservoir models honor information contained by Cenovus’ lithology/permeability 
model. Their model has been calibrated against production data collected over a period of 
decades. Our realizations honor their lithology designations and layer boundaries. The 
realizations allow porosity and permeability to vary spatially between each layer while 
honoring the porosity/permeability trends embedded in their model (Figures 3 and 4). 
The porosities come from the bimodal distribution shown by the histogram in Figure 3, 
left side. The permeabilities come from the distribution shown on the right side of Figure 
3. The porosity/permeability distributions also honor the cross-correlation trends shown 
in Figure 4. 
 
We used the algorithm that generates the porosity/permeability realizations to generate a 
number of realizations. Ramirez et al. (2009) describe the algorithms we use for this 
process in detail. One of these reservoir models was arbitrarily chosen to be the “true” 
model and is shown by the lower row of images in Figure 5. These images show 
horizontal slices through the model, 6m above, 0 m, and 4 m below the location of the 
CO2 injector. The flow simulator was then used to compute various reservoir parameters 
such as fluid density, pressure and CO2 saturation needed to compute seismic velocity. 
The flow simulator used as input the “true” reservoir model as well as the 
injection/production volumes observed during field operations. The simulation assumed 
that water was injected for 2 years, and that CO2 injection started after 0.7 years of water 
injection. The top row of images in Figure 5 show the CO2 saturations calculated by the 
flow simulator after 1.3 years of CO2 injection. 
 
We then used an algorithm that implements Gassmann’s equation to compute a seismic 
velocity model. Then the reflectivities within the reservoir were calculated and zero 
offset, 1D seismograms computed. These 1D seismograms became the “observations” 
used by the stochastic inversion to recover reservoir models that are consistent with the 
seismic data. We use the Monte Carlo Markov Chain (MCMC) stochastic inversion 
technique described in detail by Ramirez	
  et	
  al.	
  (2009). 

Results 
Figures	
  6a	
  and	
  b	
  show	
  the	
  current	
  (last	
  accepted)	
  permeability	
  model	
  as	
  a	
  function	
  
of	
  MCMC	
  iteration.	
  The	
  horizontal	
  slice	
  shown	
  is	
  coplanar	
  with	
  the	
  CO2	
  injector.	
  	
  The	
  
top	
  left	
  images	
  shows	
  the	
  “true”	
  model.	
  Note	
  that	
  after	
  70	
  iterations	
  there	
  are	
  
substantial	
  similarities	
  between	
  the	
  recovered	
  image	
  and	
  the	
  true	
  model.	
  
Subsequent	
  iterations	
  show	
  features	
  that	
  are	
  qualitatively	
  similar	
  to	
  the	
  true	
  model;	
  
however,	
  the	
  inversion	
  values	
  are	
  somewhat	
  higher	
  than	
  those	
  in	
  the	
  true	
  model.	
  
This	
  is	
  not	
  surprising	
  because	
  the	
  MCMC	
  approach	
  searches	
  the	
  space	
  of	
  possible	
  
solutions.	
  It	
  moves	
  into	
  a	
  region	
  were	
  the	
  models	
  are	
  very	
  consistent	
  with	
  the	
  
observations	
  and	
  then,	
  can	
  move	
  away	
  in	
  order	
  to	
  search	
  for	
  other	
  (possible)	
  
regions	
  that	
  may	
  be	
  consistent	
  with	
  the	
  observations.	
  	
  	
  This	
  means	
  that	
  the	
  best	
  
models	
  may	
  not	
  necessarily	
  be	
  at	
  the	
  end	
  of	
  a	
  Markov	
  chain	
  (i.e.,	
  last	
  iteration	
  
number)	
  and	
  thus,	
  may	
  be	
  found	
  at	
  earlier	
  iterations.	
  
