Letter Report Environmental Monitoring Systems Initiative

Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A.

prepared by

Johann P. Engelbrecht, Ilias Kavouras, David S. Shafer, Dave Campbell, Scott Campbell, Greg McCurdy, Steven D. Kohl, George Nikolich, Larry Sheetz and Alan W. Gertler

> Desert Research Institute Nevada System of Higher Education

> > submitted to

Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada

August 2011

The work upon which this report is based was supported by the U.S. Department of Energy under Contract #DE-AC52-06NA26383.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy. Available for sale to the public, in paper, from:

> U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6000 email: order@ntis.fedworld.gov online ordering: <u>http://www.ntis.gov/ordering.htm</u>

Available electronically at <u>http://www.doe.gov/bridge</u>
Available for a processing fee to the U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 423.576.8401
fax: 423.576.5728
email: reports@adonis.osti.gov

EXECUTIVE SUMMARY

The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents.

The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil's Hole pupfish (*Cyprinodon diabolis*) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.

All mass measurements fall well below the US EPA National Ambient Air Quality Standards (NAAQS) for PM_{10} (150 µg/m³ for 24 hr averaging interval) and $PM_{2.5}$ (35 µg/m³ for 24 hr averaging interval, 15 µg/m³ for annual averaging interval). The averaged levels measured on Teflon[®] filters at Ash Meadows NWR for both PM_{10} (12 µg/m³) and $PM_{2.5}$ (5 µg/m³), are similar to those previously measured at four rural IMPROVE sites.

The mineral dust (soil) components, including the silicate oxides, minor oxides and gypsum, together make up the largest percentage of the aerosol, being on average 58% of PM_{10} by mass and 37% of $PM_{2.5}$ by mass, the difference being ascribed to the coarser nature of the soil forming minerals.

The highest concentrations of mineral dust components were measured during drier fall months of October and November, 2009. Although halite (NaCl) was found at all sites, the percentages were always very low, except for the filter samples collected on 10/04/2009. The anomalously high values of 8% halite for PM_{10} and 10% for $PM_{2.5}$ points to an evaporite (salt) source such as an alkaline playa dust. Playas are common in the region around Ash Meadows NWR.

Although secondary ammonium sulfate concentrations vary with season, they are similar for PM₁₀ and PM_{2.5}, implying that this species occurs in the finer fraction. Average values for PM₁₀ were 0.5 μ g/m³, and 0.7 μ g/m³ for PM_{2.5}, with the highest concentrations in spring, 2009 and the lowest in the following late fall and winter. Secondary ammonium sulfate is from SO₂ emitted by distant power plants and other combustion sources, and transported into the Amargosa Valley.

Secondary ammonium nitrate concentrations fluctuate by month, with both the lowest $(0.08 \ \mu g/m^3 \text{ for PM}_{10} \text{ and } 0.03 \ \mu g/m^3 \text{ for PM}_{2.5})$ and highest $(1.11 \ \mu g/m^3 \text{ for PM}_{10} \text{ and } 0.77 \ \mu g/m^3 \text{ for PM}_{2.5})$ measured values occurring in fall of 2009. Secondary nitrates form from nitrogen oxides emitted from vehicle emissions, possibly transported to Amargosa Valley from the Las Vegas - Los Angeles corridor.

Elemental carbon (EC) is generally very low (on average < $0.2 \ \mu g/m^3$) except for the sample taken on 8/29/2009 when high values for EC of $1.20 \ \mu g/m^3$ for PM₁₀ and $1.04 \ \mu g/m^3$ for PM_{2.5} were measured. Similarly, OC remains low (on average < $1.8 \ \mu g/m^3$) except for the sample taken on 8/29/2009 when high values for OC of 8.5 $\mu g/m^3$ for PM₁₀ and 7.5 $\mu g/m^3$ for PM_{2.5} were measured. These high carbon measurements in the last week of August, 2009 are ascribed to woodsmoke, transported from wildfires in California.

CONTENT

iii
v
vi
1
3
3
4
5
7
7
8
8
. 13
. 13
. 21
. 24
. 25
. 25
· · · · · · · · · · · · · · · · · · ·

LIST OF FIGURES

1.	Location of the Ash Meadows National Wildlife Refuge (NWR) in southwestern Nevada, in relation to Death Valley National Park as well as surrounding urban and rural areas.	2
2.	Locality map showing the Farmhouse and Administrative sampling and monitoring sites at the Ash Meadows National Wildlife Refuge in Amargosa Valley, southwestern Nevada.	3
3.	Instrumented mobile shelter at Ash Meadows NWR, showing the meteorological tower with instruments, aerosol sampling inlets, and solar panels.	4
4.	Two rack mounted TEOM [®] continuous particulate matter (PM) monitors in the mobile shelter, $PM_{2.5}$ to the left, PM_{10} to the right.	5
5.	Two BGI PQ200 [®] (PM _{2.5}) (foreground), and one BGI PQ100 [®] (PM ₁₀) (green top box in far background) filter samplers mounted on a counter top in the mobile shelter.	6
6.	Wind rose shows the predominant wind from the south-southeast for summer 2009	9
7.	Wind rose shows the predominant wind from the southeast but also with weaker northern to northwesterly and easterly winds in fall 2009	10

8.	Wind rose shows similar winds from the southeast and northwest, with periods from the east, during winter 2009/10	. 11
9.	Wind rose shows the predominant wind from the southeast and to a lesser degree from the northwest, for spring 2010.	. 12
10.	PM_{10} (gray) and $PM_{2.5}$ (black) gravimetric data as measured on Teflon [®] filters, collected on a 1-in-12 day schedule, for 14 individual sampling days.	. 19
11.	Hysplit backward trajectory model showing airflow from California towards Ash Meadows NWR for the August 27-29 period, coinciding to reported large wildfires in Los Angeles County during that period	. 20
12.	Chemical measurements combined as silicate oxides, minor metal oxides, ammonium sulfate, ammonium nitrate, gypsum, halite, sodium sulfate, potassium sulfate, elemental carbon (EC) and organic carbon (OC), for PM_{10} and associated $PM_{2.5}$ size fractions. Sample labels include the sample numbers, sampling dates, and particulate size cut	. 23

LIST OF TABLES

1.	Localities of two sites at Ash Meadows NWR sampled over the course of approximately	
	one year	2
2.	Equipment installed on or inside the mobile air quality shelter	7
3.	Average PM ₁₀ and PM _{2.5} gravimetric results measured at Ash Meadows NWR, by TEOM [®] continuous monitors, as well as US EPA National Ambient Air Quality Standards (NAAQS) for particulate matter	8
4.	Statistics of continuous particulate mass (PM) and meteorological monitoring, as well as Teflon filter measurements, for summer 2009	9
5.	Statistics of continuous particulate mass (PM) and meteorological monitoring, as well as Teflon filter measurements, for fall 2009.	10
6.	Statistics of continuous particulate mass (PM) and meteorological monitoring, as well as Teflon filter measurements, for winter 2009/10.	11
7.	Statistics of continuous particulate mass (PM) and meteorological monitoring, as well as Teflon filter measurements, for spring 2010	12
8.	Chemical and normative mineral compositions for spring and summer 2009 samples	14
9.	Chemical and normative mineral compositions for summer and fall 2009 samples	15
10.	Chemical and normative mineral compositions for fall 2009 samples	16
11.	Chemical and normative mineral compositions for fall 2009, winter 2009/10 and spring 2010 samples	17
12.	Chemical and normative mineral compositions for spring 2010 samples	18
13.	Comparison of seasonal average gravimetric results from this study (Ash Meadows NWR, 05/25/09 to 05/25/10) with those from the preceding study at eight sites in rural southwestern Nevada, urban southwestern U.S.A. (CSN) and rural southwestern U.S.A. (IMPROVE) sites	21

INTRODUCTION

The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative in southern and central Nevada. Results of six to nine week monitoring campaigns were previously published from eight sites in Nye and Lincoln counties, including an earlier collection phase at Ash Meadows NWR [Engelbrecht et al. 2007a]; Beatty [Engelbrecht et al. 2007b], Rachel [Engelbrecht et al. 2007c], Sarcobatus Flat [Engelbrecht et al. 2007d], Caliente [Engelbrecht et al. 2008a], Crater Flat [Engelbrecht et al. 2008b] Pahranagat NWR [Engelbrecht et al. 2008c] and Tonopah [Engelbrecht et al. 2008d]. In addition, unpublished data were collected from Lower Forty Mile Wash on the Nevada National Security Site. The objectives of monitoring at Ash Meadows were to examine aerosol and meteorological data, seasonal trends, as well as to examine evidence for long-distance transport of some constituents. The instrumented trailer was deployed at Ash Meadows from May 20, 2009 until June 4, 2010.

Ash Meadows NWR is in the Amargosa Valley in Nye County in southern Nevada (36°25'N, 116°20'W, 750 meter elevation), 145 kilometers (km) northwest of Las Vegas and approximately 65 km east of Death Valley National Park (Trammell et al., 2008) (Figure 1).

Located in the northern Mojave Desert, Ash Meadows NWR is a wetland complex created by a series of faults that force groundwater from the Death Valley Regional Flow System to the surface (Belcher, 2004). Based on a 10 year record from the a meteorological monitoring station in Amargosa Valley, the area average annual precipitation is 95 mm (3.74 inches), with the highest monthly averages occurring in January and February (Shafer and Hartwell, 2011). The warmest month is July with an average daily maximum temperature of 40.2 °C (104.3 °F). December, on average, is the coolest month, with average lows being just above freezing (0.2 °C or 32.3 °F). The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil's Hole pupfish (*Cyprinodon diabolis*) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is designated a Class II air quality area, and particulate matter (PM) levels are compared to those at Interagency Monitoring of Protected Visual Environments (IMPROVE) (http://vista.cira.colostate.edu/IMPROVE/Overview/Overview.htm) sites in the region.

