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The basic purpose of this one year research grant was to extend the two stage clonal 
expansion  

 model (TSCE)  of carcinogenesis to exposures other than the usual single acute 
exposure.   

The two-stage clonal expansion model of carcinogenesis incorporates the biological 

process of carcinogenesis, which involves two mutations and the clonal proliferation of 

the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves 

a general purpose of acute exposure models but requires numerical computation of both 

the survival and hazard functions. The primary objective of this research project was to 

develop the analytical expressions for the survival function and the hazard function of the 

occurrence of the first cancer cell for acute, continuous and multiple exposure cases 

within the framework of the piece-wise constant parameter two-stage clonal expansion 

model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is 

either only allowed to have the first mutation rate vary with the dose, or to have all the 

parameters be dose dependent; for multiple exposures of continuous exposures, all the 

parameters are allowed to vary with the dose. With these analytical functions, it becomes 

easy to evaluate the risks of cancer and allows one to deal with the various exposure 

patterns in cancer risk assessment.  

 

A second objective was to apply the TSCE model with varing continuous exposures from 

the cancer studies of inhaled plutonium in beagle dogs.  Using step functions to estimate 

the retention functions of the pulmonary exposure of plutonium the multiple exposure 

versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. 

 



 

 

The mathematical equations of the multiple exposure versions of the TSCE model were 

developed.  A draft manuscript which is attached provides the results of this 

mathematical work.  The application work using the beagle dog data from plutonium 

exposure has not been completed due to the fact that the research project did not continue 

beyond its first year. 
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Abstract 
 
The two-stage clonal expansion model of carcinogenesis incorporates the biological 

process of carcinogenesis, which involves two mutations and the clonal proliferation of 

the intermediate cells, in a stochastic, mathematical way. The current model serves 

general purpose and requires numerical computation of the survival and hazard functions. 

We derived the analytical expressions for the survival function and the hazard function of 

the occurrence of the first cancer cell for acute, continuous and multiple exposure cases 

within the framework of the piece-wise constant parameter two-stage clonal expansion 

model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is 

either only allowed to have the first mutation rate vary with the dose, or to have all the 

parameters be dose dependent; for multiple exposures of continuous series, all the 

parameters are allowed to vary with the dose. With these analytical functions, it becomes 

easier to evaluate the risks of cancer and allows one to deal with the various exposure 

patterns in cancer risk assessment.  
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1. Introduction 
 

From 1970s through 1990s Moolgavkar, Venzon and Knudson [1-3] further developed 

the two-hit theory of cancer proposed by Nordling [4] and the multi-stage model 

proposed by Armitage and Doll [5],  by adding the clonal expansion of intermediate cells 

to the carcinogenesis process, and translated the biological mechanism into a stochastic, 

mathematical model --- the two-stage clonal expansion model (TSCE) for carcinogenesis. 

Since then, a large number of theoretical and applied studies [6-33] have been published. 

Among them, the studies by Little et al [30-33] generalized the TSCE model to 

multistage cases with theoretical results and applications. 

 

The TSCE model [3] assumes that within a pool of N(t) normal cells each cell has a 

probability to be initiated and become an intermediate abnormal cell with a rate of 1( )tµ , 

or with an overall rate of 1( ) ( ) ( )t t N tν µ= for the pool of cells; an intermediate cell may 

divide into two daughter cells with a rate of ( )tα , or die or differentiate with a rate of 

( )tβ , or further be transformed into a cancer cell with a rate of µ(t) (in this paper “first 

mutation rate” refers to 1( )tµ , “second mutation rate” refers to µ(t). Here, we assume that 

N(t) is a constant.). 

(Figure 1) 

 

With the assumption of a non-homogeneous Poisson process for all the transitions 

mentioned above (see Figure 1), Moolgavkar et al. [3] developed the probability 

generating function for the number of intermediate and malignant cells at time t. They 

then applied the Kolmogorov forward differential equation to the probability generating 
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function, and solved the characteristic equations associated with the Kolmogorov 

equation and derived the survival function and hazard function for the occurrence of the 

first malignant cell at time t:   

                                            
0

( ) exp [ ( , ) 1] ( )
t

S t y u t u duν= −∫                                               (1) 

 

