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Abstract 

This study examines the meandering phenomenon as it occurs in media throughout terrestrial, 
glacial, atmospheric, and aquatic environments. Analysis of the minimum energy principle, 
along with theories of Coriolis forces (and random walks to explain the meandering 
phenomenon) found that these theories apply at different temporal and spatial scales. Coriolis 
forces might induce topological changes resulting in meandering planforms. The minimum 
energy principle might explain how these forces combine to limit the sinuosity to depth and 
width ratios that are common throughout various media. 

The study then compares the first order analytical solutions for flow field by Ikeda, et al. (1981) 
and Johannesson and Parker (1989b). Ikeda’s et al. linear bank erosion model was implemented 
to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic 
variable that varies with physical properties of the bank (e.g., cohesiveness, stratigraphy, or 
vegetation density). The developed model was used to predict the evolution of meandering 
planforms. Then, the modeling results were analyzed and compared to the observed data. Since 
the migration of a meandering channel consists of downstream translation, lateral expansion, and 
downstream or upstream rotations several measures are formulated in order to determine which 
of the resulting planforms is closest to the experimental measured one. Results from the 
deterministic model highly depend on the calibrated erosion coefficient. Since field 
measurements are always limited, the stochastic model yielded more realistic predictions of 
meandering planform evolutions. Due to the random nature of bank erosion coefficient, the 
meandering planform evolution is a stochastic process that can only be accurately predicted by a 
stochastic model. 



4 
 

Ari Posner was a recipient of Sandia’s Campus Executive Fellowship at the University of 
Arizona. Support for this fellowship program is derived through Sandia’s Laboratory Directed 
Research and Development (LDRD) program. 



5 
 

Acknowledgement 

We thank Dr. Vince Tidwell of Sandia National Laboratories for ideas, assistance, and patience. 
We would also like to thank Dr. Hoshin Gupta for his help with the stochastic simulation and 
discussions of model structure. The National Science Foundation is also appreciated for their 
support of Dr. Jennifer Duan. Support for this research was provided by Sandia National Labs 
Laboratory Research and Development Program through a partnership with the Department of 
Hydrology and Water Resources at the University of Arizona, Tucson, Arizona, and by the 
Sustainability of Semi-Arid Hydrology and Riparian Areas Research Center.  

   



6 
 

 

Table of Contents 

Acknowledgement .................................................................................................................................... 5 

1  Introduction .......................................................................................................................................... 8 

2  Causes of Meandering ........................................................................................................................ 12 

3  Bend Hydraulics and Channel Adjustment ......................................................................................... 14 

3.1  Modeling Meander Evolution ..................................................................................................... 16 

4  Computational Model ......................................................................................................................... 19 

4.1  Monte Carlo Simulation .............................................................................................................. 20 

4.2  Distribution of Stochastic Variable ............................................................................................. 21 

5  Results ................................................................................................................................................. 23 

5.1  Laboratory Experiment (Freidkin, 1945) ..................................................................................... 23 

5.2  Simulated Results from Deterministic Model ............................................................................. 24 

5.3  Simulated Results from Monte Carlo Simulation ........................................................................ 28 

6  Discussion............................................................................................................................................ 32 

7  Conclusions ......................................................................................................................................... 34 

 

 

Table of Figures 

Figure 1‐1: Variables Used to Describe Geometry of a Meander (Khatsuria 2008) ................................... 10 

Figure 1‐2: Comparison of Venusian and Terrestrial Meander Geometries Illustrates that Relationships 

are Nearly of the Same Order of Magnitude (Komatsu and Baker 1994) .................................................. 11 

Figure 1‐3: The Relatively Constant Ratio Between Meanders in Diverse Media is Suggestive (Marani 

2002) ........................................................................................................................................................... 11 

Figure 1‐4: Meanders in Different Media Displays Remarkable Similarity of Scale  (Leopold 1960) ......... 12 

Figure 4‐1: Uniform Distribution of Input Parameter ................................................................................. 22 

Figure 4‐2: Normal Distribution of Input Parameter through Box Muller Transformation ........................ 23 

Figure 5‐1: Results of Deterministic Models Johannesson and Parker (1989b) and Ikeda (1981) for 32‐

hour Simulation of J.R. Friedkin (1945) Experimental Results .................................................................... 24 

Figure 5‐2: Excess Velocity Results of Flow Field Models Johannesson and Parker (1989b) and Ikeda 

(1981) for Initial Sine Generated Curve ...................................................................................................... 25 

Figure 5‐3: Model Error for Distance from X‐axis to Maximum Y‐value for Each Bend Simulated for 32‐

hour Friedkin (1945) Simulation ................................................................................................................. 26 



7 
 

Figure 5‐4: Model Error for Deviation from the Mean Y‐value for Each Bend Simulated for 32‐hour 

Friedkin (1945) Simulation .......................................................................................................................... 26 

Figure 5‐5: Model Error for Skew of Y‐values for Each Bend Simulated for 32‐hour Friedkin (1945) 

Simulation ................................................................................................................................................... 27 

Figure 5‐6: Model Results for Skew of Y‐values for Each Bend  Simulated for 32‐hour Friedkin (1945) 

Simulation ................................................................................................................................................... 27 

Figure 5‐7: Interpolation from Curvilinear to Cartesian Coordinates ......................................................... 28 

Figure 5‐8: 1000 Iterations of Ikeda et al. (1981) Model with 10% Variability from 32‐hour Calibrated 

Value ........................................................................................................................................................... 29 

Figure 5‐9: Results of Monte Carlo Analysis of 32‐hour Calibrated Model with Ikeda (1981) Solution ..... 29 

Figure 5‐10:  Results of Monte Carlo Analysis of 32‐hour  Calibrated Model with Johannesson and Parker 

(1989b) Solution .......................................................................................................................................... 30 

Figure 5‐11: Comparison of Deterministic Model and Average Y‐Max Value from Monte Carlo Simulation

 .................................................................................................................................................................... 30 

Figure 5‐12: Comparison of deterministic model and standard  deviations of average y‐ value from 

Monte Carlo simulation .............................................................................................................................. 31 

Figure 5‐13: Comparison of Deterministic Model and Skewness of Average Y‐ Value from Monte Carlo 

Simulation ................................................................................................................................................... 31 

Figure 5‐14: Bends 4 and 5 of 32‐hour Simulation  with Results from Both Uniform and Normal 

Distributions ................................................................................................................................................ 32 

Figure 6‐1: Planform Evolution of Friedkin (1945) Experiments ................................................................ 33 

 

 

Table of Tables 

Table 4‐1: Migration Rate and Erodibility Summary  (Micheli and Kirchner, 2006) with Percent Error .... 21 

Table 5‐1: Friedkin Initial Conditions for Simulation .................................................................................. 24 

Table 5‐2: Mean Squared Error Values for Ikeda (1981) Model and Johannesson & Parker (1989b) 

Models ........................................................................................................................................................ 28 

 

 

 

 

 

 

 



8 
 

 

 

1 Introduction 
The interaction of hydraulics and sediment in curved open channels is not well understood. This 
research focused on this aspect of channel forming processes. River meander migration is one of 
the most intriguing and yet perplexing problems of open channel hydraulics. Only in the past few 
decades has significant progresses in understanding this phenomenon been accomplished; 
however, there is still no consensus regarding how to model this most basic behavior of natural 
rivers.  