Figure 1. Location of the Ash Meadows National Wildlife Refuge (NWR) in southwestern Nevada, in relation to Death Valley National Park as well as surrounding urban and rural areas.

Monitoring was performed at two sites on the refuge, first for about eight months at an abandoned farmhouse [Engelbrecht et al. 2007a], and then for the remaining four months at the Ash Meadows NWR administrative complex (Table 1, Figure 2), 5.4 km northwest of the first site.

Table 1.	Localities of two sites at Ash Meadows NWR sampled over the course of
	approximately one year

Site #	Locality	Coordinates	Elevation (m)	Date Start (m/d/yr)	Date End (m/d/yr)
1a	Farmhouse site	36° 23' 10.41" N	858	5/20/09	1/26/10
1b	Administration site	116° 17' 11.35" W 36° 25' 12.19" N 116° 19' 48.50" W	750	1/26/10	6/4/10

Figure 2. Locality map showing the Farmhouse (●) and Administrative (■) sampling and monitoring sites at the Ash Meadows National Wildlife Refuge in Amargosa Valley, southwestern Nevada.

EQUIPMENT

Mobile Shelter

The equipment in the instrumented mobile shelter (Figure 3) was normally powered off 120V AC, and where not available, off 12V DC batteries that are charged by solar panels. A retractable tower was mounted with an array of meteorological equipment, including wind, precipitation, temperature, and solar radiation monitors. Instruments housed inside the trailer included rack mounted continuous aerosol monitors and sequential filter samplers. The trailer was equipped with a data logger and a satellite communication system. Continuous data were logged and transmitted via a Geostationary Operational Environmental Satellite (GOES) to the Western Regional Climate Center (WRCC) at DRI in Reno.

Figure 3. Instrumented mobile shelter at Ash Meadows NWR, showing the meteorological tower with instruments, aerosol sampling inlets, and solar panels.

Aerosol Monitors

Two Tapered Element Oscillating Microbalance (TEOM[®]) continuous particulate monitors, one each for PM_{10} (particulate matter < 10 µm in aerodynamic diameter) and $PM_{2.5}$ (particulate matter < 2.5 µm in aerodynamic diameter) (Figure 4) were operated at both sites. The TEOM[®]s were configured to continuously record particulate mass (PM) concentrations, averaged over 15 minute intervals. To validate data from the TEOM[®] continuous monitors, comparisons were made with results from the BGI PQ100[®] (PM₁₀) and PQ200[®] (PM_{2.5}), 24 hr filter-based samplers.

Figure 4. Two rack mounted TEOM[®] continuous particulate matter (PM) monitors in the mobile shelter, $PM_{2.5}$ to the left, PM_{10} to the right.

Filter Samplers

BGI, Inc., PQ100[®], and PQ200[®] Ambient PM_{2.5} Federal Reference Method (FRM) samplers (Figure 5) collected 24 hr integrated PM₁₀ and PM_{2.5} aerosol filter samples. Both PQ100[®] (Designation No. RFPS-1298-124) and PQ200[®] (Designation No. RFPS-0498-116) samplers met the U.S. EPA criteria for collecting 24 hr ambient samples. The PM₁₀ fraction was collected by a filter located downstream of the size selective inlet. For the collection of PM_{2.5}, particles in the range between 2.5 and 10 μ m were removed by the Very Sharp Cut Cyclone (VSCC) (U.S. Environmental Protection Agency [EPA] Equivalent Designation No. EQPM-0202-142), before collection of PM_{2.5} particles on Teflon[®] membrane or quartz fiber filters.

Figure 5. Two BGI PQ200[®] (PM_{2.5}) (foreground), and one BGI PQ100[®] (PM₁₀) (green top box in far background) filter samplers mounted on a counter top in the mobile shelter.

Aerosol samples were collected on a US EPA 1-in-12-day sampling schedule. For both PQ100[®] and PQ200[®] samplers, aerosols were collected at a volumetric flow rate of 16.67 liters per minute (l/min). The samplers were set up to operate from internal 12V DC batteries, charged by solar panels or from 120V AC. Sets of PQ100[®] and PQ200[®] samplers collected PM₁₀ and PM_{2.5} aerosol samples, respectively. The Teflon[®] membrane filters collected particulate matter for gravimetric analysis, light absorption by densitometry, and elemental analysis by X-ray fluorescence (XRF) spectrometry [Watson et al. 1999]. Quartz fiber filters were analyzed for water-soluble ions by atomic absorption spectrometry (AA), ion chromatography (IC), and automated colorimetry (AC) [Chow and Watson 1999], and also for measurement of carbon species by thermal optical reflectance (TOR) [Chow et al. 1993]. The flow rates were calibrated against a BGI Tri-Cal[®] National Institute of Technology traceable standard.

Meteorological Equipment

The datalogger recorded wind speed and direction, precipitation, temperature, humidity and solar radiation at 15 minute intervals. The power for the meteorological instrumentation on the shelter was from 12V DC batteries, charged by a solar panel.

Data Capture

Continuous data from the air quality and meteorological monitors were stored on a Campbell CR1000[®] data logger. The measurements from the data logger were automatically polled and relayed to the WRCC at DRI in Reno. This occurs every three hours via the GOES satellite communication system. In addition, data stored in the data logger were routinely downloaded onto a laptop computer. A list of the instrumentation is presented in Table 2.

CATEGORY	ТҮРЕ	INSTRUMENT	SUPPLIER
Shelter	Mobile unit	EKTO customized	EKTO
Air Quality	Filter based PM ₁₀ (2 of each plus one spare)	PQ100 [®] – U.S. EPA Federal Reference Method	BGI
	Filter based PM _{2.5} (2 of each plus one spare)	PQ200 [®] – U.S. EPA Federal Reference Method	BGI
	Continuous PM ₁₀ (1 of each)	TEOM [®] Series 1400A ambient particulate monitor – U.S. EPA equivalency approval (EQPM- 1090-079)	Thermo Electron
	Continuous PM _{2.5} (1 of each)	TEOM [®] Series 1400A ambient particulate monitor – U.S. EPA acceptable (40 CFR 58)	Thermo Electron
Calibration	Air Flow Rate, Barometric Pressure Temperature	triCal [®] , NIST traceable standard	BGI
Meteorological	Wind speed & direction Precipitation Temperature/RH Barometric Pressure Solar Radiation	Met One, RM Young Met One, Texas Electronics Met One, Vaisala Met One, Vaisala Met One, Li-Cor	Met One, Campbell Met One, Campbell Met One, Campbell Met One, Campbell Met One, Campbell
Data Collection	Data acquisition system	Campbell CR1000 [®]	Campbell
Communication	GOES satellite transmitter GPS	TX312 HDR Garmin	Campbell Campbell
Off-grid Power	Solar (5 panels)	4 x 40W, 1 x 55W (215W total)	BGI, BP Solar

 Table 2.
 Equipment installed on or inside the mobile air quality shelter

RESULTS

Continuous PM & Meteorological Monitoring

Particulate Matter (PM) concentrations were measured by TEOM[®] monitors. PM₁₀ levels varied on average from 4.6 μ g/m³ in winter to 10.8 μ g/m³ in fall, both well below the 24 hr US Environmental Protection Agency National Ambient Air Quality Standard (NAAQS) for PM₁₀ of 150 μ g/m³. The average levels for PM_{2.5} varied from 0.8 μ g/m³ in winter to 5.2 μ g/m³, which are also below the 24 hr NAAQS of 35 μ g/m³, as well as the annual average NAAQS of 15 μ g/m³. Due to instrument failure, no PM₁₀ TEOM[®] data are available for spring 2010.

Table 3. Average PM₁₀ and PM_{2.5} gravimetric results measured at Ash Meadows NWR, by TEOM[®] continuous monitors, as well as US EPA National Ambient Air Quality Standards (NAAQS) for particulate matter.

Season	Season Months		Date	Avg. (Unc.)	Avg. (Unc.)	PM _{2.5} /PM ₁₀
		Start	End	PM_{10}	PM _{2.5}	
		(m/d/yr)	(m/d/yr)	µg/m ³	μg/m ³	
Summer	Jun, Jul, Aug	06/01/09	08/31/09	10.3 (17)	5.2 (1.5)	0.50
Fall	Sep, Oct, Nov	09/01/09	11/30/09	10.8 (6.8)	4.3 (1.2)	0.39
Winter	Dec, Jan, Feb	12/01/09	02/28/10	4.6 (1.1)	0.8 (0.4)	0.18
Spring	Mar, Apr, May	03/01/10	05/31/10	n.a.	4.0 (1.6)	
Ave. (Std	. Dev.)			8.6 (3.4)	3.6 (1.9)	0.36 (0.16)
US EPA	NAAQS 24hr			150	35	
US EPA	NAAQS annual				15	

Seasonally averaged particulate matter (PM) and meteorological data are shown in Tables 4 to 7 and seasonal wind roses are shown in Figures 6 to 9.

