CARBON DIOXIDE SEALING CAPACITY: TEXTURAL OR COMPOSITIONAL CONTROLS?

Final Scientific/Technical Report

Reporting Period Start Date: December 1, 2009

Reporting Period End Date: November 30, 2013

Principal Author: Constantin Cranganu

Student Authors: Hamidreza Soleymani, Sadiqua Azad, and Kieva Watson

Date Report was Issued: March 2014

DOE Award Number: DE-FE0002028

Submitted by:

Brooklyn College of the City University of New York

2900 Bedford Avenue

Brooklyn, NY 11210

DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof."

ABSTRACT

This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks.

We hypothesize that sealing capacity is controlled by textural and/or compositional parameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptual framework involves two testable end-member hypotheses concerning the sealing capacity of carbon dioxide reservoir caprocks.

Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively impermeable formations which can retard reservoir fluid flow by forming high capillary pressure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Panhandle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO₂).

To assess the effect of textural and compositional properties on $scCO_2$ maximum retention column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microscopy SEM, and Sedigraph measurements are used to assess the pore-throat-size distribution, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (P_d) and graphically derived threshold pressure (P_c) were determined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spectrometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capacity of the samples.

We found that shales have the relatively higher average sealing threshold pressure (P_c) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO₂ flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g.,

fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an efficient caprock for sealing super critical CO₂.

We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity.

Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercritical CO_2 height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO_2 column height based on P_c and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO_2 retention column height. Also, increasing bulk density is positively correlated with the supercritical CO_2 retention column height. One of the most important factors affecting sealing capacity and consequently the height of supercritical CO_2 column is sorting of the pore throats. We observed a strong positive correlation between pore throat sorting and height of CO_2 retention column, especially in shales. This correlation could not be observed in limestone samples. It suggests that the pore throat sorting is more controlling the sealing capacity in shales and shales with well sorted pore throats are the most reliable lithology as seal.

We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO₂ retention column height in limestone samples while BET surface area did not display significant correlation in shales. Pore structure based on SEM micrographs exhibits strong correlation with CO₂ retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranular texture has positive correlation in limestone with respect to CO₂ retention column height. Textural effects observed on SEM micrographs did not show statistically significant correlation with supercritical CO₂ retention column height in shale samples.

Finally, we showed that increasing hard/soft mineral index is strongly correlated with the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury saturation in shale samples.

TABLE OF CONTENTS

DISCLAIMER
ABSTRACT
Executive Summary7
REPORT DETAILS9
1. Introduction9
1.1. Study area – Regional geology and stratigraphy13
1.2. Sample locations and lithology 16
2. Experimental methods
2.1. Mercury Intrusion Porosimetry (MIP)
2.1.1. Petrophysical Parameters20
2.2. Source-Rock Analysis (SRA) and Total Organic Carbon (TOC) Experimental Procedure
2.3. XRD Analyses and Hard/Soft Index
2.3.1. Discussion of Terminology and Limitations
2.3.2. Clay Fraction (<4 Micron) XRD
2.3.2.1. Sample Preparation
2.3.2.2. Analytical Procedures
2.4. Surface Area Measurements
2.5. Grain Size Measurements
2.6. SEM Analysis
2.7. EDS Analysis
3. Results and discussions
3.1. Maximum height of the CO2 41
3.2. Statistical analysis and interpretations
3.3. Sealing capacity in Oklahoma Panhandle47
3.4. Textural and compositional parameters vs. scCO ₂ retention column height
3.5. Textural and compositional parameters vs. displacement pressure
3.6. Multivariable analysis
3.7. Indirect relationships and their possible effects on sealing capacity
4. Conclusion

5. Suggested Future Research	59
Graphical materials list	.60
REFERENCES	.63
APPENDICES	67
APPENDIX A: MERCURY INTRUSION POROSIMETRY (MIP) MEASUREMENTS, SAMPLE PICTURES, AND SAMPLE SUMMARIES	. 67
APPENDIX B: SOURCE-ROCK ANALYSIS (SRA) AND TOTAL ORGANIC CARBON (TOC) MEASUREMENTS	128
APPENDIX C: X-RAY DIFFRACTION (XRD) MEASUREMENTS 1	136
APPENDIX D: SURFACE AREA MEASUREMENTS1	137
APPENDIX E: GRAIN SIZE MEASUREMENTS2	88
APPENDIX F: SEM MEASUREMENTS5	507
APPENDIX G – EDS MEASUREMENTS5	537

EXECUTIVE SUMMARY

The primary goal of this project was to investigate the factors controlling sealing capacity of the caprocks and their respective contributions to seal integrity. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered as relatively impermeable formations which can retard reservoir fluid flow by forming high capillary pressure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationships between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Panhandle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO₂).

To assess the effect of textural and compositional properties on $scCO_2$ maximum retention column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microscopy SEM, and Sedigraph measurements were used to assess the pore-throat-size distribution, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (P_d) and graphically derived threshold pressure (P_c) were determined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spectrometer), specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capacity of the samples.

We found that shales have the relatively higher average sealing threshold pressure (P_c) compared to carbonates and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO₂ flow and leakage into above formations. We hypothesized that certain characteristics of shales (e.g., fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) makes them an efficient caprock for sealing super critical CO₂.

Also, we tried to find out whether caprock sealing capacity is controlled by textural and/or compositional properties. We argue that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity.

Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercritical CO_2 height that can be hold by the caprock. We conclude that there is a relatively

strong positive relationship (+.40 to +.69) between supercritical CO_2 column height based on P_c and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shale and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO_2 retention column height. Also, increasing bulk density is in favor of supercritical CO_2 retention column height. One of the most important factors affecting sealing capacity and consequently the height of supercritical CO_2 column is sorting of the pore throats. We observed a strong positive correlation between pore throat sorting and height of CO_2 retention column especially in shales. This correlation could not be observed in limestone samples. This fact suggests that the pore throat sorting is more controlling the sealing capacity in shales than other lithologies and, consequently, shales with well sorted pore throats are the most reliable lithology as seal.

We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO_2 retention column height in limestone samples while BET surface area did not show significant correlation in shales. Pore structure based on SEM micrographs exhibits strong correlation with CO_2 retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranular texture has positive correlation in limestone with respect to CO_2 retention column height. Textural effects observed on SEM micrographs did not show statistically significant correlation with supercritical CO_2 retention column height in shale samples.

Through this research we emphasized on studying the supercritical CO_2 retention column height based on P_c values. However, we also looked at displacement pressure values at 10% mercury saturation as an important parameter which is used frequently in literature. We showed that increasing hard/ soft mineral index is strongly in favor of the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury saturation in shale samples.

REPORT DETAILS

1. Introduction

Human activity since the industrial revolution has had the effect of increasing atmospheric concentration of greenhouse gases such as carbon dioxide (CO_2) and methane (CH_4). The high use of fossil fuels (more than 80% of the world's current energy consumption, is foreseen to continue well into this century (IEA, 2004), and is the major contributor to increased anthropogenic emissions of CO_2 .

Carbon dioxide is a major compound identified as affecting the stability of the Earth's climate. A significant reduction in the volume of greenhouse gas emissions (mainly CO_2) to the atmosphere is a key parameter for mitigating climate change. To meet midand long-term targets in reducing either CO_2 emissions or their intensity, various mitigations approaches need to be considered, foremost among them being CO_2 capture and sequestration (CS), which will play an important role at least in the first half of this century if reduction targets are to be met (IEA, 2004).

In this context, CS is the removal of CO₂ directly from large anthropogenic sources and its injection and retention in geological media or in oceans for significant periods of time (centuries to millennia). Although the oceans represent possibly the largest potential CO₂ sink, ocean sequestration involves issues of poorly understood physical and chemical processes, sequestration efficiency, cost, technical feasibility, and environmental impact. In addition, ocean circulation and processes may bring to the fore legal, political, and international limitations to this technology. Thus, CO₂ sequestration in geological media appears to currently be the best available option for the long-term sequestration of CO₂, and indeed this option is being actively pursued in the United States (Klara et al., 2003), but also in Canada (Benion and Bachu, 2005), northern Europe (Förster et al., 2006) and Australia (Varma et al., 2007). Furthermore, for landlocked regions that are major energy and power producers, such as the Ohio Valley in the United States or Alberta in Canada, sequestration in geological media is the best and likely only option currently available for increasing CO₂ sinks. By making possible the continued use of coal as fuel for power generation, CS is a technology that contributes to the stability and security of energy systems in North America and elsewhere, and provides a bridge from the current fossil-fuel based energy systems to a hydrogen-based economy for late this century (Klara et al., 2003).

Geological storage of CO_2 , or the injection and long-term stabilization of large volumes of CO_2 in the subsurface in saline aquifers, in existing hydrocarbon reservoirs (depleted and/or underpressured), in salt caverns, or in unmineable coal seams, is one of the more technologically advanced options available (Figure 1). Until efficient, alternative energy options can be developed, geological storage of CO_2 provides a mechanism to reduce carbon emissions significantly whilst continuing to meet the global demand for energy.

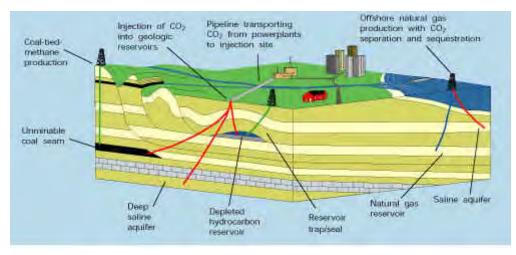


Figure 1. Potential CO₂ sequestration reservoirs and products (Diagram from U.S. Geological Survey Fact Sheet 26-03, March 2003 – Online Version 1.0. <u>http://pubs.usgs.gov/fs/fs026-03/fs026-03.html</u>)

Among various potential strategies designed to reduce or limit gaseous carbon production from fossil fuel use (carbon fixation in plants, photochemical conversion, electrochemical storage and conversion, etc.), carbon dioxide sequestration in subsurface reservoirs may be considered a viable alternative (Figure 1). In the mid-1990s, Statoil pioneered the first geologic storage project at Sleipner West in the North Sea. Nearly 1 MMmt CO_2 /year is removed from natural gas and injected into a salt-water filled sandstone formation deep under the North Sea (Benson, 2005a). Another example is the Weyburn reservoir (Canada), where, until 2004, 1.9 MMmt CO_2 /year have been injected (White et al., 2004).

Global sequestration capacity in depleted oil and gas fields is estimated between \sim 450,000 MMmt CO₂ (Benson, 2005b) and \sim 923,000 MMmt CO₂ (Moritis, 2005). Department of Energy is expecting that reductions of CO₂ by capture and sequestration will reach almost 5,000 MMmt CO₂/year by 2050 (DOE, 2005).

Injection of CO₂ to enhance oil recovery, seasonal underground gas storage, and pilot projects in Norway, Canada and elsewhere demonstrate that carbon sequestration is technically feasible. However, additional scientific challenges are raised by long-term sequestration. An improved understanding of the petrophysics, geophysics, hydrogeology, geochemistry, and geomechanics is needed to develop performance assessment and screening criteria so that this technology option can be implemented safely, efficiently, and predictably (Rudnicki and Wawersik, 1999). While there is a proven technology capable of injecting CO₂ in underground natural storage facilities, much care should be taken to characterize the potential reservoirs in terms of geometric, structural, and hydrologic properties.

To prevent the injected CO_2 from leaking into adjacent layers above the storage formation, the sealing pressure of a seal rock (caprock) has to be determined in order to choose an injection pressure that ensures the differential pressure across the seal rock is smaller than the sealing pressure or breakthrough pressure (Berg, 1975; Schowalter, 1979; Hildebrand et al., 2002, 2004; Li et al., 2005, 2006; Chiquet et al., 2007). Otherwise, the caprock will leak, the injected CO₂ will penetrate into and through seal rock, forming a continuous gas phase in the interconnected channels, will migrate into upper layers, and will finally escape back into atmosphere.

Investigations of gas leakage through caprocks have been reported in the literature (e.g., Wollenweber et al., 2007; Hildenbrand et al., 2002, 2004; Kroos et al., 1992, 2005). Two main mechanisms have been recognized to be responsible for migrations of gases through seal rocks into adjacent upper layers (Kroos et al., 1992): (1) molecular diffusion through the water-saturated pore space of the seal rock and (2) pressure-driven volume flow or compressible slow Darcy flow of a free gas phase.

Molecular diffusion is a ubiquitous but slow process that is only considered significant in geological timescales. The slow Darcy flow involves capillary pressure phenomena ("gas breakthrough") and two-phase flow. This pressure-driven flow is strongly influenced by the geologic and hydrodynamic conditions of the system, including the reservoir, the cap rock, and the overburden formations, as well as the properties of the fluids in both the reservoir and the cap rock (Li et al., 2005). Slow Darcy flow occurs when the pressure difference across the seal rock is sufficiently high to overcome the sealing capacity of the seal rock. In principle, the sealing capacity of a seal rock is given by the capillary forces across the interface of the wetting phase (usually brine), which saturates the seal rock, and non-wetting phase (oil or gas), which accumulates in the reservoir. It should be mentioned that the possible leakage of the injected CO2 may also occur through wellbores (Wilson and Monea, 2004), but this proposal refers only to caprocks.

Caprock refers to a relatively low permeable formation overlying or sealing the fluid flow in porous, permeable formation (reservoir). Generally, any formation can be a potential caprock for the hydrocarbons as long as the threshold capillary pressure (P_c) of the caprock is greater than the buoyancy pressure created by the density differences between brine and height of the hydrocarbon column. It is widely accepted that retention of scCO₂ for relatively long periods of time (thousands of years) is both highly affected and controlled by permeability (both absolute and relative) and capillary sealing capacity of caprocks.

One of the challenging steps in every CS projects is selecting a proper injection site both in terms of seal capacity and seal integrity. Evaluation and estimate of the reservoir capacity in depleted non-fractured (single porosity-single permeability) reservoirs with enough geophysical data (seismic and well logs) is a relatively trivial task. In fact, estimating capacity of the reservoir is one of the initial stages in exploration, decision making and production of the new hydrocarbon reservoirs. In contrast, there is usually little or no information available regarding the seal formations in oil and gas fields. Generally, petroleum companies are more interested in having more information on properties of productive formations. That's because more data in productive units of reservoir or additional information on petrophysical properties (i.e., permeability, porosity) will favor decision making and production plans.

On the other hand, a relatively accurate seal integrity assessment is a crucial step in every CS project including new formations and depleted reservoirs. Since in this study we are dealing with depleted reservoirs in Oklahoma Panhandle, we know that the seal formations had enough sealing ability to hold hydrocarbons for long period of time (geologic time). Considering the fact that caprock was tight enough to hold the gas over geo-

logic time why it is necessary to reevaluate the caprock integrity for CS project. The answer lies in the different mechanical properties of the fluid systems. Comparing interfacial tension of CO_2 /brine system and CH_4 /brine, the first system of fluids has much lower interfacial tension in comparison with latter. This will result in lower breakthrough pressure in caprock for CO_2 / brine system. Considering interfacial differences, it is possible that the seal formation is not tight enough to hold $scCO_2$ at same or higher pressure of the initial reservoir gas cap (CH_4).

There are numerous factors affecting the sealing capacity in various ways. It is possible to divide these factors based on different scales and prospects of operation. For instance, textural and compositional parameters can be assessed in microscopic scale, while faults, joints, and fractures systems could be studied in prospect scale. In this study we focused on microscopic scale properties of the caprock by studying core samples. Our ultimate goal in this stage of the project is to reveal the existing correlations between the measured parameters and the maximum supercritical CO_2 height that can be held by the caprock. Mapping, characterizing, and studding the parameters affecting the sealing capacity over macroscopic or prospect scale (fractures, joints, and faults) is highly important. In fact, study of the fractures and other important structural features is indispensable phase in validation and study of the potential sequestration site and should be addressed in detail as future suggested research.

It is widely accepted that retention for relatively long periods of time (thousands of years) of carbon dioxide sequestrated in an underground reservoir is affected and controlled by permeability (both absolute and relative) and capillary sealing capacity of cap rocks. Our project is largely focused on studying the capillary sealing capacity of most common seal-rocks, such as shales and limestones that can represent the caprock of a CO₂ sequestration reservoir. (The permeability study will be carried out later). It is hypothesized that seal capacity is controlled by textural and/or compositional parameters of caprocks.

The capillary sealing capacity of caprocks is mainly controlled by *textural parameters*: (e.g., the pore-throat size, distribution, geometry, and sorting, grain size, degree of bioturbation, specific surface area, preferred orientation of matrix clay minerals, and orientation and aspect of ratio of organic particles) and *compositional parameters* (e.g., silt content, ductility, compaction, mineralogical content, proportion of soft, deformable mineral grains to rigid grains, cementation, organic matter content, carbonate content, and ash content) (Gruber, 1995; Krushin, 1997; Dawson and Almon, 1999; Edwards et al., 1999; Sutton et al., 2004, 2006). Among these, pore-throat size is particularly important for estimating sealing capacity, but other parameters may also play a significant role.

In this research we seek to differentiate between the relative importance of textural and compositional parameters mentioned above. The conceptual framework involves two testable end-member hypotheses concerning the sealing capacity of carbon reservoir caprocks:

Hypothesis 1: The sealing capacity of caprocks is mainly controlled by their textural parameters.

Hypothesis 2: The sealing capacity of caprocks is mainly controlled by their compositional parameters.

These two end-member hypotheses are not mutually exclusive, nor are they intended to be exhaustive. For example, it may be possible to find caprocks whose sealing capacity is due equally to both types of parameters. However, these end-member hypotheses constitute a useful concept to approach the problem. To differentiate between these two hypotheses, geological, petrophysical, and geochemical data have been collected and used to constrain the predominant factor(s) of sealing capacity.

Overall, the current research will fill a gap in our national database regarding the sealing capacity of the most known caprocks (shales and limestones), with special reference to existing and potential carbon sequestration reservoirs. Most of the similar studies have been carried out in other countries (Canada, Australia, or Germany).

1.1. Study area – Regional geology and stratigraphy

Our study area is represented by three depleted gas fields (Keyes, NE Rice, and S. Guy-

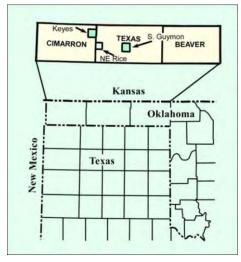


Figure 3. The three depleted gas fields from Oklahoma Panhandle representing our study area (from Puckette, 2006)

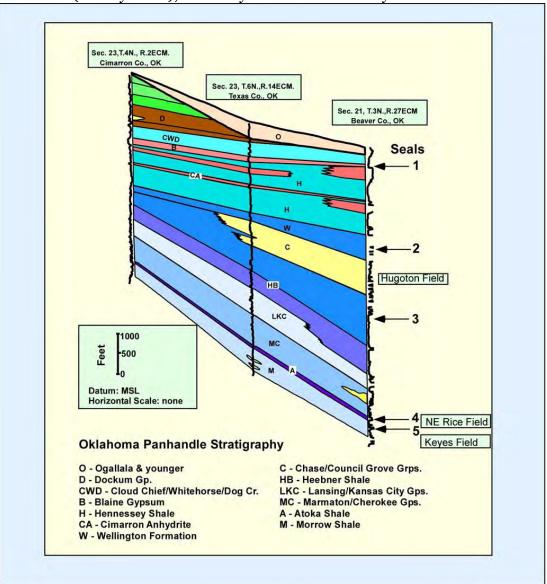
Figure 2. Major geologic provinces of Oklahoma (from Johnson, 2008)

mon) and adjacent areas from Oklahoma Panhandle (Cimarron, Texas, and Beaver counties) (Figure 2).

Geological information about the area draws upon on studies by Hart et al., 1976, and Johnson, 1989 and

2008. According to Figure 3, the three counties mentioned above are part, form west to east, of the Dalhart Basin, the Cimarron Arch and the Anadarko Shelf with a north-eastern extension of the Anadarko Basin.

The rocks investigated in this research are of the Upper Mississippian, Pennsylvanian, and Permian ages (Figure 4 and Table 1).


The Upper Mississippian in our study area is represented by Chester group, dipping from about 5,500 ft. in Keys field to about 6,500 in S. Guymon area and to about 8,500 ft. in Beaver County (Figure 4). The sediments belonging to Chester group consist mainly of shallow-marine limestones, cherty limestones, and shales.

The Pennsylvanian represented a period of major changes in the geology of the studied area and surrounding regions of Oklahoma: both orogeny and subsidence in the south concomitantly with gently raising and partial lowering of large areas in the north. Pennsylvanian rocks are predominantly marine shales with intercalations of sandstones, limestones, and conglomerates.

Situated above Chester group, the Pennsylvanian beds on our area are represented by Morrow group (mostly shales), Atoka group (mostly shales), Cherokee and Marmaton groups (mostly shales and gypsum), Kansas City-Lansing group (mostly gypsum and shales) and Heebner shale.

The thickness of the Pennsylvanian strata varies is on average 2,000 ft. Overlying the Upper Mississippian, they dip from about 3,500 ft. in the west to about 8,000 ft in Beaver County (Figure 4).

Overlaying the Pennsylvanian, several formations of *Permian* age have been identified in Oklahoma Panhandle. Rocks of Permian age underlie all of the Oklahoma Panhandle. These rocks thicken east-southeastward toward the center of the Anadarko basin, and exceed 1,000 ft. throughout the area. Lithologically, the Permian beds are represented by carbonates, red beds, and evaporates. They crop out along the Beaver and Cimarron Rivers and their tributaries in Beaver County. The red beds consist primarily of darkreddish-brown rocks comprised of sandstone, siltstone, shale, and sandy shale. Most of the sandstone is fine to very fine grained. Silt is a common constituent in both the shale and sandstone as is halite and gypsum. Stratigraphically, the Permian sequence in the Oklahoma Panhandle comprises Council and Chase Groups, overlain by Wellington

formation (mainly shale), a thin layer of Cimarron anhy-

Figure 4. Oklahoma Panhandle Stratigraphy (from Puckette, 2006). The numbers represent the major seal intervals: 1 – Hennessey shale; 2 –Wellington formation; 3 – Upper Morrow/Atoka shales; 4 – Lower Atoka shale; 5 – Lower Morrow shale drite, Hennessey shale, a thin layer of Blaine Gypsum, and Cloud Chief/White Horse formations (Figure 4).

The Permian layers extend from above the Pennsylvanian strata up to the surface. In some places, the Permian is covered by younger formations of Triassic age (Dockum gypsum) or Tertiary and younger age (e.g., Ogallala aquifer formation).

1.2. Sample locations and lithology

We analyzed 30 samples selected from wells drilled in the three depleted gas fields (Keyes, NE Rice, and S. Guymon) and adjacent areas from Oklahoma Panhandle (Cimarron, Texas, and Beaver counties) (Figure 5).

Oklahoma Panhandle is located in extreme north-western part of Oklahoma State, comprising three counties: Cimarron, Texas, and Beaver. In this research, we used 30 core samples acquired from pre-existing wells in this region (Figure 1). It should be noted that number of samples were recovered at different depths from the same well. Table 1 includes well head coordinates, counties, formation, sample depths and their respective lithologic sample descriptions.

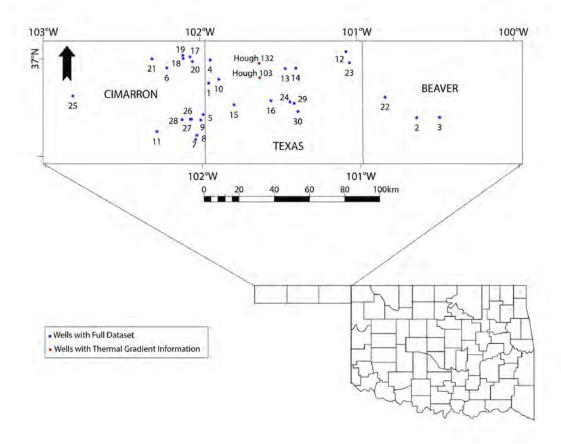


Figure 5. Blue dots indicate the location of the 30 representative core samples collected from the seal rock formations. Two red dots indicate additional wells providing only geothermal gradient information.

Depth of our samples ranges between 816 m - 2,067 m with mean depth of 1 510m. Burial depth has known effects on porosity and density of the rocks. In most sedimentary basins increasing burial depth will decrease the porosity (increase in density) of the rocks. High temperature and pressure can also reduce the permeability by improving the ductility of the formation.

Pressure of the $scCO_2$ after injection will be determined by hydrostatic pressure which is function of the burial depth. Similarly, temperature of the formation in subsurface is a direct function of the depth. As it will be discussed later, formation temperature is one of the key considerations in CS project. "Cool" formations are relatively more favorable for sequestration purposes.