                                              
0

( ) ( , ) ( )
t

th t y u t u duν= −∫                                                       (2) 

 
where ( , )y u t  is the solution to the Riccati equation 

                                     2( , ) { ( ) }dy R y u y y
du

α α β µ β= − = − − + + +                                 (3) 

with ( , ) ( , )ty u t y u t
t
∂

=
∂

  

 For the piece-wise constant parameter two-stage model,  ( , )y u t  can be solved explicitly 

in piece-wise form [3]. In an application of radon-induced lung tumor in rats, 

Moolgavkar et al. [20] applied numerical methods to evaluate the survival function and 

hazard function. Since then researchers had been attempting to derive analytical forms for 

these functions. For the time-independent parameter model, Kopp-Schneider, Portier and 

Sherman [34] derived the closed form solution of the incidence function, and 

Heidenriech, Jacob and Paretzke [8, 10] derived the hazard function. The hazard function 

derived from Kopp-Schneider’s incidence function appears different from Heidenriech’s 

[10] formula, but it can be easily shown that the two are  equivalent. For the piece-wise 

constant parameter model Heidenreich, Luebeck and Moolgavkar [9] derived the survival 

function and hazard function in recursive form,  avoiding numerical differentiation and 

integration.  



 5

 

We consider two basic types of exposure in terms of duration: acute exposure and 

continuous exposure. We define acute exposure as the one occurs instantaneously at a 

time point and a continuous exposure as one persists for a fixed period of time. Multiple 

exposures can be composed of a series of acute exposure, or a series of continuous 

exposure, or some mixture of these two basic types. As such, acute exposure and 

continuous exposure are just special cases of multiple exposures. For the modeling for 

acute exposure, Jacob and Jacob [35] approximated an instantaneous effect on the first 

mutation rate using a short time interval of 1 minute, and allowed a delayed effect on the 

proliferation rate for a week in their study on atomic bomb survivors. Heidenreich, Jacob 

and Paretzke [9, 10] proposed an approach allowing the first mutation rate to vary 

instantaneously while treating the other three parameters as constants, resulting in an 

analytical formula for the time dependent parameter model for acute exposure. For 

continuous case, there are no analytical formulae available.   

 

 The purpose of our paper is to derive the analytical forms of the survival function and 

hazard function for the acute, continuous and multiple exposure patterns within the 

framework of the piece-wise constant parameter model. Once the analytical formulae for 

the acute and continuous exposure are obtained, they are used as the building blocks for 

the multiple exposure cases. With these analytical formulae we can deal with a variety of 

exposure patterns. 
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2. Acute exposure  

In describing the effect of an acute exposure, mathematically we take the limit of the 

effect, say, hazard, with the length of the exposure duration approaching zero.  

Heidenreich, Jacob and Paretzke [10] derived the hazard function for acute exposure 

allowing the first mutation rate to jump (equivalent to a jump for ν ) and then fall back to 

the background level.  We call this simplified acute exposure model as the simple acute 

exposure model. For the purpose of generalization we will use several equivalent 

expressions that Kopp-Schneider, Portier and Sherman [34] derived for the constant 

parameter model and Heidenrich , Jacob and Paretzke [10] derived for the simple acute 

exposure model as follows.  

Let A, B denote the smaller and greater roots of the quadratic equation associated with the 

Riccati equation (3): 

                                2 ( ) 0y yα α β µ β− + + + =                                                              (4)  

and ( )g B Aα= −                                                                                                             (5) 

then, for any time t the survival function for the control group can be obtained by 

completing the integration in equation (1): 

                   
0

0 0
0 0 0

0 0 0

1( ) exp ( 1) log
(1 ) (1 ) g t

B AS t v B t
A B eα

⎧ ⎫⎡ ⎤−⎪ ⎪= − +⎨ ⎬⎢ ⎥− − −⎪ ⎪⎣ ⎦⎩ ⎭
                            (6) 

where subscript 0 indicates the parameters for the control group. Expression (6) can be 

proved equivalent to Kopp-Schneider’s incidence formula [34].  