Ash M	eadows	6/1/09	to	8/31/0	9			
			Wind Speed	Air Temp	Relative Humidity	Total Precip	Solar Radiation	
Daily	РМ10 (µg/m ³)	РМ2.5 (µg/m ³)	(mph)	(F)	(%)	(in)	(ly)	50%
mean	10.29 ± 16.94	5.18 ± 1.49	8.9	87.1	17.3	0.00	26	40%
max	42.20	26.13	20.5	98.5	43.8		31	
stdev	8.91	3.59	3.7	7.3	7.8	0.00	4	
n_obs	22	78	92	92	92	92	92	
recovery	24%	85%	100%	100%	100%	100%	100%	
Hourly								
mean	9.97 ±0.57	5.21 ± 0.18	8.9	87.1	17.3	0.00		
max	96.50	84.10	29.0	111.8	84.6			
stdev	13.86	7.95	5.4	11.5	10.6	0.00		
n_obs	588	1912	2208	2208	2208	2208		
recovery	27%	87%	100%	100%	100%	100%		
Filters								Wind speed
mean	14.73 ± 3.39	8.51 ± 2.55						
max	26.87	17.85						
stdev	7.59	5.69						Resultant Vector
n_obs	5	5						154 deg. 55%
uncertainti	es shown are the standar	rd error of mean	*					Laims: 3.04%

Table 4. Statistics of continuous particulate mass (PM) and meteorologicalmonitoring, as well as Teflon filter measurements, for summer 2009.

Figure 6. Wind rose shows the predominant wind from the south-southeast for summer 2009.

Table 5.	Statistics of continuous particulate mass (PM) and
	meteorological monitoring, as well as Teflon filter
	measurements, for fall 2009.

Ash Me	adows	6		9/1/09	to	11/30/	09		
					Wind Speed	Air Temp	Relative Humidity	Total Precip	Solar Radiatio
Daily	PM 10	(µg/m ^³)	PM 2.5	(µg/m ³)	(mph)	(F)	(%)	(in)	(ly)
mean	10.77	±6.84	4.25	±1.22	8.2	71.0	17.7	0.00	21
max	52.67		17.63		21.5	90.2	41.9		29
stdev	7.96		3.30		4.3	13.1	6.2	0.00	4
n_obs	86		80		73	73	73	73	73
recovery	95%		88%		80%	80%	80%	80%	80%
Hourly									
mean	10.76	±0.48	4.20	±0.11	8.3	71.4	17.5	0.00	
max	653.90		57.82		31.4	105.1	68.9		
stdev	21.80		5.03		6.2	15.4	8.7	0.00	
n_obs	2075		1943		1731	1731	1731	1731	
recovery	95%		89%		79%	79%	79%	79%	
Filters									
mean	10.76	±2.12	3.67	±0.60					
max	18.26		5.37						
stdev	4.73		1.33						
	5		5						

Figure 7. Wind rose shows the predominant wind from the southeast but also with weaker northern to northwesterly and easterly winds in fall 2009.

Table 6.Statistics of continuous particulate mass (PM) and
meteorological monitoring, as well as Teflon filter
measurements, for winter 2009/10.

Ash Me	adows	12/1/09	to	2/28/10	0		
			Wind Speed	Air Temp	Relative Humidity	Total Precip	Solar Radiation
Daily	РМ₁₀ (µg/m ³)	РМ _{2.5} (µg/m ³)	(mph)	(F)	(%)	(in)	(ly)
mean	4.62 ± 1.11	0.83 ±0.38	6.0	46.4	55.1	0.00	11
max	8.28	2.11	18.5	55.1	86.2		19
stdev	1.47	0.56	3.9	4.4	15.3	0.00	4
n_obs	41	45	79	79	79	79	79
recovery	46%	50%	88%	88%	88%	88%	88%
Hourly							
mean	5.01 ± 0.18	1.06 ± 0.06	6.0	46.4	55.3	0.00	
max	84.80	18.95	27.6	72.0	98.2	0.17	
stdev	6.30	2.08	5.0	9.2	22.7	0.00	
n_obs	1260	1349	1899	1899	1899	1899	
recovery	58%	62%	88%	88%	88%	88%	
Filters							
mean	3.04	1.48 ± 0.35					
max	3.04	1.83					
stdev		0.50					
n_obs	1	2					
uncertaintie	s shown are the standar	rd error of mean	*				
anoonannao	o ono in alo no olandar	a onor or moun					

Figure 8. Wind rose shows similar winds from the southeast and northwest, with periods from the east, during winter 2009/10.

 \square

Table 7.Statistics of continuous particulate mass (PM) and
meteorological monitoring, as well as Teflon filter
measurements, for spring 2010.

Figure 9. Wind rose shows the predominant wind from the southeast and to a lesser degree from the northwest, for spring 2010.

Filter Sampling and Analysis

Fourteen PM_{10} and $PM_{2.5}$ filter sample sets collected during the year-long sampling campaign were gravimetrically and chemically analyzed (Tables 8 to 12).

Gravimetric Results

The particulate mass measured on Teflon[®] filters varied from $3.0 \mu g/m^3$ on 12/27/2009 to as high as $26.9 \mu g/m^3$ on 08/29/2009 for PM₁₀, and from $1.1 \mu g/m^3$ to as high as $17.9 \mu g/m^3$ for PM_{2.5} on the same two days (Figure 10). The elevated mass values for both PM₁₀ and PM_{2.5} measured on 08/29/2009 are ascribed to smoke from several wildfires in Los Angeles County, California. These include the Station and Morris fires, both in the Angeles National Forest late in August 2009 (2009http://en.wikipedia.org/wiki/Station_Fire_%282009%29#Los_Angeles_County). The Hysplit backward trajectory model for August 27-29 shows airflow from California towards Ash Meadows NWR for that period (Figure 11).

The PM_{2.5}/PM₁₀ mass ratios (Table 13) increased from 0.24 on 10/28/2009 to 0.66 on 08/29/09, the latter indicating that atmospheric aerosol was dominated by smoke. Table 13 shows a comparison of the seasonal average gravimetric results from Ash Meadows NWR to eight urban sites in southwestern Nevada [Engelbrecht et al. 2011], the urban Chemical Speciation Network (CSN) and rural IMPROVE sites in the southwestern U.S. The eight rural sites in Nevada include Ash Meadows NWR [Engelbrecht et al. 2007a], Beatty [Engelbrecht et al. 2007b], Rachel [Engelbrecht et al. 2007c], Sarcobatus Flat [Engelbrecht et al. 2007d], Caliente [Engelbrecht et al. 2008a], Crater Flat [Engelbrecht et al. 2008b], Pahranagat NWR [Engelbrecht et al. 2008c], and Tonopah airport [Engelbrecht et al. 2008d]. The five urban sites are in Las Vegas and Tonopah, Nevada; Los Angeles and Calexico, California; and Phoenix, Arizona, which form part of USEPA's CSN monitoring program. The four rural IMPROVE sites are Domeland Wilderness Area and Joshua Tree National Park (NP) in California, and the Bosque del Apache National Wildlife Refuge (NWR) and Salt Creek Wilderness Area in New Mexico.