	
  



We	
  now	
  discuss	
  models	
  that	
  best	
  fit	
  the	
  “observed”	
  zero-­‐offset	
  seismograms.	
  We	
  
used	
  the	
  likelihood	
  function	
  values	
  to	
  identify	
  these	
  models.	
  The	
  likelihood	
  function	
  
(see	
  Ramirez	
  et	
  al.,	
  2009	
  for	
  details)	
  provides	
  a	
  metric	
  that	
  indicates	
  how	
  similar	
  are	
  
the	
  predicted	
  and	
  observed	
  seismic	
  data	
  for	
  a	
  given	
  reservoir	
  model	
  realization.	
  	
  
	
  
Using	
  this	
  metric,	
  we	
  identified	
  the	
  top	
  three	
  models	
  in	
  a	
  Markov	
  chain	
  that	
  was	
  
1100	
  iterations	
  long.	
  	
  These	
  models	
  are	
  shown	
  in	
  Figure	
  7.	
  The	
  left	
  column	
  of	
  
images	
  shows	
  three	
  horizontal	
  slices	
  through	
  the	
  true	
  permeability	
  model,	
  and	
  the	
  
location	
  of	
  the	
  CO2	
  injector	
  and	
  oil	
  producers.	
  The	
  remaining	
  3	
  columns	
  of	
  images	
  
show	
  slices	
  through	
  reservoir	
  models	
  that	
  exhibit	
  the	
  best	
  likelihoods.	
  	
  
	
  
The	
  inversion	
  models	
  are	
  reasonably	
  close	
  to	
  the	
  true	
  model.	
  	
  The	
  slices	
  coplanar	
  
with	
  the	
  CO2	
  injector	
  and	
  oil	
  producers	
  (middle	
  row	
  of	
  images	
  in	
  Figure	
  7)	
  show	
  
regions	
  of	
  relatively	
  high	
  and	
  relatively	
  low	
  permeabilities.	
  Note	
  the	
  relatively	
  high	
  
permeability	
  zone	
  located	
  on	
  the	
  lower	
  left	
  quadrant	
  of	
  the	
  true	
  model	
  is	
  matched	
  
reasonably	
  well	
  by	
  high	
  permeability	
  zones	
  in	
  the	
  inversion	
  models	
  
The	
  slices	
  at	
  6m	
  above	
  the	
  CO2	
  injector	
  (top	
  row	
  of	
  images,	
  Fig.	
  7)	
  are	
  similar	
  to	
  the	
  
“true”	
  model	
  and	
  all	
  show	
  regions	
  with	
  relatively	
  high	
  permeability.	
  Similar	
  
comments	
  can	
  be	
  made	
  on	
  the	
  slices	
  located	
  4	
  m	
  below	
  the	
  injector	
  well	
  (bottom	
  
row	
  of	
  images).	
  	
  
	
  
It	
  is	
  well	
  known	
  that	
  inversions	
  of	
  geophysical	
  data	
  are	
  typically	
  non-­‐unique	
  and	
  the	
  
solution(s)	
  are	
  uncertain.	
  One	
  of	
  the	
  strengths	
  of	
  our	
  stochastic	
  inversion	
  method	
  is	
  
that	
  it	
  provides	
  the	
  information	
  needed	
  to	
  characterize	
  solution	
  uncertainty.	
  The	
  
differences	
  between	
  the	
  inversion	
  models	
  in	
  Figure	
  7	
  are	
  indicative	
  of	
  the	
  
uncertainty	
  associated	
  with	
  the	
  inversion	
  results.	
  Image	
  features	
  that	
  are	
  similar	
  in	
  
all	
  inversion	
  models	
  indicate	
  a	
  higher	
  level	
  of	
  confidence	
  that	
  the	
  features	
  represent	
  
the	
  true	
  model.	
  	
  Conversely,	
  features	
  that	
  vary	
  from	
  one	
  inversion	
  to	
  the	
  next	
  are	
  
associated	
  with	
  a	
  higher	
  level	
  of	
  uncertainty	
  and	
  therefore,	
  we	
  are	
  less	
  confident	
  
that	
  they	
  are	
  representative	
  of	
  the	
  true	
  model.	
  	
  We	
  are	
  currently	
  developing	
  tools	
  
that	
  can	
  be	
  used	
  to	
  rigorously	
  characterize	
  solution	
  uncertainty.	
  These	
  will	
  be	
  
discussed	
  in	
  future	
  deliverables.	
  