 

The hazard function can be obtained by taking the negative derivative of the logarithm  
 
of the survival function (6): 
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0

0 0
0 0 0

0 0

( ) (1 ) 1
(1 ) (1 ) g t

B Ah t A
A B e

ν
⎡ ⎤−

= − −⎢ ⎥− − −⎣ ⎦
                                                 (7) 

 
Let 1t  be the time when the acute exposure occurs. For 1t t≥ , with the assumption that 

only ν  is affected by the exposure, completing the integration in (1) at t1, using the 

integration of the impulse function (Dirac delta function) [10] [36], gives the survival 

function of the occurrence of the  first cancer cell: 

 

                
0 1

0 1

( )
0 0 0 0

0 0( )
0 0

(1 ) ( 1)( ) exp ln( ( )) 1
(1 ) ( 1)

g t t

g t t

B A A B eS t S t rd
A B e

ν
−

−

⎧ ⎫⎡ ⎤− + −⎪ ⎪= + −⎨ ⎬⎢ ⎥− + −⎪ ⎪⎣ ⎦⎩ ⎭
                      (8) 

 
with the jump of ν  described by the linear additive model:  

                                                            0 (1 )rdν ν= +                                                       (9) 
 
Here r is the unit excess relative increase in ν  induced by the exposure of dose d. Thus, 

we obtain a slightly different representation of the hazard function as derived by 

Heidenriech, Jacob and Paretzke [10]: 

                                     
( )

0 1

0 1

( )
0 0 0 0 0

0 02( )
0 0

(1 )( 1)( )( ) ( )
(1 ) ( 1)

g t t

g t t

A B B A g eh t h t rd
A B e

ν
−

−

− − −
= +

− + −
               (10)   

    
In (8-10), the term rd can be replaced by functional form f(d) with f(0) = 0. This applies 

to the dose response of ν  in all the formulas for acute exposure and multiple acute 

exposure cases in following sections.  
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2.1  A model with more than one time-dependent parameter 

Here we consider a more complete model by treating the effect of acute exposure on the 

first mutation rate as an instant jump, and also allowing other parameters to vary for a 

limited period of time after the exposure. After that, all the parameters return to their 

background levels. 

We use parameter subscripts to indicate whether the parameters are affected by the 

exposure. Thus, α0, β0, ν0, µ0, A0 , B0 , g0 are for the intervals before the exposure and the 

time after the effect of exposure terminates, while αd, βd, νd, µd, Ad , Bd , gd are for the 

interval in which the effect of the exposure on the parameters other than the first mutation 

rate is active.  

Let tq be the time when the effect on the parameters other than the first mutation rate 

terminates.  For qt t≥ ,  integrating the exponential part of (1) at t1 over the three 

intervals, i.e., [0, t1), [t1, tq), [tq, t],  gives the logarithm of the survival function for the 

exposed: 

0 1

0 0
0 0 1 0 1

0 1 0 1 0

1log( ( )) ( 1) log ( 1)
( ) ( )d g t

B AS t B t rd y
y A y B e

ν ν
α

⎡ ⎤−
= − + + −⎢ ⎥− − −⎣ ⎦

   

                       +  
10 1 ( )

2 2

1( 1)( ) log
( ) ( ) d q

d d
d q g t t

d d d

B AB t t
y A y B e

ν
α −

⎡ ⎤−
− − +⎢ ⎥

− − −⎣ ⎦
                

                       +   
0

0 0
0 0 ( )

0 0 0

1( 1)( ) log
(1 ) (1 ) qq g t t

B AB t t
A B e

ν
α −

⎡ ⎤−
− − +⎢ ⎥

− − −⎣ ⎦
                       (11) 

 

where 1 1( , )y y t t= , 2 ( , )qy y t t=  are values of the function ( , )y u t calculated backward at 

right ends of the first two intervals, with 3 ( , ) 1y y t t= = , the value of  ( , )y u t at t given 

time t, defined for the third interval. Moolgavkar and Luebeck [3] provided the details for 
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the calculation of the values of the function ( , )y u t  for the piece-wise constant parameter 

case. It follows from (11) that 

0 1

0 1

0 1
0 1

0 1 0 1 0

1( )
( ) ( )

g t
t

d tg t

y eh t rdy
y A y B e

ν ν
α

−
= +

− − −
     

            + 
1

1 0

( )
0 2 0 0

0 0( ) ( )
2 2 0 0

1 (1 ) 1
( ) ( ) (1 ) (1 )

d q

d q q

g t t
t

g t t g t t
d d d

y B Ae A
y A y B e A B e

ν ν
α

−

− −

⎡ ⎤−−
+ − −⎢ ⎥

− − − − − −⎣ ⎦
  (12) 

 

 where             
1

1

( )2

1 2( ) 2
2 2

( )
[( ) ( ) ]

d q

d q

g t t
d d

t tg t t
d d

B A ey y
y A y B e

−

−

−
=

− − −
                                                  (13) 

                        
0

0

( )
0 0 0 0 0

2 2( )
0 0

(1 )(1 )( )( , ) ( , )
(1 ) (1 )

q

q

g t t

t t q q g t t

A B B A g ey y t t y t t
t A B e

−

−

− − −∂
= = =

∂ ⎡ ⎤− − −⎣ ⎦

               (14) 

In (13) and (14) the subscript t is used to indicate the partial derivatives of the functions  
 
with respect to t. 
 