SITE		Ash Mead	ows NWR		Ash Meadows NWR				Ash Meadows NWR			
TID	YUCTT137				YUCTT140				YUCTT141			
DATE	05/25/09		07/12/09					07/2	07/25/09			
SIZE	PN O	1 ₁₀	PM ₂	5	PM-	10	PM O	2.5	PM Output	10	PM O	2.5
01:	Conc	Unc	Conc	Unc	Conc	Unc	Conc		Conc	Unc	Conc	Unc
	0.0000	0.0210	0.0311	0.0212	0.0100	0.0209	0.0070	0.0200	0.0223	0.0210	0.0000	0.0200
SO.=	1 26/6	0.0000	1 5/10/	0.0420	1 1068	0.0200	0.1013	0.0213	1 8212	0.0073	1 5866	0.0230
304 NLI +	0.4779	0.0072	0.5540	0.0010	0.2076	0.0387	0.3337	0.0340	0.5210	0.0344	0.4929	0.0020
NI-+	0.4770	0.0057	0.0000	0.0370	0.3070	0.0200	0.3297	0.0270	0.0100	0.0309	0.4020	0.0330
Ma ²⁺	0.0936	0.0057	0.2239	0.0133	0.1088	0.0065	0.0580	0.0036	0.3102	0.0183	0.2213	0.0131
K+	0.0331	0.0019	0.0505	0.0021	0.0530	0.0019	0.0101	0.0010	0.0952	0.0048	0.0508	0.0018
Ca ²⁺	0.3185	0.0193	0.1579	0.0132	0.3559	0.0209	0.0836	0.0112	0.7431	0.0393	0.1439	0.0127
O1TC	0.5510	0.2733	0.1298	0.0660	0.2835	0.1412	0.1174	0.0600	0.1924	0.0964	0.2072	0.1037
O2TC	0.7436	0.0495	0.6498	0.0453	0.9663	0.0600	0.8771	0.0557	1.3132	0.0774	0.7357	0.0491
O3TC	0.8694	0.1458	0.7411	0.1332	0.8220	0.1410	0.5767	0.1185	1.0470	0.1645	0.5844	0.1192
O41C	0.4225	0.1302	0.3637	0.1135	0.4375	0.1344	0.2040	0.0703	0.6808	0.2048	0.2355	0.0785
OPTRC	0.6416	0.1443	0.2592	0.0630	0.2443	0.0600	0.1829	0.0487	0.5215	0.1183	0.2549	0.0620
OC	3.2281	0.4241	2.1436	0.2989	2.7535	0.3684	1.9581	0.2784	3.7550	0.4868	2.0170	0.2849
E1TC	0.6449	0.0570	0.3109	0.0324	0.3555	0.0354	0.1829	0.0248	0.5857	0.0524	0.2991	0.0316
E2TC	0.1920	0.0469	0.0928	0.0312	0.1819	0.0451	0.0497	0.0266	0.2850	0.0642	0.0933	0.0313
E3IC	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082
TC	3 4235	0.0505	2 2881	0.3317	3 0467	0.0070	2 0078	0.0327	4 1041	0.5501	2 1552	0.3165
Na	0.1087	0.0691	0.2046	0.0723	0.0000	0.0654	0.0513	0.0674	0.0845	0.0683	0.0000	0.0645
Mg	0.0000	0.0210	0.0000	0.0211	0.0000	0.0210	0.0000	0.0211	0.0000	0.0211	0.0000	0.0210
Al	0.3654	0.0192	0.1263	0.0079	0.0997	0.0068	0.0417	0.0049	0.4924	0.0254	0.1670	0.0097
SI	1.1828	0.0596	0.3445	0.01//	0.4480	0.0228	0.1134	0.0064	1.51/1	0.0764	0.4385	0.0223
S Cl	0.0238	0.0327	0.0076	0.0328	0.4212	0.0212	0.3677	0.0195	0.7003	0.0351	0.0225	0.0312
K	0.1892	0.0095	0.0674	0.0035	0.0766	0.0040	0.0306	0.0018	0.2760	0.0139	0.1088	0.0055
Ca	0.3776	0.0193	0.0641	0.0045	0.1341	0.0075	0.0043	0.0031	0.5611	0.0284	0.1054	0.0062
Ti	0.0302	0.0019	0.0097	0.0012	0.0138	0.0013	0.0038	0.0011	0.0416	0.0024	0.0121	0.0012
V Mo	0.0016	0.0007	0.0008	0.0007	0.0000	0.0007	0.0000	0.0007	0.0023	0.0007	0.0000	0.0007
Fe	0.3469	0.0022	0.1021	0.0022	0.1439	0.0021	0.0358	0.0021	0.0129	0.0225	0.1256	0.0021
Cu	0.0017	0.0025	0.0005	0.0025	0.0014	0.0025	0.0015	0.0025	0.0034	0.0025	0.0015	0.0025
Zn	0.0000	0.0007	0.0000	0.0007	0.0010	0.0007	0.0022	0.0007	0.0068	0.0008	0.0015	0.0007
Br	0.0037	0.0007	0.0026	0.0007	0.0001	0.0007	0.0013	0.0007	0.0051	0.0007	0.0036	0.0007
Rb	0.0010	0.0007	0.0007	0.0007	0.0000	0.0007	0.0000	0.0007	0.0010	0.0007	0.0004	0.0007
Pb	0.0040	0.0007	0.0007	0.0007	0.0000	0.0007	0.0007	0.0007	0.0044	0.0007	0.0013	0.0007
Silicate Oxides												
Na ₂ O	0.1262		0.1913		0.1305		0.0719		0.3986		0.1664	
K ₂ O	0.0896		0.0616		0.0615		0.0328		0.1206		0.0806	
CaO	0.2663		0.0000		0.2229		0.0000		0.4306		0.0000	
MgO	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
Al ₂ O ₃	0.6904		0.2300		0.1004		0.0700		0.9304		0.3150	
SIU ₂	2.5298		1.2294		0.9582		0.2425		5 1251		1 5005	
Silicates	3.7023		1.2204		1.3014		0.4200		5.1251		1.5005	
Oxides												
TiO ₂	0.0504		0.0162		0.0230		0.0063		0.0694		0.0202	
V ₂ O ₅	0.0057		0.0029		0.0000		0.0000		0.0082		0.0000	
MnO ₂	0.0084		0.0027		0.0021		0.0000		0.0204		0.0032	
Fe ₂ O ₃	0.4960		0.1460		0.2057		0.0512		0.6429		0.1796	
Oxides	0.5604		0.1677		0.2308		0.0575		0.7410		0.2029	
	0 5044		0 7016		0.2054		0 1210		1.0506		0.4122	
	0.5244		1.4000		0.3054		1.0000		1.0396		1.4070	
$(NH_4)_2 SO_4$	1.3170		1.4332		0.8744		1.0993		1.0700		1.4270	
	0.5506		0.0512		0.0305		0.3591		1.8697		0.6180	
Na SO	0.0000		0.0513		0.0305		0.0115		0.0368		0.0000	
K-SO	0.0000		0.1909		0.0000		0.0004		0.0000		0.0022	
12004	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
Carbon												
EC	0.1954		0.1445		0.2932		0.0497		0.3491		0.1382	
OC	3.2281		2.1436		2.7535		1.9581		3.7550		2.0170	
Sum of Species	10 0792		6 7504		6 0026		1 0000		14 0062		6 6101	
Measured Mass	15.3078	0.7826	7.3719	0.4033	7.2795	0.3990	3,9967	0.2582	16.1398	0.8234	7.1577	0.3935
PM _{2.5} /PM ₁₀		0.4	18			0.5	55			0.4	14	

 Table 8.
 Chemical and normative mineral compositions for spring and summer 2009 samples.

SITE		Ash Mead	ows NWR		Ash Meadows NWR				Ash Meadows NWR			
TID		YUCT	T143		YUCTT145				YUCTT146			
SIZE	PM PM			PM		9/09 PM		PM		J/09 PM		
JIZL	Conc		Conc	Linc	Conc	Linc	Conc	2.5 Unc	Conc	10 Unc	Conc	Linc
CI	0.0000	0.0208	0.0000	0.0211	0.0065	0.0208	0.0069	0.0208	0.0772	0.0231	0.0000	0.0210
NO3 ⁻	0.4833	0.0380	0.1416	0.0228	0.8562	0.0601	0.5986	0.0446	0.7017	0.0507	0.2475	0.0264
SO4=	1.2281	0.0655	1.0289	0.0560	1.3686	0.0722	1.3007	0.0689	0.9121	0.0506	0.7865	0.0449
NH₄ ⁺	0.3856	0.0297	0.3187	0.0272	0.4778	0.0336	0.4658	0.0331	0.2537	0.0251	0.2362	0.0246
Na ⁺	0.1537	0.0092	0.0636	0.0040	0.1146	0.0069	0.0773	0.0047	0.2611	0.0155	0.1172	0.0070
Mg ²⁺	0.0454	0.0024	0.0120	0.0010	0.1166	0.0059	0.0267	0.0016	0.1268	0.0064	0.0297	0.0017
K+	0.0485	0.0033	0.0201	0.0023	0.4926	0.0263	0.4422	0.0236	0.0865	0.0050	0.0378	0.0029
Ca ²⁺	0.4546	0.0254	0.0716	0.0110	-99	-99	0.2443	0.0162	1.3092	0.0675	0.2103	0.0149
O1TC	0.0988	0.0511	0.0504	0.0290	0.3049	0.1517	0.1891	0.0948	0.1905	0.0955	0.0079	0.0152
OSTC	0.9712	0.0602	0.6129	0.0437	3.0621	0.0650	2 7445	0.1041	0.7130	0.0461	0.7100	0.0463
O4TC	0.4058	0.1254	0.1203	0.0506	2.1202	0.6288	1.1348	0.3380	0.4324	0.1330	0.2794	0.0902
OPTTC	0.3936	0.0923	0.0771	0.0314	1.8191	0.4099	1.9093	0.4301	0.3208	0.0767	0.2005	0.0521
OPTRC	0.2033	0.0520	0.0530	0.0286	1.5216	0.3375	1.6065	0.3562	0.2162	0.0545	0.1378	0.0401
OC E1TC	2.5085	0.3402	1.2485	0.2054	8.4691	1.0641	7.4984	0.9442	2.3054	0.3170	1.7258	0.2534
E2TC	0.3321	0.0338	0.0324	0.0200	0.2846	0.2033	0.1955	0.2041	0.3208	0.0330	0.2005	0.0237
E3TC	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082	0.0000	0.0082
ECTRC	0.2908	0.0666	0.0565	0.0331	1.2040	0.2460	1.0390	0.2129	0.2817	0.0650	0.1812	0.0481
TC	2.7993	0.3913	1.3051	0.2267	9.6732	1.2555	8.5375	1.1104	2.5871	0.3663	1.9070	0.2889
Ma	0.0000	0.0656	0.0000	0.0641	0.0940	0.0686	0.0000	0.0659	0.0000	0.0644	0.0000	0.0210
AI	0.2930	0.0156	0.0890	0.0064	0.3870	0.0202	0.1223	0.0078	0.2154	0.0119	0.1298	0.0081
Si	0.8253	0.0417	0.2000	0.0106	1.0429	0.0526	0.2118	0.0111	0.8713	0.0440	0.2091	0.0110
S	0.4746	0.0238	0.4075	0.0205	0.5517	0.0277	0.5123	0.0257	0.3236	0.0163	0.3158	0.0159
CI	0.0133	0.0010	0.0000	0.0007	0.0293	0.0017	0.0173	0.0011	0.0284	0.0016	0.0053	0.0008
n Ca	0.1265	0.0065	0.0373	0.0021	1 1037	0.0332	0.4562	0.0230	1.0652	0.0087	0.0559	0.0030
Ti	0.0228	0.0016	0.0055	0.0011	0.0337	0.0020	0.0057	0.0011	0.0192	0.0014	0.0051	0.0011
V	0.0009	0.0007	0.0000	0.0007	0.0012	0.0007	0.0000	0.0007	0.0008	0.0007	0.0001	0.0007
Mn	0.0038	0.0022	0.0000	0.0021	0.0167	0.0023	0.0026	0.0022	0.0038	0.0022	0.0018	0.0021
Fe	0.2568	0.0129	0.0631	0.0033	0.3387	0.0170	0.0626	0.0032	0.2032	0.0102	0.0512	0.0027
Zn	0.00024	0.0020	0.0000	0.0023	0.0082	0.0028	0.0075	0.0028	0.0000	0.00020	0.0013	0.00020
Br	0.0012	0.0007	0.0014	0.0007	0.0053	0.0007	0.0061	0.0008	0.0044	0.0007	0.0045	0.0007
Rb	0.0005	0.0007	0.0000	0.0007	0.0014	0.0007	0.0002	0.0007	0.0007	0.0007	0.0000	0.0007
Sr	0.0015	0.0007	0.0000	0.0007	0.0125	0.0010	0.0021	0.0007	0.0091	0.0009	0.0006	0.0007
FU	0.0000	0.0008	0.0000	0.0008	0.0009	0.0008	0.0000	0.0008	0.0007	0.0008	0.0001	0.0008
Silicate Oxides												
Na ₂ O	0.2072		0.0092		0.0000		0.0982		0.2845		0.1580	
K ₂ O	0.0584		0.0242		0.0746		0.5328		0.1042		0.0455	
CaO	0.2998		0.0000		0.0000		0.0357		1.3763		0.0903	
MgO	0.0000		0.0000		0.0303		0.0000		0.0302		0.0000	
Al ₂ O ₃	0.5536		0.1682		0.7313		0.2311		0.4070		0.2453	
SIU ₂	1.7652		0.4278		2.2306		0.4530		1.8636		0.4472	
Silicates	2.0043		0.6294		3.0000		1.3506		4.0000		0.9663	
Oxides		1										
TiO ₂	0.0380		0.0092		0.0562		0.0095		0.0320		0.0085	
V ₂ O ₅	0.0032	1	0.0000		0.0043		0.0000		0.0029		0.0004	
MnO ₂	0.0060		0.0000		0.0264		0.0041		0.0060		0.0028	
Fe ₂ O ₃	0.3671		0.0902		0.4842		0.0895		0.2905		0.0732	
Oxides	0.4144		0.0994		0.5712		0.1031		0.3314		0.0849	
Ionic Compounds]										
NH ₄ NO ₂	0,6239		0,1828		1,1053		0,7728		0,9059		0,3195	
(NH ₄)-SO ₄	0.8972		1 0162		0.8375		1.0680		0 1814		0.6013	
CaSO ₄ 2(H ₂ 0)	1 0321		0.3075		-99		0.9396		1 3982		0.6261	
NaCl	0.0000		0.0000		0.0107		0.0114		0.1273		0.0000	
Na ₂ SO ₄	0.0000		0.1753		0.3410		0.0000		0.0000		0.0000	
K ₂ SO ₄	0.0000		0.0000		0.9599		0.0000		0.0000		0.0000	
Carbon												
EC	0.2908		0.0565		1.2040]	1.0390		0.2817		0.1812	
00	2.5085		1.2485		0.4691		7.4984		2.3054		1.7258	
Sum of Species	8.6511		3.7156		16.5654		12.7831		9.5970		4.5251	
Measured Mass	9.8170	0.5173	4.1199	0.2630	26.8719	1.3535	17.8527	0.9075	12.3128	0.6370	4.4528	0.2762
PM _{2.5} /PM ₁₀		0.4	42			0.6	66			0.3	36	