ID #	FILE #	Well Name	County	For- mation	Depth (m)	Lat (N°)	Long (W°)	Sample Description
1	120	Ferguson-1	Texas	Morrowan	1354	36.84	-101.95	Gray MG quartz sandstone
2	277	Mocane Plant- SWD1	Beaver	Cimarron	470	36.62	-100.63	Red FG siltstone
3	601	Shrauner-2	Beaver	Marmaton	1173	36.62	-100.49	Gray MG limestone
4	868	Quigley 1-A	Texas	Purdy	1382	36.96	-101.94	Black FG fissile shale
5	878	Hartly-1	Texas	Cherokee	1390	36.68	-101.99	Black FG lime mudstone
6	900	Conover-5	Cimarron	Morrowan	1380	36.92	-102.21	Light brown FG quartz sand- stone
7	1081	Steele A-3	Cimarron	Topeka	1072	36.58	-102.03	Pink FG mudstone
8	1461	Spence-2	Cimarron	Topeka	1070	36.55	-102.04	White FG limestone
9	1712	Treece-1	Texas	Morrowan	1536	36.65	-102.01	Brown CG limestone
10	2177	Brewer-2	Texas	Morrowan	1726	36.86	-101.88	Black FG calcareous shale
11	2472	Prothro 41-34	Cimarron	Topeka	1083	36.60	-102.29	Light gray FG limestone
12	2609	Knop 1-A	Texas	Chase	852	36.98	-101.07	Pink FG calcareous siltstone
13	3088	Dailey 1-B	Texas	Chester	2014	36.90	-101.46	Black FG fissile shale
14	3115	Myers 1-D	Texas	Keyes	1995	36.90	-101.39	Dark gray medium – CG mud- stone
15	3138	Stonebraker 1-AP	Texas	Marmaton	1792	36.72	-101.79	Light gray MG sandy lime- stone
16	3141	Stonebraker AN-4	Texas	Cherokee	1909	36.74	-101.56	Black FG fissile shale
17	3146	Purdy 1-A	Cimarron	Keyes	1406	36.97	-102.11	Red FG lime mudstone
18	3149	Purdy 1-C	Cimarron	Morrowan	1396	36.97	-102.09	Dark gray FG shale
19	3150	Purdy 1-E	Cimarron	Unknown	1397	36.99	-102.11	Black FG shale
20	3355	Schluckebier-Unit 3	Cimarron	Keyes	2040	36.95	-102.05	Black FG layered calcareous shale
21	3780	Durham-1	Cimarron	Cherokee	1215	36.97	-102.31	Dark Gray FG lime mudstone
22	3952	Gabler 2-7	Beaver	Chester	2067	36.73	-100.83	Black FG very fissile calcare- ous clayey mudstone
23	3979	Harri- son&Goodwin GU-1	Texas	Atoka	1971	36.92	-101.05	Black FG calcareous shale
24	4157	State-1	Texas	Morrowan	1828	36.73	-101.44	Purple layered FG mudstone
25	4164	State-1	Cimarron	Mississip- pian	1666	36.79	-102.82	Gray FG shale
26	4224	Durham-1	Cimarron	Morrowan	1386	36.66	-102.07	Black FG shale
27	4211	Rowan Trust-1	Cimarron	Morrowan	1367	36.66	-102.07	Black FG calcareous shale
28	4226	Sparkman-1	Cimarron	Morrowan	1381	36.66	-102.13	Black FG shale
29	4458	Nash-A1	Texas	Morrowan	1828	36.73	-101.44	Pinkish white lime mudstone
30	4515	Ara 2-36	Texas	Cherokee	1783	36.68	-101.39	Black FG shale
CG –	coarse g	rained; MG – mediun	n grained; FG	– fine grained				

TABLE 1. Sample locations and lithologic descriptions

The samples are identified as shales (13), mudstones (8), limestones (5), sandstones (2), and siltstones (2). Sample pictures are found in Annex A. An example is presented in Figure 8.

2. Experimental methods

2.1. Mercury Intrusion Porosimetry (MIP)

Pore systems consist of relatively large voids, or pores, distributed among smaller passages called pore throats. Pore-throat sizes and their distribution in reservoir and nonreservoir rocks can be estimated by capillary-pressure curves derived from mercury intrusion porosimetry (MIP). The MIP data are obtained by forcing mercury at pressures up to 413,685 kPa (60,000 psi) into small voids and pore throats within the rock sample. Pore throats control access to larger voids (pores) because greater pressures are required to force mercury, or other nonwetting fluid, into smaller spaces (Purcell, 1949; Keighin, 1997). Thus pores are bottle-necks in the system, and it is necessary to exceed their critical capillary pressure in order to inject mercury into pores. Mercury injection pressure is increased in a stepwise manner and time for equilibration between pressure increments is allowed. The step pressure is plotted against mercury saturation (Figure 6 and Annex A).

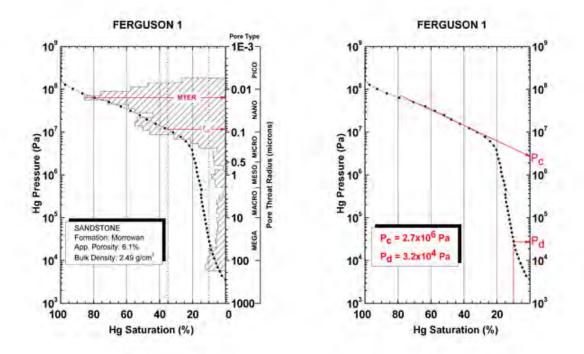


Figure 6. Capillary-pressure curves obtain by MIP. (P_c – capillary pressure; P_d – displacement pressure measured @10% Hg saturation)

120 FERGUSON-1 Gray Medium Grained Sandstone

	File # 120	County Texas	1 2 3 4 1 2 3 4 1 2 3 4	5 6 7 8 9					
	Intrusion Data Su	mmary	3		e Structure				
Median Pore Ra	idius (Volume)	0.028	μm	Pc		2.70	MPa		
Median Pore Ra	idius (Area)	0.00985	μm	Pd (@ 10% Hg satu	uration)	0.03	MPa		
Average Pore R	adius	0.018825	μm	BET Surface Area		8.1997	m²/g		
Bulk Density		2.49	g/cm ³	Median Grain Size		71.446	μm		
Apparent (skele	tal) Density	2.65	g/cm ³	R35		0.085	μm		
Porosity		6.1	%	Pore Throat Type		Nano			
				Pore Throat Distril		Unimodal			
	Organic Cont	ent		Pore Throat Sortin MTER	B	Medium Sorted 0.015			
тос		1.29 wt	% HC	WITER		0.015	μm		
Illite & Mica Kaolinite		Quartz	K-Feldspar	nalysis Plagioclase	Calcite	Dolomite		Hematite	
7.50 43.6	33.7	9.30	0.4	3.1	0	7.50	43.6	33.7	9.30

Figure 7. Sample #1 (120). Sample picture, MIP parameters, TOC measurements, and XRD measurements. This figure is part of Appendix A.

The relationship between applied pressure *P* and the minimum size pore *D* into which mercury will be forced to enter is based on Washburn equation (Washburn, 1921):

$$D = -4\gamma \cos\theta / P \tag{1}$$

where γ is the interfacial tension of mercury-air system (0.485 N/m), and θ is the air-mercury-solid contact angle (140°).

MIP technique provide data for the determination of porosity, permeability, port type, pore distribution and pore sorting, average pore-throat radius (APR), median pore-throat radius (MPR), maximum threshold-entry radius (MTER), and other petrophysical properties (Figure 7 and Appendix A).

We used MIP technique to analyze 30 caprock samples selected from wells drilled in the three depleted gas fields (Keyes, NE Rice, and S. Guymon) and adjacent areas from Oklahoma Panhandle (Cimarron, Texas, and Beaver counties) (Figure 5).

A significant issue regarding the measurements was determining how representative the samples are for caprocks of the Oklahoma Panhandle. Based on production information included in the scout cards of each well, the sampling procedure ensured that most are-

as of interest were sampled. Major modification of many of the properties to be measured occurs during extraction and storage of core samples. The samples are not in situ, they reside in core warehouses, and are undoubtedly desiccated and not representative of their in situ properties. Consequently, our main concern during sampling was to select only those cores that were the freshest, thus assuring that the residing time in the core warehouse was minimal.

Following suggestions made by other researchers (e.g., Aplin et al., eds., 1999; Yang and Aplin, 2007) necessary corrections for effects of clay desiccation to compensate the missing of original fluids were applied.

Before using our MIP technique, we considered alternative methods that may preserve the original fluids in place: porous plate, vapor desorption, and centrifuge methods (e.g., Newsham et al., 2004; Al-Hinai et al., 2008). The major drawbacks of the aforementioned methods are their longer time of experimentation (one month for a single measurement) and relatively low range of operating pressures (1000 - 1250 psi). Unlike the porous plate technique, MIP is very fast, often requiring only hours of operation rather than days or weeks (Newsham et al., 2004). In addition, MIP technique is capable of generating injection pressures up to 60,000 psi and thus allows investigating low porosity and low permeability rocks.

2.1.1. Petrophysical Parameters

Samples were cut from core slabs, prepared and analyzed in a Micromeritics AutoPore 9500 using the method described by Deming et al., 2002; Cranganu, 2004; Villa, 2005; and Cranganu and Villa, 2005, 2006, and 2013.

The parameters apparent porosity, average pore-throat radius, median pore-throat radius and maximum threshold entry radius were determined according to Webb, **2001**:

Apparent porosity, Φ (%), is measured by capillary-pressure analysis to a pressure of 60,000 psi (~414 MPa) and is defined as:

$$\Phi(\%) = \frac{V_{tot}}{V_b} \times 100 \tag{2}$$

where V_{tot} is the total intrusion volume of mercury required to fill all accessible pores of the sample and is calculated as:

$$V_{tot} = V_j \tag{3}$$

Here, the *j*th data point (measurement step) is the first such that:

$$P_{j+1} \le P_j - 10 \text{ and } P_{j+1} \le P_j \times 0.995$$
 (4)

where P_j is the head-corrected pressure as stored by the instrument.

V^{*b*} is the bulk volume of mercury at atmospheric pressure and is calculated as:

$$V_b = V_p - V_m \tag{5}$$

where V_p is user-entered volume of penetrometer and V_m is the volume of mercury in pene-trometer.

Average Pore-Throat Radius, APR (μ m). The idealized cylindrical geometry of the pore throats in the system is a function of the radius of the cross sectional circular area of the pore throat. This average value, expressed in microns, is calculates as follows:

$$APR(\mu m) = 2 \times \frac{I_{total}}{A_{total}}$$
(6)

where *I*_{tot} is the total specific intrusion volume of sample and *A*_{tot} is the total specific pore area of sample. Both parameters are calculated by the instrument.

Median Pore-Throat Radius, MPR (µm), is calculated as the arithmetic average of the median pore radius by volume (MPRV) and the median pore radius by area (MPRA). MPRV is calculated as follows:

$$MPRV = MPRV_{k}$$
⁽⁷⁾

where $MPRV_k$ is calculated from P_k (head-corrected pressure as stored), and P_k is interpolated from I_k and the collected data. I_k is defined as:

$$I_{k} = \frac{I_{tot}}{2}$$

$$I_{tot} = \frac{V_{tot}}{W_{s}}$$
(8)

where V_{tot} is defined by Equation (3) and W_s is user-entered sample weight.

MPRA is calculated as follows:

$$MPRA = MPRA_{k}$$
(9)

where $MPRA_k$ is calculated from Pk (head-corrected pressure as stored), and Pk is interpolated from A_k and the collected data. A_k is defined as:

$$A_{k} = \frac{A_{tot}}{2}$$
(10)

where A_{tot} is the total specific pore area.

Commonly, MPRV and MPRA differ, because the smaller pores contribute more to the total pore surface area than do larger pores for a given increment of mercury imbibition. Therefore, the area distributions have a tendency to shift to the smaller pore sizes where compared to pore volume distributions (Tanguay and Friedman, 2001).

Maximum Threshold-Entry Radius, MTER (μ m) is the entry radius at which significant invasion of a sample with mercury occurs (Tanguay and Friedman, 2001). The recognition of this parameter is based on a histogram (Figure 2) created with the incremental percentage of intrusion (times 10 to emphasize the values) and the size of the pore throat radius to which it is equivalent. MTER is the largest radius of the largest population of ubiquitous pore-throat sizes in a sample. The peak or peaks on the histogram reflect the distribution of the different pore-throat radius populations in a rock sample (Pore-Throat Size Distribution or PTD). One peak represents a unimodal distribution; two peaks represent a bimodal distribution, and multiple peaks represent a multiple (no mode) distribution (Figure 8).

These distributions are linked to the locations of voids in the rock and they are important in determining if one, two, or more pore-throat systems dominate the pore geometry of a geo-logic formation. In turn, this determination has consequences in recognizing the presence of one significant fluid invasion (unimodal distribution), two significant fluid invasions (bimodal distributiono, or no significant fluid invasion (no mode distribution).

As suggested by Hartmann (pers. comm., 2005), the distributions of pore throats represented by more than one mode are due to either the sample having two different pore throat types corresponding to laminations or to the presence of connected vugs in a microcrystalline dolomite or calcite matrix, or grainstone, where the itergranular is the largest port size, and micritized itergranular (microcrystalline) is the smallest pore throat size.

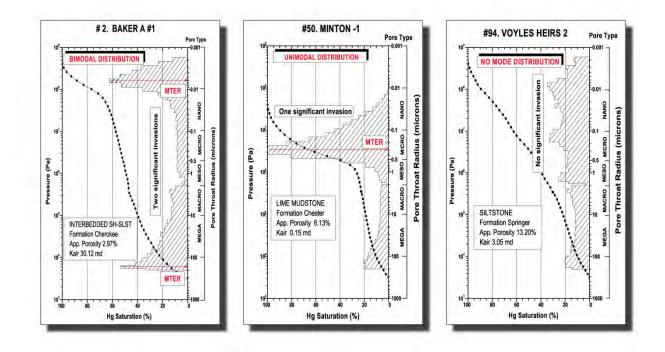


Figure 8. Pore-throat size distribution (PTD): unimodal (a single significant fluid invasion), bimodal (two significant fluid invasions, one at a higher pore-throat size and another at lower pore-throat size), and no mode (no significant fluid invasion is present) (from Cranganu and Villa, 2013)

Pore-Throat Sorting, PTS, is a measure of the sorting of the sizes of the pore throats in a sample. Measurements of PTS from intrusion capillary curves have been both qualitative and quantitative. Jennings (1987) proposed the following formula for PTS:

$$PTS = \left[\frac{3^{rd} \text{ Quartile Pressure}}{1^{st} \text{ Quartile Pressure}}\right]^{1/2}$$
(11)

where the first and third-quartile pressures are obtained directly from the capillary pressure curve and reflect the 25 and 75% mercury saturation pressures adjusted for irreducible saturation. A PTS value of 1.0 represents a perfectly horizontal plateau, while values much above 5.0 pertain to curves displaying little or no plateau development.

Hartmann and Beaumont (1999) and Tanguay and Friedman (2001) measured the sorting of pore throats by visual graphic analysis of the steepness of the plateau of the capillary curves. In general, a horizontal plateau indicates a well sorting of the pore throats (Figure 9). The values used are PS - Poorly sorting; MS - Medium Sorting, and WS -Well Sorting. According to Tanguay and Friedman (2001), well-sorted pore-throat sizes (WS) are characterized graphically by a MTER at less than 20% mercury saturation, along with a horizontal to sub-horizontal plateaued injection curve that has a unimodal pore-throat size distribution. Capillary-pressure curves of pore throats that have a moderately sorting size distribution (MS) are generally sinusoidal in shape and have a MTER between 10 and 40% mercury saturation. Finally, capillary-pressure curves of pore throats that have a poorly sorted pore-throat size distribution (PS) are generally oblique or diagonal and have little to no plateau and a poorly defined MTER.

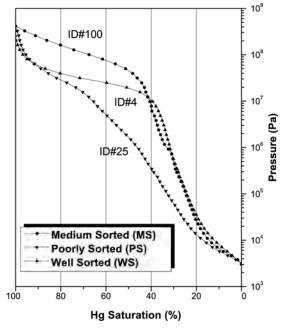


Figure 9. Pore-throat sorting (PTS): poorly sorted (PS), medium sorted (MS), and well sorted (WS) (from Cranganu and Villa, 2013)

The significance of PTS centers on the rock's ability to accept oil saturation. Jennings (1987, p. 1199) described the petrophysical role of pore throat sorting in reservoir analysis in these terms: "In well-sorted rocks, once a threshold buoyancy pressure is obtained, oil will rap-idly saturate the porosity up to the maximum capacity. Poorly sorted rocks require a pressure increase over a much broader range to obtain the same level of oil saturation."

Port Type (PT) concept was used by Coalson et al. (1985) as a link between the Pore-Throat Radius at 35% mercury intrusion, R35 (μ m), values and characterization of the pore systems by size. Pore systems in rocks are characterized by port types, which are measurable characteristics that can represent the reservoir quality. Extending Martin et al. (1997) classification, five petrophysical flow units with different reservoir performances are distinguished by ranges of R35 (Figures 6 and 8, Appendix A):

Megaport – flow units are defined as having an R35 ranging above a threshold of 10 μ m. Production of medium-gravity crudes can readily attain tens of thousands of barrels per day from a megaport flow unit if zonal thickness and other factors are constant.

Macroport – flow units having slightly smaller pore throat sizes that, with all other constraints held constant, are capable of thousands of barrels of oil per day. These flow units are defined as having an R35 ranging between 2 and 10 μ m.

(1) *Mesoport* – flow units having an R35 ranging between $0.5 - 2 \mu m$. These units may allow only hundreds of oil day with all other factors held constant.

(2) *Microport* – flow units having an R35 ranging between $0.1 - 0.5 \mu m$. Although numerous tight gas reservoirs have these R35 properties, microport flow units are mostly non-reservoir zones. Wells with mostly microport flow units produce at best a few barrels of oil per day on pump.

(3) *Nanoport* – flow units that have an R35 ranging of less than $0.1 \mu m$. The nanoport flow units best characterize non-reservoir zones and are of far more interest as potential seals for higher quality reservoir downdip.

The complete MIP pictures of the 30 samples analyzed in this project are found in Appendix A.

2.2. Source-Rock Analysis (SRA) and Total Organic Carbon (TOC) Experimental Procedure

Organic carbon is simply the remnant parts of the living materials preserved in sedimentary rocks through geologic time. During burial these remnants go through many processes imposed by sedimentation process (temperature and pressure) and time. Thermal maturation is referred to cooking process in which organic content of the rock decomposed as result of pressure and heat and turn into oil, gas, and pure carbon. TOC content of the rock is the most important parameter in evaluation of the source rock. Also, growing demand in hydrocarbon production from unconventional reservoirs turn this parameter into one of the most important factors in exploration and production of the hydrocarbons. Generally organic carbon refers to kerogen with almost the same density as water. One of the differences between kerogen and oil is the fact that kerogen is insoluble in organic solvent but oil is soluble.

Along with the mineralogical content of the rock, TOC has considerable effect on ductility of the formation. Generally, higher TOC content is in favor of the formation ductility. Ductility is the measure of the elastic behavior of the rocks under shear stress. Ductile formations have the ability to remain seal after tectonic deformation. Since TOC content of the sample could have considerable effect on sealing capacity or other properties of the caprock it is important to involve this parameter in our analysis.

The standard classification of the organic matter in sediments is based on oxygen, Carbon, and hydrogen content of the sample. In this method weight of the pyrolyzable organic carbon dioxide in milligrams divided by total organic content is called oxygen index (OI) while pyrolyzable hydrocarbons in milligrams divided by total organic content is called hydrocarbon index (HI).

By cross plotting oxygen index versus hydrocarbon index it is possible to classify organic carbon to four distinctive group of kerogen. Determining different types of the kerogen is highly important since the type of the kerogen determines the final product that will be produced by kerogen. The first type of the kerogen is called type I. This type of kerogen is hydrogen rich and has high HI index (HI> 700). Kerogen type II in relatively intermediate in both oxygen and hydrogen content (HI \approx 600). In kerogen type III the HI

index is considerably lower than previous types of kerogen. This type of kerogen mainly derived from cellulose of the plants. Last type of kerogen is very poor in hydrogen while it is relatively rich in oxygen content. This type of kerogen mainly produced from fungal bodies.

Typically results of the TOC measurements are described by the number of parameters*:

TOC% - Weight percentage of organic carbon

S1 = amount of free hydrocarbons in sample (mg/g)

 S_2 = amount of hydrocarbons generated through thermal cracking (mg/g) provides the quantity of hydrocarbons that the rock has the potential to produce through diagenesis.

 S_3 = amount of CO₂ (mg of CO₂/g of rock) - reflects the amount of oxygen in the oxidation step.

Ro = vitrinite reflectance (%)

 T_{max} = the temperature at which maximum rate of generation of hydrocarbons occurs during pyrolysis.

Calculated results include:

Hydrogen index:

$$HI = \frac{100 \times S2}{TOC\%} \tag{12}$$

Oxygen index:

$$OI = \frac{100 \times S3}{TOC\%} \tag{13}$$

Production index:

$$PI = \frac{S1}{\left(S1 + S2\right)} \tag{14}$$

Table 2 shows the results of the TOC measurements for all 30 samples. We used TOC content (forth column) as the indicator of the organic carbon content in our samples. Our ultimate goal by measuring TOC content of the samples is to understand the role of the different organic carbon content on sealing capacity. Figure 10 is the plot of the total organic carbon and oil potential (S2) vs. depth for all the 30 samples. Also, Figure 11 shows the variation of the hydrogen, index (left) oxygen, index (middle), and production index (left). Figure 12 shows the scatter plot of the hydrogen index vs. maximum temperature (left) and Pseudo Van Krevelen graph (right).

^{*}Source: <u>http://www.spec2000.net/11-vs.htoc.htm</u>

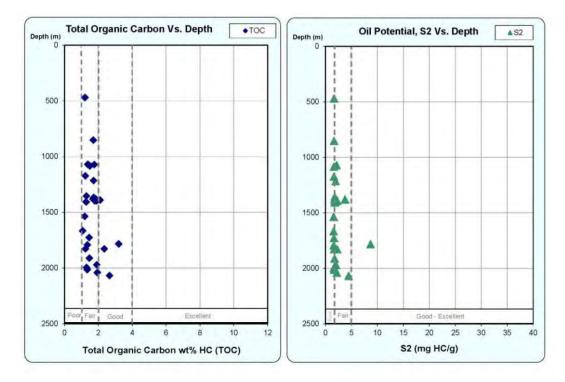


Figure 10. Plot of the total organic carbon (left) and oil potential (right) vs. depth for all the 30 samples.

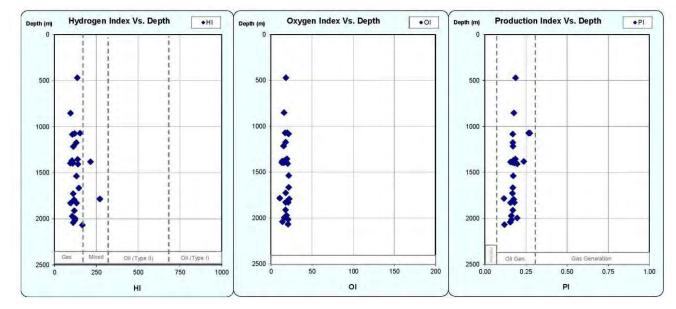


Figure 11. Variation of the hydrogen index (left), oxygen index (middle), and production index (right) vs. depth.

Sample #	Depth	Sample Wt.	тос	S1	S2	S3	Tmax	H	OI	Ы	
	m	mg	wt% HC	mg HC/g	mg HC/g	mg CO2/g	°C	S2x100/TOC	S3x100/TOC	(S1/(S1+S2))	(S1/TOC)100
1	1354	98.1	1.29	0.41	1.79	0.25	324.4	138.76	19.38	0.19	31.78
2	470	100.3	1.21	0.38	1.65	0.22	327.9	136.36	18.18	0.19	31.4
3	1173	100.2	1.23	0.33	1.61	0.22	444	130.89	17.89	0.17	26.83
4	1382	98	1.85	0.41	1.97	0.25	441.7	106.49	13.51	0.17	22.16
5	1390	103.3	2.1	0.46	2.25	0.32	440.8	107.14	15.24	0.17	21.9
6	1380	100.9	1.74	1.17	3.75	0.24	419.3	215.52	13.79	0.24	67.24
7	1072	102.8	1.76	0.8	2.12	0.3	434.3	120.45	17.05	0.27	45.45
8	1070	102.6	1.38	0.77	2.12	0.27	432.7	153.62	19.57	0.27	55.8
9	1536	102.1	1.2	0.33	1.58	0.26	481.2	131.67	21.67	0.17	27.5
10	1726	100.9	1.45	0.33	1.63	0.26	436.7	112.41	17.93	0.17	22.76
11	1083	102.3	1.5	0.33	1.61	0.32	327.2	107.33	21.33	0.17	22
12	852	101.9	1.7	0.35	1.63	0.27	432	95.88	15.88	0.18	20.59
13	2014	105.2	1.35	0.32	1.64	0.28	450.4	121.48	20.74	0.16	23.7
14	1995	103.7	1.3	0.39	1.59	0.21	320.6	122.31	16.15	0.2	30
15	1792	103.4	1.35	0.34	1.59	0.3	431.1	117.78	22.22	0.18	25.19
16	1911	104.3	1.47	0.36	1.75	0.26	458.1	119.05	17.69	0.17	24.49
17	1406	100	1.28	0.44	1.79	0.26	326.2	139.84	20.31	0.2	34.38
18	1396	104.7	1.89	0.4	1.81	0.25	319.4	95.77	13.23	0.18	21.16
19	1397	98.8	1.79	0.43	1.96	0.28	437.4	109.5	15.64	0.18	24.02
20	2040	103.4	1.94	0.4	2.18	0.27	448.4	112.37	13.92	0.16	20.62
21	1215	103.2	1.71	0.4	1.93	0.26	443.1	112.87	15.2	0.17	23.39
22	2067	95.5	2.66	0.6	4.43	0.55	442.9	166.54	20.68	0.12	22.56
23	1971	99.8	1.91	0.39	2.03	0.36	448.4	106.28	18.85	0.16	20.42
24	1828	100.5	1.24	0.36	1.64	0.26	342.8	132.26	20.97	0.18	29.03
25	1666	104	1.07	0.32	1.56	0.23	339.8	145.79	21.5	0.17	29.91
26	1386	105.2	1.84	0.35	1.88	0.27	438.5	102.17	14.67	0.16	19.02
27	1367	105	1.72	0.38	1.8	0.3	436.3	104.65	17.44	0.17	22.09
28	1381	103	1.69	0.35	1.75	0.27	323.7	103.55	15.98	0.17	20.71
29	1828	99	2.35	0.42	2.27	0.42	445	96.6	17.87	0.16	17.87
30	1783	98.7	3.2	1.15	8.67	0.34	443.6	270.94	10.63	0.12	35.94

Table 2. Result of the TOC measurements for all 30samples.

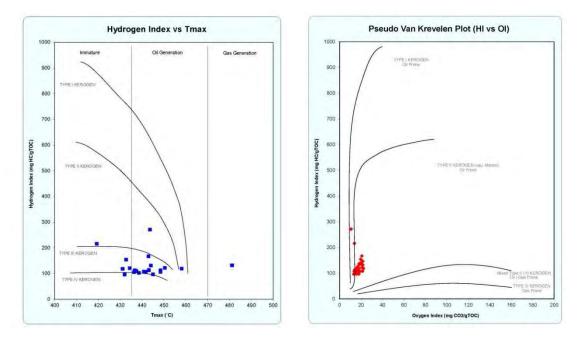


Figure 12. Plot of the hydrogen index vs. maximum temperature Tmax (left) and Pseudo Van Krevelen graph (right).

These measurements have been performed on 30 samples by *Corelab* in Houston, TX. Approximately 100 mg of crushed whole-rock and un-mineralized sample are pyrolyzed at 300°C for 3-4 minutes, followed by programmed pyrolysis at 25°C/min to 550°C, in helium atmosphere. During pyrolysis, a Flame Ionization detector (FID) measures the thermally distilled hydrocarbons (S1 peak). The second peak (S2), also measured by the FID, represents the hydrocarbons generated by pyrolytic degradation of the kerogen in the sample. The third peak (S3) represents the amount of CO2 generated during pyrolysis. The temperature at which the maximum amount of S2 hydrocarbons is generated is referred to as the Tmax. Pyrolysis is followed by oxidation under air at 550-600°C. The CO and CO2 evolved during pyrolysis and oxidation are continuously measured by an infrared cell (IR). The units of S1 and S2 are mg HC/g rock and the units of S3 are mg CO2/g rock.