For  1 qt t t≤ ≤ ,  the intervals of concern are [0, t1), [t1, t]. Accordingly, the logarithm of 

the survival function and the hazard function reduce to: 

 

0 1

0 0
0 0 1 0 1

0 1 0 1 0

1log( ( )) ( 1) log ( 1)
( ) ( )d g t

B AS t B t rd y
y A y B e

ν ν
α

⎡ ⎤−
= − + + −⎢ ⎥− − −⎣ ⎦

   

                       +   
10 1 ( )

1( 1)( ) log
(1 ) (1 ) d

d d
d g t t

d d d

B AB t t
A B e

ν
α −

⎡ ⎤−
− − +⎢ ⎥− − −⎣ ⎦

                      (15) 

 
0 1

0 1 1

0 1
0 1 0 ( )

0 1 0 1 0

1( ) (1 ) 1
( ) ( ) (1 ) (1 ) d

g t
t d d

d t dg t g t t
d d

y B Aeh t rdy A
y A y B e A B e

ν ν ν
α −

⎡ ⎤−−
= + + − −⎢ ⎥− − − − − −⎣ ⎦

  

                                                                                                                                       (16) 

    
with 2 ( , ) 1y y t t= = , and y1t obtained by replacing the parameters in (14) by  Ad, Bd, gd  
and tq by t1.  
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For the case 1t t≤ , the survival function and hazard function are the same as the ones for 

the control group. Thus we have the three-piece survival function and hazard function for 

the exposed group for all t.  

In later sections, ( , )i iy y t t= , and ( , )it iy y t t
t
∂

=
∂

are used to denote the right endpoint 

values of the function ( , )y u t  for multiple intervals and their partial derivatives. As we 

observed in equations from (11) to (16), the parameters for the intervals determine the 

endpoint values, and the values of the survival function and hazard function given t. Thus 

extra attention should be paid to the last interval for the case where the subject dies 

between the time when the exposure starts and the time when the effect of exposure 

terminates. For simplicity, survival functions and hazard functions will be given only for 

those subjects who live beyond the time when the possible effect of exposure terminates. 

It can be shown that (11) and (12) reduce to (8) and (10) through rearrangement 

respectively, if other three parameters than the first mutation rate are set at their 

background levels. Mathematically the dose responses of the three parameters other than 

the first mutation rate can take any functional form.  

 

3. Continuous exposure 

In this section the three interval case which Moolgavkar described in the appendix in his 

application [20] will be discussed. The intervals are: before exposure, during exposure, 

and after exposure. In the intervals of before and after exposure, the parameters of the 

model---first and second mutation rates, division rate, and death and differentiation rate 

of intermediate cell--- are all at the background level. In the exposure interval the 
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exposure has an effect on the four parameters. Here we assume that the effect of the 

exposure on parameters disappears right after the exposure terminates. 

Let ts be the start time of the exposure and tq be the stop time of the exposure. For the 

case qt t≥ , the logarithm of the survival function and hazard function can be derived 

from (1), (2):  

                   
0

0 0
0 0

0 1 0 1 0

1log( ( )) ( 1) log
( ) ( ) sd s g t

B AS t B t
y A y B e

ν
α

⎡ ⎤−
= − +⎢ ⎥− − −⎣ ⎦

    

                              +  ( )
2 2

1( 1)( ) log
( ) ( ) d q s

d d
d d q s g t t

d d d

B AB t t
y A y B e

ν
α −

⎡ ⎤−
− − +⎢ ⎥

− − −⎣ ⎦
 

                                       +   
0

0 0
0 0 ( )

0 0 0

1( 1)( ) log
(1 ) (1 ) qq g t t

B AB t t
A B e

ν
α −

⎡ ⎤−
− − +⎢ ⎥

− − −⎣ ⎦
         (17) 

 