Motivation for the continued search for a mathematical model of this ubiquitous river planform 
includes:  

 Our ability to explain complex natural phenomenon (Thompson 1876; Jefferson 1902; 
Leopold and Wolman, 1960) 

 Issues associated with river ecological functions (Salo et al. 1986; Siem 2009, Moorhead 
2008, Nakano, 2008) 

 Protection of hydraulic structures, such as bridges and levees (US Army Corps of 
Engineers, 1981) 

 Protection from erosion and flooding valuable agricultural and urban land uses (Wicker, 
1983) 

 The influence sinuosity may have on surface/groundwater interaction (Cardenas, 2009) 

 Developing insight into oil reservoir formations created by ancient meandering rivers 
(Henriquez, et al.,1990; Swanson, 1993) 

Research conducted in association with the Streambank Erosion Control Evaluation and 
Demonstration Act of 1974 (Sec 32, Public Law 32-251, submitted in December 1981), found 
that approximately 142,000 bank-miles of streams and waterways are in need of erosion 
protection. The cost to prevent or control this erosion by means of conventional bank protection 
methods was estimated to be in excess of $1 billion annually. The cost estimate for the Upper-
Mississippi River basin alone exceeded $21 million annually.  

Meanders are ubiquitous in open channels of over several orders of magnitude in size--from the 
smallest creek to the largest river. Meandering is not unique to rivers; it is also found in (Davies 
1984, Thorne 1992): 

 Capillary jets and rivulets running down roughened plates 

 Human blood stream 

 Water flowing over ice 

 Ocean currents 

 Planetary jet stream 

 Channels carved by molten lava on the Moon 
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 Sub-surface water flows on Mars. 

There are important engineering applications to the fluvial geomorphological processes 
occurring at the river reach scale, such as infrastructure protection, flood protection, and more 
recently, kinetic hydropower. Through the damming of rivers and the conversion from pervious 
to impervious cover in our expanding metropolitan areas, we have dramatically altered the 
natural river systems in which biotic organisms have evolved along with the dynamic 
morphological equilibrium. Understanding the nature of these relationships and how they are 
responding to changing hydrologic, hydraulic, and sediment regimes is critical in our efforts to 
generate hydrokinetic power while protecting vital infrastructure and communities. 

Meandering continues to be an enigma within the scientific community. Efforts to describe and 
understand this phenomenon date back to Leonardo de Vinci (Gyr, 2010). Although there is no 
unifying theory as to the development and maintenance of meanders, geomorphologists, fluid 
dynamicists, sedimentologists, mathematicians, and engineers all have their hypotheses. Much 
disagreement still exists concerning the classification and identification method of meanders; 
however, there are some generalities and descriptions that might help uncover the mechanisms 
behind meandering. These descriptions could aid our understanding of river planform evolution, 
as well as of ocean and atmospheric dynamics and planetary development. 

Likely, the most fundamental problem in deriving some relation among different meander 
phenomena is their dynamic nature. Measuring the geometric and hydraulic variables associated 
with these planforms is but a snapshot in time. As these planforms are constantly changing, 
scientists use the relationships between variables in an attempt to find some constants. This 
strategy led to what is known as “Regime Theory” whose premise is that each fluvial system has 
an equilibrium state which it tends toward. Regime Theory was developed by the British during 
canal building in India. India was probably the largest Hydraulic Society prior to the water 
development in the southwestern United States and California, whose system of canals is one of 
the largest in the world. Their goal was to build a canal that would last, one in which sediment 
supply was commensurate with sediment transport, and one in which minimal aggregation or 
degradation would occur. Much collection and compilation of data led to a series of empirical 
relations which  are still in use today, although there are many versions 

 The meandering phenomenon has had the most attention given to it by far in the context of 
alluvial rivers. Figure 1-1 shows the geometric variables used to describe meandering. 
Meandering alluvial rivers display an amazing amount of correlation between geometric 
variables over large spatial scales.  
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Figure 1-1: Variables Used to Describe Geometry of a Meander (Khatsuria 2008) 

Some of those relations include: 

ࢉࡸ ൎ ૠ࢕࢚ ࢃ ૚૙ࢃ (Leopold 1960) 

 ܮ௖ ൎ 6ܹ (Gyr 2010) 

 ܮ௖ ൎ 4.7ܴ௖തതത (Leopold 1960) 

 ܵ݅݊ݕݐ݅ݏ݋ݑ ൌ  ௅೘

ௌ
 ൎ 1.3 െ 4 

In general, scientists use a power law relation to determine the relationships among geometric 
variables. This is done because data can be plotted on a log-log scale which minimizes 
differences between variables, especially at the value extremes. These relations take the form 

ଵݎܸܽ ൌ ଶݎܸܽܣ
஻ 

Where ܸܽݎଵ&ଶ are geometric, variables and ܣ and ܤ are coefficients. Komatsu and Baker (1994) 
used these relations to show that Venusian channels have a similar relation to those found in 
terrestrial rivers, see Figure 1-2. 

Where ܸܽݎଵ&ଶ are geometric variables and ܣ and ܤ are coefficients. Komatsu and Baker (1994) 
used these relations to show that Venusian channels have a similar relation to those found in 
terrestrial rivers, see Figure 1-3. 

Meandering features can also be observed in tidal flats or coastal wetlands. Despite coming to 
the conclusion that, “in any real case of fluvial versus tidal patterns, differences are the norm 
rather than the exception once carefully examined,” Marani (2002) found a significant 
correlation between channel width and meander length ( Figure 1-4). In addition, Marani (2002) 
found that tidal meander sinuosity varied from 1.3 to 2.2, which is within the range found in 
fluvial meanders. Gustavson (1978) found that gravel bed rivers in south central Texas have a 
sinuosity of 1.3. 
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Figure 1-2: Comparison of Venusian and Terrestrial Meander Geometries Illustrates that 

Relationships are Nearly of the Same Order of Magnitude (Komatsu and Baker 1994) 

 

 

 

 

 
 

Figure 1-3: The Relatively Constant Ratio Between 
Meanders in Diverse Media is Suggestive (Marani 2002) 

  



12 
 

 
Figure 1-4: Meanders in Different Media Display 
Remarkable Similarity of Scale  (Leopold 1960) 

 

Leopold, et al. (1960), found that both the ratios of meander length-to-width and meander length-
to-mean radius of curvature are consistent among terrestrial rivers, experimental mobile bed 
flumes, the gulf stream, and glacier ice. There are several explanations as to how and why 
meanders form and why they share commonalities of scale. 

 

2 Causes of Meandering 
The cause of river meandering remains a subject of debate and discussion, as it has been for 
centuries. Leonardo de Vinci examined the phenomenon and observed that with an increasing 
length of flow path (i.e., sinuosity) the velocity decreases. Without the aid of mathematics, de 
Vinci came to the conclusion that flow is limited by extreme energy dissipation (Gyr 2010). 
Energy is clearly the central tool used to understand the meandering phenomenon; however, 
there remains debate about how to use our understanding of energy principles. Energy is not the 
only basis used to understand meandering, some logicians have proposed Coriolis forces, 
theories of random walks, and statistical descriptions based on the idea that the system is too 
complex to be described in mechanistic terms (Gyr 2010). The spatial similarity of scale across 
different media suggests there are some mechanisms controlling meandering. 