The *Hydrogen Index* (HI) (mg HC/g TOC) corresponds to the quantity of pyrolyzable organic compounds from S2 relative to the TOC in the sample. The *Oxygen Index* (OI) (mg CO₂/g TOC) corresponds to the quantity of CO₂ from S₃ relative to the TOC. The *Production Index* (PI) is defined as the ratio $S_1/(S_1 + S_2)$.

The SRA instrument determines the amount of organic carbon by adding pyrolyzed carbon (PC) and residual carbon (RC). The pyrolyzed carbon is computed from: (1) the hydrocarbon compounds released in peaks S1 and S2, assuming that they contain about 83% of organic carbon; (2) the CO released during pyrolysis up to 500°C; and (3) the CO2 released during pyrolysis up to 400°C. The residual carbon (S4) is measured during oxidation. The narrow temperature ranges are chosen in such a way as to avoid interfer-

ence by the decomposition of carbonate minerals, thus contribution of mineral carbon to the TOC. This is important since the mineral matter in the samples is not removed by acid treatment prior to the analysis.

The instrument is calibrated often (every 10th sample) using a calibration standard that has a known set of parameters (TOC, S2, S3, and HI) and a blank (to allow establish a 'baseline'). Reproducibility of the standard's own values is critical to ensure accuracy of the unknown sample's pyrolysis data.

All SRA and TOC measurements are presented in Appendix B.

2.3. XRD Analyses² and Hard/Soft Index

X-rays analysis used for XRD measurements has one wavelength (they are all one "color"). Normally, a sample is a few grams of powder and is packed into a holder with a flat surface. The beam of x-rays enters the sample surface and is reflected by the very small crystals (crystallites) in the sample. When it is reflected the single beam of x-rays is split so the x-rays come out of the sample in several beams at different angles to the sample. The instrument has a detector that swings around the sample as the sample itself is rotated and registers the position and strength of these beams. This data is plotted by software as strength (intensity) vs. position (angle) to give a series of "peaks" or "lines", which is called the diffraction pattern.

Each chemical compound or phase reflects x-rays slightly differently and so has a different diffraction pattern. A mixture of compounds gives a pattern that is made up of the patterns of all the individual compounds. So, to identify the compounds present in a mixture the pattern obtained is compared to a large database of patterns. Often there are overlapping lines so experience and judgment are important. To give a guide when phase identification is complete the peaks are classified as major, minor or trace. XRD is used for identification of crystalline compounds or phases. Table 3 shows the XRD measurements with percent mineral content (e.g. Illite & Mica, Kaolinite, Chlorite, Quartz, K-Feldspar, Plagioclase, Calcite, Dolomite, Ankerite, Hematite, Pyrite) for every one of the 30 samples.

As suggested by Sutton et al. (2004), the ratio of the hard minerals over soft minerals could be an important parameter controlling the sealing capacity of the caprock. Basically, we divide minerals into two groups of hard and soft minerals. Hard minerals are the ones with the hardness of more than 5 on Mohs scale. Similarly, minerals with hardness of 5 and less are considered as soft minerals. Using this definition we can define Hard / Soft index as following ratio:

 $Hard / Soft = \frac{(Quartz + Orthoclase + Plagioclase + Hematite + Pyrite)}{(Mica + Illite + Chlorite + Calcite + Dolomite + An \ker ite + Kaolinite)}$ (15)

² Practical background information can be found at LSM Analytical Services website (<u>www.lsmanalytical.com</u>)

Sutton et al. (2004) showed that Hard/Soft index displayed a negative correlation with displacement pressure P_d in shales. They suggested that the cause of negative correlation might be due to the reduction of pores as result decreasing strength of the rock structure.

Calculated H/S index for our 30 samples is shown in the last column of Table 3.

Sample #	Illite & Mica	Kaolinite	Chlorite	Quartz	K-Feldspar	Plagioclase	Calcite	Dolomite	Ankerite	Hematite	Pyrite	TOTAL	Hard/ Soft
1	7.5	43.6	33.7	9.3	0.4	3.1	0	0	0	0	0	100	0.15
2	60.5	7	12.8	4.3	1.7	3	0	0	0	7.6	0	100	0.21
3	0.8	0	0.6	1	0.3	0.6	96.7	0	0	0	0	100	0.02
4	21.5	19.8	10.1	5.6	1	1.9	0	0	0	0	0	100	0.17
5	10.2	10.2	18.1	37.4	1.9	4.5	7.3	0	0	0	2.2	100	1
6	3.2	49.1	23.3	11.4	0	10.7	0	0	0	0	0	100	0.29
7	8.5	0	4.6	11.6	0.5	1.2	7.3	64.9	0	0	0	100	0.16
8	0.6	0.4	0	1.4	0	0	96.4	1.2	0	0	0	100	0.01
9	2.4	6.6	59.1	8.7	2.6	5.2	14.5	0.9	0	0	0	100	0.2
10	8.1	9.9	10	14	0	0	32.5	0	0	0	0	100	0.23
11	19.1	5.4	7.6	5.6	1.8	3	43.8	3.4	0	0	0	100	0.13
12	10	0.5	3.6	5.9	0.8	1.2	1.4	72.9	0	0	0	100	0.09
13	24.5	21.9	14.8	10.7	0	0	0	0	0	0	0	100	0.17
14	4.1	17.3	33.4	15.4	0.4	0.9	6.9	0.9	9.7	0	0	100	0.23
15	3.7	3.8	3.4	30.3	1.4	4.7	32	3.2	17.5	0	0	100	0.57
16	15.6	55.3	7.2	3.1	0	0.9	0	0	0	0	0	100	0.05
17	12.4	4.1	2	10.4	1.5	3.3	39.7	5.8	0	8.9	0	100	0.38
18	11.5	46.8	6.6	12.9	0	0	0	0	0	0	0	100	0.2
19	7.7	7.7	0.6	58.9	0	0	7.9	2.8	0	0	0	100	2.21
20	10.4	19.6	9.6	23.6	0	0	6.1	0	0	0	0	100	0.52
21	12.5	12.9	26.3	11.3	2.7	7.2	10.1	1.9	0	0	2.7	100	0.38
22	3.8	23.3	19.4	5.7	0	0	0.5	0	0	0	0	53	0.12
23	23.6	1.6	10.7	16.5	0	0	19.6	0	0	0	0	100	0.3
24	27.6	3.6	7.8	19.6	1.4	3.3	2.6	0	0	13.3	0	100	0.9
25	45.9	14.7	13.4	13	1.2	2.4	0	0	0	0	1.8	100	0.25
26	14.4	20	10.8	23.8	0	0	4	0	0	0	0	100	0.48
27	29.5	20.1	15.7	5.3	0.5	0.8	0	0	0	0	0.9	100	0.11
28	31	29.7	11	8.6	0.1	0.4	0	0	0	0	0	100	0.13
29	11.4	9.8	7.1	15.8	0.5	0.6	30.8	0	3.1	0	3.8	100	0.33
30	12.1	23.2	15.1	13.5	1.1	6.6	0	1	0	0	3.7	100	0.48

Table 3. XRD measurements for all 30 samples.

These measurements have been performed on 30 samples by *K/T GeoServices, Inc.*, in Gunnison, CO. They provided mineralogy of the samples. The data submitted by lab include the tabular XRD data (weight percentage), the X-ray diffraction traces and a detailed description of sample preparation and analytical procedures.

Complete data concerning XRD measurements are found in Appendix C.

2.3.1. Discussion of Terminology and Limitations

Weight percentage data from X-ray diffraction methods are considered semiquantitative. There are many factors affecting the results.

XRD methods can quantify crystalline material only. Organic non-crystalline material in large concentrations can be detected but not quantified. Therefore, any organic and/or non-crystalline material is not included in the accompanying results.

Detection limits for XRD are on the order of one to five weight percent. The detection limits differ for each mineral species.

Mineral standards used to determine calibration factors are often different from the actual minerals analyzed. Minerals such as feldspars that undergo solid solution are especially problematic. Clay minerals are problematic for this same reason. Clay minerals also have a wide range of crystallinities (poorly crystallized to well crystallized) which may compound this problem.

With this method the data always sums to 100%. This means that the percentages reported for each mineral are dependent upon the percentages reported for the other minerals. If one mineral is underestimated the others will be overestimated. Also, if one or more minerals are present but not detected then the percentages of the minerals that are detected will be overestimated.

Any or all of the above factors may affect the estimated weight percentages.

Data are formatted as weight percent, but are actually calculated as weight fractions. Therefore, slight rounding errors may be observed in the formatted data.

For this analytical method, the clay fraction is defined as the <4 micron ESD (Equivalent Spherical Diameter) fraction of the sample. Clay fraction does not mean clay minerals (phyllosilicates) only, it is a size term and as such this size fraction can and almost always does include non-clay minerals (quartz, plagioclase, etc.). This size fraction is used because it typically contains abundant clay minerals.

2.3.2. Clay Fraction (<4 Micron) XRD

2.3.2.1. Sample Preparation

Samples submitted for XRD analysis are first disaggregated using a mortar and pestle, weighed, and dispersed in de-ionized water using a sonic probe. The samples are next centrifugally size fractionated into a bulk (>4 microns) and a clay-size (<4 microns ESD) fraction. The clay suspensions are then decanted and vacuum-deposited on nylon membrane filters to produce oriented mounts. Clay mounts are attached to glass slides and

exposed to ethylene glycol vapor for a minimum of 24 hours to aid in detection and characterization of expandable clays. The bulk fractions of each sample are dried and weighed in order to determine weight loss due to removal of clay-size materials.

2.3.2.2. Analytical Procedures

XRD analyses of the clay-size fractions of the samples are performed using a Siemens D500 automated powder diffractometer equipped with a CuKa radiation source (40 Kv, 35 mA) and a solid state or scintillation detector. The air-dried and glycol-solvated oriented clay mounts are analyzed over an angular range of 2-36 degrees 2 theta at a scan rate of 1 degree/minute. Quantitative analyses of the diffraction data are done using integrated peak areas (derived from peak deconvolution / profile-fitting techniques) and empirical reference intensity ratio (RIR) factors determined specifically for the diffractometer used for data collection. Determinations of mixed-layer clay type, ordering and percent expandable interlayers are done by comparing experimental diffraction data from the glycol-solvated clay aggregates with simulated one dimensional diffraction profiles generated using the program NEWMOD written by R. C. Reynolds.

2.4. Surface Area Measurements

Brunauer et al. (1938) proposed a method of measuring special surface area based on adsorption. Generally, when a vapor phase (including gas) is brought into contact to solid surface, a thin film of the vapor phase will attach to the external surface of the solid. This phenomenon could be explained by the weak Van der Waals attraction force between external solid surface and adsorbate. Such property could be used to measure the specific surface area of the porous material.

Adsorption could be measured by determining the amount of adsorbed gas over the range of gas pressure at constant temperature (isotherm) which is usually liquid nitrogen temperature (77 K). Similarly, desorption is the measured of the total gas removed by the pressure reduction. Nitrogen was used as the adsorbate phase in special surface area measurements of our samples. It should be noted that the nitrogen is the most common adsorbent but in some circumstances using other gases (CO₂, CO, Ar, O₂, C₄H₁₀) are common too.

BET is the most common method in describing specific surface area. BET equation expressed as below:

$$\frac{1}{W((P_0/P)-1)} = \frac{1}{W_m C} + \frac{C-1}{W_m C} (\frac{P}{P_0})$$
(16)

where *W* is the total weight of the adsorbed gas, P/P_o is the relative pressure, W_m is the monolayer adsorbed gas quantity, and *C* is the BET constant. Slop (*s*) and intercept (*i*) are found in the linear plot of the $1/[W((P_o/P)-1)]$ versus P/P_o . These parameters could be expressed as:

$$s = \frac{C-1}{W_m C} \tag{17}$$

$$i = \frac{1}{W_m C} \tag{18}$$

weight of monolayer could be described as following equation:

$$W_{m} = \frac{1}{s+i} \tag{19}$$

Specific surface area (S) could be expressed by total surface area (S_t) divided by sample weight.

$$S_{t} = \frac{W_{m} N A_{cs}}{M}$$
(20)

$$S = \frac{S_{t}}{W}$$
(21)

where *N* is the Avogadro's number (6.023×10²³), *M* is the weight of adsorbate, A_{cs} is the adsorption cross section of the adsorbing species (for nitrogen it is 16.2×10⁻¹⁰m).

Cross plot and the linear trend line of the relative pressure data versus adsorbed quantity of the gas shown in Figure 13 (left) and the relative pressure versus $1/[W((P_o/P)-1)]$ (right) for the sample #1. The slop and the intercept of trend line on the right plot in Figure 13 used in BET specific surface area calculations. Measured BET specific area for sample #1 is 8.1997 m²/g. complete BET measurement reports are available in. Also, Table 4 contains the summary of BET surface area for all 30 samples.

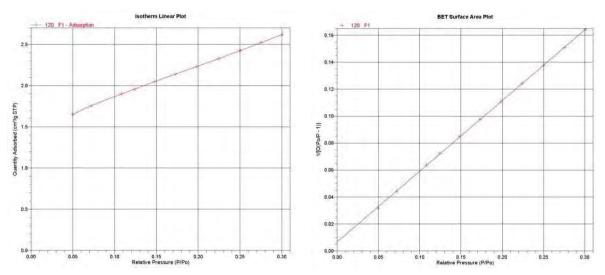


Figure 13. Cross plot and the linear trend line of the relative pressure data versus adsorbed quantity of the gas (left) and the relative pressure versus $1/[W((P_0/P)-1)]$ (right) for the sample #1. The slop and the intercept of the on the right plot in Figure 13 can be used to calculate BET specific surface area. Complete BET measurement reports are available in Appendix D.

These measurements have been performed by Micromeritics, in Norcross, GA. The surface area of 30 samples were analyzed on a Tristar 3020. This is a gas adsorption analyzer which uses the BET method to calculate an external surface area from the volume of gas adsorption in a pressure region of 0.05 to 0.3 relative pressure. The samples were degassed at 110 degrees C for 16 hours. If provided, one should always use the BET surface area instead of the single point method. The repeatability and accuracy of the method is dependent on the sample (typically better than 1 or 2%).

Appendix D contains full BET data of the 30 samples.

2.5. Grain Size Measurements

Sedimentation analysis based upon Stoke's Law provides a convenient method for determining particle size distribution (PSD). A single solid (or nonporous) sphere settling in a fluid has a terminal settling velocity which is uniquely related to its diameter. The SediGraph determines particle size distributions using the sedimentation method. Particle sizes could be determined by measuring the gravity-induced settling velocities of different size particles in a liquid with known properties. The rate at which nonporous particles fall through a liquid is described by Stokes' Law as:

$$D_{st} = \sqrt{\frac{18\mu V}{g(\rho_s - \rho_l)}}$$
(22)

where, D_{st} = Stokes' diameter, μ = fluid viscosity, ρ_s = density of the solid, ρ_l = density of the liquid, V = settling velocity, and g = acceleration due to gravity. Full description of the method is available at Micromeritics web site³. Figure 14 shows the histogram of the particle diameter and cumulative percent for the sample #1. Considering this graph, mean value for particle diameter is 85.757, median 71.446 and mode is 125.835. Particle diameters for all 30 samples is available in Appendix E. Also, Table 4 contains the summery of particle size analysis for all 30 samples.

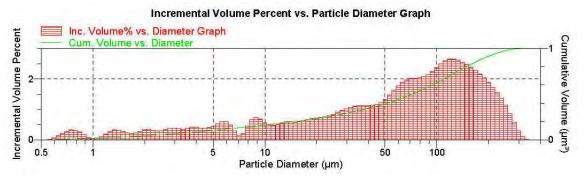


Figure 14. Particle dimension analysis histogram for sample #1. Considering this graph mean value for particle diameter is 85.757, median 71.446 and mode is 125.835. Particle dimension analysis for all 30 samples is available in Appendix E.

³ source: Micromeritics website (<u>http://www.micromeritics.com/</u>)

Table 4. Bl	ET special surface	e area and median	grain size	e data for al	l 30 samples
			0		- 0

Sample #	BET Surface Area m²/g			BET Surface Area m²/g	Median Grain size
1	8.1997	71.446	16	8.5142	38.02
2	9.3872	28	17	5.2811	43.292
3	0.6087	93.794	18	9.7036	75.214
4	18.5175	24.322	19	12.2388	93.375
5	16.2197	59.789	20	5.3783	82.255
6	1.8399	101.595	21	18.2856	53.516
7	0.5047	41.648	22	10.0028	12.316
8	0.1797	46.41	23	8.5302	45.724
9	1.0966	144.292	24	22.0987	69.283
10	16.5203	44.367	25	11.007	62.61
11	16.3173	15.705	26	16.7063	27.859
12	0.8763	41.433	27	17.6279	17.606
13	14.3211	77.62	28	5.8016	47.335
14	0.836	142.815	29	9.383	84.271
15	1.6925	90.471	30	3.3217	79.57

The grains size measurements have been performed on 30 samples by Micromeritics, in Norcross, GA, using a Saturn digisizer 5205. This is a laser light scattering instrument. The samples were analyzed by placing the sample powder directly into the instrument. The samples were dispersed internally using filtered DI water containing 0.005% sodium metaphosphate. This sample and liquid mixture was probed using ultrasonic energy for 60 seconds prior to analysis. The mean, median, and mode are typically statistics for any Gaussian distribution. The 90, 50, 10 percentiles are the diameter where 90 percent of the particle are finer than that size, 50 percent of the particles are finer than that size. The mean and 50 percentile are by definition the same number.

2.6. SEM Analysis

Before using petrographic microscope scientists thought that in order to fully describe and classify the rocks it is enough to just study the physical structure of them. It is been almost two centuries ago that the advent of the petrographic microscope changed that approach forever. Generally, geologist use petrographic microscopy to examine two dimensional cross section of the rock sample. This technique enables geologists to determine mineralogy by studying the transmitted light through different minerals. Using petrographic microscope, it is possible to study rock fabric, texture, porosity, orientation of the minerals and matrix of the rock sample. By introducing the SEM micrographs (details and theory could be found in Goldstein et al., 2003) geologists were enabled to take a giant step forward and study beyond the two dimensional analysis. By using SEM technique it is possible to look deep down at pores and texture of the sample and identify the distribution and fabric of the grains and pore spaces. Although this does not mean that the SEM can take over the regular microscopic analysis, information acquired using this method could be a valuable source of complementary information along with the regular petrophysical macroscopic study.

In this study we used SEM micrographs at several magnification ranges for 28 samples. As it was mentioned previously, we used this technique to find possible correlations between descriptive texture of the sample surface and supercritical CO₂ retention column height. In order to describe and analysis the possible effects of textural characteristics numerically, we separated three textural properties, namely, intercrystalline, intergranular, and vuggy texture. It should be noted that it is not possible to describe the micrographs by definite terms. In other words it is difficult to describe the sample texture just by terms vuggy or intergranular, simply because each sample dose not only consists of one type of texture. Instead, we proposed to describe the sample by using respective scores of each texture characteristic, reflecting the intensity of the specific type of fabric seen in samples. Using scores to describe qualitative parameters enables us to analysis those characteristics quantitatively. Figure 15 shows the SEM micrographs for sample #1 with different magnification. SEM micrographs for 28 samples are available in Appendix F. Also, Figure 16 shows the SEM micrographs for the sample #22. This sample shows intergranular fabric with clear vuggy texture. The respective descriptive scores in this sample is 3, 5, 1 out of 5 for granular, vuggy, intercrystalline respectively. Also, Table 5 summarized the description scores in all 28 samples.

One should bear in mind that scores used in describing each sample are completely based on grader observations. Therefore, the assigned descriptive scores are not accurately fixed and could be changed by different examiners. This introduce significant source of uncertainty and it should be considered in interpretation of the results. Nevertheless, since SEM micrographs are qualitative source of information this approach will help us to assess the effects of the rock fabric on sealing capacity in quantitative fashion.

Sample #	Rock Type	Intercrystalline	Intergranular	Vuggy
1	Sandstone	4	2	2
2	Siltstone	1	4	3
3	Limestone	4	2	1
4	Shale	1	5	1
5	Limestone	1	5	1
6	Sandstone	3	3	4
7	Limestone	5	1	3
8	Limestone	NA	NA	NA
9	Limestone	1	3	5
10	Shale	2	5	1
11	Limestone	2	5	1
12	Limestone	3	3	3
13	Shale	1	4	3
14	Limestone	4	1	4
15	Limestone	5	3	3
16	Shale	1	4	2
17	Limestone	2	4	2
18	Shale	2	4	2
19	Shale	2	4	1
20	Shale	2	4	1
21	Limestone	1	3	4
22	Mudstone	1	3	5
23	Shale	1	4	1
24	Limestone	1	4	2
25	Shale	1	3	3
26	Shale	2	4	2
27	Shale	1	3	3
28	Shale	1	3	2
29	Limestone	1	4	3
30	Shale	NA	NA	NA

Table5. SEM micrograph descriptions in all 30 samples.

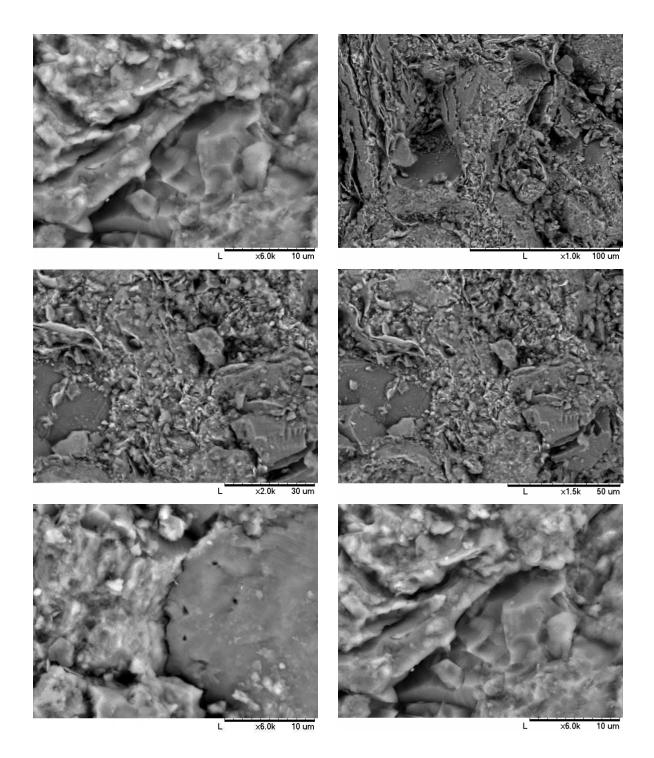


Figure 15. SEM micrographs of sample #1. The texture of this sample is mainly intergranular but some vuggs are visible. We describe the texture this sample as intercrystalline with some vuggs. Descriptive scores of 2 out of 5 for granular, 2 out of 5 to vuggy, and 4 out of 5 to intercrystalline were assigned to this sample.

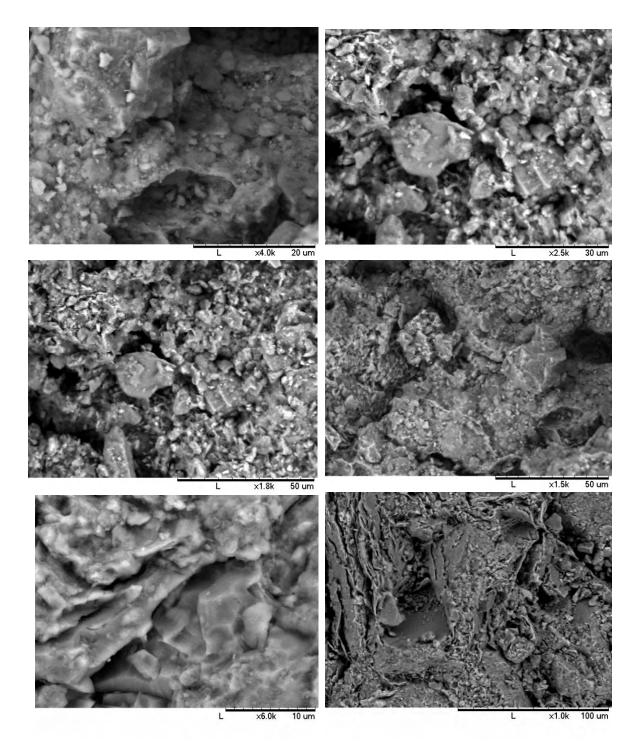


Figure 16. SEM micrographs of the sample #22. The texture of this sample is mainly intergranular with clear vuggs. We describe this sample as vuggy/ intercrystalline. Descriptive scores in this sample were assigned as following 3, 5, 1 out of 5 for granular, vuggy, intercrystalline, respectively.

2.7. EDS Analysis

Sealing capacity of the formation is highly affected by rock type. Parameters like porosity, permeability, and ductility controls directly by lithology. Thus, careful mineral identification in core samples is highly important. One of the common techniques used in determining composition of the rock is Energy Dispersive Spectra (EDS) which were obtained for 11 elements (Al, Si, Ca, Mg, S, K, Fe, Cl, Ti, Br, and Na) in all 30 samples. Theory of the EDS analysis is fully discussed by Goldstein et al. (2003). Figure 17 shows the typical EDS results for the sample #1. EDS graphs for all 30 samples are available in Appendix G.

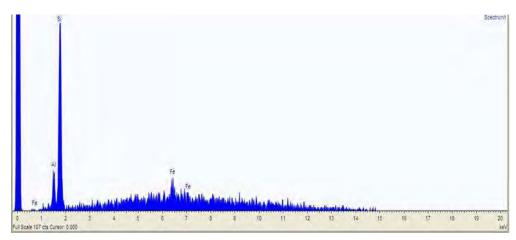


Figure 17. Energy Dispersive Spectra (EDS) for sample #1. In this sample silicon is the most dominant element. After silicon, the most abundant elements are iron and aluminum

3. Results and discussions

3.1. Maximum height of the CO2

As it was mentioned earlier, maximum threshold pressure (P_c) is the most important parameter controlling maximum height of the non-wetting fluid (CO₂ or hydrocarbon) that seal rock can hold without leakage. This parameter determines the maximum height of the supercritical CO₂ (or other fluids) that can be hold by caprock.