              
0

0

( )
0 1 2

( )
0 1 0 1 0 2 2

1 1( )
( ) ( ) ( ) ( )

d q ss

d q ss

g t tg t
t d t

d g t tg t
d d d

y ye eh t
y A y B e y A y B e

ν ν
α α

−

−

− −
= +

− − − − − −
 

                          + 
0

0 0
0 0 ( )

0 0

(1 ) 1
(1 ) (1 ) qg t t

B AA
A B e

ν −

⎡ ⎤−
− −⎢ ⎥

− − −⎣ ⎦
                                             (18) 

 
If we need to add a post exposure effect period after tq for some parameters, the functions 

above can be derived accordingly. For the general cases, the exposure period can be 

divided into any number of intervals, in which parameters are assumed constant. 

 

4. Multiple exposures  

The models in section 2 and 3 can be generalized to multiple exposure cases to suit 

different situations. 
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4.1 Multiple exposures of acute series 

Suppose n multiple doses d1, d2, … , dn are acutely applied to a subject at t1, t2, … , tn. For 

simplicity here we assume that the first mutation rate takes jumps at n exposures with the 

linear response model (9) and the effects on A, B, α will be effective between any two 

exposures and in a period of x after the last exposure, then fall back to the background 

levels. Let q nt t x= + . For qt t≥ , there are n+2 intervals involved in the computation of 

the survival function and hazard function. The parameters are the same as the ones for the 

control group for the first and last interval, and are changed accordingly for n intervals in 

the middle. Let αi, βi, νi, µi, Ai, Bi, gi denote the parameters and derived parameters for the 

ith interval, the logarithm of the survival function of cancer can be derived:                       

1

2

0 1 0( )
1 1

1log( ( )) ( 1)( ) log ( 1)
( ) ( ) i i i

n n
i i

d i i i i ig t t
i ii i i i i

B AS t B t t r y d
y A y B e

ν ν
α −

+

− −
= =

⎡ ⎤−
= − − + + −⎢ ⎥− − −⎣ ⎦

∑ ∑  

                                                                                                                                        (19) 

with 0 0t = , 1n qt t+ = , 2nt t+ =  and ( , )i iy y t t=  is the value of ( , )y u t  for the right end of the 

interval (ti-1, ti),  calculated backward iteratively for i = 1 to n+1,  with 2 1ny + = . 

And the hazard function is: 

       
1

01

( )1
0 0

0 0 0 ( )( )
1 0 0

1( ) (1 ) 1
( ) ( ) (1 ) (1 )

i i i

qi i i

g t tn
it

d g t tg t t
i i i i i i

y B Aeh t A
y A y B e A B e

ν ν
α

−

−

−+

−−
=

⎡ ⎤−−
= + − −⎢ ⎥− − − − − −⎣ ⎦

∑    

                   - 0
1

n

i it
i

r d yν
=
∑                                                                                                 (20) 

For the simple case of evenly spaced exposure times, i.e., 1i it t c−− = , and equal doses 

id d=  we have:  
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0 1

0 0
0 0 1

0 1 0 1 0

1log( ( )) ( 1) log
( ) ( )d g t

B AS t B t
y A y B e

ν
α

⎡ ⎤−
= − +⎢ ⎥− − −⎣ ⎦

                                     

                   + 
1 10 1 1 ( )

1( 1)( ) log
( ) ( ) d n

d d
d n g t t

d n d n d

B AB t t
y A y B e

ν
α ++ −

⎡ ⎤−
− − +⎢ ⎥− − −⎣ ⎦

 

                   + 
0 1

0 0
0 0 1 0( )

10 0 0

1( 1)( ) log ( 1)
(1 ) (1 ) n

n

n ig t t
i

B AB t t rd y
A B e

ν ν
α ++ −

=

⎡ ⎤−
− − + + −⎢ ⎥− − −⎣ ⎦

∑  (21) 

   
0 1 1 1

0 1 1 1

( )
0 1 0

( )
0 1 0 1 0

1 1( )
( ) ( ) ( ) ( )

d n

d n

g t g t t
t

d ntg t g t t
d n d n d

y e eh t y
y A y B e y A y B e

ν ν
α α

+

+

−

−

− −
= +

− − − − − −
   

              + 
0 1

0 0
0 0 0( )