Meandering is a paradox of physics, as the motion of a body in a potential field follows the path 
of the largest potential gradient, in other words, the river should flow straight down the valley. 
This is also known as the principle of least action. The reality that fluids in various media do not 
adhere to this rule suggests that friction forces must play a critical role in the origin of meanders, 
changing the potential field. Friction forces, such as shear stresses on the river bed and banks are 
inherent in the flow. Both suspended sediment and bed load transport are functions of the energy 
of the river. Due to the fact that meandering occurs in media where no sediment transport occurs 
has led some authors to conclude that sediment is not required for meandering, rather only 
necessary in a kinematic way to impose anisotropy on the bed. Parker (1976) suggests that 
beyond the inertial and gravitational potential and frictional effects, there is a ‘third effect’ 
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provided by sediment in alluvial streams, by Coriolis acceleration in oceanic currents, by heat 
differences in glacial melt water, and by surface tension for Gorycki’s streams. 

Chang (1988) noted the importance of distinguishing that meandering is the effect, where the 
causes include the independent or controlling variables which are imposed upon the river 
channel. Chang (1988) also states that determination of the dependent and independent variables 
is subject to the time scale under consideration; however, he left out the importance of spatial 
scale when discussing these variables. For example, the minimum energy principle elaborated by 
Huang (2004) suggests that the driving mechanism for channel cross-sectional shape and river 
planform is the ratio of the valley slope to that of the minimum friction slope of the river and 
sediment regime. This principle, shared by many explanations of meandering, is clearly 
responsible for a river’s tendency to meander and braid and has been used successfully to 
distinguish regimes that lead to straight, meandering, and braided streams. This reasoning along 
with stability theory can also be used to show that there exists an optimal value of the scale 
among a river system’s independent variables.  

These analyses led Braudricka et al. (2009) to hypothesize that in addition to hydraulic 
conditions that support meandering, the necessary conditions to obtain successful experimental 
meandering were: 

 Bank strength greater than that due to deposited bedload (to slow outer bank erosion 
rate), 

 The addition of suspended load (to both settle out in the chutes, reducing the tendency for 
a low sinuosity cutoff, and to become deposited on the bar top, raising the surface to 
floodplain level), and 

 Periodic overbank flow (to raise the depositional surface of the point bar and to disperse 
suspended sediment into nearby low areas).  

The results of their experiments strongly supported the first two hypotheses, and found that 
variable peaks were not required to maintain meanders. These results supported the hypothesis 
that the overall energy gradient is an important variable in determining river geometry scale. 

Discussions on the origin of river meandering do not take into account spatial scale. Scientists 
focusing on the energy gradient between the valley and river slopes and those examining the role 
of helical flow are actually investigating the same phenomenon on two different scales. The 
‘third effect’ proposed by Parker (1976) explains how ideal non-frictional flow develops helical 
cells that drive anisotropy in flow and the media within which it runs. Arguments, such as the 
minimum energy principle, explain how those flow anisotropies organize into a macroform 
controlling dependent variables of meander wavelength, radius of curvature, stream width and 
depth, and their ratios. I believe there is a false controversy and that in fact both arguments are 
correct and dependent on the scale in which the conundrum is approached. 

Scientists have approached these relationships on various spatial and temporal scales. Modeling 
efforts have grown in sophistication with the advent of more powerful computation abilities, the 
availability of additional data sets from new sources, and methods such as satellite imagery and 
the Acoustic Doppler Current Profiler. Scientists build sophisticated numerical models to 
represent natural phenomenon; however, they are then required to make many simplifications 
and assumptions in order to be able to close these systems of equations and get an answer to the 
problem. There are two main strategies used to deal with this problem: One strategy is to 
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implement stochastic simulations of those numerical models, wherein an effort is made to build 
into the model the variability and error associated with that particular numerical model. This is 
often accomplished through representing one or multiple model parameters with random 
numbers rather than a single number. Another method to resolve the gap between model results 
and observed data is to maintain as much of the complexity of the model as possible. This is 
becoming increasingly possible with the increase in computational power. Rather than use 
various simplifications and mathematical procedures to solve these systems of equations, various 
numerical schemes have been developed. While these numerical schemes allow for 3-D 
simulations of the velocity profiles, they are very computationally intensive and make 
simulations of long river reaches and long time scales impractical. 

 

3 Bend Hydraulics and Channel Adjustment 
Although the precise cause of meandering remains unknown, the propensity of fluids to meander 
indicates that this behavior is inherent to shear flows and cannot be attributed solely to non-
uniformity of sediment transport or bank erosion. In streams, it seems that meandering is caused 
from the time averaged flow field from coherent flow structures tied to the channel cross section 
(Ashworth, 1996). The eddies created induce a sinuous path of the maximum velocity pathline 
that is strengthened by positive feedback from curvature and Prandtl’s first kind of secondary 
currents (Brathurst, 1979). With a movable bed, this asymmetry in velocity and boundary shear 
stress results in the generation of pools, riffles, and alternate bars (Smith, 1987). Provided 
erodible banks, the sinuous pathline initiates a matching pattern in the bank lines that define the 
initiation of channel meandering (Friedkin, 1945). Most authors agree that the threshold for 
meandering is defined as a sinuosity, the quotient of channel length by down valley length, of 1.3 
to 1.5 (Leopold, 1964).  

Efforts to quantify and predict meander processes began with the recognition of the visual 
similarity, regardless of scale, due to certain geometric proportions common to all river; such as, 
a nearly constant ratio of radius of curvature to meander length and radius of curvature to 
channel width (Leopold and Wolman, 1960). With these observations and a recognition of the 
superposition of many diverse processes, scientists developed statistical models based on 
heuristic arguments (Langbein and Leopold, 1966; Surkan and van Kan, 1969; and Ferguson, 
1977, 1983). These models are based on the assumption that the geometry of a meander is a 
random walk whose most frequent form minimizes the changes in direction through adjustments 
in depth, velocity, and slope to decrease the variance in shear and friction forces in a meander 
relative to a comparable straight reach. While these models generate meandering patterns on 
large scales, they cannot be used to predict the meander evolution process.  

Flow around bends is complex, as was recognized over a century ago (Thompson, 1876). Flow 
through a bend is subject not only to gravitational and frictional forces, but also to a centrifugal 
force acting outward on the water. This centrifugal force is proportional to the flow velocity 
squared, and due to the parabolic vertical velocity distribution, the centrifugal force also varies 
with depth. The outward directed centrifugal force causes a water and momentum flux toward 
the outer bank, resulting in a buildup of water. The raising of the free surface is referred to as 
“super-elevation” (Markham, 1990) that causes an inward acting pressure gradient force, which 
has a uniform magnitude through the flow depth. At the water surface the centrifugal force 
exceeds the pressure gradient and at the bed the pressure gradient exceeds the centrifugal force, 
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resulting in a “secondary circulation” in the transverse plane (Darby, 1993). Numerous studies 
have identified that the velocity maxima shifts from the inner to outer banks around a bend in 
both laboratory settings (Hooke, 1975; Kikkawa, 1976; Chen, 1983) and in natural channels 
(Bridge, 1977, 1982; Brathurst, 1979; and Dietrich, 1983). In addition, Brathurst (1979) found 
that sheer stress peaks occurred beneath the velocity maxima, at the junction of outer bank and 
main secondary cell. While there is still some debate about the importance of secondary flow in 
the near bank erosion mechanisms (Thorne, 1978, LaPointe, 1986; Kitidanis, 1984), it is clear 
that secondary flows do influence primary flows near the bank and may also influence fluid 
sheer stresses on the side wall. 