The general buoyancy formula for the pressure produced by the vertical column of immiscible fluids as result of their respective densities described as following:

$$P = \Delta \rho g h \tag{23}$$

where ρ is the density (kg/m³), g is acceleration due to gravity (9.8 m/s²), and *h* is the height of the fluid column. In case of scCO₂ capture and sequestration we can rewrite equation (23) as following:

$$Pc_{b/CO_{2}} = (\rho_{b} - \rho_{CO_{2}})gh$$
 (24)

where Pc_{b/CO_2} is the capillary pressure (Pa) of reservoir water and CO_2 system. ρ_b is the density of reservoir water (kg/m³), ρ_{CO_2} is the density of supercritical carbon dioxide.

In order to calculate the super critical carbon dioxide density at reservoir pressure and temperature, we used the equation introduced by Ouyang (2011). He expressed the relationship between CO_2 density, temperature and pressure as following correlation equation:

$$\rho = A_0 + A_1 p + A_2 p^2 + A_3 p^3 + A_4 p^4$$
(25)

where density (ρ) is in kg/m³, pressure (p) in Psia, and the correlation coefficients AO, A1 – A4 are solely associated with temperature in degrees Celsius:

$$A_{i} = b_{i0} + b_{i1}T + b_{i2}T^{2} + b_{i3}T^{3} + b_{i4}T^{4} (i = 0, 1, 2, 3, 4)$$
(26)

The values for the correlation coefficients $-b_{i0}$, b_{i1} , b_{i2} , b_{i3} , and b_{i4} (i = 0, 1, 2, 3, 4) are listed in Table 6 for pressure less than 3000 Psia (20.68 MPa) and in Table 7 for pressure higher than 3000 Psia. Figure 18 is the three dimensional representation of the predicted densities (Equation 25).

	b _{i0}	b _{i1}	b_{i2}	b _{i3}	b _{i4}
i=0	-214832	11681.17	-230.224	1.967429	-0.00618
i=1	475.7146	-26.1925	0.521513	-0.00449	1.42E-05
i=2	-0.37139	0.020725	-0.00042	3.62E-06	-1.2E-08
i=3	0.000123	-6.9E-06	1.41E-07	-1.2E-09	3.95E-12
i=4	-1.5E-08	8.34E-10	-1.7E-11	1.5E-13	-4.8E-16

Table 6. b_{ij} Coefficients in equation (26) for Pressure < 3000 Psia

Table 7. Value of b_{ij} Coefficients in equation (26) for Pressure > 3000 Psia

	b _{i0}	b _{i1}	b _{i2}	b _{i3}	b _{i4}
i=0	689.7383	2.730479	-0.02254	-0.00465	3.44E-05
i=1	0.221369	-0.00655	5.98E-05	2.27E-06	-1.9E-08
i=2	-5.1E-05	2.02E-06	-2.3E-08	-4.1E-10	3.89E-12
i=3	5.52E-09	-2.4E-10	3.12E-12	3.17E-14	-3.6E-16
i=4	-2.2E-13	1.01E-14	-1.4E-16	-9E-19	1.22E-20

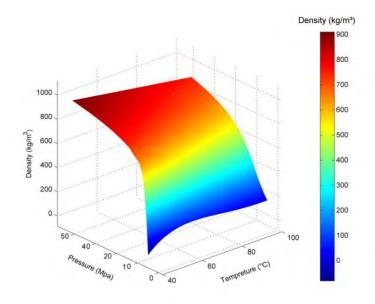


Figure 18. Three dimensional representation of Equation 25 used for determining density of the $scCO_2$ as a function of the temperature and pressure.

In order to calculate density of scCO₂ using equation 25 one needs to determine the hydrostatic pressure and temperature at sample depth. Based on salinity data collected in state of Oklahoma (Cranganu et al., 1998), we used 1073 kg/m³ as the representative density of the formation water. Considering the lack of any reliable information regarding the geothermal gradient at all well locations, we used geothermal gradients measured by Cranganu (Cranganu et al., 1998; Cranganu, 2012) in vicinity of our 30 wells in Oklahoma Panhandle. The positions of the wells with known geothermal gradient are shown on the base map (Figure 5). According to Cranganu et al. (1998) and Cranganu (2012), geothermal gradient at wells Hough 132 and 103 are 29.2 °C/km and 22.7 °C/km, respectively. We used an average value (26 °C/km) as our reference for all 30 wells. Also annual surface temperature as reported by Oklahoma Climatological Survey⁴ is approximately 13°C. Figure 19 shows the map of the normal annual temperature (in degrees Fahrenheit) for Oklahoma state using data from 1981 to 20004. According to Figure 19, the three counties of Texas, Cimarron, and Beaver are located in a region with a low annual temperature (relative to the rest of the Oklahoma). Also, geothermal gradient of 26 °C/km is relatively low. Low formation temperature is highly in favor of the CS project since formations with relatively low temperatures could hold injected scCO₂ at higher density comparing formations with relatively higher temperature.

Hydrostatic pressure or normal pressure is referred to stress exerted by the weight of the static fluid column. It should be noted that hydrostatic pressure is a function of the height and density of the pore fluid and it is independent of the geometry of the fluid column. Density of the fluid is function of the fluid type, aggregation of the unsolved solids (e.g., salt and other minerals), existence of gases, temperature, and pressure. Simi-

⁴ Source: <u>http://climate.ok.gov/index.php/site/page/climate_of_oklahoma</u>

lar to rock matrix, density of the fluids tends to increases with depth. Here depth referred as the vertical distance between the measured point and the reference datum. Hydrostatic pressure could be calculated using following equation:

$$P_{normal} = g \int_{0}^{h} \rho_{fluid}(z) dz$$
(27)

where P_{normal} is the hydrostatic pressure in Pascal, ρ_{fluid} is the density of the fluid at depth *h* in kg/m³, *g* is the gravitational acceleration in m/s² and *h* is the height of the fluid column in m.

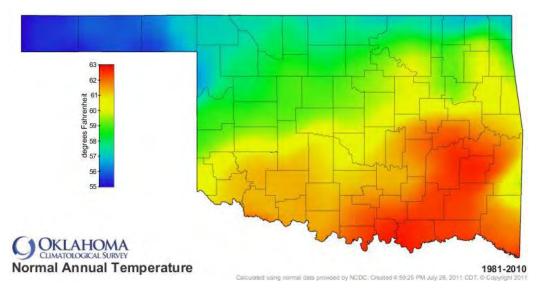


Figure 19. Map of the normal annual temperature (in degrees Fahrenheit) for Oklahoma State using data from 1981 to 2000. From http://climate.ok.gov/index.php/site/page/climate_of_oklahoma

Using calculated values for hydrostatic pressure and temperature at sample depths, we generated supercritical CO_2 densities at reservoir conditions using Equation 25. Calculated densities based on Equations 25 and 26 can be found in Table 8. According to calculated values on Table 8, injected CO_2 at sample location #2 will have gas state with density of 111 kg/m³. As documented by Benson and Cole (2008), for formations to provide safe injections of the supercritical CO_2 they should have depth more than 800 m. Injection at such deep depth has two main advantages:

- At depths greater than 800 m, hydrostatic pressure is relatively high enough to keep the injected CO_2 in supercritical state. In other words, as the result of the hydrostatic pressure at such deep depths density of the supercritical CO_2 will increase. Considering Equation 24, increasing supercritical CO_2 density is highly in favor of the retention column height by reducing the difference between the supercritical CO_2 density and formation water.

- Increasing density of the supercritical CO_2 helps the injection process by increasing the efficiency of the supercritical CO_2 in filling rock pores. Also, kinematic viscosity of the sc CO_2 increases with increasing depth of the injection. Increasing the viscosity will im-

prove the filling property of the CO₂ and facilitate the safety and efficiency of the injection.

Figure 20 shows the schematic density and volume of the CO_2 as the function of depth. Clearly, at depths greater than 800 m, density of the CO_2 will approach its upper limit. Similarly, volume of supercritical CO_2 will reach its lower limit. Consequently, formations at depths over 800 m are considered as the most appropriate target zones for CS project.

General concerns regarding the contamination of the fresh water aquifers were always an important issued. Although the risk of such contaminations are relatively low but, supercritical CO₂ injection in deep formations will ensure the protection of ground water from any possible contamination after injection.

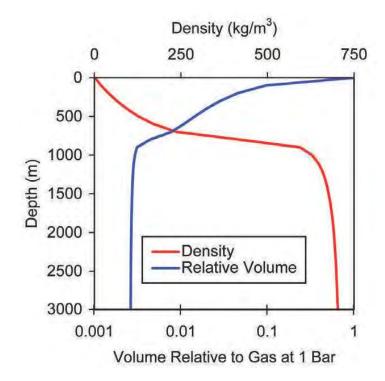


Figure 20. Schematic variation of density and volume of CO₂ as function of depth (from Benson and Cole, 2008)

Sample #	Depth (m)	Pressure (MPa) at sample depth	Tempreture (°C) at sample depth	CO2 State	CO ₂ density (kg/m ³)	Kinematic viscosity
1	1354	14.2	48.21	Overcritical Fluid	705.3	0.056
2	470	4.9	25.21	Gas	NA	NA
3	1173	12.3	43.5	Overcritical Fluid	682.49	0.054
4	1382	14.5	48.94		708.07	0.057
5	1390	14.6		Overcritical Fluid	708.73	0.057
6	1380	14.5	48.87	Overcritical Fluid	707.82	0.057
7	1072	11.3	40.88	Overcritical Fluid	676.56	0.053
8	1070	11.2	40.82	Overcritical Fluid	676.55	0.053
9	1536	16.1	52.95	Overcritical Fluid	711.57	0.058
10	1726	18.1	57.87	Overcritical Fluid	701.99	0.057
11	1083	11.4	41.15	Overcritical Fluid	676.81	0.053
12	852	9	35.15	Overcritical Fluid	625.88	0.047
13	2014	21.2	65.37	Overcritical Fluid	711.4	0.059
14	1995	21	64.86	Overcritical Fluid	711.55	0.059
15	1792	18.8	59.59	Overcritical Fluid	701.08	0.058
16	1911	20.1	62.63	Overcritical Fluid	706.56	0.058
17	1406	14.8	49.55	Overcritical Fluid	709.8	0.057
18	1396	14.7	49.29	Overcritical Fluid	709.13	0.057
19	1397	14.7	49.33	Overcritical Fluid	709.18	0.057
20	2040	21.4	66.04	Overcritical Fluid	711.31	0.059
21	1215	12.8	44.6	Overcritical Fluid	687.38	0.054
22	2067	21.7	66.75	Overcritical Fluid	711.19	0.059
23	1971	20.7	64.26	Overcritical Fluid	711.66	0.058
24	1828	19.2	60.54	Overcritical Fluid	701.85	0.058
25	1666	17.5	56.31	Overcritical Fluid	704.76	0.057
26	1386	14.6	49.04	Overcritical Fluid	708.38	0.057
27	1367	14.4	48.53	Overcritical Fluid	706.61	0.057
28	1381	14.5	48.9	Overcritical Fluid	707.89	0.057
29	1828	19.2	60.54	Overcritical Fluid	701.85	0.058
30	1783	18.7	59.37	Overcritical Fluid	701.05	0.058

Table 8. Super critical density and kinematic viscosity at sample depths.

3.2. Statistical analysis and interpretations

The ultimate goal of this project is to answer the following questions:

-Is there a relatively reliable seal rock in Oklahoma Panhandle which is tight enough to be considered for a potential carbon dioxide sequestration site?

-Which one of the characteristics of the caprock is more likely controlling the sealing capacity of the caprock, textural or compositional and how these two sets of property relate to each other?

In order to answer the first question we analyzed the calculated CO_2 retention column heights derived from MIP measurements. Table 9 summarizes the properties and final calculated CO_2 retention column height for all 30 samples.

Considering retention column heights, depths, and formations which the samples were taken, we conclude that the Morrowan and Cherokee shales have relatively higher sealing capacity than the other formations with respect to sequestration of scCO₂. Also, these formations are deep enough to satisfy the 800 m rule of thumb suggested earlier.

In order to find reliable answer to latter question we used correlation analysis and multivariate statistics trying to find possible correlations between different parameters (including textural and compositional) and possible relationship with maximum $scCO_2$ retention column. For the sake of consistency we used following terms to interpret the Pearson's correlation coefficient throughout this section.

If $r = \pm .70$ or higher: Very strong positive relationship

- $\pm.40$ to $\pm.69$: Strong relationship (positive or negative)
- ±.30 to ±.39: Moderate relationship (positive or negative)
- \pm .20 to \pm .29: weak relationship (positive or negative)

 \pm .01 to \pm .19: No or negligible relationship (positive or negative)

Also, by normal distribution assumption, "normal" data will all fall within around 2 standard deviations from the mean (sometimes referred to as the 95% confidence interval). In this study we used this criterion to eliminate the outliers in the following statistical analysis. Accordingly, data points with less than a 5% chance of being a true data point (or is 95% likely to be an outlier) considered outlier and subsequently eliminated from the calculations.

3.3. Sealing capacity in Oklahoma Panhandle

Using only calculated scCO₂ retention column heights in different formations, we found that the variability of retention column height for a particular formations could be within one order of magnitude. For example, in Morrowan formation, there was a sample with scCO₂ retention column height as low as 43m, while in another sample from the same formation we recorded a height of 1,308m. Similar variability in sealing capacity was observed by Sutton et al. (2004) in Denver basin, Colorado. It should be noted that the derived values for the retention column heights are in acceptable range found in literature, although one might say that the relatively large values (e.g., over 200m) does not represent the actual height of sequestered scCO₂. Considering fine pore space in shales and some limestones, it is possible that these rocks have high sealing potential regardless of possible existence of fractures and joints which could reduce sealing potential significantly.

Based on this observation, we conclude that the number and the depths of the samples in a particular formation are highly important for an accurate reporting of the maximum CO_2 retention column height. We suggest that in order to study formation sealing capacity accurately, samples should collect from different members of the same formation. Even slight change in sample location could change the final retention column height significantly.

Based on the calculated retention column heights in different formations we conclude that both Cherokee and Morrowan formations are promising seal rocks both in terms of average depth in the three counties of Oklahoma Panhandle and average $scCO_2$ maximum retention column height. As it was mentioned earlier, formations with depth deeper than 800 m are considered a proper site for CS. Hydrostatic pressure at this depth will reduce the volume while maximizing the density and kinematic viscosity of the supercritical CO_2 which allows the proper filling of the pore spaces.

Considering Figure 4 and calculated scCO₂ retention column heights (average heights over formation), it is possible to conclude that early Pennsylvanian caprocks have the highest quality in terms of sealing capacity.

Scatter plot of the sample depths vs. CO_2 column height is presented in Figure 21. According to it, samples at depths around 1,400 m exhibit relatively high CO_2 retention column heights. Interpretation of this figure confirms our previous hypothesis regarding the suitability of the Cherokee and Morrow shales as potential caprocks in a sequestration site.

ID#	Formation	Depth(m)	Pressure (Mpa) at sample depth	Temp at sample depth (°C)	Super critical CO ₂ denity (kg/m ³)	Water density (kg/m³)	Seal treshold pressure(Pc) (air- Hg) (Pa) contact angle (°0)	Seal treshold pressure(Pc) (brine-CO ₂) (Pa) contact angle (°0)	Height of CO ₂ (m) contact angle (°0)
1	Morrowan	1354	14.25	48.21	705.3	1073	2.7	0.03	44.11
2	Cimarron	470	4.94	25.21	NA	1073	1.3	1.3	NA
3	Marmaton	1173	12.35	43.5	682.49	1073	1.6	0.04	24.61
4	Purdy	1382	14.55	48.94	708.07	1073	26	0.01	428.01
5	Cherokee	1390	14.64	49.15	708.73	1073	45	12	742.13
6	Morrowan	1380	14.52	48.87	707.82	1073	0.76	0.76	12.5
7	Topeka	1072	11.29	40.88	676.56	1073	0.37	0.24	5.61
8	Topeka	1070	11.26	40.82	676.55	1073	0.02	0.03	0.36
9	Morrowan	1536	16.17	52.95	711.57	1073	5.8	0.91	96.4
10	Morrowan	1726	18.17	57.87	701.99	1073	8.8	0	142.49
11	Topeka	1083	11.4	41.15	676.81	1073	80	0.01	1213.05
12	Chase	852	8.97	35.15	625.88	1073	0.17	0.17	2.28
13	Chester	2014	21.2	65.37	711.4	1073	3.2	0.01	53.16
14	Keyes	1995	21	64.86	711.55	1073	0.03	0.03	0.45
15	Marmaton	1792	18.86	59.59	701.08	1073	6.8	6.8	109.84
16	Cherokee	1909	20.09	62.63	706.56	1073	12	0.01	196.73
17	Keyes	1406	14.8	49.55	709.8	1073	16	0.01	264.64
18	Morrowan	1396	14.69	49.29	709.13	1073	NA	NA	NA
19	Unknown	1397	14.71	49.33	709.18	1073	70	0.03	1155.86
20	Keyes	2040	21.47	66.04	711.31	1073	47	0.35	780.63
21	Cherokee	1215	12.79	44.6	687.38	1073	49	0.01	763.35
22	Chester	2067	21.76	66.75	711.19	1073	0.34	0.01	5.65
23	Atoka	1971	20.75	64.26	711.66	1073	20	0.02	332.51
24	Morrowan	1828	19.25	60.54	701.85	1073	62	0.01	1003.52
25	Mississippian	1666	17.54	56.31	704.76	1073	70	0.01	1141.97
26	Morrowan	1367	14.38	48.53	706.61	1073	44	0.07	721.43
27	Morrowan	1386	14.59	49.04	708.38	1073	66	0.01	1087.41
28	Morrowan	1381	14.53	48.9	707.89	1073	66	0.01	1085.95
29	Morrowan	1828	19.25	60.54	701.85	1073	11	0.01	178.04
30	Cherokee	1783	18.77	59.37	701.05	1073	5	6.1	80.76

Table 9. MIP results along with the supercritical carbon dioxide column height for all
30 samples

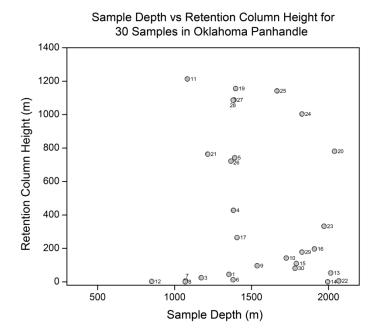


Figure 21. Scatter plot of the sample depth vs. CO₂ column height. Clustering of the samples with relatively high retention column height around 1,400 m depth suggests that the formations found around that depth are likely to have high sealing potential.

3.4. Textural and compositional parameters vs. scCO₂ retention column height

As discussed earlier, various parameters are affecting the caprock sealing capacity. These parameters could be classified into two main categories: textural and compositional. Textural parameters are the ones describing the fabric and texture of the rock. In this project we measured several textural properties of the samples: grain size, various pore structure parameters, and BET superficial surface area. On the other hand, compositional parameters are the ones describing the complex lithology of rocks. Among various compositional parameters, we focused on the key ones, namely mineral contents and total organic carbon as two major compositional parameters which might control the sealing capacity of the caprock.

Rock type is known as a major parameter determining the sealing capacity of the caprock. Figure 22 shows the box-and-whisker plot of the CO_2 retention column heights for different lithologies. As it is evident from this figure, shales have relatively higher threshold pressures in comparison to limestones and sandstones. This evidence confirms the general founding that shale formations act as seal rocks in many hydrocarbon reservoirs.

Figure 23 illustrates the effect of the average median pore radius on maximum scCO2 retention column height. As implied by Figure 23 and Table 10, there is a very strong negative correlation between the average median pore radius and sealing capacity in both shale and limestone samples. Generally, reducing average median pore radius results in increase in $scCO_2$ retention column height.

Figure 22. Box-and-whisker plot of the CO₂ retention column heights for different lithologies. Shales exhibit better sealing quality (higher CO₂ retention height) compared to limestone and sandstone samples

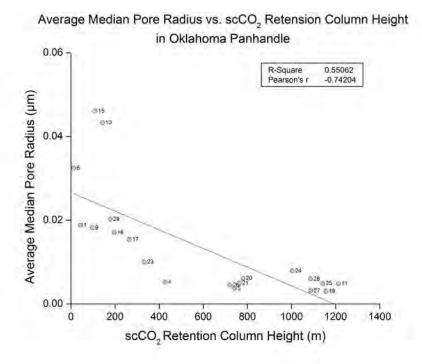


Figure 23. Average median pore radius and versus CO₂ column height in shales and limestone samples. It could be noticed that there is a very strong negative correlation between average median pore radius and CO₂ height.

As defined earlier, hard minerals have hardness > 5 on Mohs scale (quartz, orthoclase, plagioclase, hematite, pyrite), while soft minerals have hardness <5 (mica, illite, chlorite, calcite, dolomite, ankerite). We observed that there is a strong positive correlation between the grain type (hard/soft ratio) and maximum CO_2 retention column height in limestone samples (Pearson's correlation coefficient ~ 0.5). However, in shale samples we observed a positive correlation, but in this case the correlation was not statically significant. Calculating correlation coefficient of hard/soft minerals content and scCO₂ retention column in all 30 samples (excluding samples with unavailable data), we ob-

served that strong positive correlation coefficient suggesting that increase in hard minerals content of the sample will increase the sealing capacity of the rock.

As it was explained in chapter 2.1, we expressed the quality of pore throat sorting by scores from 1 to 5 (scores are natural numbers). Here, 1 represents very poor sorting while 5 represents very good sorting. Any scores between 1-5 represent medium sorting of the pores. Pore sorting scores derived from MIP measurements did not show statistically significant correlation with CO_2 column height.

Considering all 30 samples, effective porosity and scCO₂ retention column height show moderate negative correlation. The correlation coefficient is more significant in limestones, while there is no significant correlation in shale samples. This observation suggests that porosity in shales does not control the sealing capacity while porosity is important factor affecting the sealing capacity in sandstone and limestone samples.

BET surface area shows significantly strong correlation with CO₂ retention column (r=0.93) in limestones (Figure 24). Conversely, BET surface area did not show any correlation in shales samples. We hypothesize that increasing BET surface area is direct effect of the pore sizes reduction while number of the pores on the limestone surface is increasing. Accordingly, reducing pore throat size will increase the sealing capacity of the limestones. The situation for the shales is different because shales already have high sealing capacity (due to other factors), and an increase in surface area will not lead to notable improvement of the sealing capacity. We also plot the retention column height vs. BET special surface area using all the samples (Figure 24). Statistically strong correlation coefficient implies that generally a positive correlation exists between these two properties. We hypothesize that increasing BET surface area is the result of decreasing median grain size. Accordingly reducing grain size will reduce the pore throat radius which leads to increase in sealing capacity. Decreasing median grain size will lead to increase in BET special surface area. Decreasing median grain size in limestones samples shows negative correlation with pore throat sorting. Overall, BET surface area in limestones is an effective parameter correlating with sealing quality and scCO₂ retention column height.

In general, limestones have lower sealing capacity in compare with shales. As shown in Figure 25, standard deviation in limestone samples is much higher comparing with shale samples. Accordingly, we conclude that special surface area in limestones is more disperse from average than shales. This disparity and its high correlation with sealing capacity suggest that textural parameters in limestones have significant impact on sealing capacity.

CO₂ retention column heights in limestone samples are also associated with SEM micrographs observations. Correlation analysis using SEM micrograph in limestones revealed that samples with intergranular porosity have higher sealing capacity while intercrystalline fabric is not in favor of sealing quality.

Table 10. Pearson's correlation coefficients between various parameters. In this table,
underlined correlation coefficients have statistical significance of 95%.

	Shale Samples	Limestone Samples	All Samples
CO2 Column Height vs. Pore Throat Radius SD	0.22	0.48	<u>0.43</u>
CO ₂ Column Height vs. Hard/Soft	0.41	<u>0.51</u>	<u>0.46</u>
CO ₂ Column Height vs. Average M.P.R	-0.69	<u>-0.72</u>	<u>-0.64</u>
CO ₂ Column Height vs. Porosity	-0.21	-0.73	<u>-0.4</u>
CO ₂ Column Height vs. Bulk Density	0.34	0.45	<u>0.36</u>
CO ₂ Column Height vs. BET	0.03	<u>0.93</u>	0.6
Displacement Pressure vs. Hard/ Soft	0.03	<u>0.67</u>	0.3

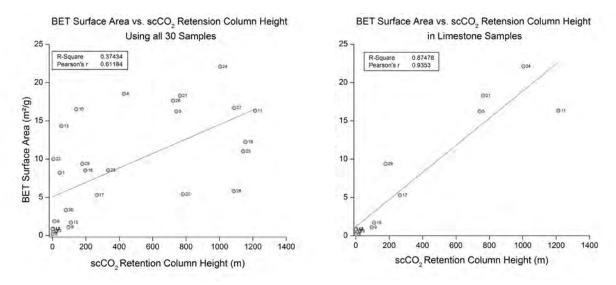


Figure 24. Scatter plot of the CO₂ column height versus BET surface area in limestone (right) and all 30 samples including limestones (left). Limestone samples show very strong linear correlation with BET special surface area while shale samples do not exhibit notable correlation.

Figure 25. Histogram of BET surface area in shale (right) and limestone samples (left). Standard deviation in shales is much less than standard deviation in limestones.

Pore radius standard deviation is another parameter derived directly from MIP measurements. Correlation analysis show strong positive relationship between pore radius standard deviation and maximum scCO₂ retention column height using all 30 samples (Figure 26).

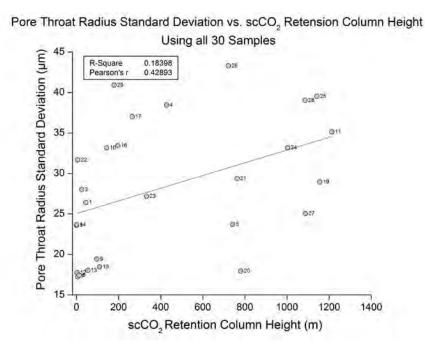


Figure 26. Scatter plot of the pore throat standard deviation vs. scCO₂ retention column height. Correlation suggests strong positive relationship between pore radius standard deviation and maximum scCO₂ retention column height for all 30 samples.

3.5. Textural and compositional parameters vs. displacement pressure

Displacement pressure is the force required to displace water from the cylindrical pore and forcing the oil (or any nonwetting phase) filament through the pore. This resistant force to migration is analogous to injection pressure as defined by Berg (1975). Also, Schowalter (1979, p. 733) stated that "the displacement pressure for any hydrocarbonwater-rock system then could be of importance in subsurface petroleum exploration, as the magnitude of this value would determine the sealing capacity for a caprock seal, the trapping capacity for a lateral facies change or fault, or the minimum vertical hydrocarbon column needed to explain an oil show in a given rock".