10 0

(1 ) 1
(1 ) (1 ) n

n

itg t t
i

B AA rd y
A B e

ν ν
+−

=

⎡ ⎤−
− − +⎢ ⎥− − −⎣ ⎦

∑                                    (22)   

with , ,d i d i d iB B A A α α= = =  for i from 2 to n+1.                                                                                      

Further, for the multiple acute exposure cases where only the first mutation rate jumps n 

times but other parameters remain unaffected, we have for  nt t≥ ,  

0

0

( )
0 0 0 0

0 0( )
1 0 0

(1 ) ( 1)( ) exp log( ( )) 1
(1 ) ( 1)

i

i

g t tn

ig t t
i

B A A B eS t S t rd
A B e

ν
−

−
=

⎧ ⎫⎡ ⎤− + −⎪ ⎪= + −⎨ ⎬⎢ ⎥− + −⎪ ⎪⎣ ⎦⎩ ⎭
∑                             (23) 

 

( )
0

0

( )
0 0 0 0 0

0 02( )1 0 0

(1 )( 1)( )( ) ( )
(1 ) ( 1)

i

i

g t tn

ig t ti

A B B A g eh t h t rd
A B e

ν
−

−=

− − −
= +

− + −
∑                                                  (24) 

 

4.2 Multiple exposures of continuous series 

 

Similarly the formulae (15) and (16) can be generalized to multiple exposures of the 

continuous model.  

Suppose that the n exposures start at at T1, T2, … , Tn and the durations of exposures are 

l1, l2, …, ln respectively.  No post exposure effect period is assumed for all exposures.  
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Let t0=0, t1 = T1, t2 = T1 + l1, …, t2n-1 = Tn, t2n = Tn + ln, , t2n+1 = t, and 1i it t −≥  for i from 

1 to 2n+1. For 2nt t≥ , the survival function and hazard function are: 

1

2 1

1 ( )
1

1( ) exp ( 1)( ) log
( ) ( ) i i i

n
i i

d i i i i g t t
i i i i i i

B AS t B t t
y A y B e

ν
α −

+

− −
=

⎧ ⎫⎡ ⎤−⎪ ⎪= − − +⎨ ⎬⎢ ⎥− − −⎪ ⎪⎣ ⎦⎩ ⎭
∑                    (25) 

1

01

( )2
0 0

0 0 ( )( )
1 0 0

1( ) (1 ) 1
( ) ( ) (1 ) (1 )

i i i

qi i i

g t tn
i it

d g t tg t t
i i i i i i

y B Aeh t A
y A y B e A B e

ν ν
α

−

−

−

−−
=

⎡ ⎤−−
= + − −⎢ ⎥− − − − − −⎣ ⎦
∑    (26) 

The following table lists the numbers of the equations representing the survival and 

hazard functions for the models discussed in the text.  

(Table 1) 

For mixed exposure cases composed of exposure patterns listed above, the survival 

function and hazard function can be derived similarly. 

 

5. Discussion 

We have presented the analytical formulas for the hazard function and survival function 

for acute, continuous and multiple exposure cases. With these functions, the risks of 

cancer can be easily evaluated for any type of exposure within the framework of the 

piece-wise constant parameter model. With these functions in analytical form, some 

questions can also be addressed.  

 

5.1 Some comments on constant parameter model 

If we assume that the biological model parameters for the control group do not change, 

then the single interval model is appropriate for the control group. For simplicity, (6) and 

(7) may also be used to evaluate the effect of exposure. For some applications as we tried, 
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the constant parameter model is adequate. But for most cases, the result will be 

inappropriate. Actually this approach is theoretically problematic. If we apply the 

constant parameter model above to the exposed group and compare it with the control 

group using relative risk, then the relative risk of the exposed group before exposure will 

be above 1. Also the limit of the hazard function will be different from the one for a time 

dependent parameter model. Thus the time dependent parameter models are needed for 

the exposed groups, with the exception where the subjects’ parents were exposed and the 

objective of the study is to evaluate the effect of the exposure on these subjects. 