 Approaches based on the fundamental laws of physics to solve the distribution of velocity 
and sediment as it relates to bed topography began with the pioneering work of Dutch 
scientist L. Van Bendegom (1947). The simplest case is that of uniform curvature for 
fully developed flow. Rozovskii (1957) was the first to obtain an analytical solution for 
the secondary flow in channel bends. In order to facilitate the solution of the 
mathematical model, Rozovskii introduced several simplifications and approximations 
including: 

 The water surface boundary is considered a rigid impermeable and shear stress free plate, 
which introduces only small error so long as the difference between local and average 
water surfaces are small and requires that the Froude number and ratio of water depth to 
radius of curvature both be small (Olsen, 1987) 

 By neglecting wall effects, friction terms only vary as a function of depth. This 
simplification implies that all lateral exchanges of momentum due to friction in the fluid 
are neglected, limiting the validity of the model to the central region of wide channels 
(Darby, 1993). 

 A hydrostatic pressure distribution, which also causes problems near the bank where 
there are significant dynamic vertical vortices. 

In order to close the solution set, Rozovskii (1957) was also required to make assumptions 
about: 

 The eddy viscosity distribution, and 

 A number of boundary conditions 

While this approach gives acceptable results in the central region of the bend, solutions near 
the bank zones are invalid. 

Many other bend models were proposed from the time of Rozovskii’s pioneering work, in an 
effort to tie flow in bends to the bed topography. The next significant improvement in these 
efforts was accomplished by Engelund (1974), who claimed that the vertical velocity profile 
could be best described in natural rivers by the velocity defect law. Using this assumption he was 
able to first approximate two-dimensional bend flow. He then included some second order 
calculations to account for the effect of radial variations of depth and velocity on the flow field 
(Markham, 1990). 

Much work was also done by Bridge et al. to refine this method to model the flow and bed 
topography in river bends (Bridge, 1977, 1982, 1984; Bridge & Jarvis, 1982). Along with the 
restrictions associated with Rozovskii’s solution, the Enguland-Bridge approach treats the 
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convective acceleration terms as second order. Both field (Dietrich & Smith, 1983) and 
laboratory data (Yen & Yen, 1971) indicate that convective acceleration terms should be first 
order. Scaling arguments corroborate these findings (Smith and McLean, 1984; Nelson, 1988). 
Dietrich and Smith (1983) found “substantial topographic induced alteration in the cross stream 
flow pattern relative to that for analogous constant bottom cases.” A high velocity filament 
upstream of the bend travels over the shoal directing it toward the pool, where first the decrease 
in the transverse slope and second the dominance of the vertically averaged centrifugal force 
result in the significance of the convective acceleration term (Dietrich & Smith, 1983), not 
represented in the Engelund-Bridge models. 

Bank erosion is a natural adjustment mechanism of channels of dynamic non-equilibrium. 
Alluvial channels adjust themselves to reach regime conditions not only through the degradation 
and aggradation of the river bed, but also through width adjustment and planform evolution. The 
rate of bank erosion may depend on a variety of parameters including soil properties, the 
frequency of freeze-thaw, the stratigraphy of the bank, the type and density of vegetation, and 
sediment grain size at the toe of the bank (Micheli and Kirchner, 2002). Bank erosion caused by 
hydraulic forces acting on bank surface, and the failure of banks due to geotechnical instability 
of the bank are the most commonly observed bank erosion phenomena in nature. In general, 
bank erosion of non-cohesive materials usually proceeds through the following sequence:  

1. Bed scouring that steepens the side bank 

2. Bank collapse due to instability of the scoured bank 

3. Deposition of the collapsed bank materials at the front of the bank 

4. Transportation of the deposited material downstream (Duan, 2005; Darby et al. 2002).  

Stages one and two of the sequence are due to fluvial entrainment and geotechnical instability, 
and stages three and four depend on the sediment transport capacity near the banks.  

Several mechanisms for mass failure have been observed including planar, rotational, cantilever,  
piping, and sapping type failures (Osman and Thorne, 1988; Darby and Thorne, 1996). These 
processes have been of interest to geotechnical engineers with regard to the design of artificial 
slopes and embankments. Osman and Thorne (1988) developed a theoretical model to calculate 
the bank erosion of steep banks of cohesive materials, which researchers modified to include the 
location and depth of tension cracks (Darby and Thorne, 1994), pore-water and hydrostatic 
confining pressure terms (Darby and Thorne, 1996), soil moisture content, and stochastic 
property of bank failure (Duan, 2005). These solutions require the calibration of soil erodibility 
index and other parameters as well as considerable field data to describe geotechnical properties 
of the banks. This physically based method has been applied to simulate bank erosion processes 
of laboratory cases (Darby et al., 2002; Duan and Julien, 2005), but is limited for long-term 
simulation of natural rivers due to data constraints. Therefore, this study focuses on the linear 
bank erosion model (Ikeda et al., 1981) which has been reported to be successful in simulating 
the long-term evolution of meanders of large scale rivers.  

3.1 Modeling Meander Evolution 

Regarding the rate of bank erosion, the approach by Ikeda et al. (1981) was among the 
pioneering works addressing bank erosion when studying alluvial channel processes. In their 
approach, the bank erosion rate (ߞ), is linearly related to the excess near-bank velocity (ݑ௕

ᇱ ), 
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which is the difference between depth-averaged velocity at the outer bank and cross-sectional 
mean velocity, through the linear erodibility coefficient (ܧሻ. 

ߞ    ൌ ௕ݑܧ
ᇱ         (1)  

According to Ikeda’s linear bank erosion equation, the bank retreats if the excess near-bank 
velocity is greater than zero; otherwise, the bank advances. Ikeda et al.’s (1981) solution to the 
velocity excess is based on the depth averaged Navier Stokes equations for shallow water flow in 
curvilinear coordinates, making the traditional assumptions of steady flow in a constant width 
channel, with small ratios of width to centerline radius of curvature. Ikeda et al. (1981) closed 
the system of equations using the previous analyses (Enguland, 1974; Ikeda, 1975; Kikkawa et 
al. 1976; Zimmerman and Kennedy, 1978) where a “scour factor,” A, is used to define a 
relationship between the transverse bed slope and water surface slope. Engelund (1974) 
suggested a value of 4.0. The theories of Kikkawa et al. (1976) and Zimmerman and Kennedy 
(1978) showed that this parameter should increase with the streamwise velocity. The authors 
chose to use an average value based on Suga’s (1963) analysis of 45 river bends in 10 alluvial 
rivers in Japan, suggesting a value of 2.89. Using the above assumptions and solving for velocity 
at the outer bank using the 1st order approximation of Navier Stokes equation in curvilinear 
coordinate as follows, 

   ܷ డ௨್
ᇲ

డ௦
൅ 2 ௎

ு
௕ݑ௙ܥ

ᇱ ൌ ܾ ቂെܷଶ డࣝ

డ௦
൅ ௙ࣝܥ ቀ ௎ర

௚ுమ ൅ ܣ ௎మ

ு
ቁቃ   (2) 

where ܷ is the depth-averaged velocity for the stream reach, s is the streamwise distance, H is 
the reach-averaged depth, ܥ௙ is the friction factor, b is the reach averaged half-width, ࣝ is the 
local curvature, g is the gravitational constant of acceleration, and A is the scour factor. This 
solution of near-bank excessive velocity was then used to predict bank erosion or deposition 
through the assumption that bank erosion/deposition rate is linearly proportional to the near bank 
velocity, equation 1. 