 Table 9.
 Chemical and normative mineral compositions for summer and fall 2009 samples.

SITE		Ash Mead	ows NWR			Ash Meado	ows NWR		Ash Meadows NWR				
TID	YUCTT148				YUCT	T149		YUCTT151					
DATE	DM	10/04	4/09 DM		DM	10/22	2/09 PM		DM	10/20	8/09 DM		
SIZE	Conc	10	Conc	5	Conc	10	Conc	2.5	Conc		Conc	<u>5</u>	
OF.	0.5160	0.0708	0 2379	0.0375		0.0208	0.0000	0.0211	0.0059	0.0208	0.0000	0.0210	
	0.5866	0.0439	0.2609	0.0270	0.0608	0.0212	0.0265	0.0209	0.0751	0.0214	0.0427	0.0210	
SO ¹ =	0.8254	0.0466	0 5846	0.0361	0 4103	0 0294	0 3599	0.0276	0 2950	0.0256	0 2453	0 0242	
NH,+	0.2008	0.0236	0 1617	0.0226	0.1404	0.0222	0 1215	0.0219	0.0941	0.0214	0.0926	0.0214	
Nia+	0.5156	0.0201	0 2549	0.0151	0.0344	0.0024	0.0137	0.0015	0.0684	0.0042	0.0190	0.0017	
Ma ²⁺	0.1290	0.0065	0.0372	0.0020	0.1133	0.0057	0.0191	0.0013	0.0895	0.0046	0.0105	0.0010	
K ⁺	0.1056	0.0060	0.0326	0.0027	0.0376	0.0029	0.0147	0.0022	0.0411	0.0030	0.0195	0.0023	
Ca ²⁺	1.0847	0.0562	0.1479	0.0128	1.4478	0.0745	0.2305	0.0157	1.5520	0.0798	0.1741	0.0137	
O1TC	0.1654	0.0832	0.0540	0.0305	0.0465	0.0273	0.0700	0.0377	0.0624	0.0343	0.1411	0.0714	
O2TC	0.5820	0.0424	0.3364	0.0334	0.2287	0.0305	0.2316	0.0306	0.2067	0.0300	0.2745	0.0316	
O3TC	0.8377	0.1426	0.3333	0.1014	0.3336	0.1013	0.2981	0.0995	0.6078	0.1211	0.6393	0.1238	
OPTIC	0.4797	0.0455	0.0039	0.0263	0.1589	0.0741	0.0629	0.0497	0.1283	0.0389	0.0000	0.0261	
OPTRC	0.2812	0.0675	0.0032	0.0261	0.0937	0.0334	0.0222	0.0266	0.2615	0.0635	0.0470	0.0281	
OC	2.3461	0.3216	0.7927	0.1665	0.9213	0.1764	0.7141	0.1609	1.5578	0.2359	1.2892	0.2092	
E1TC	0.2812	0.0305	0.0111	0.0197	0.1050	0.0215	0.0272	0.0197	0.2732	0.0300	0.0902	0.0210	
E2IC	0.11/3	0.0346	0.0016	0.0245	0.0540	0.0270	0.0357	0.0256	0.1186	0.0348	0.0243	0.0250	
ECTRC	0.1173	0.0391	0.0095	0.0311	0.0652	0.0337	0.0000	0.0321	0.1302	0.0407	0.0675	0.0339	
TC	2.4634	0.3518	0.8022	0.1838	0.9866	0.1980	0.7549	0.1804	1.6881	0.2653	1.3567	0.2316	
Na	0.1875	0.0716	0.1976	0.0720	0.0000	0.0642	0.0000	0.0642	0.0000	0.0635	0.0000	0.0656	
Mg	0.0000	0.0210	0.0000	0.0211	0.0066	0.0213	0.0000	0.0212	0.0000	0.0210	0.0000	0.0212	
Al	0.3180	0.0169	0.1205	0.0077	0.1217	0.0077	0.0223	0.0045	0.1409	0.0085	0.0505	0.0051	
S	0.2396	0.0121	0.2413	0.0212	0.3203	0.0200	0.1527	0.00077	0.1057	0.0054	0.1001	0.0051	
CI	0.3474	0.0175	0.2159	0.0109	0.0015	0.0007	0.0051	0.0008	0.0185	0.0012	0.0035	0.0007	
К	0.1553	0.0079	0.0711	0.0037	0.0842	0.0043	0.0267	0.0017	0.1206	0.0061	0.0379	0.0021	
Ca	0.3031	0.0156	0.1133	0.0066	1.0782	0.0542	0.2190	0.0115	1.1446	0.0575	0.1821	0.0097	
Ti V	0.0252	0.0017	0.0102	0.0012	0.0076	0.0011	0.0024	0.0010	0.0134	0.0013	0.0029	0.0011	
Mn	0.0075	0.0022	0.0018	0.0022	0.0007	0.0021	0.0002	0.0021	0.0022	0.0021	0.0018	0.0021	
Fe	0.2672	0.0134	0.1030	0.0052	0.0943	0.0048	0.0284	0.0016	0.1494	0.0075	0.0300	0.0017	
Cu	0.0024	0.0025	0.0000	0.0025	0.0000	0.0025	0.0000	0.0025	0.0011	0.0025	0.0002	0.0025	
Zn	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007	
Br	0.0016	0.0007	0.0000	0.0007	0.0002	0.0007	0.0000	0.0007	0.0000	0.0007	0.0020	0.0007	
Sr	0.0049	0.0007	0.0023	0.0007	0.0064	0.0008	0.0023	0.0007	0.0101	0.0009	0.0008	0.0007	
Pb	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0006	0.0008	
Silicate Oxides	0.0400		2 1015		0.0404		0.0105		0.0070		0.0050		
Na ₂ O	0.2439		0.1345		0.0464		0.0185		0.0870		0.0256		
K ₂ O	0.12/2		0.0393		0.0453		0.01//		0.0495		0.0235		
GaU MgO	1.0827		0.0000		1.9769		0.2893		0.0000		0.2250		
	0.0000		0.0000		0.2300		0.0000		0.2662		0.0000		
SiO ₂	2.1831		0.8906		1.1312		0.3437		1.6946		0.3294		
Silicates	4.2378		1.2921		3.4407		0.7113		4.2090		0.6989		
Ghittatte													
Oxides													
TiO ₂	0.0420		0.0170		0.0127		0.0040		0.0224		0.0048		
V ₂ O ₅	0.0004		0.0007		0.0000		0.0007		0.0000]	0.0000		
MnO ₂	0.0119		0.0028		0.0011		0.0000		0.0035		0.0028		
Fe ₂ O ₃	0.3820		0.1473		0.1348		0.0406		0.2136		0.0429		
Oxides	0.4363		0.1678		0.1486		0.0453		0.2394		0.0506		
Ionic Compounds													
	0 7573		0 3368		0.0785		0 0342		0.0970		0.0551		
(NHJ)_SO4	0 1103		0.3142		0.4494		0 4167		0 2646		0 2936		
(141 4/2004 CaSO. 2/Ha0)	1 3354		0.6352		0.1499		0 1021		0 1840		0.0571		
NaCl	0.8506		0.3922		0.0000		0.0000		0.0097		0.0000		
Na ₂ SO4	0.0000		0.0026		0.0000		0.0000		0.0000		0.0000		
K-SO4	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		
112004	0		0.0000		0		0.0000				0.0000		
Carbon													
EC	0.1173		0.0095		0.0652		0.0407		0.1302		0.0675		
oc	2.3461		0.7927		0.9213		0.7141		1.5578		1.2892		
Sum of Species	10 1011		3 9/31		5 2536		2 0644		6 6917		2 5120		
Measured Mass	18.2612	0.9276	5.3705	0.3144	6.2396	0.3522	2.5801	0.2083	8.6938	0.4644	2.1223	0.1949	
PM _{2.5} /PM ₁₀		0.2	29			0.4	41			0.2	24		

Table 10. Chemical and normative mineral compositions for fall 2009 samples.