 

5.2 Long term effect of exposure 

Researchers want to know how the exposure affects the hazard of cancer for the subject  

through creation and promotion of the initiated cells. Here we take the continuous 

exposure as an example. Compared with the h(t) of the control group, the last term in (18) 

differs only at the power of the exponential sub-term. If ts, tq are set to zero, that is, no 

exposure happens, then it is exactly the same as the one for the control group. When the 

subject is exposed, the effect of the exposure on the hazard will last for a considerable 

time, then, the risk will converge to the background risk. Actually the summation of the 

first two terms in (18) can be thought of as a record of the effect on the hazard as a 

function of time. Notice that this summation depends on time t through y1, y2, y1t,, y2t and 

y1t and y2t tend toward the limit zero. In the time course after the exposure takes place, 

this summation will approach zero. This dependence of the hazard on previous exposure 

well incorporates the fact that after the exposure stops, a considerable excess number of 
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intermediate cells beyond background will be gradually reduced, bringing the hazard to 

the background level. This confirms Heidenriech’s analysis [9] (page 394). 

 

5.3 Instant excess risk at exposure 

For acute exposure, we are interested in the instant excess risk at the exposure. From (10) 

this quantity can be calculated by setting t at t1: 

                                    1 0 1 0 0 0 0( ) ( ) (1 )( 1)dh t h t A B rdα ν− = − −                                         (27) 
 
With the appropriate assumptions and approximations, it reduces approximately to: 
 
                                                 0 0rdν µ                                                                             (28) 
 
This identity makes sense in that the instant excess risk at the exposure is proportional to 

the product of two mutation rates, and dose, but has little relation with the proliferation 

rate of the intermediate cells.   

 

5.4 Age at exposure effect 

Another issue is the age-at-exposure effect, that is, how will the age at exposure affect the 

risk of cancer in later life? It is not easy to give a mathematical analysis for all the cases, 

but for the pulse model we can calculate the point Tm where the excess hazard reaches the 

maximum after exposure at t1. For this simple case, Heidenriech [10] gave the 

expressions of Tm as a function of exposure time t1 and maximum excess hazard that the 

exposed may have. From (10) it is easy to derive these quantities in terms of the new set 

of notations.  

                                   0
1

0 0

11 log
1m

AT t
g B

−
= +

−
                                                                   (29) 
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Assuming that 1 1t t′ > , we want to compare the excess hazard at time t induced by 

exposure of dose d at 1t ′  with the one induced by the exposure of the same dose at 1t . The 

curve for the former can be obtained by shifting the curve for the former to the right 

by 1 1t t′ −  (Figure 2). The two curves intersect at  

                                      01 1
int

0 0

11 log
2 1

At tt
g B

′ −+′ = +
−

                                                         (30) 

 
(Figure 2) 
 
 
 
 
Thus the excess hazard induced by the latter exposure is less than the one induced by the 

former exposure when the attained age of the exposed is younger than intt′ , but it will 

catch up and become greater than the one induced by the latter exposure.  For 

0
1 1

0 0

12 log
1

At t
g B

−′ > +
−

, the two curves will not intersect with each other. Thus for 1t t ′> , 

the excess hazard induced by the latter is always greater than the one induced by the 

former.  

 
The excess hazard in (10) and (24) do not depend on exposure time(s), but only on the 

time interval between tis and t, implying no age at exposure in terms of excess hazard 

since the acute or multiple acute exposures. This observation suggests some limitation of 

the multiple-pulse model. 
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5.5 Fractionation effect  
 
Researchers are interested in fractionation effect, that is, the effect of splitting of the dose 

over time. It is difficult to analyze the fractionation effect mathematically for most of the 

models given above. But if (24) can be applied for fractionated exposure, then the 

following is obtained: 

Let t1 denote the exposure time for the unfractionated exposure of dose d, t the current 

age of the subject. Assume that the exposure is fractionated evenly among 2 exposures of 

dose ½ d at 1t ′ and 1t ′′ , with 1 1t t′ ′′< . For easy comparison, the unfractionated exposure may 

be treated as two fractionated exposures of dose ½ d at t1, From the discussion above the 

curves of excess hazard induced by the half dose exposure at 1t ′ and 1t ′′ intersect with the 

one induced by the half dose exposure at t1 at 01 1

0 0

11 log
2 1

At t
g B

′ −+
+

−
, and 

01 1

0 0

11 log
2 1

At t
g B

′′ −+
+

−
, respectively. Thus for t ∈  ( 1t′′ , 01 1

0 0

11 log
2 1

At t
g B

′ −+
+

−
), the excess 

hazard induced by the unfractionated exposure is greater than the one induced by the 

fractionated exposure;  for t ∈  ( 01 1

0 0

11 log
2 1

At t
g B

′ −+
+

−
, 01 1

0 0

11 log
2 1

At t
g B

′′ −+
+

−
), this 

relationship still holds for sometime, then flips over, but the location of the change point 

depends on the locations of the fractionated exposures;  for t ∈  ( 01 1

0 0

11 log
2 1

At t
g B

′′ −+
+

−
,  

+∞ ), the excess hazard induced by the fractionated exposure is greater than the one 

induced by the unfractionated exposure. Again, if the fractionated exposures happen after 