	
  
One	
  interesting	
  aspect	
  of	
  these	
  results	
  is	
  that	
  the	
  inverted	
  models	
  appear	
  to	
  recover	
  
reasonable	
  permeabilities	
  in	
  regions	
  not	
  invaded	
  by	
  the	
  CO2	
  plume.	
  Consider	
  the	
  
extent	
  of	
  the	
  CO2	
  plume	
  shown	
  by	
  the	
  top	
  row	
  of	
  images	
  in	
  Figure	
  5,	
  particularly	
  in	
  
the	
  slice	
  coplanar	
  with	
  the	
  CO2	
  injector	
  (top	
  row,	
  middle	
  image).	
  	
  Note	
  that	
  the	
  
plume	
  extends	
  to	
  the	
  locations	
  of	
  the	
  oil	
  producers	
  closest	
  to	
  the	
  CO2	
  injector.	
  
Now	
  consider	
  the	
  high	
  permeability	
  zone	
  in	
  Figure	
  7	
  (middle	
  row	
  of	
  images)	
  located	
  
in	
  the	
  lower	
  left	
  quadrant	
  of	
  each	
  image.	
  The	
  CO2	
  plume	
  does	
  not	
  invade	
  this	
  region	
  
of	
  higher	
  permeability	
  and	
  yet,	
  the	
  inversion	
  recovers	
  permeabilities	
  that	
  are	
  
reasonably	
  close	
  to	
  the	
  true	
  model.	
  We	
  know	
  that	
  the	
  pressure	
  field	
  in	
  the	
  reservoir	
  
is	
  affected	
  by	
  the	
  permeability	
  distribution	
  and	
  the	
  rock	
  and	
  fluid	
  bulk	
  moduli	
  are	
  
pressure	
  sensitive.	
  This	
  means	
  that	
  pressure	
  changes	
  caused	
  by	
  injection/extraction	
  
can	
  cause	
  seismic	
  velocity	
  changes	
  that	
  can	
  be	
  detected.	
  Laboratory	
  measurements	
  
made	
  on	
  reservoir	
  core	
  by	
  Brown	
  (2002)	
  corroborate	
  this	
  assertion.	
  



	
  
We	
  propose	
  that	
  pressure	
  fluctuations	
  caused	
  seismic	
  velocity	
  changes	
  that	
  affected	
  
the	
  “observed”	
  seismograms,	
  thereby	
  providing	
  sensitivity	
  to	
  reservoir	
  permeability	
  
in	
  regions	
  affected	
  by	
  the	
  pressure	
  pulse.	
  To	
  test	
  this	
  hypothesis,	
  we	
  conducted	
  a	
  
numerical	
  experiment	
  where	
  we	
  predicted	
  the	
  reservoir	
  conditions	
  and	
  associated	
  
P	
  velocities	
  for	
  two	
  scenarios.	
  In	
  scenario	
  1,	
  no	
  CO2	
  injection	
  or	
  fluid	
  extraction	
  was	
  
allowed.	
  The	
  seismic	
  velocities	
  associated	
  with	
  this	
  case	
  (let’s	
  call	
  this	
  velocity	
  
model	
  V1)	
  were	
  calculated	
  using	
  the	
  process	
  described	
  earlier	
  in	
  this	
  report.	
  For	
  the	
  
second	
  scenario,	
  we	
  allowed	
  CO2	
  injection	
  and	
  extraction	
  over	
  a	
  1.3	
  year	
  period.	
  
Let’s	
  call	
  the	
  velocity	
  model	
  predicted	
  for	
  this	
  case,	
  V2.	
  We	
  then	
  calculated	
  the	
  P	
  
velocity	
  changes	
  (V1	
  –	
  V2)	
  and	
  analyzed	
  the	
  results.	
  