We analyzed the effects of different textural and compositional parameters on the measured displacement pressure of the samples. We conclude that there is no noticeable correlation (r= -.033) between displacement pressure at 10% mercury saturation (P_d) and maximum threshold pressure (P_c) (Figure 27). Accordingly, we believe that these two parameters act independently. In other words, one cannot draw any conclusion regarding the maximum retention column height based on the observed displacement pressure.

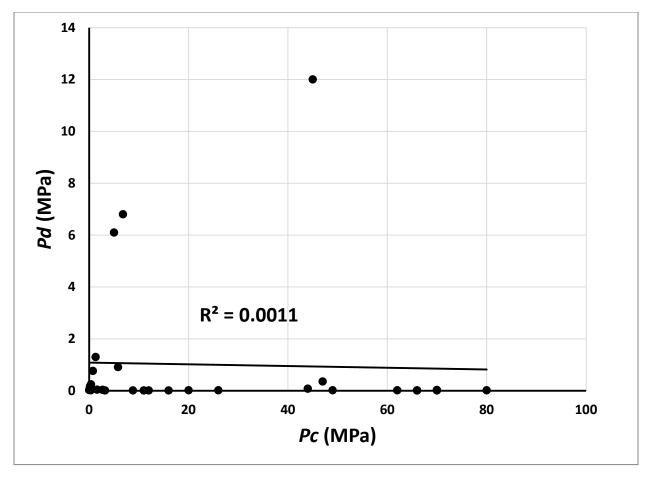


Figure 27. *Pc* vs. *Pd* scatterplot. The correlation coefficient is *r* = -.033

Grain type (hard/soft ratio) shows strong positive correlation (r=0.67) with displacement pressure in limestone samples, while shale samples exhibit relatively low correlation (r=0.03) with P_d (Table. 10). The observed correlation could be explained by considering the fact that shales generally have relatively fixed composition, while grain type and composition could change the 10% displacement pressure more noticeably in limestone samples.

3.6. Multivariable analysis

By analyzing various textural and compositional parameters we tried to find factors with notable correlation (negative or positive) with the maximum retention column height. Principal Component Analysis (PCA) is an alternative approach to analyze datasets with more than one variable. PCA is a robust mathematical tool which can be used to visualize large dataset in one image. Visualizing the dataset as a single image will help us to identify and interpret the patterns within variables in whole new way.

In simple scatter plot (2D or 3D) data points that are close together are relatively more similar to each other. In PCA biplot also, data points close to each other are more alike. Also, by projecting original variable into new coordinate system created by selected principal component (here we used principal component one and two) we can evaluate the importance and correlation between different variables. As a rule of thumb, if the variables positioned close to origin of the new coordinate system, we can conclude that those variables are not influencing the model. In other words, those variables do not have significant projection on selected principal components. In contrast if variables positioned next to each other and far from the origin we can conclude that those variables have relatively notable correlation with each other and they contain almost the same information. Also, two variables projected on the opposite sides of the origin indicate that those variables have more or less negative correlation with each other. If particular sample was close to a variable this could be interpreted as the samples has high value of the particular variable. In contrast, if the sample was positioned on the other side of the origin in respect to the variable, one can infer that the sample has low value of that specific variable. Considering latter property, PCA is a robust tool in clustering the samples based on measured variables. Also, it is possible to find outliers in large datasets. Since with traditional biplot it is only possible to look at maximum 3 variables at the same time (we cannot visualize more than 3 dimensions) this property makes PCA a robust tool in finding and eliminating outliers in datasets with numerous variables.

Scree plot and biplot of the samples and measured properties are showed in Figure 28. Based on that figure and Table 11, it is possible to project our dataset using first 2 principal components as new coordinate system by losing only 32% of the original data. In other words, by doing this coordinate projection we reduced the initial 5 dimension into 2 dimensions with minimum data lost possible (32%).

Figure 28 shows biplot of the selected textural and compositional parameters in all 30 samples. According to Table 12 we can reduce the dimensions of the initial dataset to two using two principal components. By selecting the first two components it is possible to project the dataset in new coordinate system by minimizing the data lost and retrieving 67% of initial information which is a relatively an acceptable percentage considering the number of observations and variables. Also, based on Table 10, scCO₂ retention column height, bulk density, BET special surface area, and pore throat radius standard deviation have positive contribution, while average median pore radius and porosity have negative coefficients on first principal component. Hard/soft mineral content, average median pore radius and bulk density have negative coefficients on principal component

two while scCO₂ retention column height and hard/soft index have positive coefficients on second principal component. It should be noted that we excluded the outliers in data before using them in generating Figure 28 and Tables 11 and 12. Figure 28 (left side) show the scores and loading plot using the first and the second principal component. On this plot scCO₂ retention column height and BET surface area and hard/ soft index exhibit relatively strong positive correlation, while porosity and average pore radius show relatively strong negative correlation with bulk density, scCO₂ retention column height, and BET special surface area. Based on this figure it could be observed that hard/soft mineral index has negative correlation with average median pore radius.

Figure 28. PCA Analysis. Biplot (left) and scree plot (right) of the data set after excluding outliers. Details about the interpretation of this analyses are given in text.

	Eigenvalue	Percentage of Variance	Cumulative
1	2.52471	0.3607	0.3607
2	2.19488	0.3136	0.6742
3	0.8694	0.1242	0.7984
4	0.63899	0.0913	0.8897
5	0.41997	0.06	0.9497
6	0.2332	0.0333	0.983
7	0.11884	0.017	1

Table 11. Eigenvalues of the Correlation Matrix

	Coefficients of PC1	Coefficients of PC2	Coefficients of PC3	Coefficients of PC4	Coefficients of PC5
Pore Throat Radius SD	0.4985	-0.10239	-0.32043	0.16933	0.73139
Average PORE radius	-0.24676	-0.50374	0.3488	0.38636	-0.04444
Prosity	-0.49415	0.27316	-0.38361	0.04375	-0.00435
Bulk Density	0.43256	-0.38905	0.2637	-0.28413	-0.25357
Retension height	0.32371	0.48818	0.09861	-0.38196	-0.21859
BET	0.38293	0.28866	-0.06294	0.7592	-0.41759
Hard/Soft	-0.08889	0.43376	0.73843	0.13089	0.42025

Table 12. Extracted Eigenvectors

3.7. Indirect relationships and their possible effects on sealing capacity

In previous section we tried to identify the major parameters which have direct effect on maximum retention column height. Here, we tried to identify the secondary parameters that could be effective indirectly by controlling the median grain size and average mean pore radius. As discussed earlier in this chapter and chapter 2.1, average mean pore radius is the most important parameters controlling $scCO_2$ retention column height and displacement pressure at 10% mercury saturation. Based on our observations, median grain size has negative correlations with BET special surface area, and vuggy porosity. Also, we observed that the BET special surface area presents very strong negative correlation with average mean pore radius in shales and limestone samples (Figure 28).

We also found that average mean pore radius has strong positive correlation with intercrystalline porosity and negative correlation with intergranular texture in shale samples. Base on this observation, we conclude that shales with intercrystalline texture have high average mean pore radius which lead to poor sealing capacity.

Median grain size shows strong negative correlation with BET special surface area in shales and vuggy fabric in limestones. According to our analysis, median grain size shows a good positive correlation with vuggy texture in limestones. It could be concluded that increasing grain size in limestones will increase the detectable vugs (on SEM micrographs) in the texture of the limestone samples. Also, BET surface area shows strong negative correlation with median grain size in shale samples.

4. Conclusion

The main objective of this research was twofold: evaluating the sealing capacity of the caprocks in terms of maximum hydrocarbon column height that caprockscan hold without leakage and investigating the effects of textural and compositional parameters on sealing capacity of the caprock. Based on MIP measurements of the core samples acquired from depleted gas fields in Oklahoma Panhandle we conclude that Morrowan and Cherokee shales could be considered as reliable seal candidates for CS project with average maximum scCO₂ retention column height of 400 m. This retention column height provides enough safety margins for successful sequestration project. It is suggested that, in order to study the formation sealing capacity, samples should be collected from different members of the formation. Even slight change in sample location could change the final retention column height by an order of magnitude.

Generally, rock type is the most important parameter affecting sealing capacity of the rocks. By performing correlation and principal component analysis we conclude that the ratio of hard minerals (Moh's hardness more than 4) over soft minerals (Moh's hardness less than 4) is an important parameter exhibiting strong positive correlation with sealing capacity in both shale and limestone samples. On the other hand, average mean pore radius and porosity show strong negative correlation with sealing capacity in both shale and limestone samples. On the other hand, average mean pore radius and porosity show strong negative correlation with sealing capacity in both shale and limestone samples. Clearly, pore radius and porosity are correlated with each other. We observed that bulk density show positive correlation with sealing capacity and this correlation is more pronounced in shale samples. We also conclude that BET surface area presents very strong positive correlation with sealing capacity in limestone samples, while shale samples do not show notable correlation.

Type of the porosity (based on SEM) is more important in limestones than shales. Intergranular fabric shows positive correlation with sealing capacity, while intercrystalline fabric is not in favor of retention column height.

5. Suggested Future Research

Parameters affecting sealing capacity could be divided into two categories: parameters operating on microscopic scale, namely textural and compositional parameters which we tried to address in this research, and parameters acting on microscopic and/or prospect scale, namely faults, joints, and fracture systems.

Identification, modeling and characterization of the seal rock fractures are the key component determining the sealing potential of the caprock to ensure the proper sequestration of the supercritical carbon dioxide. Proper mapping and modeling of the seal rock fractures are important in both initial site selection and long term status of the sequestered scCO₂. Spatial distributions of the fractures in seal rock are highly affecting the flow of the reservoir fluids including injected scCO₂. Characterization of the naturally fractured reservoirs plays an important role in modeling and simulation of the reservoir's fluids flow thus, a complete study on the sealing should include the natural occurring fractures in the reservoir and seal formation.

GRAPHICAL MATERIALS LIST

Figure 1. Potential CO₂ sequestration reservoirs and products (Diagram from U.S. Geological Survey Fact Sheet 26-03, March 2003 – Online Version 1.0. <u>http://pubs.usgs.gov/fs/fs026-03/fs026-03.html</u>)

Figure 2. Major geologic provinces of Oklahoma (from Johnson, 2008)

Figure 329. The three depleted gas fields from Oklahoma Panhandle representing our study area (from Puckette, 2006

Figure 4. Oklahoma Panhandle Stratigraphy (from Puckette, 2006). The numbers represent the major seal intervals: 1 – Hennessey shale; 2 –Wellington formation; 3 – Upper Morrow/Atoka shales; 4 – Lower Atoka shale; 5 – Lower Morrow shale

Figure 5. Blue dots indicate the location of the 30 representative core samples collected from the seal rock formations. Two red dots indicate additional wells providing only geothermal gradient information.

Figure 6. Capillary-pressure curves obtain by MIP. (P_c – capillary pressure; P_d – displacement pressure measured @10% Hg saturation)

Figure 7. Sample #1 (120). Sample picture, MIP parameters, TOC measurements, and XRD measurements. This figure is part of Appendix A.

Figure 8. Pore-throat size distribution (PTD): unimodal (a single significant fluid invasion), bimodal (two significant fluid invasions, one at a higher pore-throat size and another at lower pore-throat size), and no mode (no significant fluid invasion is present) (from Cranganu and Villa, 2013)

Figure 9. Pore-throat sorting (PTS): poorly sorted (PS), medium sorted (MS), and well sorted (WS) (from Cranganu and Villa, 2013)

Figure 10. Plot of the total organic carbon (left) and oil potential (right) vs. depth for all the 30 samples.

Figure 11. Variation of the hydrogen index (left), oxygen index (middle), and production index (right).

Figure 12. Plot of the hydrogen index vs. maximum temperature Tmax (left) and Pseudo Van Krevelen graph (right).

Figure 13. Cross plot and the linear trend line of the relative pressure data versus adsorbed quantity of the gas (left) and the relative pressure versus $1/[W((P_0/P)-1)]$ (right) for the sample #1. The slop and the intercept of the on the right plot in Figure 13 can be used to calculate BET specific surface area. Complete BET measurement reports are available in Appendix D. Figure 14. Particle dimension analysis histogram for sample #1. Considering this graph mean value for particle diameter is 85.757, median 71.446 and mode is 125.835. Particle dimension analysis for all 30 samples is available in Appendix E.

Figure 15. SEM micrographs of sample #1. The texture of this sample is mainly intergranular but some vuggs are visible. We describe the texture this sample as intercrystalline with some vuggs. Descriptive scores of 2 out of 5 for granular, 2 out of 5 to vuggy, and 4 out of 5 to intercrystalline were assigned to this sample.

Figure 16. SEM micrographs of the sample #22. The texture of this sample is mainly intergranular with clear vuggs. We describe this sample as vuggy/ intercrystalline. Descriptive scores in this sample were assigned as following 3, 5, 1 out of 5 for granular, vuggy, intercrystalline, respectively.

Figure 17. Energy Dispersive Spectra (EDS) for sample #1. In this sample silicon is the most dominant element. After silicon, the most abundant elements are iron and aluminum

Figure 18. Three dimensional representation of equation 25. Equation 25 is the empirical formula for determining density of the $scCO_2$ as a function of the temperature and pressure.

Figure 19. Map of the normal annual temperature (in degrees Fahrenheit) for Oklahoma State using data from 1981 to 2000. From

http://climate.ok.gov/index.php/site/page/climate_of_oklahoma

Figure 20. Schematic variation of density and volume of CO_2 as function of depth (from Benson and Cole, 2008)

Figure 21. Scatter plot of the sample depth vs. CO_2 column height. Clustering of the samples with relatively high retention column height around 1,400 m depth suggests that the formations found around that depth are likely to have high sealing potential

Figure 22. Box-and-whisker plot of the CO_2 retention column heights for different lithologies. Shales exhibit better sealing quality (higher CO_2 retention height) compared to limestone and sandstone samples

Figure 23. Average median pore radius and versus CO_2 column height in shales and limestone samples. It could be noticed that there is a very strong negative correlation between average median pore radius and CO_2 height.

Figure 24. Scatter plot of the CO_2 column height versus BET surface area in limestone (right) and all 30 samples including limestones (left). Limestone samples show very strong linear correlation with BET special surface area while shale samples do not exhibit notable correlation.

Figure 25. Histogram of BET surface area in shale (right) and limestone samples (left). Standard deviation in shales is much less than standard deviation in limestones.

Figure 26. Scatter plot of the pore throat standard deviation vs. $scCO_2$ retention column height. Correlation suggests strong positive relationship between pore radius standard deviation and maximum $scCO_2$ retention column height for all 30 samples.

Figure 27. *Pc* vs. *Pd* scatterplot. The correlation coefficient is r = -.033

Figure 28. PCA Analysis. Biplot (left) and scree plot (right) of the data set after excluding outliers. Details about the interpretation of this analyses are given in text.

REFERENCES

Al-Hinai, S., Q. J. Fisher, B. Al-Busafi, P. Guise, and C. A. Grattoni, 2008, Laboratory measurements of the relative permeability of cataclastic fault rocks: An important consideration for production simulation modeling, Marine and Petroleum Geology, v. 25, p. 473 – 485.

Aplin, A. C., A. J. Fleet, and J. H. S. Macquaker, (eds.), 1999, Muds and Mudstones: Physical and Fluid-Flow Properties, *Geological Society Special Publication no. 158*, 190 p

Bennion, B., and S. Bachu, 2006, Dependence on temperature, pressure, and salinity of the IFT and relative permeability displacement characteristics of CO_2 injected in deep saline aquifers, SPE paper 102138.

Benson, S. M., and D. R. Cole, 2008, CO2 sequestration in deep sedimentary formations. Elements, 4(5), 325-331.

Benson, S. M., 2005a, CO₂ storage preface, *in* Benson, S. M. (ed.), Carbon Dioxide Capture for Storage in Deep geologic Formations – Results from the CO₂ Capture Project, p. 663 - 664.

Benson, S. M., 2005b, Overview of geologic storage of CO_2 , *in* Benson, S. M. (ed.), Carbon Dioxide Capture for Storage in Deep geologic Formations – Results from the CO_2 Capture Project, p. 665 - 672.

Berg, R. R., 1975, Capillary pressure in stratigraphic traps, AAPG Bulletin, v. 59, p. 939 – 956.

Boyd, D. T, 2005, Oklahoma Oil and Gas Production: Its Components and Long-Term Outlook, Oklahoma Geology Notes, v. 65, no.1, p. 4 - 23.

Brunauer, S., Emmett, P. H., and E. Teller, (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319.

Chiquet, P., Broseta, D., and S. Thibeau, 2007, Wettability alteration of caprock minerals by carbon dioxide. Geofluids, 7(2), 112-122. doi: 10.1111/j.1468-8123.2007.00168.x

Coalson, E. B., D. J. Hartmann, and J. B. Thomas, 1985, Productive characteristics of common reservoir porosity types, S. Tex. Geol. Soc. Bull., v. 25, no. 6, p. 35 - 51.

Cranganu, C., 2004, Capillary sealing in the Anadarko Basin, Northeastern Geology & Environmental Sciences, v. 26, nos. 1 & 2, p. 35 - 42.

Cranganu, C., 2012, Heat flow in Oklahoma and the south central United States, Lambert Academic Publishing, Germany, ISBN: 978-3-8484-2458-0, 196 pp.

Cranganu, C., and M. A . Villa, 2006, Capillary Sealing as an Overpressure Mechanism in the Anadarko Basin,

http://www.searchanddiscovery.net/documents/2006/06019Cranganu/index.htm

Cranganu, C., and M. A. Villa, 2005, Capillary Sealing as an Overpressure Mechanism in the Anadarko Basin, AAPG 2005 Annual Convention, June 19-22, Calgary, Alberta, Canada, [CD-ROM], p. 1-6.

Cranganu, C., and M. A. Villa, 2013, Reservoir and Non-Reservoir Rocks from the Anadarko basin: A Petrophysical Outline, in C. Cranganu (ed.), Natural Gas and Petroleum: Production Strategies, Environmental Implications and Future Challenges, Nova Science Publishers, Inc. ISBN: 978-1-62808-535-8, p. 71 – 100.

Cranganu, C., Lee, Y., & Deming, D. (1998). Heat flow in Oklahoma and the south central United States. *Journal of Geophysical Research: Solid Earth* (1978–2012), 103(B11), 27107-27121.

Dawson, W. C., and W. R. Almon, 1999, Top seal character and sequence stratigraphy of selected marine shales in Gulf Coast style basins, Gulf Coast Association of Geological Societies Transactions, v. 49, p. 190 – 197.

Deming, D., C. Cranganu, and Y. Lee, 2002, Self-Sealing in the Sedimentary Basins, Journal of Geophysical Research, 107(B12), 2329, doi: 10.1029/2001JB000504.

DOE (Department of Energy), 2005, Carbon sequestration, Technology Roadmap and Program Plan 2005, Developing the Technology Base and Infrastructure to Enable Sequestration as a Greenhouse Gas Mitigation Option,

<u>http://www.netl.doe.gov/publications/carbon_seq/2005_roadmap_for_web.pdf</u>, (accessed on February 2, 2006).

Edwards, K. K., W. R. Almon, W. C. Dawson, D. K McCarty, and F. G. Ethridge, 1999, Seal capacity in Lower and Upper Cretaceous shales, Denver Basin, Colorado, AAPG Bulletin, v. 83, p. 1182.

Förster, A., B. Norden, K. Zinck-Jørgensen, P. Frykman, J. Kulenkampff, E. Spangenberg, J. Erzinger, M. Zimmer, J. Kopp, G. Borm, C. Juhlin, C.-G. Cosma, and S. Hurter, 2006, Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany, Environmental Geosciences, v. 13, no. 3, p. 145–161.

Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., and J. R. Michael, 2003, Scanning electron microscopy and X-ray microanalysis: Springer.

Gruber, N. G., 1995, Integration of capillary pressure data with thin section analysis in reservoir characterization, Canadian Well Logging Society Journal, v. 20, p. 87 – 98.

Hart, D. L., Jr., G. L. Hoffman, and R. L. Goemaat, 1976, Geohydrology of the Oklahoma Panhandle, Beaver, Cimarron, and Texas Counties, U.S.G.S. Water Resources Investigation 25-75, 72 p.

Hartmann, D. J., and E. A. Beaumont, 1999, Predicting reservoir system quality and performance, in E. A. Beaumont and N. H. Foster, eds., Exploring for oil and gas traps, AAPG, Tulsa, OK, ch. 9.

Hildenbrand, A., S. Schlőmer, and B. M. Kroos, 2002, Gas breakthrough experiments on finegrained sedimentary rocks, Geofluids, v. 2, p. 3 – 23.

Hildenbrand, A., S. Schlőmer, B. M. Kroos, and R. Littke, 2004, Gas breakthrough experiments on pelitic rocks: comparative study with N_2 , CO_2 and CH_4 , Geofluids, v. 4, p. 61 – 80.

Jennings, J. B., 1987, Capillary pressure techniques: Application to exploration and development geology, AAPG Bull., v. 71, p. 1196 – 1209.

Johnson, K. S., 1989, Geologic evolution of the Anadarko basin, Oklahoma Geological Survey Circular 90, p. 3 – 12.

Johnson, K. S., 2008, Geologic history of Oklahoma, Oklahoma Geological Survey, Educational Publication 9, <u>www.ogs.ou.edu/pubsscanned/EP9_2-8geol.pdf</u>

Keighin, C. W., 1997, Physical properties of clastic reservoir rocks in the Uinta, Wind River, and Anadarko Basins, as determined by mercury-injection porosimetry, U. S. Geol. Surv. Bull., 2146-G, p. 73–83.

Klara, S. M., R. D. Srivastava, and H. G. McIlvried, 2003, Integrated collaborative technology development program for CO_2 sequestration in geologic formations – United States Department of Energy R&D; Energy Conversion and Management, v. 44, p. 2,699 – 2,712.

Kroos, B. M., A. Hildenbrand, and S. Alles, 2005, Experimental studies on seal efficiency for CO_2 storage, Geoph. Res. Abstracts, vol. 7, 06147

Kroos, B. M., D. Leythauser, and R. G. Schaefer, 1992, The quantification of diffusive hydrocarbon losses through cap rocks of natural gas reservoirs – A reevaluation, AAPG Bulletin, v. 76, no. 3, p. 403 – 406.

Krushin, J. T., 1997, Seal Capacity of Nonsmectite Shale, in R. C. Surdam, ed., Seals, traps, and the petroleum system, AAPG Memoir 67, p. 31 – 47.

Li, S., M. Dong, Z. Li, S. Huang, H. Qing, and E. Nickel, 2005, Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term CO_2 storage in the Weyburn field, *Geofluids*, v. 5, p. 326 – 334.

Li, Z., M. Dong, S. Li, and S. Huang, 2006, CO_2 sequestration in depleted oil and gas reservoirs – caprock characterization and storage capacity, *Energy Conversion and Management*, v. 47, p. 1372 – 1382.

Martin, A. J., S. T. Solomon, and D. J. Hartmann, 1997, Characterization of petrophysical flow units in carbonate reservoirs, AAPB Bull., v. 81, p. 734 – 759.

Moritis, G., 2005, Numerous studies analyze CO_2 sequestration options, Oil & Gas Journal, Sept. 5, 2005, p. 42 – 47.

Newsham, K. E., J. A. Rushing, P. M. Lasswell, J. C. Cox, and T. A. Blasingame, 2004, A comparative study of laboratory techniques for measuring capillary pressures in tight gas sands, SPE 89866. In: SPE Annual Technical Conference and Exhibition, Houston, TX.

Ouyang, L.-B. (2011). New Correlations for Predicting the Density and Viscosity of Supercritical Carbon Dioxide Under Conditions Expected in Carbon Capture and Sequestration Operations. Open Petroleum Engineering Journal, 4.

Puckete, J., 2006, Naturally Underpressured Compartments and Geologic Sequestration of Carbon Dioxide, Search and Discovery Article #40210

Purcell, W. R., 1949, Capillary pressures – Their measurements using mercury and the calculation of permeability therefrom, American Institute of Mining Metallurgical and Petroleum Engineers Petroleum Transactions, v. 186, p. 39 - 48.

Rudnicki, J. W., and W. R. Wawersik, 1999, Report looks at sequestering CO2 beneath Earth's surface, Eos Trans. AGU, 80(50), 607–608, doi:<u>10.1029/99EO00408</u>.

Schowalter, T. T., 1979, Mechanics of secondary hydrocarbon migration and entrapment, AAPG Bull., v. 63, p. 723 – 760.

Sutton, S. J., F. G. Etheridge, W. C. Dawson, and W. R. Almon, 2006, Parameters controlling mudstone sealing capacity,

http://www.searchanddiscovery.com/documents/2006/06088houston_abs/abstracts/suttono_2.htm, accessed on June 28, 2008.

Sutton, S. J., F. G. Etheridge, W. R. Almon, W. C. Dawson, and K. K. Edwards, 2004, Textural and sequence-stratigraphic controls on sealing capacity of Lower and Upper Cretaceous shales, Denver basin, Colorado, AAPG Bulletin, v. 88, p. 1185 – 1206.

Tanguay, L. H., and G. M. Friedman, 2001, Petrophysical characteristics and facies of carbonate reservoirs: The Red River Formation (Ordovician), Williston basin, AAPG Bull., v. 85, no. 2, p. 491 - 523. Varma, S., T. Dance, J. Underschultz, R. P. Langford, and K. Dodds, 2007, Regional study on potential CO_2 geosequestration in the Collie Basin and the Perth Basin of Western Australia, CO2CRC Report no: RPT07-0529, 104 p.

Villa, A. M., 2005, Petrophysical characterization of reservoir and non-reservoir formations of the Anadarko Basin, based on mercury intrusion porosimeter measurements, MA Thesis, Brooklyn College, 188 p.

Washburn, E.W., 1921, Note on a method of determining the distribution of pore sizes in a porous material, Proceedings of the National Academy of Science, v. 7, p. 115 -116.

Webb, P. A., 2001, An Introduction To The Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis On Reduction And Presentation of Experimental Da-ta, Micromeritics Instrument Corp., Norcross, Georgia, 22 p.