This approach was then used intensively to predict bank erosion (Parker, 1982; Johannesson, 
1985) and was foreseen by Hasegawa and Ito (1987). However, several authors (Johannesson, 
1985) corrected the Ikeda et al. (1981) model when discovering that it did not account properly 
for the streamwise pressure gradient. This term gives rise to the irrotational vortex and thus 
results in higher velocities over the inside bank than the outside bank when applied to a 
developed bend flow over a nonerodible bed that is horizontal in the transverse direction 
(Johannesson and Parker, 1989b). This result contradicts those findings by Kikkawa (1976), 
which was also confirmed by the observations of Parker (1982) and Johannesson (1985). As a 
consequence, when applying the Ikeda et al. (1981) model, significant calibrations were required 
in order to obtain results matching field observations (Johannesson and Parker, 1989b). 

Johannesson and Parker (1989b) developed a bend flow model based on the fact that the 
convective transport of primary flow momentum by the secondary flow results in a significant 
outward redistribution of primary flow velocity. Although the importance of this phenomenon 
was recognized by several researchers, the term was neglected by Ikeda et al. (1981). While a 
phase shift between the secondary current strength and the local centerline channel curvature was 
identified as an effect of the fluid inertia by Gottlieb (1976) and Kitanidis and Kennedy (1984), it 
was Ikeda and Nishimura (1986) who retained the fluid inertia in the equation governing 
secondary flow and included an unverified approximation assuming the phase shift is 
independent of depth. Johannesson and Parker (1989a) derived a solution to the primary and 
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secondary flows through the use of Engelund’s (1974) slip velocity method, a logarithmic 
velocity profile, and the condition of vanishing shear stress at the water surface. The solution is 
then generalized for a sinuous channel, where an expansion for small curvature was 
implemented. By retaining only the linear terms and dropping the second order, 0(ε2), terms, a 
solution could be reached. Through their analysis, Johannesson and Parker (1989a) determined 
that this methodology, when applied to the solutions developed by Ikeda and Nishimura (1986), 
yielded velocity distributions that better matched the observed data due to the central assumption 
that the secondary flow maintains the same vertical profile as that of the developed bend flow, 
with changes only in magnitude and phase. Therefore, the essential contribution of Johannesson 
and Parker (1989b) can be summarized in the following relation 

ݎ    ௗ௨್
ᇲ

ௗఏ
൅ ௕ݑ2

ᇱ ൌ െ߯ݎଶ଴
ௗఙ

ௗఏ
൅ ሺܨଶ߯ଶ଴ െ 1ሻߪ ൅ ሺܣ ൅  ௦   (3)ߪ௦ሻܣ

where ݎ is the rescaled wavenumber and is found as the original wavenumber, k, divided by the 
scaling factor ߳ ൌ ௙ܾܥ ⁄ܪ  is the streamwise downstream angle relative to the x-axis,  ߯ଶ଴ is ߠ ,
the redistribution effect of the secondary flow, ߪ denotes an order-one dimensionless curvature, 
 ௦ is the result of integrating across the stream width the normalized vertically averaged lateralܣ
transport of downstream momentum by the secondary flow, ߪ௦ quantifies the strength of and the 
phase shift in the secondary flow due to changing curvature in a sinuous channel and satisfies the 
relation 

ݎ       ௗఙೞ

ௗథ
൅ ௦ߪߜ ൌ  (4)      ߪߜ

where ߜ comes from the relation for the secondary flow strength. The final results (Johannesson 
and Parker, 1989b) can be used as the 1st order analytical solution for the velocity excess in 
meandering streams of any arbitrary curvature.  

The erosion coefficient is required to account for variations in the properties of bank material, 
such as cohesion and vegetation. The bank erosion coefficient employed by Crosato (1990) 
included the effect of both fluvial erosion and bank failure. The universal bank erosion 
coefficient by Hasegawa (1989) relates the bank erosion rate to the cross-sectional mean 
velocity, which was validated using data from alluvial channels in Japan. A detailed study of 
bank migration rates and velocity profiles in a southeastern Pennsylvania stream by Pizzuto and 
Meckelnberg (1989) suggests that the linear bank erosion equation is suitable for streams with 
cohesive and relatively uniform bank materials. Hasegawa (1989) used a solution to the sediment 
continuity equation at a cross section and found that meandering migration was a linear function 
of the velocity excess. While all authors agree the bank erosion coefficient is related to 
geophysical properties of the bank (Hasegawa, 1989; Wallick et al., 2006) and effects of 
vegetation (Pizzuto and Meckelenberg, 1989; Micheli et al., 2004), among other hydrodynamic, 
planform, and sediment characteristics, only recently have geotechnical properties been tested in 
an effort to correlate those properties with the linear erosion coefficient by taking soil samples 
and submitting them to lab scour tests (Constantine, 2009).  

Nearly all studies employing Eq. 1 have used the historical record to calibrate a constant value of 
erosion coefficient, E, and then used it to predict future meander propagation (e.g., Larsen and 
Greco, 2002). Parameters for determining bank erosion coefficients including bank soil 
properties, channel geometries, and flow fields vary along the stream. Bank soils and bed 
materials in particular are heterogeneous. A constant bank erosion coefficient used for an entire 
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study reach is inappropriate. All of the parameters,  along with the random spatial variations in 
bank erosion rates, led Hooke (1979) and Pizzuto and Meckelnberg (1989) to conclude that a 
constant value of bank erosion coefficient in equation 1 may not adequately represent either 
systematic or random variations of soil properties, channel geometries, or flow properties that 
influence the rate of bank erosion. The bank erosion coefficient should be a stochastic variable 
with a mean value based on the averaged values of soil, cohesiveness, vegetation density, 
geometry, and flow properties. 

To examine the accuracy of various methods for meander evolution simulation, an approach to 
compare models’ accuracies must be proposed. River planforms take complex geometries which 
are best represented in body-fitted curvilinear coordinates. Computer simulation pre- and post-
processing involves the conversion from the curvilinear to the Cartesian coordinates and vice 
versa. Traditionally, model errors are the differences of the simulated and observed data at 
discrete time intervals. The field data to verify meandering models’ results are series of 
meandering planforms which cannot be assessed by the traditional method. Unique metrics and 
algorithms must be developed to determine which simulated planform is the best representation 
of the observed one. 

Therefore, the purpose of this study is twofold: first to examine the existing method for bank 
erosion calculations and to develop a method for quantifying errors of modeling results, and 
second, to represent the uncertainty associated with the linear bank erosion coefficient through a 
Monte Carlo simulation.  

 

4 Computational Model 
This study developed two one dimensional numerical models for simulating bank erosion and the 
consequent meandering planform evolution. The flow field was based on the 1st order solution of 
Navier Stokes Equations in the curvilinear coordinate derived by Ikeda et al. (1981) and 
Johannesson and Parker (1989b). The Ikeda et al. (1981) model is based on their solution for 
velocity excess, ݑ௕

ᇱ . This model adopts the explicit upstream difference scheme in Eq.4 to 
integrate Eq.2 (Sun 1996),  

      
ௗ௨್

ᇲ

ௗ௦
ቚ

௜
ൌ

௨್೔
ᇲ ି௨್೔షభ

ᇲ

∆௦
      (5) 

where ∆ݏ is the streamwise distance between nodes, subscription i denotes the node number. The 
recursive equation is written as, 

௕೔ݑ    
ᇱ ൌ ௕

௎ ∆௦೔⁄ ାଶሺ௎ ு⁄ ሻ஼೑
൤െܷଶ డࣝ
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ቚ

௜
൅ ௙ࣝ௜ܥ ቀ ௎ర

௚ுమ ൅ ܣ ௎మ

ு
ቁ ൅ ௎

∆௦೔

௨್೔షభ
ᇲ

௕
൨  (6) 

 is the friction factor, The variables are defined in Eq.2. The friction factor is an expression of the 
shear stress, and comes from the solution of the s-momentum equation after a linear perturbation 
analysis and Taylor expansion to the zero-order, where shear stress is approximated as ߬௦ ൌ
 ௙ܷଶ, yieldingܥߩ