SITE		Ash Mead	ows NWR		Ash Meado	ows NWR		Ash Meadows NWR				
TID	YUCTT152					YUCT	T157		YUCTT163			
DATE		11/0	9/09			12/27	7/09			03/26	5/10	
SIZE	PN Ourse	N ₁₀	PM ₂	2.5	PM	10	PM ₂	2.5	PM	10	PM ₂	5
01-	Conc	Unc	Conc		Conc	Unc	Conc	Unc	Conc	Unc	Conc	Unc
	0.0000	0.0221	0.0000	0.0225	0.0000	0.0210	0.0000	0.0211	0.1010	0.0297	0.0000	0.0206
NO ₃	0.3400	0.0310	0.1074	0.0220	0.1552	0.0231	0.0755	0.0214	0.2303	0.0256	0.0902	0.0210
SO4-	0.6670	0.0396	0.5730	0.0357	0.2436	0.0242	0.1918	0.0230	2.0760	0.1070	0.3865	0.0285
NH₄ ⁺	0.2246	0.0242	0.2172	0.0240	0.0955	0.0215	0.0885	0.0214	0.0708	0.0212	0.1128	0.0217
Na ⁺	0.0912	0.0055	0.0307	0.0022	0.0344	0.0024	0.0105	0.0014	1.2074	0.0712	0.0871	0.0053
Mg ²⁺	0.1685	0.0085	0.0229	0.0014	0.0366	0.0020	0.0049	0.0009	0.0914	0.0047	0.0158	0.0012
K+	0.0807	0.0048	0.0303	0.0026	0.0240	0.0024	0.0117	0.0022	0.0673	0.0041	0.0215	0.0024
Ca ²⁺	3.3290	0.1700	0.2885	0.0180	0.5531	0.0300	0.0974	0.0115	1.4146	0.0728	0.1614	0.0133
OTIC	0.0000	0.0147	0.0709	0.0381	0.0000	0.0147	0.0326	0.0219	0.0043	0.0149	0.1483	0.0750
OSTC	0.3016	0.0996	0.3143	0.1003	0.2752	0.0983	0.7432	0.1334	0.3994	0.1054	0.2699	0.0980
O4TC	0.4384	0.1347	0.1033	0.0472	0.0937	0.0454	0.2156	0.0732	0.2380	0.0792	0.0724	0.0418
OPTTC	0.3426	0.0814	0.0935	0.0335	0.0423	0.0278	0.0592	0.0293	0.1389	0.0408	0.0284	0.0269
OPTRC	0.2295	0.0571	0.0490	0.0283	0.0877	0.0325	0.0000	0.0261	0.0858	0.0323	0.0222	0.0266
00	1.1839	0.1993	0.7666	0.1646	0.7068	0.1603	1.1682	0.1979	1.1066	0.1924	0.9105	0.1756
EIIG	0.3426	0.0345	0.1153	0.0218	0.0423	0.0199	0.3108	0.0324	0.1512	0.0233	0.0284	0.0197
E2TC	0.1566	0.0411	0.0271	0.0252	0.0453	0.0263	0.1319	0.0366	0.1273	0.0361	0.0205	0.0249
ECTRC	0.2718	0.0632	0.0935	0.0364	0.0000	0.0310	0.4427	0.0950	0.1928	0.0499	0.0267	0.0315
TC	1.4557	0.2414	0.8601	0.1881	0.7068	0.1771	1.6109	0.2572	1.2995	0.2262	0.9372	0.1941
Na	0.1061	0.0690	0.0000	0.0640	0.0000	0.0632	0.0930	0.0686	0.0000	0.0659	0.0369	0.0670
Mg	0.0081	0.0213	0.0073	0.0213	0.0000	0.0211	0.0000	0.0212	0.0000	0.0208	0.0000	0.0211
Al	0.0597	0.0054	0.2107	0.0117	0.0435	0.0049	0.0094	0.0043	0.2770	0.0149	0.1153	0.0075
SI	0.2218	0.0116	0.85/8	0.0433	0.2510	0.0130	0.0546	0.0040	1.01/1	0.0513	0.4036	0.0206
S Cl	0.2092	0.0105	0.2056	0.0104	0.1035	0.0053	0.0729	0.0038	0.3777	0.0190	0.1562	0.0079
K	0.0497	0.0027	0.1348	0.0068	0.0446	0.0024	0.0129	0.0012	0.1604	0.0081	0.0590	0.0031
Ca	0.2025	0.0107	0.6639	0.0335	0.3062	0.0158	0.0158	0.0032	0.6153	0.0311	0.1248	0.0071
Ti	0.0045	0.0011	0.0199	0.0015	0.0054	0.0011	0.0007	0.0010	0.0216	0.0015	0.0068	0.0011
V	0.0000	0.0007	0.0006	0.0007	0.0002	0.0007	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007
Mn	0.0000	0.0021	0.0032	0.0022	0.0020	0.0021	0.0002	0.0021	0.0058	0.0022	0.0011	0.0021
Fe	0.0452	0.0024	0.2493	0.0125	0.0556	0.0029	0.0128	0.0010	0.2267	0.0114	0.0750	0.0038
Zn	0.0010	0.0025	0.0029	0.0025	0.0021	0.0025	0.0005	0.0025	0.0021	0.0025	0.0007	0.0025
Br	0.0000	0.0007	0.0028	0.0007	0.0005	0.0007	0.0002	0.0007	0.0007	0.0007	0.0000	0.0007
Rb	0.0000	0.0007	0.0004	0.0007	0.0000	0.0007	0.0003	0.0007	0.0003	0.0007	0.0000	0.0007
Sr	0.0012	0.0007	0.0035	0.0007	0.0014	0.0007	0.0003	0.0007	0.0085	0.0008	0.0026	0.0007
Pb	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008	0.0000	0.0008
Olline the Online of												
Silicate Oxides	0 1000		0.0414		0.0464		0.0142		1 4000		0 1174	
Na ₂ O	0.1229		0.0414		0.0464		0.0142		1.4000		0.1174	
K ₂ O	0.09/2		0.0365		0.0289		0.0141		0.0811		0.0259	
MaO	4.4599		0.3361		0.7108		0.1278		0.7731		0.1311	
Al-O-	0.0134		0.0121		0.0000		0.0000		0.5234		0.0000	
SiO	0.1120		1 8347		0.5368		0.1168		2 1754		0.8632	
Silicates	5 2807		2 6810		1 4052		0.1108		5.0399		1 3555	
Onicatos	0.2007		2.0010		1.4002		0.2000		0.0000		1.0000	
Oxides												
TiO ₂	0.0075		0.0332		0.0090		0.0012		0.0360		0.0113	
V ₂ O ₅	0.0000		0.0021		0.0007		0.0000		0.0000		0.0000	
MnO ₂	0.0000		0.0051		0.0032		0.0003		0.0092		0.0017	
Fe ₂ O ₂	0.0646		0.3564		0.0795		0.0183		0.3241		0.1072	
Oxides	0.0721		0.3968		0.0924		0.0198		0.3693		0.1203	
Ionic Compounds												
NH₄NO ₃	0.4503		0.1386		0.1978		0.0972		0.2976		0.1268	
(NH ₄) ₂ SO ₄	0.4509		0.6810		0.1865		0.2439		0.0137		0.3085	
CaSO _{4.} 2(H ₂ 0)	0.6079		0.1397		0.1936		0.0260		3.7024		0.2908	
NaCl	0.0000		0.0000		0.0000		0.0000		0.2654		0.0000	
Na ₂ SO ₄	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
K ₂ SO ₄	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
<u>Carbon</u>												
EC	0.2718		0.0935		0.0000		0.4427		0.1928		0.0267	
00	1.1839		0.7666		0.7068		1.1682		1.1066		0.9105	
Sum of Species	8 3176		4 8972		2 7822		2 2884		10 9876		3 1390	
Measured Mass	8.2848	0.4454	3,8270	0,2516	3,0379	0,2232	1,1236	0,1729	11,4393	0,5949	3,0795	0,2246
PM _{2.5} /PM ₁₀		0.	46			0.3	37	0		0.2	27	
2.0 10												

Table 11.	Chemical and normative mineral compositions for fall 2009, winter 2009/10 and
	spring 2010 samples.