White, D. J., G. Burrowes, T. Davis, Z. Hajnal, K. Hirsche, I. Huntcheon, E. Majer, B. Rostron, and S. Whittaker, 2004, Greenhouse gas sequestration in abandoned oil reservoirs: The International Energy Agency Weyburn pilot project, GSA Today, 14, no. 7, doi: 10.1130/1052-5173(2004)014<4:GGSIAO>2.0.CO;2.

Wilson M., and M. Monea, 2004, IEA GHG Weyburn CO2 monitoring & storage project. Summary report 2000-2004. *In* 7th International Conference on Greenhouse Gas Control Technologies

Wollenweber, J, S. Alles, A. Busch, and B. M. Kroos, 2007, Experimental investigation of the Co₂ sealing efficiency on a regional cap rock in W Germany, Geoph. Res. Abstracts, vol. 9, 07460

Yang, Y, and A. C. Aplin, 2007, Permeability and petrophysical properties of 30 natural mudstones, *Journal of Geophysical Research*, vol. 112, B03206, doi: 10.1029/2005JB004243.

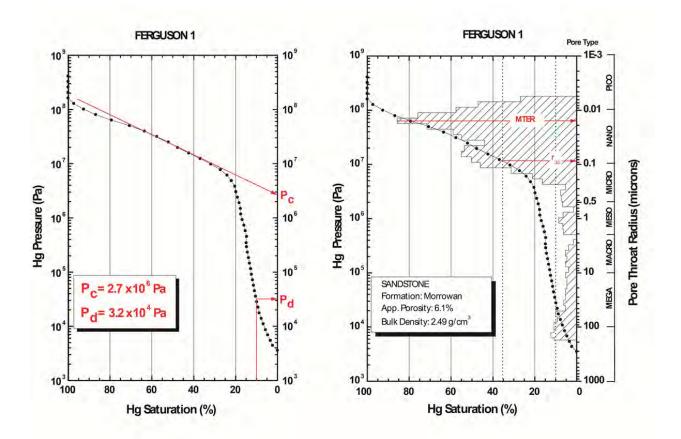
APPENDICES APPENDIX A: MERCURY INTRUSION POROSIMETRY (MIP) MEASURE-MENTS, SAMPLE PICTURES, AND SAMPLE SUMMARIES

Sample#1 – 120

120 FERGUSON-1 Gray Medium Grained Sandstone

Median Pore Median Pore

1


Fil	е#	County	Formation	Depth (m)	Lat (N°)	Long (W°)
1	20	Texas	Morrowan	1354	36.84	-101.95
Intrusion Da	ta Sun	mary	2		Pore :	Structure Su
Radius (Volume)	1	0.028	μm	Pc		
Radius (Area)		0.00985	μm	Pd (@ 109	% Hg satura	tion)
Radius		0.018825	μm	BET Surfac	ce Area	
			1 2	Median G	rain Size	

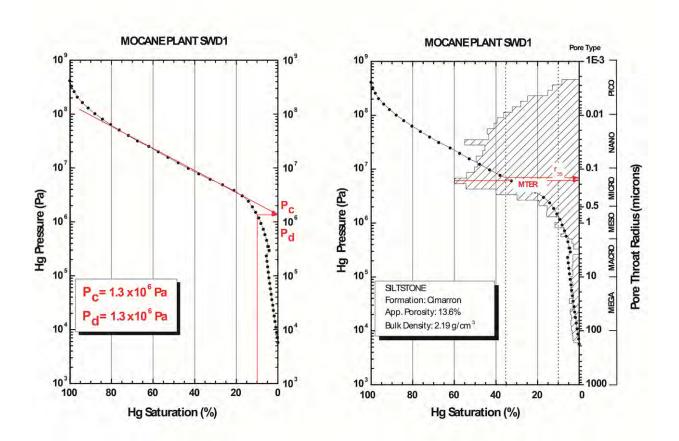
Average Pore Radius	0.018825	μm
Bulk Density	2.49	g/cm ³
Apparent (skeletal) Density	2.65	g/cm ³
Porosity	6.1	%

	Organic Content	
тос	1.29	wt% HC

Pore Structure Summary								
Pc	2.70	MPa						
Pd (@ 10% Hg saturation)	0.03	MPa						
BET Surface Area	8.1997	m²/g						
Median Grain Size	71.446	μm						
R35	0.085	μm						
Pore Throat Type	Nano							
Pore Throat Distribution	Unimodal							
Pore Throat Sorting	Medium Sorted							
MTER	0.015	μm						

XRD Analysis										
Illite & Mica	Kaolinite	Chlorite	Quartz	K-Feldspar	Plagioclase	Calcite	Dolomite	Ankerite	Hematite	Pyrite
7.50	43.6	33.7	9.30	0.4	3.1	0	7.50	43.6	33.7	9.30

Sample#2 - 277


277 MOCANE PLANT SWD1 Red Fine Grained Siltstone

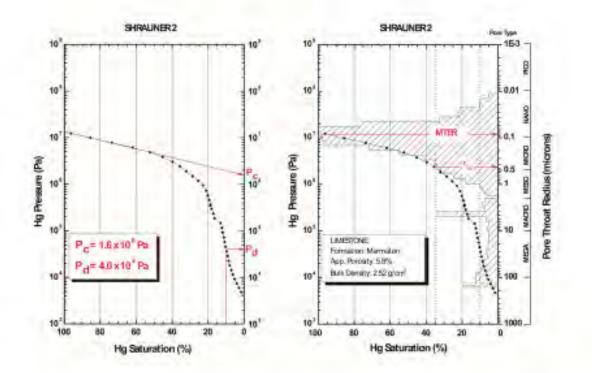
File	# Cou		Formation	Depth (m)	Lat (N°)	Long (W°)	
27	7 Bea	aver	Cimarron	470	36.6	-100.6	
In	trusion Data Sur	nmary			Pore Stru	cture Summary	
Median Pore Ra	dius (Volume)	0.0456	μm	Pc		1.30	MPa
Median Pore Ra	dius (Area)	0.0054	μm	Pd (@ 10%	Hg saturation)	1.30	MPa
Average Pore R	adius	0.0255	μm	BET Surface	0	9.3872	m²/g
Bulk Density		2.2	g/cm ³	Median Gra	ain Size	27.866	μm
Apparent (skele	tal) Density	2.5	g/cm ³	R35		0.14	um
Porosity		13.6	%	Pore Throa	t Type	Micro	
				Pore Throa	t Distribution	Unimodal	
	Organic Conte			Pore Throa	t Sorting	Medium Sorted	
тос		1.21	wt% HC	MTER		0.16	μm

XRD Analysis											
Illite & Mica	Kaolinite	Chlorite	Quartz	K-Feldspar	Plagioclase	Calcite	Dolomite	Ankerite	Hematite	Pyrite	
60.5	7	12.8	4.3	1.7	3	0	0	0	7.6	0	

1

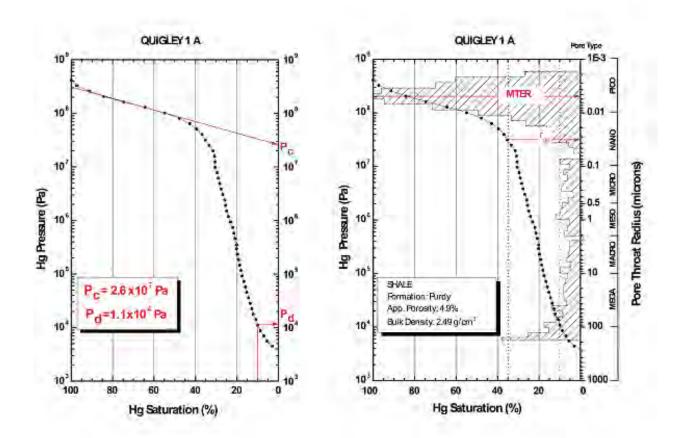
Sample#3 – 601

601 SHRAUNER 2 Gray Medium Grained Limestone



	File #	ile # County		ation	Depth (m)	Lat (N°)	Long (W°)	
	601	Texas	Marn	naton	1173	36.6	-100.5	
	Intrusion Data S	Summary			P	ore Structu	are Summary	
Median Pore	Radius (Volume) NA	μm		Pc		1.6	MPa
Median Pore Radius (Area)		NA	μm		Pd (@ 10% Hg sa	turation)	0.04	MPa
Average Por	e Radius	NA	μm		BET Surface Area		0.6087	m²/g
Bulk Density		2.5	g/cm ³		Median Grain Siz	е	93.794	μm
	eletal) Density	2.7	g/cm ³		R35		0.42	μm
Porosity		5.8	%		Pore Throat Type		Micro	
rorosity		5.0	70		Pore Throat Distr	ibution	Unimodal	
	and the second				Pore Throat Sorti	ing	Medium Sorted	
Organic Content					MTER		0.084	μm
TOC		1.23	wt% HC					

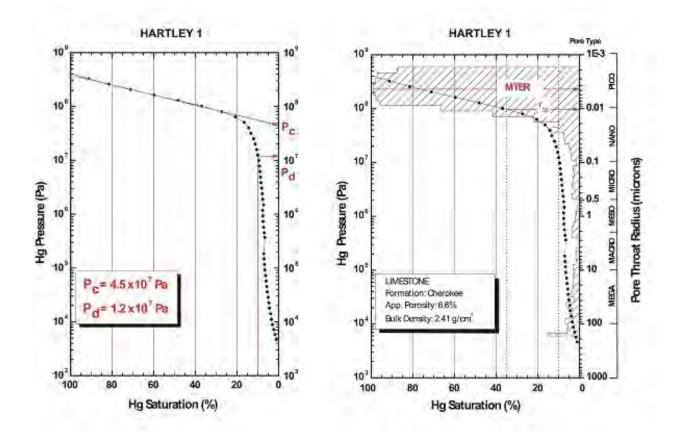
XRD Analysis (wt%)										
Illite & Mica	Kaolinite	Chlorite	Quartz	K-Feldspar	Plagioclase	Calcite	Dolomite	Ankerite	Hematite	Pyrite
0.8	0	0.6	1	0.3	0.6	96.7	0	0	0	0


Sample#4 – 868

868 QUIGLEY 1 A Black Fine Grained Fissile Shale

	868	Texas		Purdy	1382 36	9 -101.9	
	Intrusion Data Su	mmary			Pore Stru	cture Summary	
Median Por	e Radius (Volume)	0.0072	μm		Pc	26.00	MPa
Median Por	e Radius (Area)	0.0034	μm		Pd (@ 10% Hg saturation) 0.01	MPa
Average Po		0.0053	μm		BET Surface Area	18.5175	m²/g
Bulk Densit		2.5	g/cm ³		Median Grain Size	24.322	μm
	keletal) Density	2.6	g/cm ³		R35	0.032	μm
Porosity	increating benoity	4.9	%		Pore Throat Type	Nano	
FOIDSILY		4.5	70		Pore Throat Distribution	Unimodal	
	Organic Conte				Pore Throat Sorting	Medium Sorted	
	en Banne donte				MTER	0.005	μm
тос		1.85 w	t% HC		WITCH	0.005	

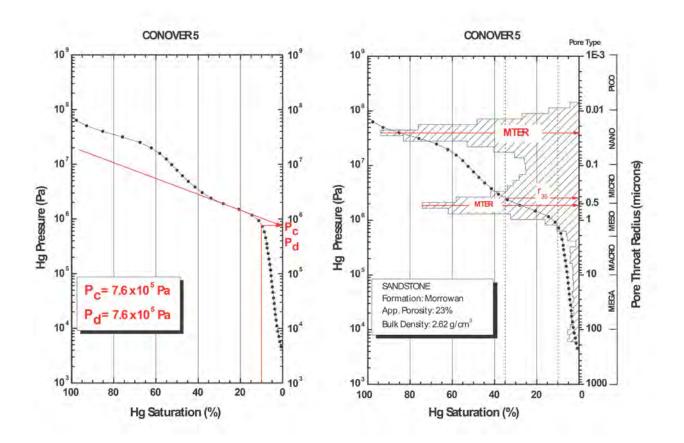
XRD Analysis (wt%)										
Illite & Mica	Kaolinite	Chlorite	Quartz	K-Feldspar	Plagioclase	Calcite	Dolomite	Ankerite	Hematite	Pyrite
21.5	19.8	10.1	5.6	1	1.9	0	0	0	0	0



Sample#5 - 878

878 HARTLY 1 Black Fine Grained Limestone

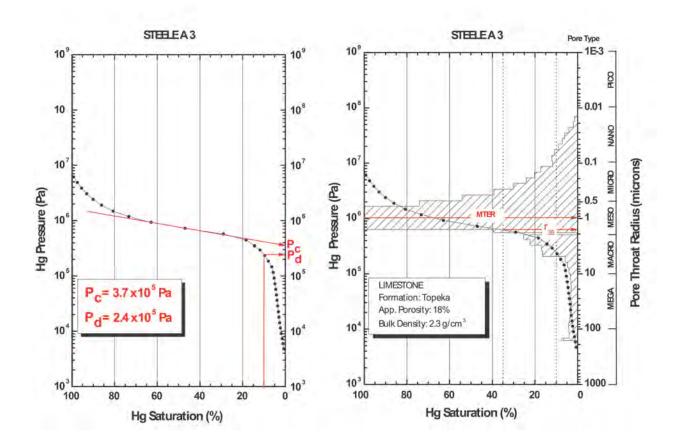
	1996	Cardina State		CONSTRUCTION OF	THE REPORT OF	100.000	And the Party of t			
	878	Texas	Ch	erokee	1390	36.7	-102.0			
	-	licente som	-	-		1	aid Stationar Sta	minund	-	
Media	IT Pore Radius	Ivolamel	0.0047	OTH .	Pr:-			45.00	MPa	
Media	a Pore Radius	[Area]	0.0028	AUTT'	Pd I	@ 1016 Hg 5a	(uration)	12.00	MPa	
	ge Pore Bathie		0.0058	Laine	BET	Surface Area	and the second second	16.2197	milit	
	ensita			icnia.	Med	lan Grain Siz	e .	59 789	1010	
	ent (skeletal)	Density		icn-1	RSS			0.01	HTT LUTT	
Porosi	and a second second second	Coldina .	6.6		Pore	Throat Type		Pico		
101.60	et.			-	Pore	Throat Dist	ribution	Linimodel		
		Barriel Country of			Pore	Throat Sort	ing I	Viedium Sorter		
TOC		2.1	10 WEW	HC	MITE	R		0.0045	jum,	
					and with					
e à Mica	Kasinite	Chlome	Quert			Rase Cal	cité Dolomit	e Ankente	Hematie	Pyre
15.2	10.2	-181	37 A	1.9	45	7	a b	0	0	2.2



Sample#6 – 900

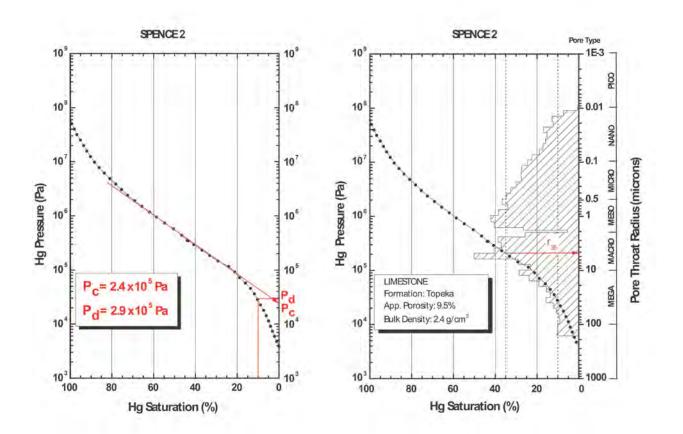
900 CONOVER 5 Light Brown Fine Grained Quartz Sandstone

NUTRING OF STREET, STR				n	100 BL	and the second			
Median Pore Redius (Volume)	-D.D047	-mu		PE .		0.76	MP3		
Median Fore Radius (Anes)	0.0028	um		Pd top 10% He u	(horshight)	0.75	MPa		
Average Pore Radius	D DOSA	100		BET Surface Arei	5	1.8399	m ² /#		
Bulk Density	7.6195	-		Mediun Grain St	18	101.595	ha		
Apparent (skeletal) Density		-		835		0.395	104		
States and a second second second		g/cm/		Pore Throat Typ		Mic/o			
Porosity	25	1.00		Pore Throat Dist	ribution	Bimodial			
Detainer Couters				Pore Throat Sort	ang	Medium Sorter	d i		
Long the Course				MTER.		0.025/0.53	10		
700 1	74 WC	N/HC	0	toc.		1.74	aetS Ho	\$	
			NOD WHEN	a diversity					
& Mica Keolinite Chlorite	Qu	niz	K-Feldspar	Plagloclase.	Calcite	Dalamite	Ankerite'	Hemalite	Pyrik
5.2 491 25.5	11	A.	0	10.7	0	a	0	0	0


Sample#7 – 1081

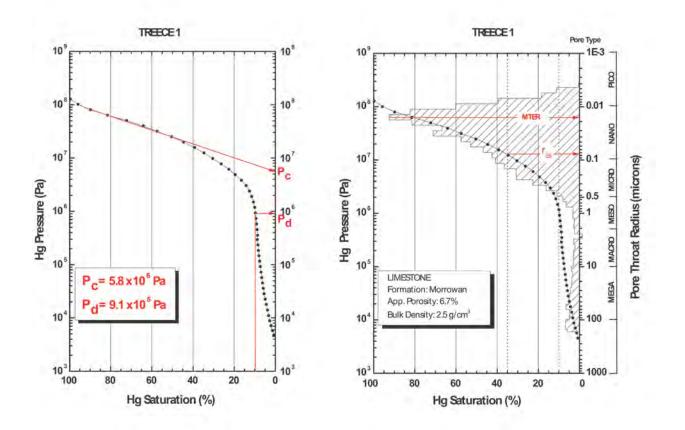
1081 STEELE A 3 Pink Fine Grained Limestone

	ALL OF	Country		Appropriate	tri Dapiti	timi talij	N()	Long (MU)		
	1061	Cimatron		Topeka	10	72	6	+102.0		
-	letrup	m Dina Semanar	-	_			to a large l	In the second	-	
Media	n Pore Redium	and the second se	NA-	400		Pc		0.57	NPA	
Media	n Pore Radius	(Area)	NA.	-um		Pd (# 10% Hg s	Inditerute	0.24	MPa	
	e Pore Redius	and the second se	NA	am	1	BET Surface Are		0.5047	m1/#	
Bulk D	and a second		2.5	g/cm2		Median Grain Si	28	41.648	P M	
	ent (skeletal) D	and b	2.8	g/cml		R35		1.5	jum.	
Porosi	and the second second		NA	5		Pore Throat Typ	e)	Mero		
Cardin	**		1000			Pone Throat Dist	ribution	Unimodal	1	
		Mur Contria				Pore Throat Son	ting	Weil Sorte	đ	
тос		1.76		NETS HE		MTER		0.97	ym	
					IDD Amini	- netbill				
Ite & Mica	Kaolinite	Chlorite	0	wartz	K-Feldspar	Plagloclase	Calcite	Dolomite	Ankerite	Hematite P
1.5	.0	4.6		11.6	0.5	12	7.5	64.9	a	0


prit D

Sample#8 – 1461

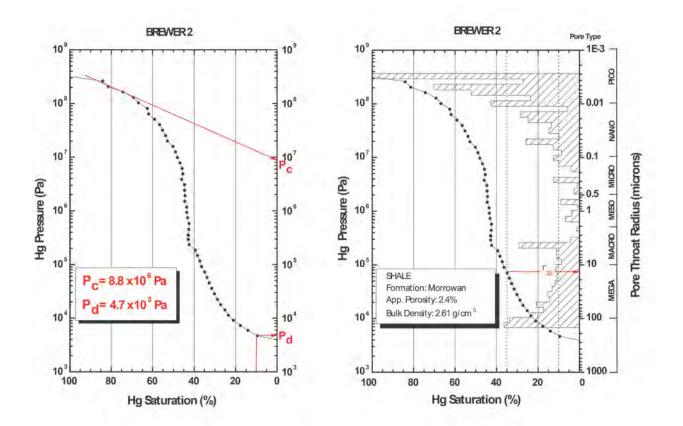
1461 SPENCE 2 White Fine Grained Limestone


Sample#9 – 1712

1712

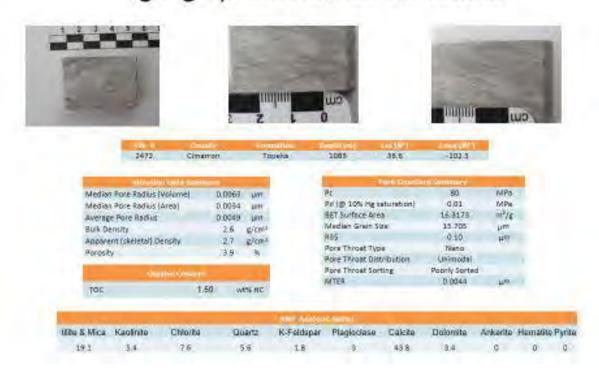
TREECE 1

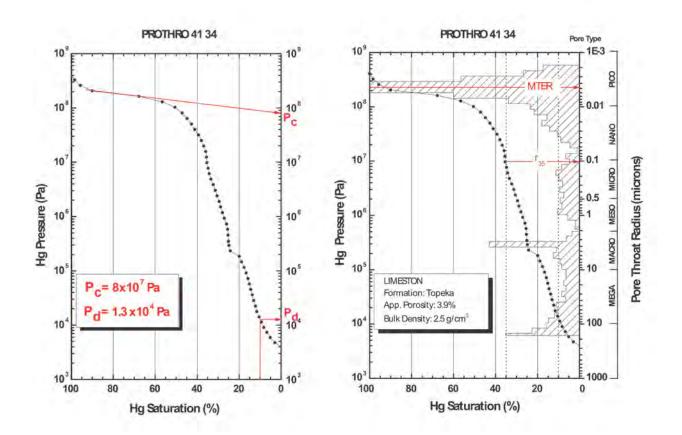
Brown Coarse Grain Limestone with Visible Feldspar and


7	3		A. and	Sealer 2		1000	* I
	10	A DECK OF		And a state of the second second		100	
	104	SAN S	San Paris	And Some	- F		
	7	and the	1-101-11	Cash I			and the second
	100	10	ander	inter-		No.	1000
	-	. 5	- Contraction				1 -
and the second second	-			-			A Alexandren and a second
Gamerta		Fortille	in D	apelly (mil)	-14041		
Texas		Morro	nan	1536	36.6	-102.0	
_	_	_		-	_	_	_
And in case of the local division of		10077		2:			MPa
2 4 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(noderutes g	.091	MP3
17				BET Surface A	-	1 0966	m^2/ϵ
		and the second second		Median-Grain	see	144.292	µ00
and	100 million (100 million (100 million))			855		0.06	jum .
and.	and the second sec			Pore Threat T	vpe	Nano	
				Pore Throat D	Instribution	Unindial	
ON CONTRACT				Pore Throat 5	orting	Medium Sorte	±0
	à	-		MTER		0.016	1)m
1.21	w w	CHINC					
	Texas Slume) nea)	Texas Dourse) 0.0255 real 0.0212 0.0212 2.5 reaty 2.7 6.8	Tex8s Morro Domei 0.0255 pm neal 0.0312 pm 0.0382 pm 2.5 g/cm 1.55 S 1.07 0.0382 S 1.07 0.0382 S 1.07 0.0385 S 1.07 1.0	Texas Marrowan Dome Content District for District for Dis	Texas Manawan 1536 Data Manawan Diume) 0.0255 jam Pe neal 0.0212 jam Pd (j2 10% Hg 0.0382 ja	Texas Morrowan 1536 36.6 Double Statement Diume) D.D255 pm Pd (gl 10% Hg spturation) D.D312 pm BET Surface Area 2.5 g/cm ³ BET Surface Area 2.5 g/cm ³ BET Surface Area 2.5 g/cm ³ BET Surface Area Median Grain Size Size Pore Throat Distribution Pore Throat Distribution Pore Throat Sorting Sates	Texas Marrowan 1536 36.6 102.0 Dota Marrowan 1536 36.6 102.0 Dota Marrowan D 025.5 pm Pc DA Diumel D 025.5 pm Pc DA D 025.2 pm Pd Pd Diumbon 0.91 D 025.2 pm Pd P