௙ܥ       ൌ ܫܪ݃ ܷଶ⁄       (7) 

For an initial sine generated sinuous channel, the downstream angle can be determined by 
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ߠ       ൌ  ሻ     (8)ݏ଴cos ሺ݇ߠ

where ߠ଴ is the initial angle, ݇ is the wavenumber defined as 2ߨ ⁄ߣ , where ߣ is the wavelength, 
and s is the distance downstream. As the river planform takes an arbitrary form where 
subsequent nodes may be in any direction, an algorithm using trigonometric identities is required 
to find the downstream angle. Curvature of the centerline in this model is calculated as the ratio 
of change in downstream centerline angle and the x-axis over a unit streamwise length. In 
addition, after each time interval, nodes along the streamline were redistributed to keep equal 
spacing as channel evolution occurs. The spacing of nodes was maintained always equal to the 
channel width so extra nodes were added as the meandering bend lengthens. 

Johannesson and Parker (1989b) made some significant changes to the model proposed by Ikeda 
et al. (1981). In this model, the analytical solution found to Eq.3 was used with the substitutions 
suggested, ߶ ൌ ݎ and ݏ݇ ൌ ܪ݇ ⁄௙ܾଶܥ , setting initial conditions to zero, and estimating ߪ௦ ൌ ߪ ൌ
ܾࣝ which gives, 
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where ݎ is the rescaled wavenumber and is found as the original wavenumber, k, divided by the 
scaling factor ߳ ൌ ௙ܾܥ ⁄ܪ  is the streamwise downstream angle relative to the x-axis,  ߯ଶ଴ is ߠ ,
the redistribution effect of the secondary flow represented as 

      ߯ଶ଴ ൌ ଵ

ఞభ
య ቀ߯ଷ ൅ ߯ଶ ൅ ଶ

ହ
߯ ൅ ଶ

ଷହ
ቁ  (10) 

where ߯ ൌ ߯ଵ െ ଵ

ଷ
, and ߯ଵ ൌ ଴.଴଻଻

ඥ஼೑
 denotes an order-one dimensionless curvature and can be ߪ ,

approximated as ߪ ൌ ࣝb, ܣ௦ is the result of integrating across the stream width the normalized 
vertically averaged lateral transport of downstream momentum by the secondary flow yielding 
the relation 
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௕
ቁ

ଶ ଵ

ఞభ
ቀ2߯ଶ ൅ ସ

ହ
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ଵହ
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which is of the same order as the scour factor, A.  

This study used both the Ikeda et al. (1981) and Johannesson and Parker (1989b) solutions for 
the excess velocity, then Eq. 1 was used for solving the bank erosion rate with an assumption of 
either a constant or a stochastic erosion coefficient . 

4.1 Monte Carlo Simulation 

The bank erosion coefficient is treated as a stochastic variable. In order to determine the 
appropriate range of values, Hasegawa’s (1989) solution to the sediment continuity at a 
representative elementary volume was used. Hasegawa found that bank erosion could be 
estimated through the product of the velocity excess and a constant term, equivalent to the bank 
erosion coefficient, as follows 

ߞ      ൌ
ଷ௤ೞబ்௧௔௡ሺఏೖሻథכ

ሺଵିఒሻுబ௎బ
௕ݑ

ᇱ       (12) 
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where ݍ௦బ
is the average bed load transport, ܶ ൌ ඥ߬כ೎

బכ௞߬ߤ௦ߤ
⁄ , where ߤ௦ and ߤ௞ are the static 

and dynamic Coulomb coefficient respectively, ߠ௞is the transverse slope, ߶כ ൌ బכ߬
బכ߬

െ ೎כ߬
⁄  ߣ ,

is the porosity, ܪ଴ is the average depth, and ܷ଴ is the average velocity. In Eq. 12, T, H0, U0, and 
 ߣ ௞ varied with instantaneous flow turbulence properties therefore are random variables, whileߠ
is the porosity and its spatial distribution depends on the local soil moisture content, which is a 
random variable. Several authors have noted the uncertainty associated the bank erosion rate 
(Wallick et al., 2006; Pizzuto and Mecklenberg, 1989). Wallick et al. (2006) found that the errors 
in their bank erosion coefficient estimates due to river planform variations to be in the range of 
±10% to ±15%. Micheli and Kirchner (2006) used the historical data of bank erosion rate and 
Eq. 1 to back-calculate bank erodibility coefficients for both wet and dry meadows along the 
south fork of the Kern River. The back-calculated coefficients varied spatially and temporally. 
Table 4-1 summarizes the percent error in their estimates. 

 

Table 4-1: Migration Rate and Erodibility Summary 
 (Micheli and Kirchner, 2006) with Percent Error 

 
Migration Rate(m a-1) Standard Error Percent Error 
1.3 0.4 30.77% 
1.5 0.1 6.67% 
0.23 0.02 8.70% 
0.25 0.01 4.00% 
   
Erodibility �10-7   
0.58 0.02 3.45% 
0.64 0.03 4.69% 
3.7 0.5 13.51% 
8.4 0.7 8.33% 
   
 Average Percent Error 10.01% 
 

 The results showed an average error of approximately 10%. Therefore, based on these field data 
(Wallick et al., 2006; Micheli and Kirchner, 2002) the bank erosion coefficient was determined 
to vary by about 10% from its mean value at a given river reach. Larger variations are expected 
in a long river reach of complex geometry, where bank soil properties are stratified, areas where 
vegetation may play a large role in streambank migration, and smaller variations are expected for 
the laboratory experimental channel.  

4.2 Distribution of Stochastic Variable 

The instantaneous bed shear stress in Eq. 12 can be either normally or log-normally distributed 
(Lopez and Garcia, 1999; Cheng and Law, 2003). The Cheng and Law (2003) experimental 
study indicated that the log-normal distribution converged to a normal distribution when the 
relative intensity of bed shear stress, denoted as the ratio between the deviation and mean of bed 
shear stress, is small. In shallow open channel flow, the turbulence intensity is much smaller than 
the mean shear stress (Duan and Barkdoll, 2008). Therefore, this study adopted the assumption 
that bed shear stress satisfies a standard normal distribution. The porosity in Eq.12 could satisfy 
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either the uniform distribution or the normal distribution. With those distributions of individual 
variables, the study assumed the probability density function of bank erosion coefficient satisfies 
either the normal distribution or the uniform distribution as shown in Figure 4-1.  
 

Figure 4-1: Uniform Distribution of Input Parameter 

 

The bank erosion coefficient was first determined by calibrating the model using the observed 
data. The instantaneous bank erosion coefficient at each bank was obtained from a random 
distribution function, which is based on the intrinsic function that produces random numbers 
between zero and one assuming a uniform or normal distribution. If assuming the normal 
distribution of ܧ and employing the Box and Muller (1958) transformation, the PDF function of 
 .is shown in Figure 4-2 ܧ
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Figure 4-2: Normal distribution of input 
parameter through Box and Muller transformation 

This study simulated one thousand iterations for each distribution so as to determine the 
statistical properties of the results including the 95 percent confidence interval and the average 
stream centerline position. 