SITE		Ash Meade	ows NWR		Ash Meadows NWR					
TID		YUCT	T164	YUCTT168						
DATE		04/0	7/10			5/10				
SIZE	<u>PN</u>	1 ₁₀	PM;	2.5	<u>PN</u>	1 ₁₀	<u>PM</u>	2.5		
01	Conc	Unc	Conc	Unc	Conc	Unc	Conc	Unc		
	0.0515	0.0219	0.0000	0.0209	-99	-99	0.0000	0.0209		
	0.1132	0.0221	0.0044	0.0213	-99	-99	0.0409	0.0071		
50 ₄	0.6996	0.0410	0.2993	0.0257	-99	-99	0.6074	0.0371		
NH4	0.0965	0.0215	0.1072	0.0216	-99	-99	0.2290	0.0243		
Na ⁺	0.2687	0.0159	0.0391	0.0026	-99	-99	0.1173	0.0070		
Mg²⁺	0.0514	0.0027	0.0114	0.0010	-99	-99	0.0228	0.0014		
K ⁺	0.0276	0.0025	0.0142	0.0022	-99	-99	0.0240	0.0024		
Cart	0.6918	0.0368	0.1051	0.0117	-99	-99	0.1700	0.0135		
OPTC	0.0000	0.0430	0.3736	0.0336	-99	-99	0.1347	0.0005		
O3TC	0.3326	0.1013	0.3409	0.1018	-99	-99	0.3923	0.1048		
O4TC	0.1967	0.0684	0.0949	0.0456	-99	-99	0.1609	0.0597		
OPTTC	0.1353	0.0401	0.0225	0.0266	-99	-99	0.1339	0.0399		
OPTRC	0.0000	0.0261	0.0348	0.0273	-99	-99	0.0666	0.0300		
	0.8614	0.1717	0.9189	0.1763	-99	-99	1.1587	0.1970		
ETIC	0.08/8	0.0209	0.0044	0.0196	-99	-99	0.1324	0.0225		
E3TC	0.0041	0.0279	0.0000	0.0253	-99	-99	0.0408	0.0204		
ECTRC	0.1519	0.0437	0.0000	0.0310	-99	-99	0.1125	0.0385		
TC	1.0133	0.2003	0.9189	0.1927	-99	-99	1.2712	0.2234		
Na	0.0000	0.0628	0.0000	0.0647	0.0592	0.0676	0.1177	0.0693		
Mg	0.0000	0.0211	0.0000	0.0211	0.0221	0.0214	0.0000	0.0211		
Al	0.1535	0.0091	0.0534	0.0052	0.2912	0.0156	0.0551	0.0052		
51	0.5932	0.0301	0.2517	0.0131	1.0461	0.0528	0.2107	0.0111		
s Cl	0.2016	0.0102	0.1200	0.0061	0.3219	0.0162	0.2599	0.0131		
K	0.0145	0.0010	0.0027	0.0007	0.0094	0.0030	0.0044	0.0007		
Ca	0.5004	0.0254	0.0758	0.0050	0.9764	0.0491	0.1322	0.0074		
Ti	0.0125	0.0012	0.0075	0.0011	0.0264	0.0017	0.0037	0.0011		
V	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007	0.0001	0.0007		
Mn	0.0049	0.0022	0.0004	0.0021	0.0053	0.0022	0.0000	0.0021		
Fe	0.1330	0.0067	0.0625	0.0032	0.2801	0.0141	0.0552	0.0029		
Cu Zn	0.0009	0.0025	0.0017	0.0025	0.0017	0.0025	0.0000	0.0025		
Br	0.0000	0.0007	0.0013	0.0007	0.0035	0.0007	0.0020	0.0007		
Rb	0.0001	0.0007	0.0000	0.0007	0.0000	0.0007	0.0000	0.0007		
Sr	0.0026	0.0007	0.0000	0.0007	0.0105	0.0009	0.0007	0.0007		
Pb	0.0000	0.0008	0.0000	0.0008	0.0016	0.0008	0.0000	0.0008		
Silicate Oxides	0.0170		0.0507		0.0000		0.4504			
Na ₂ O	0.31/2		0.0527		0.0000		0.1581			
K ₂ O	0.0333		0.0171		0.0000		0.0289			
CaO	0.6583		0.1008		0.0000		0.0814			
NIGO	0.0000		0.0000		0.0300		0.0000			
Al ₂ O ₃	0.2900		0.1009		0.5502		0.1041			
SIO ₂	1.2688		0.5383		2.2374		0.4507			
Silicales	2.30/0		0.0096		2.0243		0.0232			
Oxides										
TiO ₂	0.0209		0.0125		0.0440		0.0062			
V _o O _c	0 0000		0.000		0.000		0 0004			
MnO ₂	0.0078		0.0006		0.0084		0.0000			
Fe.O.	0 1002		0.0894		0.4005		0.0789			
Oxides	0.1902		0 1025		0.4005		0.0709			
Oxides	0.2100		0.1020		0.4020		0.0004			
Ionic Compounds										
NH ₄ NO ₃	0.1461		0.1090		-99		0.4504			
(NH ₄) ₂ SO ₄	0.2328		0.3027		-99		0.4669			
CaSO ₄ 2(H ₂ 0)	0.9505		0.1421		-99		0.4803			
NaCl	0.0849		0.0000		-99		0.0000			
Na ₂ SO ₄	0.0000		0.0000		-99		0.0000			
K ₂ SO4	0.0000		0.0000		-99		0.0000			
	0.0000		0.0000		55		0.0000			
Carbon										
EC	0.1519		0.0000		-99		0.1125			
oc	0.8614		0.9189		-99		1.1587			
Current Councilian	F 0100		0.00.40				0 577 -			
Sum of Species	5.2139	0 2652	2.3849	0 1000	-99	0 7110	3.5//4	0 2522		
PM/PM	0.0000	0.3032	2.2000	0.1990	10.0077	0.7119	0.0000	0.2002		
2.5/1 11/10		0.0	~			0.	-0			

Table 12. Chemical and normative mineral compositions for spring 2010 samples

Figure 10. PM_{10} (gray) and $PM_{2.5}$ (black) gravimetric data as measured on Teflon[®] filters, collected on a 1-in-12 day schedule, for 14 individual sampling days. Sample labels include the sample numbers, sampling dates, and particulate size cut.

Figure 11. Hysplit backward trajectory model showing airflow from California towards Ash Meadows NWR for the August 27-29 period, coinciding to reported large wildfires in Los Angeles County during that period.

Table 13 shows the average aerosol concentrations at Ash Meadows NWR being low in PM_{10} , but variable by season. It was lowest in winter (3 µg/m³) and highest (15 µg/m³) in spring and summer. Similarly for $PM_{2.5}$, the lowest concentrations were found in winter (1 µg/m³) with higher (4 to 9 µg/m³) values for the other three seasons. The PM levels are on average similar to those from the eight sites in southwestern Nevada and to the four IMPROVE sites. The measurements taken in the course of this Ash Meadows NWR campaign are substantially lower than those from the urban CSN sites. Both the PM₁₀ and PM_{2.5} levels are substantially lower than the 24 hr and the annual US EPA National Ambient Air Quality Standards (NAAQS).

Table 13. Comparison of seasonal average gravimetric results from this study (Ash Meadows NWR, 05/25/09 to 05/25/10) with those from the preceding study at eight sites in rural southwestern Nevada, urban southwestern U.S.A. (CSN) and rural southwestern U.S.A. (IMPROVE) sites.

Region	Date	Date	Avg.	Avg.	PM _{2.5} /PM ₁₀	Days
	Start	End	PM ₁₀	PM _{2.5}		of 24 hr
			μg/m³	μg/m ³		Data
Ash Meadows NWR - Filters -Spring 09	05/25/09	05/25/09	15	7	0.48	1
Ash Meadows NWR - Filters-Summer	07/12/09	08/29/09	15	9	0.58	4
Ash Meadows NWR - Filters - Fall	09/10/09	11/09/09	11	4	0.34	5
Ash Meadows NWR - Filters Winter	12/27/09	12/27/09	3	1	0.49	1
Ash Meadows NWR - Filters - Spring 10	03/26/10	05/25/10	11	4	0.42	3
Ash Meadows NWR - Filters - Average	05/25/09	05/25/10	11	5	0.47	14
S-W Nedvada - Filters - 8 sites	03/24/06	12/19/07	10	4	0.47	86
S-W USA - 5 Urban CSN sites	2006	2007	38	11	0.29	>500
S-W USA - 4 Rural IMPROVE sites	03/24/06	12/19/07	13	5	0.39	>500
US EPA NAAQS 24 hr			150	35		
US EPA NAAQS annual				15		

There are differences between the average PM_{10} gravimetric values measured on the Teflon[®] filters (11 µg/m³, Table 13), compared to the TEOM[®] monitor (9 µg/m³, Table 3). For PM_{2.5}, the differences between Teflon[®] filters (5 µg/m³), and the TEOM[®] monitor (4 µg/m³) are less. These discrepancies between the TEOM[®] and Teflon[®] filter results are ascribed to differences in the instrumentation and sampling techniques - the TEOM[®] sampling chamber and filter stub are heated to 50 °C, resulting in the evaporation of semi-volatiles such as water and organic compounds from the sampled particulate matter on the filter, with a resultant loss in mass.

Filter Chemistry

In the course of this study, Teflon® filters, including field and laboratory blanks were analyzed by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 40 chemical elements including total sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), bromine (Br), rubidium (Rb), strontium (Sr), and lead (Pb).