	
  
Figure	
  8	
  summarizes	
  the	
  results	
  of	
  this	
  simulation.	
  The left column of images shows 
the “true” permeability model used by the flow simulator. The second and third image 
columns show the calculated pressure and CO2 saturation that develop after 1.3 years of 
CO2 injection. The fourth image column shows the changes in P velocity (V1 – V2). Note 
that the P velocity decreases around the CO2 injection well as expected by as much as 
100 m/s. Now look at the velocity changes within the white ellipse where the velocity 
decreases a smaller amount, about 35 m/s. Note that the white ellipse does not intercept 
the region where the CO2 plume is located. This suggests that the capacity to recover 
permeabilities in this region is due to the changes in velocities caused by pressure 
changes. The changes caused by the CO2 plume are about 3 times larger than those 
created by pressure effects. This analysis suggests that the seismic data is primarily 
sensitive to CO2 saturation and, to a lesser extent, to the pressure perturbations associated 
with the injection/extraction process. 
 

Computational Expense 
Perhaps	
  the	
  greatest	
  challenge	
  associated	
  with	
  the	
  use	
  of	
  our	
  stochastic	
  inversion	
  
approach	
  is	
  its	
  computational	
  expense.	
  Almost	
  all	
  the	
  expense	
  is	
  in	
  running	
  the	
  flow	
  
simulator	
  that	
  predicts	
  reservoir	
  conditions	
  caused	
  by	
  injection/extraction	
  
operations.	
  The	
  number	
  of	
  realizations	
  required	
  for	
  the	
  Markov	
  chains	
  to	
  reach	
  
convergence	
  is	
  expected	
  to	
  be	
  2000	
  –	
  6000.	
  	
  	
  
	
  
Our	
  initial	
  algorithm	
  implementation	
  would	
  have	
  required	
  between	
  16	
  and	
  48	
  days	
  
of	
  wall	
  clock	
  time	
  to	
  reach	
  convergence	
  for	
  just	
  one	
  reservoir	
  pattern	
  (like	
  the	
  
validation	
  test	
  described	
  previously).	
  For	
  a	
  multi-­‐pattern	
  test,	
  the	
  required	
  time	
  
would	
  increase	
  substantially.	
  Clearly,	
  these	
  run	
  times	
  needed	
  to	
  be	
  reduced	
  
substantially	
  to	
  make	
  the	
  technique	
  useful.	
  	
  	
  
	
  
We	
  spent	
  a	
  considerable	
  amount	
  of	
  effort	
  in	
  modifying/testing	
  the	
  initial	
  
implementation	
  to	
  increase	
  its	
  time	
  efficiency.	
  After	
  these	
  modifications	
  were	
  
implemented,	
  the	
  time	
  required	
  to	
  reach	
  convergence	
  was	
  reduced	
  to	
  a	
  few	
  days.	
  
These	
  modifications	
  include	
  various	
  multi-­‐threading	
  approaches	
  described	
  next.	
  
	
  



Figure	
  9	
  schematically	
  shows	
  the	
  nested,	
  parallel-­‐thread	
  approaches	
  implemented	
  
to	
  date.	
  Each	
  Markov	
  chain	
  runs	
  on	
  a	
  separate	
  thread	
  (left	
  side	
  of	
  Figure	
  9).	
  	
  Then,	
  
each	
  Markov	
  chain	
  thread	
  is	
  sub-­‐divided	
  by	
  creating	
  multiple	
  reservoir	
  realizations;	
  
Each	
  realization	
  is	
  created	
  by	
  perturbing	
  the	
  last	
  model	
  that	
  accepted	
  by	
  the	
  MCMC	
  
algorithm	
  and	
  is	
  run	
  on	
  a	
  separate	
  thread	
  (see	
  middle	
  diagram	
  in	
  Figure	
  9).	
  All	
  these	
  
threads	
  are	
  further	
  subdivided	
  when	
  the	
  flow	
  simulator	
  is	
  used	
  because	
  it	
  runs	
  in	
  
parallel	
  mode.	
  The	
  combined	
  effect	
  of	
  these	
  modifications	
  produced	
  about	
  a	
  factor	
  
of	
  8	
  performance	
  improvement.	
  The	
  number	
  of	
  processing	
  cores	
  used	
  for	
  the	
  test	
  
was	
  104.	
  