 

5 Results 

5.1 Laboratory Experiment (Freidkin, 1945) 

A comprehensive laboratory study of river meandering was conducted at the Waterway 
Experiment Station, Army Corps of Engineers by J.F. Friedkin (1945). Among dozens of 
experimental runs, one began with a sine-generated initial channel of trapezoidal cross sections, 
and uniform bed and banks, was run over several hours with a constant flow condition (see Plate 
23 therein in Fredkin 1945). The constant discharge is 0.21 l/s, and the channel width is 0.40m 
with a side slope of 2:1. The total channel length is 12m. The experimental data including flow 
velocity, channel slope, Friction Factor, Froude number are summarized in Table 5-1. These 
experimental data are a unique opportunity to measure model errors with respect to the axial 
symmetry of the initial streamline.  
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Table 5-1: Friedkin Initial Conditions for Simulation 

Parameter Value 

Initial Angle (degrees) 30.0 
Wavelength (m) 6.4008 
Half bottom width (m) 0.3048 
Side Slope (H:V) 1.0 
Number of Wavelengths 5.0 
Stream Flow (m3/s) 1.0 
Stream Height (m) 0.09 
Scour Factor (A) 2.89 
Simulation Duration (hrs) 32 
Erodibility Coefficient, E 2.2 X 10-4 (calibrated value) 
Average Velocity (m/s) 0.508  
Froude Number 0.536 
Friction Factor 2.6064 X 10-2 
Bed Slope 7.5 X 10-3 
 

5.2 Simulated Results from Deterministic Model 

The solutions of velocity excess from both models (Ikeda et al. 1981 and Johannesson and 
Parker, 1989b) in conjunction with Eq.1 were used to simulate the 32-hour experimental run. 
The simulated results were compared with the experimental measurements as shown in Figure 
5-1 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Results of Deterministic Models Johannesson and Parker (1989b) 
and Ikeda (1981) for 32-hour Simulation of J.R. Friedkin (1945) Experimental Results 

 

In the deterministic solution, with a constant value for E = 2.2 x 10-4, channel centerline change 
is driven by the excess velocity. Figure 5-2 shows the results of excessive velocity from both 
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models, relative to the channel centerline. Line ‘a’ indicates the location of the minimum 
velocity excess which is slightly upstream of the inflection point of the streamline. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Excess Velocity Results of Flow Field Models Johannesson 
and Parker (1989b) and Ikeda (1981) for Initial Sine Generated Curve 

 

Line ‘b’ in Figure 5-2 indicates the location of the maximum excess velocity which corresponds 
to the location along the outer bank across the point bar from the entrance to the bend. The 
maximum excessive velocity occurs at the outer bank downstream of the apex. The maximum 
bank erosion occurs where the excessive velocity is maximum. The location of maximum bank 
erosion is consistent with the laboratory measurement. 

In order to determine which of the resulting meandering planform most matches the 
experimental measurements, two approaches were taken to determine the errors of simulated 
results comparing to the measurements. First, as illustrated in Figure 5-1, the symmetrical nature 
of the experimental data permitted to identify each bend based on the intersections with the x-
axis. Each channel planform consists of several bends that are located either above or below the 
x-axis. Each bend is represented with a series of nodes along its centerline. These nodes of given 
x- and y-values could then be used to determine several geometric characteristics of the bend, 
which are the maximum y-value for measuring the maximum lateral extension of the bend, 
average y-value for the averaged lateral extension of the bend, the change in x-value of the 
maximum y-value for the symmetry, the standard deviation for the sharpness/roundness, and 
skew of each bend for its upstream/downstream rotation. These bend characteristics permit a 
quantitative approach to determine the similarity of simulated and measured bends. For two 
individual bends, the closer these parameters are, the closer the channel centerlines are. For each 
individual bend, the errors between the simulated and measured maximum distance from the x-
axis, which are the y-values of nodes on the stream centerline were determined and shown in 
Figure 5-3 

 



26 
 

 

 

 

 

 

 

 

 

Figure 5-3: Model Error for Distance from X-axis to Maximum Y-value 
for Each Bend Simulated for 32-hour Friedkin (1945) Simulation 

 

The Ikeda et al. (1981) model has consistently smaller errors with the exception at the sixth bend. 
Over the first two bends, both the Ikeda et al. (1981) and Johannesson and Parker’s (1989b) 
models are consistent in their y-maximum value. Through the third and fourth bend, the models 
diverge, with Ikeda et al.’s (1981) model over-predicting the lateral expansion at the third bend 
and under-predicting at the fourth bend, while the Johannesson and Parker (1989b) in the 
converse. Both models over-predict the maximum y-value at the sixth bend. 

The standard deviation of y-values over each bend quantifies the sharpness/roundness of the 
bend. The larger the standard deviation, the sharper the bend is. Figure 5-4 illustrates the model 
error for the standard deviation of each bend comparing to the 32-hour streamline of the Friedkin 
(1945) experiment. 

 

 

 

 

 

 

 

Figure 5-4: Model Error for Deviation from the Mean Y-value for 
Each Bend Simulated for 32-hour Friedkin (1945) Simulation 

 

Both models yielded the similar standard deviations from the mean y-value, and therefore their 
errors are of the same magnitude over the first and the second bend. The Johannesson and Parker 
(1989b) model consistently was a better predictor of the average y value and the standard 
deviation. 

The skew of a series of values is the third statistical moment and measures whether the variable 
is weighted to one side or the other relative to the mean value. Due to the asymmetry of river 
bends, the skew is one measure to quantify the degree of rotation of the meander bend. Figure 
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5-5 shows the errors of skewness at each bend between the simulated results and the 
measurements. 

 

 

 

 

 

 

 

 

Figure 5-5: Model Error for Skew of Y-values for Each 
Bend Simulated for 32-hour Friedkin (1945) Simulation 

 

Both models yielded nearly identical results of the skewness, and were also of a similar 
magnitude. Figure 5-6 shows the skewness values of simulated and observed data for each bend. 

 

 

 

 

 

 

 

 

Figure 5-6: Model Results for Skew of Y-values for Each 
Bend  Simulated for 32-hour Friedkin (1945) Simulation 

 

There is a great deal of variation in the observed data; however, both models yielded skewness 
values of the same sign and magnitude as the observed data. This phenomenon indicated the 
randomness of bank erosion and consequently, the meandering planform migration. 

Second, the overall model error was also determined by comparing the Mean Squared Error 
along the entire stream line (Table 5-2). 
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Table 5-2: Mean Squared Error Values for Ikeda (1981) 
Model and Johannesson & Parker (1989b) Models 

Mean Squared Error Values for Ikeda (1981) and Johannesson and Parker (1989b) models. 
Model MSE 
Ikeda (1981) 3245.40558 
Johannesson and Parker (1989b) 3426.20621 
 

Due to the complex geometries and coordinate conversions, it was found that a comparison of y-
values at specific points along the stream was the most feasible to determine model errors. A 
linear interpolation between nodes found in orthogonal coordinates was used to find y-values at 
the points of observed data Figure 5-7. Differences between the observed and simulated data can 
then be determined based on the differences of y-values at the same location. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-7: Interpolation from Curvilinear to Cartesian Coordinates 

 