Sample#10 - 2177

2177 BREWER 2 Black Fine Grained Calcareous Shale

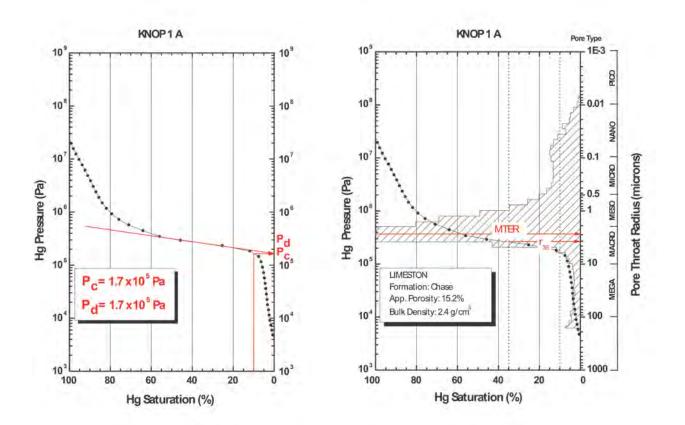




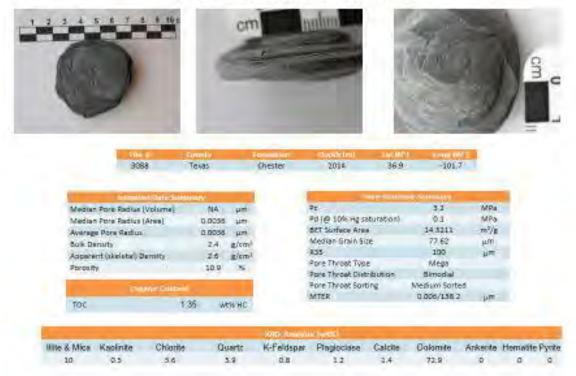
Sample#11 – 2472

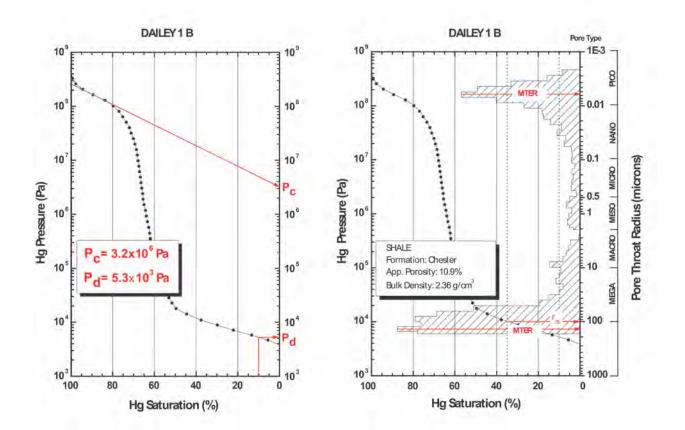
2472

PROTHRO 41 34 Light gray Fine Grained Limestone



Sample#12 - 2609


2609 KNOP 1 A Pink Fine Grained Limestone



Sample#13 - 3088

3088 DAILEY 1 B Black Fine Grained Fissile Shale

Sample#14 – 3115

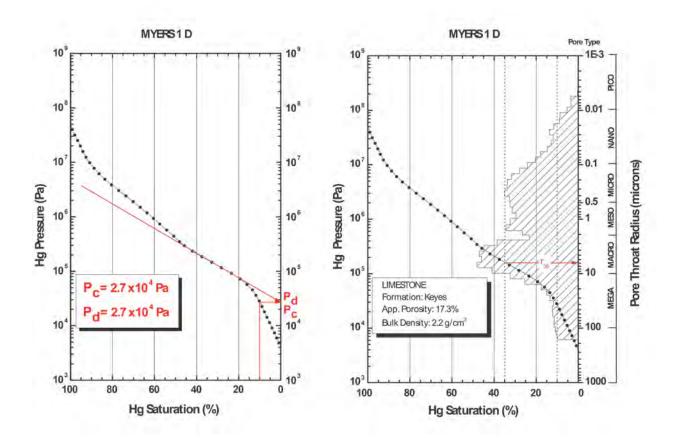
3115

MYERS 1 D Dark Gray Medium Coarse Grained Limestone

3115

Texas

seves



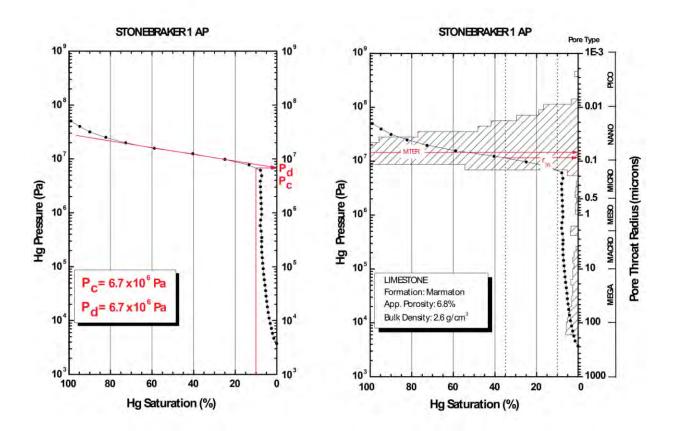
101.4

Internation Data	Stammary					1.0	CONTRACTOR OF STREET,		
Median Pore Redius (Volum	10)	NA:	- µm	3	7E 1		0.05	MPa	
Median Pore Redlus (Area)		NA	1175	3	FR 1@ 10% Hg s	(noiteriuts	0.03	MPa	
Average Pore Radius		NA	- 11-11	1	BET Surface Are		0.0360	m ² /E	
Bulk Demilty		2.2	g/cm ³		Median Grain Si	ze.	142 815	μ10	
Apparent (skaletal) Density		27	g/cml	3	155		6.35	10	
Porcelly		NA			Pore Threat Tvp	e	Macro		
- Dr Darieg		1000			Fore Throat Dist	ribition	None-model		
(Income)	and all a				Pore Throat Son	ting	Poorly Sorted		
	-				MTER		NA	100	
TOC	1.90		NOR HC						
				ARD Analyse					
Mice Keolinite Ch	lotte	0	uartz	K-Feldspar	Plagloclase	Calche	Dolamite	Ankecite	Hematite P
17.5 5	5.4	6	15.4	DA	0.9	6.9	0.9	9.7	a

1995

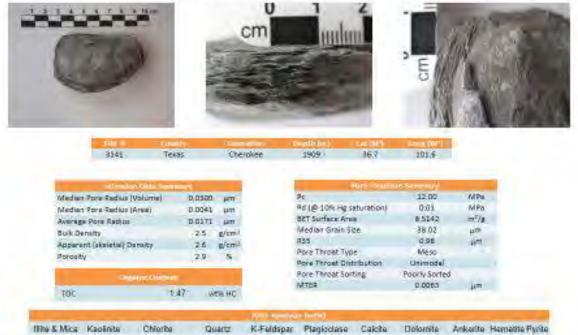
96.9

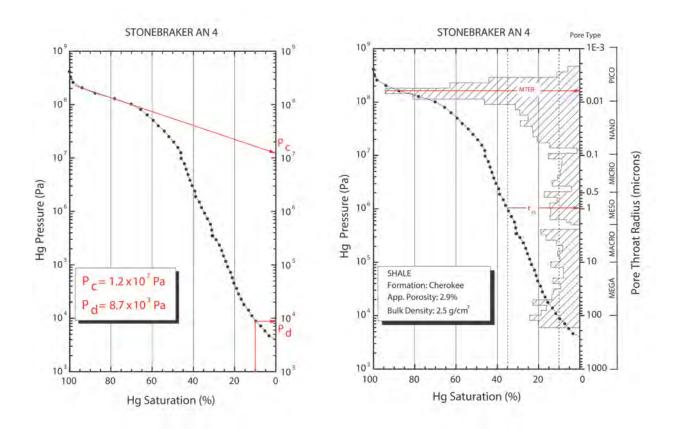



Sample#15 - 3138

3138

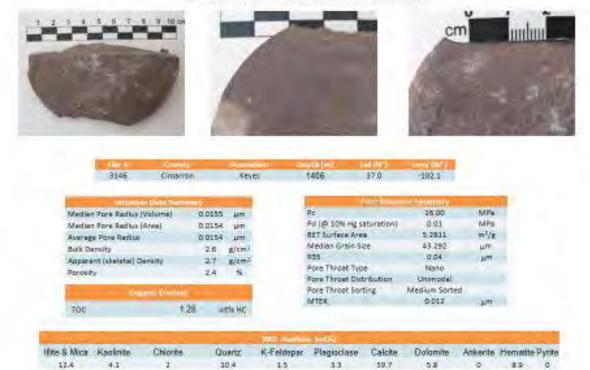
STONEBRAKER 1 AP

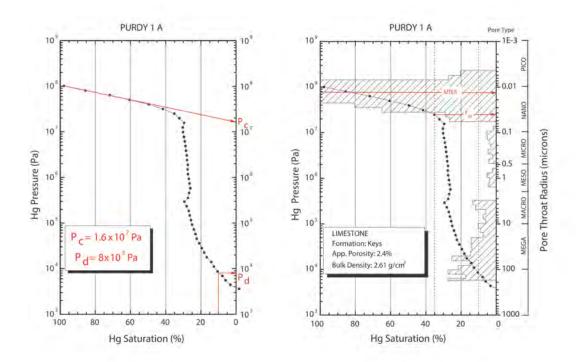

Light gray Medium Grained Limestone



Sample#16 - 3141

3141 STONEBRAKER AN 4 Black Fine Grained Fissile Shale

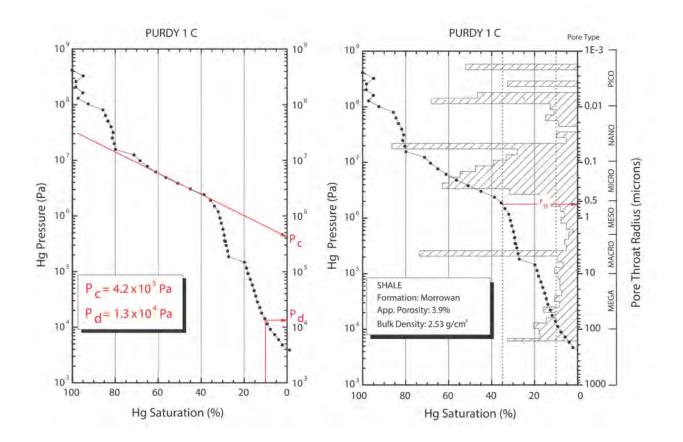



15.9 55.3 7.2 3.1 0 0.9 0 0 0 0 0

Sample#17 - 3146

3146 PURDY 1 A Red Fine Grained Limestone

Sample#18 – 3149

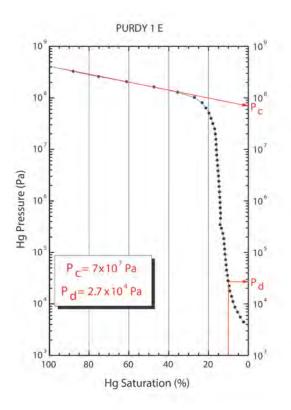

3149

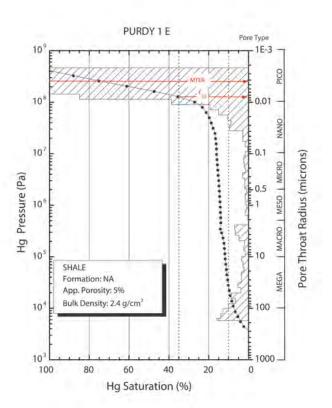
PURDY 1 C

Dark Gray Fine Grained Shale

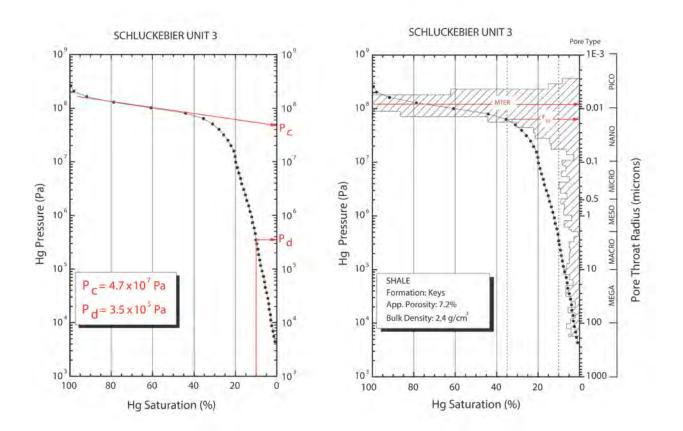
and the second se	Dista Manten					ALC: NO REAL PROPERTY.	resonantly.			
Median Pore Redaus (Vo	blurrie)	0.165	-un-		Pc		0.42	MPa	24	
Median Pore Radius jAs	neet.	0.0214	μπ		Pille 10% Hg si	Inoderute	0.01	MPa		
Average Pore Radius		0.087	μm		BET Surface Ara		9.7056	=1/2		
Bulk Density		25	g/cml.		Median Grain Si	ze.	75.214	μm.		
Apperent (skeletal) Der	with.	2.6	g/cm)		855		0.35	in the second se		
Porosity	and the	5.9	.5	3	Pore Throat Typ	e	Meso			
-money		100	0.0	1	Pore Throat Dist	ribition	Non-modal			
			-		Pore Throat Solt	ting .	Poorly Sorted	1		
(Depres	CERTIMATIN				MTER		784	μe		
тос	1.89	WE	в нс							
		_		KND own	waler_					- 1
& Mica Keolinite	Chlorite	Q	HHTZ .	K-Feldspar	Plagloclase	Calcite	Dalamite	Ankerite	Hematite	Pyrib
1.5 46.8	66	2	2.9	0	D	0	0	0	0	0

Sample#19 – 3150


1397 PURDY 1 E Black Fine Grained Shale



File D	- Creatily	Formélian	Clauntik Linu	LANCENCY	and the !!	
9150	Cimarian	Unknown	1997	37.0	-102.1	5
Hinatim Data 5	and the second se	-	-	unast	nethinenary (-
Median Pore Redius (Volume)		44775	Pc'		70.00	MPa
Median Pore Radius (Area)	0.0025	шті	PELIP 10% Hg s	(inoidsrute	0.03	MPa
Average Pore Reduit	0.0031	1070	BET Surface Are		12 3568	m1/s
Bulk Density	and the second	(cm)	Median Grain Si	zé	93.375	μm
Apparent (skeletal) Danalty	and the second se	viem?	R55		D D077	11.00
Porcety	50	5	Pore Throat Typ	e.	Pico	
- aldert	2.4	191	Pore Throat Dist	ribution	Unimodel	
Country Die	dia		Pore Throat Sort	ting :	Mediom Sorted	8
TOC	1.70	104	MTER.		0.004	The
ioc	1.79 un	h HC				
		100-000	unter (her (Bis)			
& Mica Kaoknite Chlor	te Que	rtz K-Feldspa	r Plagioclase	Calcite	Dolomite A	Ankente Hematite Py
77 77 05	5.0	n n	0	24	2.8	0 0



Sample#20 - 3355

3355

SCHLUCKEBIER UNIT 3 Black Fine Grained layered Shale

Sample#21 - 3780

3780

DURHAM 1

Dark Fine Grained Gray Limestone

855

MTER

K-Feldspar Plagloclase Calcite

TOC

27

Pore Throat Type

Pore Throat Sorting

7.2

101

Pore Throat Distribution

0.0119

Nano

Utilincidal

Well Sorted

0.0059

1.71

1.9

100

jun .

HTR HO

Dolomite Ankerite Hematite Pyrite

0 0 2.7

2.5 g/cm3

2.6 g/cm1

3.3 5

WER HE

Quartz

11.5

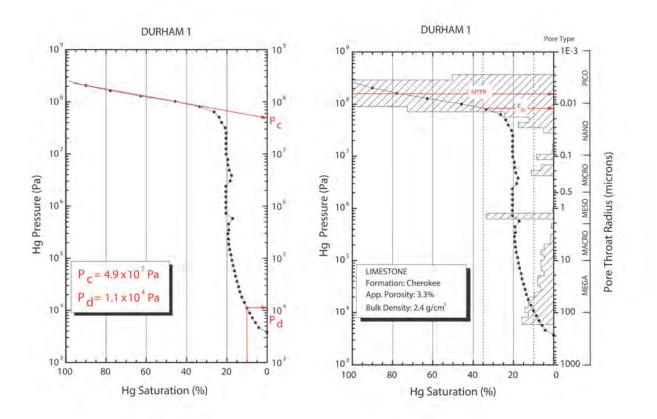
1.71

Chlorite

26.5

Bulk Density

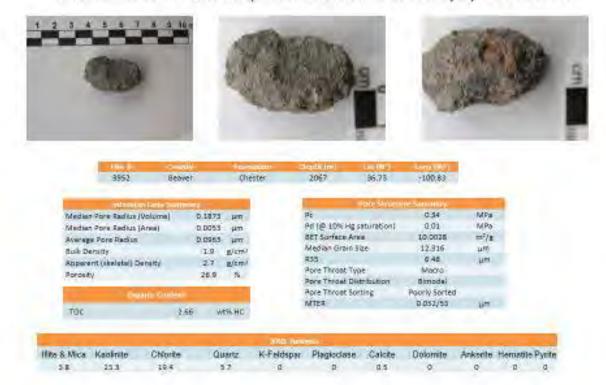
Porosity

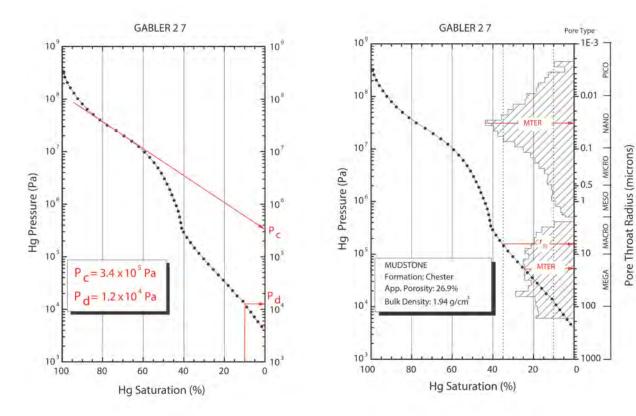

TOC

lifte & Mica. Keolnite

12.5 12.9

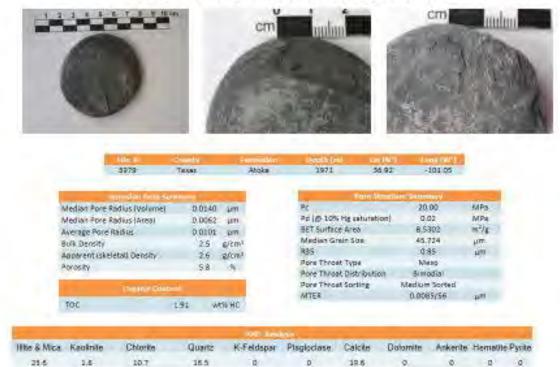
Apparent (skaletal) Density

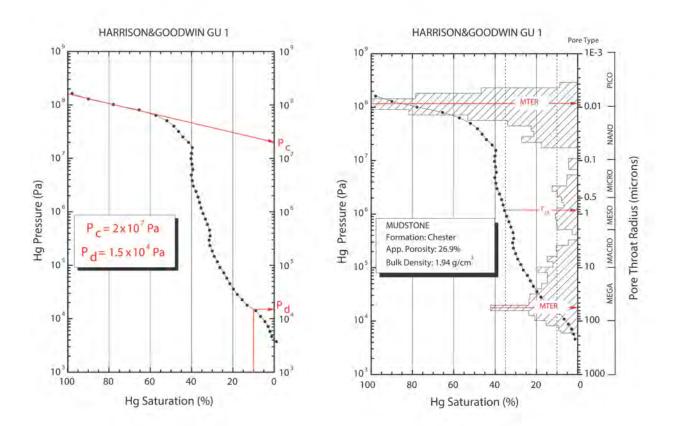

1	.0	8



Sample#22 - 3952

3952 GABLER 2 7


Black Fine Grained very Fissile Calcareous Clayey Mudstone



Sample#23 - 3979

3979 HARRISON&GOODWIN GU 1 Black Fine Grained Calcareous Shale

Sample#24 - 4157

4157

STATE 1

Fine Grained Layered Purple Limestone

41 5

WERE HE

20.6

1.24

Chlorite

7.8

Porceity

TOC

Ille & Mica Kaolnite

27.6 3.6

Pore Throat Type

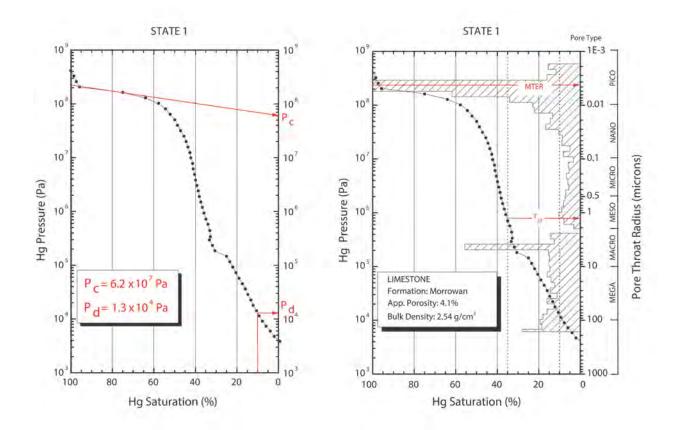
MTER

Pore Throat Distribution

Quartz K-Feldspar Plagloclase Calcite Dolomite Ankerite Hemetite Pyrite

14 33 26 0 0 133 0

Pore Throat Solting


Meso

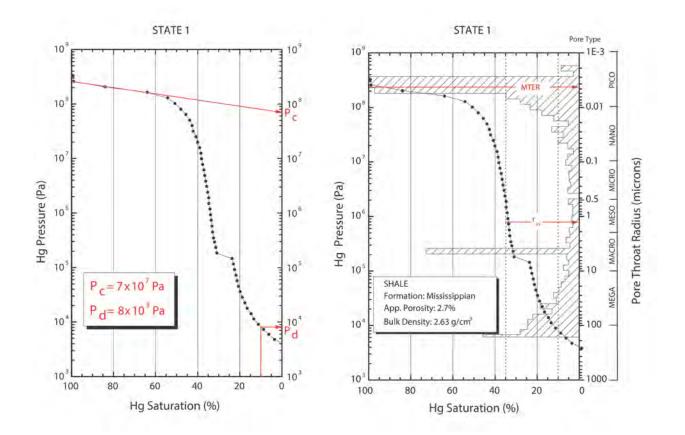
Unimodal

Medium Sorted

0.0042

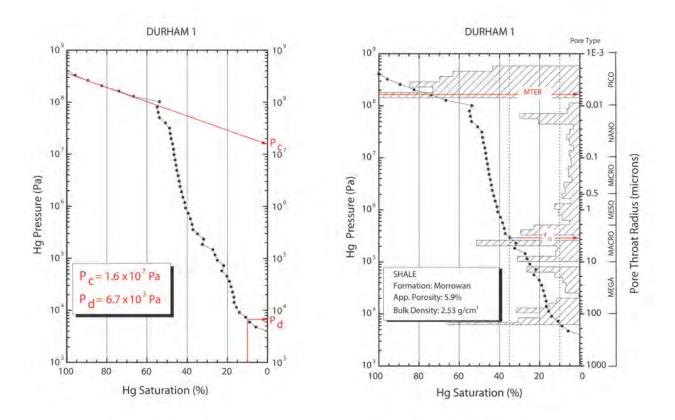
un .

Sample#25 – 4164

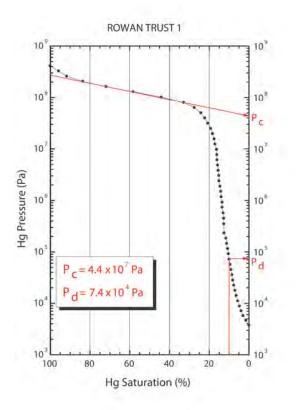

4164 STATE 1 Gray Fine Grained Shale

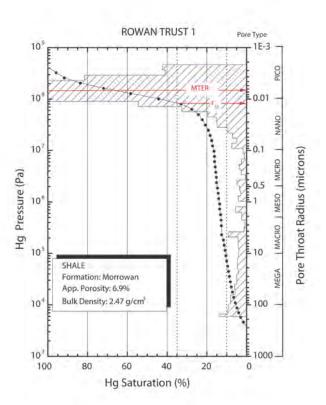
minute force in	annini.			une some de	or examination of the			
Median Pore Radius (Volume)	0.0130	TTHE	Pc		70.00	MPa	21	
Median Pore Radius (Area)	0.0085	24771	Pd (@ 10% Hg s	(holterute	0.01	MPa		
Average Pore Redius	0.0098	um'.	BET Surface Are		11.0070	m"/s		
Bulk Denaity	2.6	g/cm ¹	Médian Grain Si	ié.	62.61	μπ		
Apparent (skeletal) Denaity	27	m/amil.	R35		0.484	- 1971		
Porquity	2.7	8	Pore Throat Typ	e	Micro			
(and a set of the set	1000	14	Pore Throat Dist	ribution	Unimodal			
Department	-		Pore Throat Son	ting	Medium Sorteo	Phase 199		
TOC	1.07 W	PR MC	MIER		0.0036	"m		
195		in the second						
			and the second second	****				
S Mica Kaolinite Chlor	te Qi	uartz K-Fel	dspar Plagiociase	Calote	Dolomite	Ankente	Hemathe	24
19 147 134		13 2						1

Sample#26 – 4224


4224 DURHAM 1 Black Fine Grained Shale

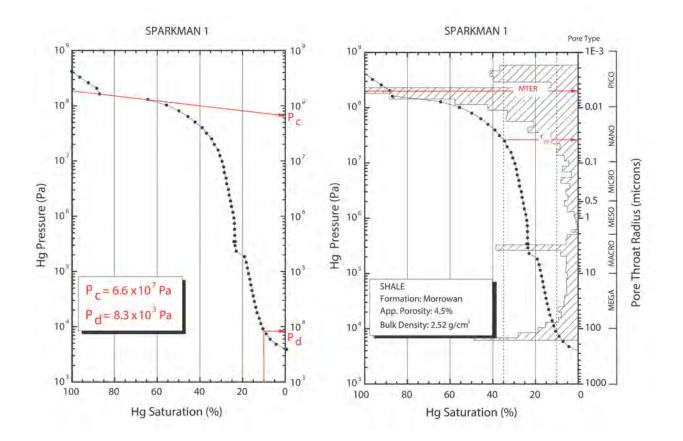
	_	_	-		_			
Median Pore Radius (Volume) Median Pore Radius (Average Average Pore Radius Suik Density Apparent (ukeletal) Density Porosity	and the second se	um um um g/cml g/cml S	Pc Pd Ig: 10% Hg BET Surface An Median Grain RSS Pone Throat Tv Pone Throat D	size pze	16 0.01 16.7063 27.859 3.33 Natio Non-modal	MPa MPa m ² /g µm		
Organica Doni Tigic	184 - W	THE HE NAME	Pore Throat So MITCR		Poorly Sorted	μm		
e & Mica Kaolinite Chlor	rite Qu	uniz K-Felds	spar Plagloclase	Calcite	Dolomite	Ankerite	Hemathe	Pyr
14.4 2D 10	£	58 0	0	4	0	.0	0	0




Sample#27 – 4211

4211 ROWAN TRUST 1 Black Fine Grained Calcareous Shale

Internation Dyna Un	and the second second				and a state of	1055000 Martin			
Median Pore Redaus (Volume)	0.0056	- 1011 -		20		44.00	MPa		
Median Pone Radius (Anke)	0.0056	·µm	1	Pid I @ 10% Hg st	Inoderute	0.07	MPa		
Average Pore Radius	0.0046	um.		SET Surface Arai	1	17.6279	in*/#		
Sulk Density	2.5	g/cm)	3	Median Grain Sa	te.	17,605	thur the		
Apparent (skaletal) Denaity	2.7	g/cm)		855		0.012	100		
Porosity	6.9	.5	3	Pore Throat Typ	e	Nano			
· · · · · · · · · · · · · · · · · · ·	- 25	100	3	Pone Throat Dist	ribution	Unimodal			
dipunctors	(Inter-		1	Pone Throat Sort	ing .	Medium Sorter	d		
	1000		-	MTER		0.0067	μe.		
TOC	1.72	NOR HC							
			XXD ound	wile-					- 1
& Mica Keolinite Chlori	te Qu	aniz	K-Feldspar	Plagloclase	Calcite	Dalamite	Ankerite'	Hematile	Pyrit
			0.5	0.1		a.			0.9