Summary 
We	
  have	
  conducted	
  a	
  test	
  of	
  our	
  stochastic	
  inversion	
  approach	
  using	
  synthetic,	
  zero	
  
offset	
  seismic	
  data	
  to	
  recover	
  the	
  permeability	
  distribution	
  in	
  the	
  reservoir.	
  	
  We	
  
have	
  identified	
  reservoir	
  models	
  that	
  best	
  fit	
  the	
  “observed”	
  seismic	
  data	
  and	
  
compared	
  them	
  to	
  the	
  “true”	
  reservoir	
  model.	
  These	
  comparisons	
  suggest	
  that	
  the	
  
inversion	
  is	
  finding	
  models	
  that	
  are	
  reasonably	
  close	
  to	
  the	
  “truth”.	
  There	
  is	
  
reasonably	
  close	
  agreement	
  in	
  the	
  location	
  of	
  high	
  and	
  low	
  permeability	
  zones.	
  Also,	
  
the	
  permeability	
  magnitudes	
  are	
  in	
  reasonable	
  agreement.	
  	
  
	
  
One	
  somewhat	
  surprising	
  result	
  is	
  that	
  the	
  inversion	
  models	
  appear	
  to	
  recover	
  a	
  
reasonable	
  representation	
  of	
  the	
  permeability	
  field	
  in	
  regions	
  not	
  invaded	
  by	
  the	
  
CO2	
  plume.	
  We	
  suggest	
  that	
  the capacity to recover permeabilities in this region is due 
to the changes in seismic velocities caused by pressure changes. The inversion results 
suggest that the seismic data is primarily sensitive to CO2 saturation and, to a lesser 
extent, to the pressure perturbations associated with the injection/extraction process.	
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Figure 1 shows the well layout within the pattern of interest. The green segments 
represent the oil producers, the blue triangles represent the water injectors and the red 
segment represents the CO2 injector. 
 
 



 
Figure 2. The red square shows the location of the pattern considered by the synthetic 
test, within the Phase 1A area of the Weyburn-Midale reservoir. 
 

 
Figure 3. Histograms of porosity and permeability in Cenovus’ model, calibrated against 
production and injection history. 
 



 
Figure 4. Cross-plot of porosity versus permeability (inferred from Cenovus’ model). 
 
 
 
 
 
 
 
 



 
Figure 5. The top row of images shows the CO2 distribution calculated assuming the 
permeability distribution in the bottom row of images. The image planes are horizontal 
and located at the elevation of the CO2 injector, 6m above the injector and 4 m below the 
injector. The CO2 saturation color bar is at the top right corner of the image. The 
permeabilities are in millidarcies (bottom right color bar). 
 
 
 
 



Figure 6a. The top left image shows the true permeability distribution and the locations of 
the CO2 injector, oil producers and water injectors.  The CO2 injector is coplanar with the 
horizontal image plane shown.  The remaining images show the recovered permeabilities 
as a function of MCMC iteration. 
 
 



 
Figure 6b. The top left image shows the true permeability distribution and the locations 
of the CO2 injector, oil producers and water injectors.  The CO2 injector is coplanar with 
the image plane shown.  The remaining images show the recovered permeabilities as a 
function of MCMC iteration. 
 
 



 
Figure 7. The left column of images shows horizontal slices through the true permeability 
model. The next three columns show recovered permeability distributions that best fit the 
synthetic seismic data. 
 
 



 
Figure 8. The left column of images shows the “true” permeability model. The second 
and third image columns show the calculated pressure and CO2 saturation that develop 
after 1.3 years of CO2 injection. The fourth image column shows changes in P velocity 
(V1 – V2) predicted, where V1 = velocity at ambient pressure and no CO2, and V2 = 
velocity at injection pressures and CO2 saturations. The velocity changes within the white 
ellipse region are likely caused by pressure fluctuations created by the 
injection/extraction process. 
 
 

 
 
Figure 9 shows schematic implementation of the nested, parallel-thread approaches used 
to optimize run-time performance. 