5.3 Simulated Results from Monte Carlo Simulation 

If treating the bank erosion coefficient as a random variable, a stochastic simulation is needed to 
accurately predict the evolution of meandering channels. Results illustrated from the 
deterministic models showed the MSE from the Ikeda et al. (1981) model is less than that of the 
Johannesson and Parker (1989b) model. However, other bend characteristics indicated the 
Johannesson and Parker (1989b) model yielded better predictions of bend amplitude and 
skewness. This attribute supports the uncertainty in the bank erosion coefficient used in the 
deterministic model. The Monte Carlo simulation using a stochastic bank erosion coefficient is 
necessary. This study represents the bank erosion coefficient as a random variable and assumes 
its probabilistic density function satisfies either uniform or normal distribution. The linear bank 
coefficient used in the models is a proxy for the uncertainty associated with bank shear stress, 
soil composition, role of vegetation, and turbulence associated with bend flows. Figure 5-8 
shows the results of the one thousand iterations given a 10% variation from the mean calibrated 
value used in the deterministic model. 
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Figure 5-8: 1000 Iterations of Ikeda et al. (1981) Model 
with 10% Variability from 32-hour Calibrated Value 

 

By including all the y-values at each point along the stream line, both the average y-value of the 
1000 iterations and the 95% confidence interval can be determined. The results of both statistics 
were shown in Figure 5-9 for the Ikeda et al. (1981) model, and in Figure 5-10 for the 
Johannesson and Parker (1989b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: Results of Monte Carlo Analysis of 
32-hour Calibrated Model with Ikeda (1981) Solution 
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Figure 5-10:  Results of Monte Carlo Analysis of 32-hour 
 Calibrated Model with Johannesson and Parker (1989b) Solution 

 

The errors of the maximum and standard deviation of y-values and skewness for each bend of the 
simulated stochastic mean channel were compared with the deterministic solutions in Figure 
5-11, Figure 5-12, and Figure 5-13. With few exceptions, the average center streamline from the 
Monte Carlo simulation has less error than the deterministic solution. The one major exception is 
the prediction of the maximum y-value of the first and second bends (Figure 5-11). 

 

 

 

 

 

 

 

 

Figure 5-11: Comparison of Deterministic Model and 
Average Y-Max Value from Monte Carlo Simulation 
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Figure 5-12: Comparison of deterministic model and standard 
 deviations of average y- value from Monte Carlo simulation 

 

 

 

 

 

 

 

 

 

Figure 5-13: Comparison of Deterministic Model and 
Skewness of Average Y- Value from Monte Carlo Simulation 

 

Assuming both normal and uniform distributions of bank erosion coefficient using Ikeda et al.’s 
(1981) flow model, the results are shown in Figure 5-14. Both distributions yielded nearly the 
same mean channel and slightly different 95% C.I. bounds. The measured channel centerline was 
within the 95% C.I. for both distributions. This perhaps indicates that the distribution function of 
the bank erosion coefficient has minor impacts on the mean simulated results. 
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Figure 5-14: Bends 4 and 5 of 32-hour Simulation 
 with Results from Both Uniform and Normal Distributions 

 

6 Discussion 
Several conclusions emerge from this study. First, the computational expense associated with the 
additional complexity of the Johannesson and Parker (1989b) model do not significantly improve 
the overall model performance. In fact, this study showed that the simpler Ikeda et al. (1981) 
model performed better using the cited performance metrics. While other authors have reported 
modifying or merging the two models in unique ways (Wallick, 2006; Constantine, 2009), often 
reduced the complexity, this simulation used the full analytical solution found by Johannesson 
and Parker (1989b). These hybrids will have smaller computational cost, but any possibility of 
improved results remains unknown. Figure 6-1 clearly indicates that the models do not produce a 
symmetric planform, despite a constant value of . Authors have reported the need for 
significantly smoothing the stream centerlines, mainly by employing sequential cubic splines, 
and complex curvature calculations, neither of those were employed in this study which may 
have led to errors in velocity excess and therefore the estimation of planform evolution.  

Modeling errors in simulating river meandering evolution is not trivial. While the meandering 
planform is best described in the curvilinear coordinate, constraints such as the node placement 
and distances between nodes, and the fact that these are continuous phenomenon estimated in 
discrete spatial and temporal data sets, make direct comparison difficult. Nevertheless, there are 
a variety of bend characteristics that are of interest to describe the geometry of an evolving 
meandering river planform. The characteristics qualifying bend geometry include the lateral 
expansion rate, the magnitude of rotation towards upstream or downstream, and the speed of 
bend upstream/downstream translation. The maximum y-value is clearly of interest because it 
measures the maximum lateral extension of the bend; however, this value in relation to the 
midpoint of the bend could be more interest to the modeler, which is an indicator of symmetrical 
geometry. The standard deviation of the y-values at each bend provides insight into how sharp or 
round the bend is. Therefore, the standard deviation is an excellent metric with which to compare 
the shape of bends. Bend skewness is a metric which provides both meaningful measure of 
simulation error and aid in predicting planform evolution. Up- and down-stream rotation is 
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captured through the skewness measure. Despite the fact flow field was solved in the curvilinear 
coordinate, the mean squared error of the simulated planform with respect to the observed data in 
the Cartesian coordinate is believed to be a good estimate of overall model error. In the case of a 
natural river where the x axis is not aligned with the downstream direction, the channel center 
axes orientation needs to be defined based on the alignment of each bend. 

The Monte Carlo simulation of meander planform evolution using the linear bank erosion 
equation is a practical and realistic tool. Due to the variety and profundity of uncertainties 
associated with the linear bank erosion coefficient, , representing those uncertainties within the 
modeling framework is critical. Regardless of the fact that the average y-values from the Monte 
Carlo simulation were better estimates of observed data, the strength in this methodology lies in 
the ability to define confidence intervals within which the meandering planform evolves. 
Although the entire observed planform is not within those confidence intervals, the vast majority 
(over 90%) of that planform is found within the 95% confidence interval. Those areas not within 
the confidence intervals are almost exclusively in the upper portion of the laboratory stream. 
These first few bends are somewhat anomalous, as the upper stream was significantly influenced 
by the entrance boundary condition. 

Figure 6-1 shows the evolution of the laboratory stream produced by Friedkin (1945). Of note is 
the relative equilibrium that the planform takes after just 32 hours. The subsequent planforms do 
not differ significantly in amplitude, skew, or translation, suggesting the stream has reached 
regime conditions and is in a state of dynamic equilibrium. Therefore, when calibrating to the 
32-hour planform, those parameter values could not be used to predict future planforms, calling 
in to question the calibration using historical records often used with the linear bank erosion 
model. These results suggest that a combination of those empirical models based on the overall 
meander river characteristics, flow, and sediment parameters, along with the linear bank erosion 
model using the Monte Carlo simulation is most appropriate to predict meandering channel 
evolution.  

Figure 6-1: Planform Evolution of Friedkin (1945) Experiments 
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7 Conclusions 
This paper reported one dimensional numerical simulation of meandering evolution using 
deterministic and stochastic models. The 1st order solutions of Navier Stokes equation in the 
curvilinear coordinate by Ikeda et al. (1981) and Johannesson and Parker (1989b) were used for 
determining the excess velocity. The bank erosion rate is assumed linearly proportional to near 
bank excess velocity. The deterministic model adopted a constant bank erosion coefficient for 
the entire simulation reach, while the stochastic model treated the bank erosion coefficient as a 
random variable satisfying either uniform or normal distribution. For the deterministic model, 
Johannesson and Parker (1989b)’s model predicted better bend characteristics than the results of 
Ikeda et al. (1981)’s model although errors from both models exceeds 50%. This strongly 
suggested the limitation and incapability of deterministic models. On the other hand, the 
stochastic model yielded a 95% confidence interval bound that nearly bounds 90% of the 
observed channel centerline. The mean centerline from the stochastic model is within 30% errors 
when comparing to observed data. These results indicated that meandering migration process is a 
stochastic process that requires the Monte Carlo simulation to realistically model its evolution 
process. 
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