0
1

0 0

12 log
1

At
g B

−
+

−
, then there are no intersections, thus in this case the fractionated 
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exposure always induce higher excess risk than  the unfractionated  exposure for attained 

age t. Unevenly splitting the dose over the fractionated exposures does not change the 

locations of the intersections, but does change the location of the change point of 

relationship. Actually, if the fractionated exposures are not separated far, the distribution 

of the dose over the exposure does not make much difference (for the two exposures 

above, the width of the interval in the middle is only 1 1

2
t t′′ ′− ). For large number of 

fractionations or small number of fractionations with exposures separated considerably 

far, the fractionation attenuates the effect on the hazard between the first and last 

intersection points of the curves. That is, fractionation effect is always positive because 

of the additive functional form in (24). This observation implies some limitations of the 

multiple pulse model with linear dose response on first mutation rate, suggesting that 

multi-pulse model with some non-linear response, such as ( )f d d= , or the model 

specified in section 4.1 may be appropriate for some exposures since the inverse 

fractionation effect has been reported by Grahn, Lombard and Carnes [37].  

 

5.6 Applications of the models 

With the survival time ti and cancer status ( 0iδ =  for a subject without cancer, 1iδ = ,  

for a subject with cancer) for each subject under study,  the log-likelihood function can be 

calculated by summing over subjects: 

                          log ( ) log ( )i i i
i

l h t S tδ= +∑                                                                    (31)                    

where h(ti)  and S(ti) are the hazard value and survival rate at ti, calculated with the 

formulas depending on the model applicable.  Maximum likelihood estimation can be 
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applied to obtain the parameter estimates of the model, which, in turn, may be used to 

calculate the survival rate and hazard rate at any age. For grouped data, Poisson 

likelihood estimation [38], which only requires hazard function to calculate the 

contribution for the subjects in each stratum, may be applied for estimating the 

parameters of the model.  

With these models, we may have many applications. One analysis is the application of 

the continuous exposure model to the data of animals that inhaled fine particles of 

plutonium dioxide at a young age and were followed through their life time. The 

continuous exposure model allows us to incorporate the pharmacokinetics of the 

plutonium dioxide in specific organs over time.  The estimates of the parameters obtained 

from MLE are then used to predict the risk of cancer as a function of dose and age. Also 

the results may be used to compare the relative carcinogenic effects of different radio 

isotopes. Another study is the analysis of the data of the mice that exposed to external 

gamma or neutron radiation with the total dose given at one time, or multiple times. In 

this study the acute and multiple acute exposure models can be applied to investigate the 

fractionation effect, and the relative biological effect of neutron compared with gamma 

radiation. Grahn, Lombard and Carnes  [37] and Heidenriech, Carnes and Paretzke [39] 

conducted research on these issues for several cancer sites.  

 

Conclusion 

Mainly based on Moolgavkar’s and Heidenriech’s work on the two stage model, we 

extended the model for acute exposure, continuous exposure and multiple exposure cases 

with analytical formulas for the survival function and the hazard function. These 
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functions can be readily incorporated in likelihood function for the estimation of the 

model parameters, and thus cancer risk estimates as a function of dose and time can be 

given.  
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Figure legends  
 
Figure 1.  Illustration of the two-stage clonal expansion model of carcinogenesis 
                 
 

Figure 2. The hazard curves predicted by the pulse model for an acute exposure at 1t  and 

the delayed acute exposure at 1t′  and 1t′′ . Also 01 1
int

0 0

11 log
2 1

At tt
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′ −+′ = +
−
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Table 1   Equation numbers for the survival functions and hazard functions 

depending upon exposure pattern. 

           Exposure Pattern S(t) h(t) 
             Control group (6) (7) 
             Simple acute  (8) (10) 
             Acute (11) (12) 
             Continuous (17) (18) 
             Multiple acute (19) (20) 
             Multiple simple acute (23) (24) 
             Multiple continuous (25) (26) 

 