Water extractions were performed on one half of each of the quartz fiber filters, including field and laboratory blanks. Aliquots of the extractions were analyzed by Ion Chromatography (IC) for water soluble anions, sulfate $(SO_4^{2^-})$, nitrate (NO_3^-) , and chloride (CI^-) . An aliquot thereof was analyzed for the ammonium (NH_4^+) cations by Automated Colorimetry (AC). Further aliquots of the extractions were analyzed by Atomic Absorption (AA) for water soluble cations including sodium (Na^+) , potassium (K^+) , calcium (Ca^{2+}) , and magnesium (Mg^{2+}) .

Punches from the remaining half of each of the quartz fiber filters were analyzed by Thermal Optical Reflectance (TOR) for four fractions of organic carbon (OC) and three fractions of elemental carbon (EC), by the IMPROVE method (<u>http://vista.cira.colostate.edu/IMPROVE</u> /Overview/Overview.htm).

Tables 8 to 12 list the analytical results of 14 individual days of 24 hr filter sampling at Ash Meadows NWR, for both PM₁₀ and PM_{2.5}, for each season. The chemical results were calculated for oxides and ionic compounds, and grouped into four categories: silicate oxides (Na₂O, K₂O, CaO, MgO, Al₂O₃, SiO₂), minor oxides (TiO₂, V₂O₅, MnO₂, Fe₂O₃), ionic compounds (NH₄NO₃, (NH₄)₂SO₄, CaSO₄.2(H₂O), NaCl, Na₂SO₄, K₂SO₄), elemental carbon (EC), and organic carbon (OC).

The silicates (Figure 12) are a major component in all samples, varying from 23-66% of the sample mass for PM_{10} and 10-55% of the sample mass for $PM_{2.5}$, with larger fractions in the three samples collected in October and November 2009. This can be ascribed to airborne mineral dust prevailing during the late fall of 2009. Small amounts of gypsum were found in all samples, together with trace to minor amounts of evaporites such as halite and water soluble sulfates.

Secondary ammonium sulfate and secondary ammonium nitrate, both largely from combustion processes, occur mostly in the $PM_{2.5}$ fractions, with the highest concentrations for both these secondary compounds in samples collected during the period May - October, 2009. High concentrations of both elemental carbon $(1.2 \ \mu g/m^3)$ and organic carbon $(8.5 \ \mu g/m^3)$ in PM_{10} with similar amounts in $PM_{2.5}$ were analyzed in the 08/29/09 sample, providing additional evidence of smoke from wildfires in Los Angeles County, California.

Figure 12. Chemical measurements combined as silicate oxides, minor metal oxides, ammonium sulfate, ammonium nitrate, gypsum, halite, sodium sulfate, potassium sulfate, elemental carbon (EC) and organic carbon (OC), for PM_{10} and associated $PM_{2.5}$ size fractions. Sample labels include the sample numbers, sampling dates, and particulate size cut.

23

CONCLUSIONS

- The instrumented trailer provided a versatile mobile platform for housing and transporting an array of air quality and meteorological instrumentation. Besides the two continuous particulate matter (PM) monitors (TEOM[®]s), all instrumentation in the trailer could also be powered from photovoltaic charged 12 V DC batteries.
- Measurements taken at Ash Meadows NWR over a period of 12 months in 2009 and 2010 provided baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.
- There are inconsistent differences between the average PM_{10} gravimetric results from the Teflon[®] filters (12 µg/m³), and the TEOM[®] monitors (9 µg/m³). There is less of a difference for $PM_{2.5}$, being on average 5 µg/m³ for the Teflon[®] filters and 4 µg/m³ for the TEOM[®] monitor. The corresponding $PM_{2.5}/PM_{10}$ ratios vary between the 0.42 for the Teflon[®] filters and 0.36 for the corresponding TEOM[®] measurements. These discrepancies are attributed to the loss of semi-volatile organic compounds and water from the heated TEOM[®]'s sampling stub.
- All mass measurements fall well below the NAAQS for PM_{10} (150 µg/m³ for 24 hr averaging interval) and $PM_{2.5}$ (35 µg/m³ for 24 hr averaging interval, 15 µg/m³ for annual averaging interval). The averaged levels measured on Teflon[®] at Ash Meadows NWR for both PM_{10} (12 µg/m³) and $PM_{2.5}$ (5 µg/m³), are similar to those previously measured at four rural IMPROVE sites.
- The mineral dust (soil) components, including the silicate oxides, minor oxides and gypsum, together make up the largest percentage of the aerosol, being on average 58% of PM₁₀ by mass and 37% of PM_{2.5} by mass, the difference being ascribed to the coarser nature of the soil-forming minerals. The highest concentrations of mineral dust components were measured during drier fall months of October and November, 2009.
- Although halite (NaCl) was found in all samples, the percentages are always very low, except for the filter samples collected on 10/04/2009. The anomalously high values of 8% halite for PM₁₀ and 10% for PM_{2.5} point to an evaporite (salt) source such as an alkaline playa dust. Playas are common in the region around Ash Meadows NWR.
- Although secondary ammonium sulfate concentrations vary with season, they are, within margins of uncertainty, similar for PM_{10} and $PM_{2.5}$, implying that this species occurs in the finer fraction. Average values for PM_{10} were $0.5 \ \mu g/m^3$, and $0.7 \ \mu g/m^3$ for $PM_{2.5}$, with the highest concentrations in spring 2009 and the lowest in following late fall and winter. Secondary ammonium sulfate is from SO_2 emitted by distant power plants and other combustion sources, and transported into the Amargosa Valley.

- Ammonium nitrate concentrations fluctuate by the month with both the lowest (0.08 $\mu g/m^3$ for PM₁₀ and 0.03 $\mu g/m^3$ for PM_{2.5}) and highest (1.11 $\mu g/m^3$ for PM₁₀ and 0.77 $\mu g/m^3$ for PM_{2.5}) measured values being in fall of 2009. Secondary nitrates form from nitrogen oxides emitted from vehicle emissions, possibly transported to Amargosa Valley from the Las Vegas Los Angeles corridor.
- The elemental carbon (EC) is generally very low (on average < $0.2 \ \mu g/m^3$) except for the samples collected on 8/29/2009 when high values for EC of 1.20 $\mu g/m^3$ for PM₁₀ and 1.04 $\mu g/m^3$ for PM_{2.5} were measured. Similarly, OC was low (on average < $1.8 \ \mu g/m^3$) except for the sample of 8/29/2009 when high values for OC of 8.5 $\mu g/m^3$ for PM₁₀ and 7.5 $\mu g/m^3$ for PM_{2.5} were measured. These elevated carbon levels are attributed to woodsmoke from wildfires in Los Angeles County, California.

ACKNOWLEDGEMENTS

- We thank the following for providing assistance and support with the deployment of the trailer:
 - ▶ U.S. Fish & Wildlife Service and their personnel at Ash Meadows NWR
- Funding for this study was provided by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office through Contract No. DE-AC52-06NA25383 to DRI.

REFERENCES

- Belcher, W.R. (ed). 2004. Death Valley regional ground-water flow system, Nevada and California—hydrogeologic framework and transient groundwater flow model. United States Geological Survey Scientific Investigation Report 04-5205.
- Chow, J. C., and Watson, J. G., 1999, Ion Chromatography in elemental analysis of airborne particles: Elemental Analysis of Airborne Particles, v. vol. 1: Amsterdam, Gordon and Breach Science, 97-137 p.
- Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., and Purcell, R. G., 1993, The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies: Atmospheric Envirionment, v. 27A, p. 1185-1201.
- Engelbrecht , J. P., Kavouras, I., Campbell, D., Campbell, S., Kohl, S. D., and Shafer, D. S., 2007a, Air Quality Scoping Study for Ash Meadows National Wildlife Refuge, Nevada, Letter Report DOE/NV/26383-LTR2007-01, Desert Research Institute, p. 1-25.
- ---, 2007b, Air Quality Scoping Study for Beatty, Nevada, Letter Report DOE/NV/26383-LTR2007-02, Desert Research Institute, p. 1-25.
- —, 2007c, Air Quality Scoping Study for Rachel, Nevada, Letter Report DOE/NV/26383-LTR2007-03, Desert Research Institute, p. 1-26.
- —, 2007d, Air Quality Scoping Study for Sarcobatus Flat, Nevada, Letter Report DOE/NV/26383-LTR2007-04, Desert Research Institute, p. 1-25.

- -, 2008a, Air Quality Scoping Study for Caliente, Lincoln County, Nevada, Letter Report DOE/NV/26383-LTR2008-01, Desert Research Institute, p. 1-25.
- -, 2008b, Air Quality Scoping Study for Crater Flat, Nye County, Nevada, Letter Report DOE/NV/26383-LTR2008-03, Desert Research Institute, p. 1-22.
- -, 2008c, Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada, Letter Report DOE/NV/26383-LTR2008-02, Desert Research Institute, p. 1-25.
- -, 2008d, Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada, Letter Report DOE/NV/26383-LTR2008-04, Desert Research Institute, p. 1-25.
- Engelbrecht , J. P., Kavouras, I., Shafer, D. S., Campbell, D., Campbell, S., McCurdy, G., Kohl, S. D., Nikolich, G., Sheetz, L., and Gertler, A. W., 2011, Air quality measurements at eight sites in rural southwestern Nevada, U.S.A.: Journal of the Air & Waste Management Association, v. (in preparation)
- Watson, J. G., Chow, J. C., and Frazier, C. A., 1999, X-ray fluorescence analysis of ambient air samples, *in* Cohen, B. S., and Herring, S. V., eds., Air Sampling Instruments for Evaluation of Atmospheric Contaminants, Cincinnati, OH, p. 51-57.