Sample#28 – 4226

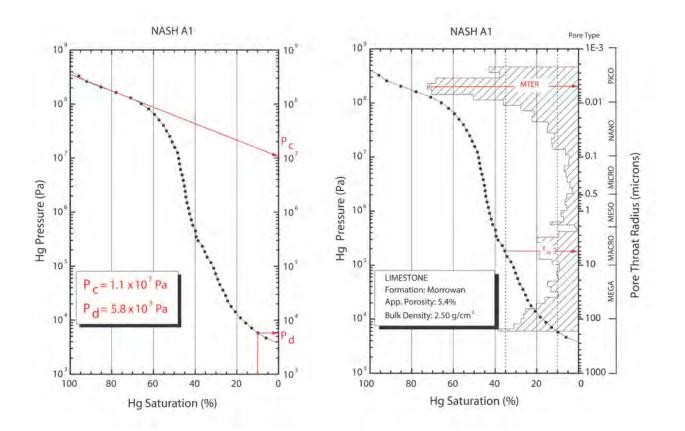
4226

SPARKMAN 1

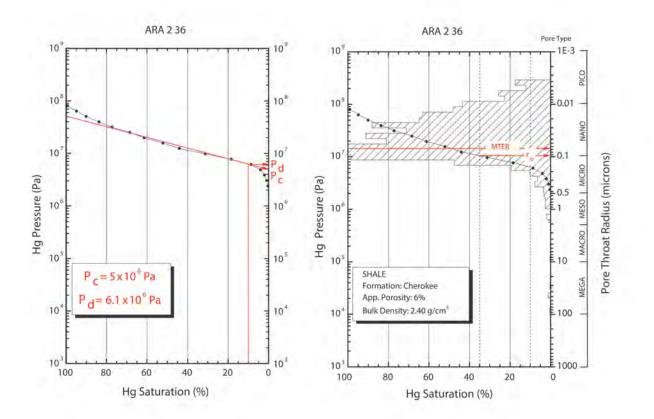
Black Fine Grained Shale

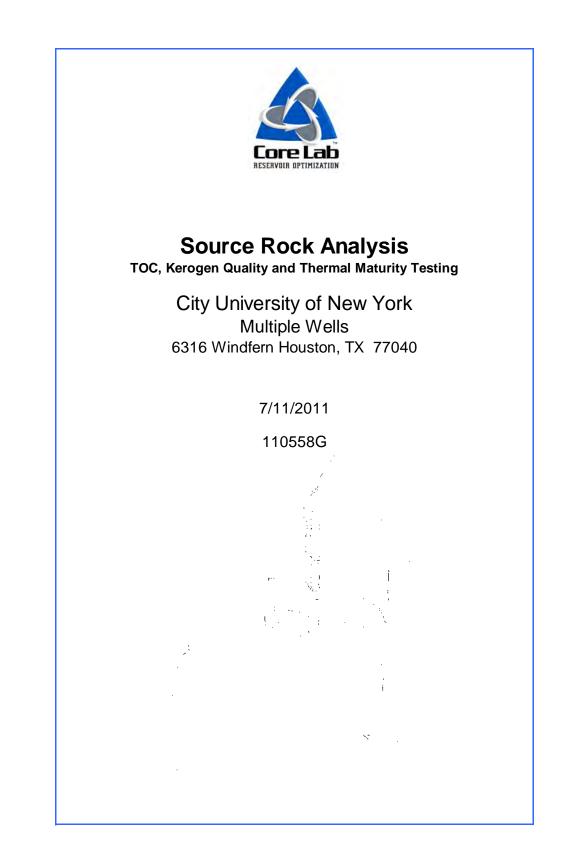
		14 - 12	ALL AND ALL AND	198	
4226 Cimitanon Morrowan 1981 36.65712 -102.1259 Introduction State Science of the Science of t	A DOWN	1 1 2		ALSE	1 - Catholine
4226 Cimanon Morrowan 1581 36.65712 -102.1259 Instance Structure S	Contraction of the	$r \rightarrow r$	8	1.01	4
4226 Cimanon Morrowan 1581 36.65712 -102.1259 Instance Structure S	A REAL PROPERTY AND INCOME.	All and a second se	24	1/10/100	
4226 Climitori Morrowsin 1881 36.65712 -102.1259 Initialized Point Redius (Volume) Median Point Redius (Volume) 0.00077 am Median Point Redius (Volume) 0.0005 am BC 66.00 M/Pa Bulk Density 2.5 B/Cm1 Motion Grain Size 47.835 µm Porosity 4.5 % Porosity 4.5 0.04 µm Median Constantion Role Throat Type Nations model Median Constant South Median Constant South Materia 1.50 Weith HC Nations Nations Nations	A DECEMBER OF THE OWNER OWNE		the second second	1000	When the state
4226 Climitori Morrowsin 1881 36.65712 -102.1259 Initialized Point Redius (Volume) Median Point Redius (Volume) 0.00077 am Median Point Redius (Volume) 0.0005 am BC 66.00 M/Pa Bulk Density 2.5 B/Cm1 Motion Grain Size 47.835 µm Porosity 4.5 % Porosity 4.5 0.04 µm Median Constantion Role Throat Type Nations model Median Constant South Median Constant South Materia 1.50 Weith HC Nations Nations Nations		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MARCH 1	1000	
4226 Climitori Morrowsin 1881 36.65712 -102.1259 Initialized Point Redius (Volume) Median Point Redius (Volume) 0.00077 am Median Point Redius (Volume) 0.0005 am BC 66.00 M/Pa Bulk Density 2.5 B/Cm1 Motion Grain Size 47.835 µm Porosity 4.5 % Porosity 4.5 0.04 µm Median Constantion Role Throat Type Nations model Median Constant South Median Constant South Materia 1.50 Weith HC Nations Nations Nations			and the second s	10000	1.12
4226 Climitori Morrowsin 1881 36.65712 -102.1259 Initialized Point Redius (Volume) Median Point Redius (Volume) 0.00077 am Median Point Redius (Volume) 0.0005 am BC 66.00 M/Pa Bulk Density 2.5 B/Cm1 Motion Grain Size 47.835 µm Porosity 4.5 % Porosity 4.5 0.04 µm Median Constantion Role Throat Type Nations model Median Constant South Median Constant South Materia 1.50 Weith HC Nations Nations Nations			=	1.54	
Procession Ordet Schwender Meeting Pore Raching (Velame) 0.00077 jum Ausrage Pore Raching (Velame) 0.00075 jum Ausrage Pore Raching (Velame) 0.00075 jum Bolk Dematry 2.5 g/cm ³ Bolk Dematry 2.5 g/cm ³ Apparent (skelintel) Dematry 2.6 g/cm ³ Poroutty 4.5 76 Moder Contact None Throat Type Nane mpdal Protection Median Contact Median Sectory TOC 3.69 werk HC					
Median Pore Radius (Volume) 0.0077 um Median Pore Radius (Volume) 0.0045 um Average Pore Radius (Volume) 0.0045 um Bolic Density 2.5 g/cm ¹ Apparent (Skelenis) 0.004 um Median Pore Radius (Volume) 3.00 MPa Bolic Density 2.5 g/cm ¹ Porosity 4.5 % Model Troat Dutribution Name model Model Troat Socting Median Socted Model Troat Socting Median Socted TOC 1.69 WOM HC	4226	Norrowan	1881 36.65712	-102.1259	
Median Pore Radius (Volume) 0.0077 um Median Pore Radius (Volume) 0.0045 um Average Pore Radius (Volume) 0.0045 um Bolic Density 2.5 g/cm ¹ Apparent (Skelenis) 0.004 um Median Pore Radius (Volume) 3.00 MPa Bolic Density 2.5 g/cm ¹ Porosity 4.5 % Model Troat Dutribution Name model Model Troat Socting Median Socted Model Troat Socting Median Socted TOC 1.69 WOM HC					
Median Pore Radius (Molame) 0.0077 um pc 60.00 M/m Median Pore Radius (Molame) 0.0045 um 80 (§ 10% (§ 500 m) 0.01 MPa Ansrage Pore Radius 0.0000 um 817 (unlike) 0.01 MPa Build Density 1.5 g/on1 835 0.044 µm Apparent (skelatel) 0.01 Molame 7.035 µm Poresity 4.5 % Pore Throat Type Nano Molame Conduct 1.69 Work HC Molame Sorted Male	Investigation Press	Simulari		and the second	_
Meshan Pore Radius (Area) 0.0043 um bd (gl 10% kg soturation) 0.01 WPs Ausrage Pore Radius 0.0060 um BET Surface Area 3.3016 m1/g Bulk Density 2.5 g/cm ³ Modiler Grain Size 47.835 um Apparent (weaking) 4.5 % Pore Throat Durb Name Meshan Constru 4.5 % Pore Throat Durb Name Meshan Construct 3.69 WCN HC MAR ym					ME
Average Pore Reduct 0.0000 um BET Surface Area 3.0010 mh/g Beic Demark 1.5 g/cm ³ Modiler Grisin Size 47.835 um Apparent/ (biolistel) Demarky 3.5 g/cm ³ Modiler Grisin Size 47.835 um Porosity 4.5 % Pore Throat Type 48 mo Unsame Demark 1.69 work HC Modiler Social Complexity 4.5 %			the second se		
Bulk Demarky 2.5 g/cm ² Median Grain Size 47.835 µm Apparent (skelarist) Demarky 3.6 g/cm ² 85 0.04 µm Porosity 4.5 % Pore Throat Dubritudion None modal Median Creation None Throat Dubritudion None modal Median Creation Median Size 47.835 µm Porosity 4.5 % Pore Throat Dubritudion None modal Median Creation Median Size Median Size 47.835 µm Median Creation Median Size Median Size 47.835 µm Median Creation Median Size Median Size 47.835 µm					
Apparent (skeletal) Density 2.5 g/cm ³ 855 0.04 µm Porosity 4.5 % Pore Throat Type Nano Pore Throat Distribution Rame modal Pore Throat Distribution Rame modal Pore Throat Sorting Medium Sorted MITER NA µm					
Percentry 4.5 % Perce Tingat Trips Mano Percentry Description Normer modal Perce Tingat Distribution Normer modal Perce Tingat Secting Medium Sorted MITE9 NA ym					
Pore Throat Distribution None-model Pore Throat Secting Medium Sorted MTER NA ym					No.
TOC 3.69 WOR HC Pore Throat Serting Medium Sorted MT28 NA Jum	Portually	4.5 10			
TOC 1 69 WON HC MATER NA JAM	and the second sec				
TOC 1.69 WON HC	LINASSICION	American Statement			100
	a second s	The second se	Higher 1	da	2411
IND Andres	a second	1 20 LUNE MC			
	a second	1.69 WOW HC			
tilte & Mica Kaolinite Chlorite Quartz K-Feldspar Plagloclase Calcile Dolomite Ankerite Hematite Pyril	a second	2421 400.020	And Market	_	_

Sample#29 - 4458


4458

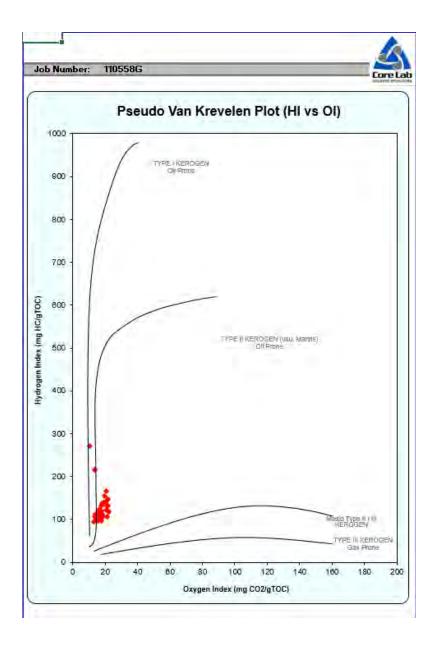
NASH A1

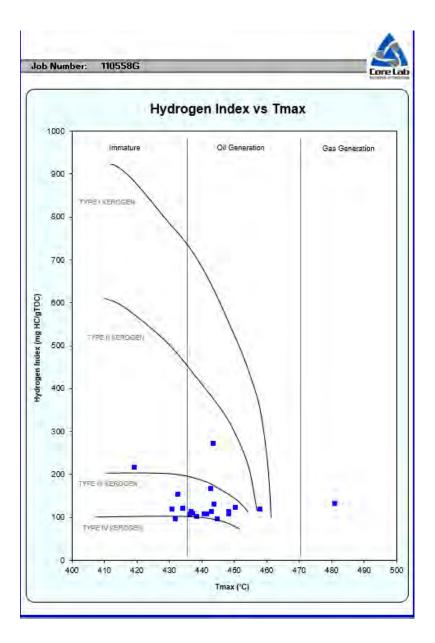

10.	OP:	Enutity	100	- de	Oripitet	ind Lat	UNIX LA	NAME OF COLUMN			
	4458	Texas	M	orrowan	1828	B 34	17	101.4			
-	10.00	IN THIS SAME	- Louis				Paral Street	Ginerally			
Median	Pore Redius	[Volume]	0.0376	Lim		PC .		\$1.00	MB	8	
Median	Pore Radius	(Area)	0.0080	im.		Pd (@ 10% H	g saturation}	0.01	MP		
Average	e Pore Radius		0.0209	um.		BET Surface #	vieo .	9.5850	m2/	2	
Bulk De	insity		2.5	girem ²		Grein Size		84,271	μm	1	
Applete	nt Bkeletall C	ensity.	2.6	p/cm ²		R35		5.55	- 275	i i	
Porosite	Concernant in	Conception of the second se	5.4			Pore Throat 1	Vpe	Macro			
						Pore Throat I	Distribution	Unimodal			
		Lanur Coaterne				Pore Throat 5	iorting	Medium Sort	ad		
TOC				10 MA		MITER		0.0049	- μ11	n	
ior		2.35	6 W	CIENC							
					100 Analys	il (MES)					
te & Mica	Kaolinite	Chlorite	Q	untz.	K-Feldspar	Plagloclase	Calcite	Dolomite	Ankerite.	Hematite	Pyr
12.4	9.5	71	1	58	0.5	0.6	50.8	0	3.1	0	1

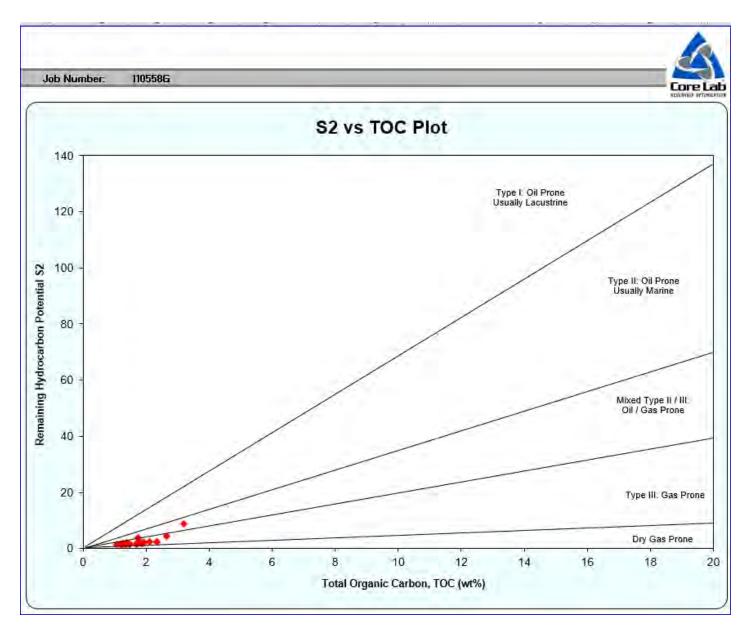

Sample#30 - 4515

4515 ARA 2 36 Black Fine Grained Shale

APPENDIX B: SOURCE-ROCK ANALYSIS (SRA) AND TOTAL ORGANIC CARBON (TOC) MEASUREMENTS


Informal database


#	DATAFILE	ID	TYPE	WEIGHT	cTemp(Tmax)	tTemp	S3	тос	HI	OI	PI	S1/TOC
7	3 1b.RAW	120	TPH	98.1	324.4	363.4	0.25	1.29	138	19	0.19	0.32
7	4 2b.RAW	277	TPH	100.3	327.9	366.9	0.22	1.21	136	18	0.19	0.31
7	5 3b.RAW	601	TPH	100.2	444	483	0.22	1.23	130	18	0.17	0.27
7	6 4b.RAW	868	TPH	98	441.7	480.7	0.25	1.85	106	14	0.17	0.22
7	7 5b.RAW	878	TPH	103.3	440.8	479.8	0.32	2.1	108	15	0.17	0.22
7	8 6b.RAW	900	TPH	100.9	419.3	458.3	0.24	1.74	215	14	0.24	0.67
7		1081	TPH	102.8	434.3	473.3	0.3	1.76	121	17	0.27	0.46
8		1461	TPH	102.6	432.7	471.7	0.27	1.38	154	20	0.27	0.56
8		1712	TPH	102.1	481.2	520.2	0.26	1.2	131	21	0.17	0.27
8		2177	TPH	100.9	436.7	475.7	0.26	1.45	113	18	0.17	0.23
8		2472	TPH	102.3	327.2	366.2	0.32	1.5	107	21	0.17	0.22
8		2609	TPH	101.9	432	471	0.27	1.7	96	16	0.18	0.21
8		3088	TPH	105.2	450.4	489.4	0.28	1.35	122	21	0.16	0.24
8		3115	TPH	103.7	320.6	359.6	0.21	1.3	123	17	0.2	0.3
8		3138	TPH	103.4	431.1	470.1	0.3	1.35	118	22	0.18	0.25
8		3141	TPH	104.3	458.1	497.1	0.26	1.47	120	18	0.17	0.25
9		3146	TPH	100	326.2	365.2	0.26	1.28	139	20	0.2	0.34
9		3149	TPH	104.7	319.4	358.4	0.25	1.89	96	13	0.18	0.21
9		3150	TPH	98.8	437.4	476.4	0.28	1.79	109	16	0.18	0.24
9		3355	TPH	103.4	448.4	487.4	0.27	1.94	112	14	0.16	0.21
9		3780	TPH	103.2	443.1	482.1	0.26	1.71	113	15	0.17	0.23
9		3952	TPH	95.5	442.9	481.9	0.55	2.66	167	21	0.12	0.23
9		3979	TPH	99.8	448.4	487.4	0.36	1.91	106	19	0.16	0.2
9		4157	TPH	100.5	342.8	381.8	0.26	1.24	132	21	0.18	0.29
9		4164	TPH	104	339.8	378.8	0.23	1.07	146	21	0.17	0.3
9		4211	TPH	105.2	438.5	477.5	0.27	1.84	102	15	0.16	0.19
	9 27b.RAW	4224	TPH	105	436.3	475.3	0.3	1.72	105	18	0.18	0.22
1		4226	TPH	103	323.7	362.7	0.27	1.69	103	16	0.17	0.21
1		4458	TPH	99	445	484	0.42	2.35	96	18	0.16	0.18
1	2 30b.RAW	4515	TPH	98.7	443.6	482.6	0.34	3.2	271	11	0.12	0.36




Source Rock Analysis Data Page

Well Name	Formation	Sample ID	Depth	Sample Wt.	TOC	SI	S2	S3	Tmax	H	DI	Pl	1	Remarks
			ft.	mg	WE% HC	mg HC/g	mg HC/g	mg CO2/g	°C	S2×100/TOC	S3×100/TOC	(S1(S1+S2))	(S#TOC)100	Comments
erguson 1	Morrowan	1	120	98.1	1.29	0.41	1.79	0.25	324.4	138.76	19.38	0.19	31.78	
locane Plant SWD1	Cimatron	2	.277	100.3	1.21	0.38	1.65	0.22	327.9	136.36	18.18	0.19	31.40	-
hrauner 2	Marmaton	3	601	100.2	1.23	0.33	1.61	0.22	444	130.89	17.89	0.17	26.83	
Juigley 1-A	Purdy	4	868	98	1.85	0.41	1.97	0.25	441.7	106.49	13.51	0.17	22.16	
lendrix 3	Morrowan	5	878	103.3	2.1	0.46	2.25	0.32	440.8	107.14	15.24	0.17	21.90	
onover 5	Morrowan	6	900	100.9	1.74	1.17	3.75	0.24	419.3	215.52	13.79	0.24	67.24	
teele A 3	Topeka	7	1081	102.8	1.76	0.8	2.12	0.3	434.3	120.45	17.05	0.27	45.45	
pence 2	Topeka	3	1461	102.6	1.38	0.77	2.12	0.27	432.7	153.62	19.57	0.27	55.80	
reece 1	Morrowan	9	1712	102.1	1.2	0.33	1.58	0.26	481.2	131.67	21.67	0.17	27.50	
Frewer 2	Morrowan	10	2177	100.9	1.45	0.33	1.63	0.26	436.7	112.41	17.93	0.17	22.76	
rothra 41-34	Topeka	11	2472	102.3	15	0.33	1.61	0.32	327.2	107.33	21.33	0.17	22.00	
nop 1-A	Chase	12	2609	101.9	1.7	0.35	1.63	0.27	432	95.88	15.88	0.18	20.59	
ailey 1-B	Chester	13	3088	105.2	1.35	0.32	1.64	0.28	450.4	121.48	20.74	0.16	23.70	
lyers 1-D	Keyes	14	3115	103.7	1.3	0.39	1.59	0.21	320.6	122.31	16.15	0.20	30.00	
itonebraker 1-AP	Marmaton	16	3138	103.4	1 35	0.34	1.59	0.3	431.1	117.78	22.22	0.18	25.19	
lonebraker AN-4	Cherokee	16	3141	104.3	1.47	0.36	1.75	0.26	458.1	119.05	17.69	0.17	24.49	
lurdy 1-A	Keyes	17:	3146	100	1.28	0.44	1.79	0.26	326.2	139.84	20.31	0.20	34.38	
lurdy 1-C	Morrowan	18	3149	104.7	1.89	0.4	1.81	0.25	319.4	95.77	13.23	0.18	21.16	
urdy 1-E	Unikown	19	3150	98.8	1.79	0.43	1.96	0.28	437.4	109.50	15.64	0.18	24.02	
chuluckebrer 3	Keyes	20	8355	103.4	1.94	0.4	2.18	0.27	448.4	112.37	13.92	0.16	20.62	
acoma 1-21	Cherokee	21	3780	103.2	1.71	0.4	1.93	0.26	443.1	112.87	15.20	0.17	23.39	
iabler 2-7	Chester	22	3952	95.5	2.66	0.6	4.43	0.55	442.9	166.54	20.68	0.12	22.56	
arrison 1	Atoka	23	3979	99.8	1.91	0.39	2.03	0.36	448.4	106.28	18.85	0.16	20.42	
late 1	Des Moinesian	24	4157	100.5	1.24	0.36	1.64	0.26	342.8	132.26	20.97	0.18	29.03	
tate 1	Mississippian	25	4164	104	1.07	0.32	1.56	0.23	339.8	145.79	21.50	0.17	29.91	
owan Trust"1	Morrowan	26	4211	105.2	1.84	0.35	1.88	0.27	438.5	102.17	14.67	0.16	19.02	
urham 1	Morrowan	27	4224	105	1.72	0.38	1.8	0.3	436.3	104.65	17.44	0.17	22.09	
parkman 1	Morrowan	28	4226	103	1.69	0.35	1.75	0.27	323.7	103.55	15.98	0.17	20.71	
lash A-1	Morrowan	29	4458	.99	2.35	0.42	2.27	0.42	445	96.60	17.87	0.16	17.87	
ra 2-36	Cherokee	30	4515	98.7	3.2	1.15	8.67	0.34	443.6	270.94	10.63	0.12	35.94	

WN #	Name	L No #	Wt%	Wt%	R0 M-L I/S 90S	R0 M-L I/S 60S	M-L C/S 60S	M-L C/S 40S	M-L I/S 40S	M-L I/S 30S	R1 M-L I/S 20S	M-L I/S 10S	& Mica	nite	ite	z	K-Feldspar	Plagioclase	e	nite	rite	ıtite		T	File Name		AD File Name
XRD# FILE N	Lease	WELL	<4 W	>4 W	50 M	K0 M	R0 M	R1 M	R1 M	R1 M	KI M	R3 M	Illite	Kaolinite	Chlorite	Quartz	C-Fel	lagic	Calcite	Dolomite	Ankerite	Hematite	Pyrite	TOTAL	EG Fi		VD FI
CC101 120	FERGUSON	1	24.9	75.1	0		0	0	0	0	2.4	0	7.5			9.3	0.4	3.1	0	0	0	0	0	100		101 (CCAD101
	MOCANE PLANT	SWD1	34.5		0		3.1	0	0	0	0	0	60.5		12.8	4.3	1.7	3.0	0	0	0	7.6	0	100			CCAD102
CC102 277	SHRAUNER	2	4.0	96.0	0	~	0	0	0	<u> </u>	0	0	0.8	0	0.6		0.3	0.6	-	0	0	0	0	100			CCAD102
CC104 868	QUIGLEY	1-A	29.2		0		0	0			0			19.8		5.6	1.0	1.9	0	0	0	0	0	100			CCAD104
CC105 878	HENDRIX	3	20.2		0		0	0	0		0		10.2			37.4	1.9	4.5	7.3	0	0	0	2.2	100			CCAD105
CC106 900	CONOVER	5	5.5	94.5	0	-	0	0	0	0.2	2.3	0					0	10.7	0	0	0	0	0	100			CCAD106
CC107 1081	STEELE A	3	3.4	96.6	0	-	0	1.4	0	0	0	0	8.5	0		11.6	0.5	1.2	7.3	64.9	0	0	0				CCAD107
CC108 1461	SPENCE	2	4.0	96.0	0	0	0	0	0	0	0	0	0.6	0.4	0.0	1.4	0	0	96.4	1.2	0	0	0	100			CCAD108
CC109 1712	TREECE	1	6.1	93.9	0	0	0	0	0	0	0	0	2.4		59.1		2.6	5.2		0.9	0	0	0	100			CCAD109
CC110 2177	BREWER	2	22.3	77.7	0	0	0	0	0	25.5	0	0	8.1	9.9	10.0	14.0	0	0	32.5	0	0	0	0	100			CCAD110
CC111 2472	PROTHRO	41-34	30.3	69.7	0	0	0	0	0	10.3	0	0	19.1	5.4	7.6		1.8	3.0	43.8	3.4	0	0	0	100	CCEG	111 (CCAD111
CC112 2609	KNOP	1-A	8.5	91.5	0	0	0	0	0	0	0	3.7	10.0	0.5	3.6	5.9	0.8	1.2	1.4	72.9	0	0	0	100	CCEG	112 (CCAD112
CC113 3088	DAILEY	1-B	29.2	70.8	0	0	0	0	28.1	0	0	0	24.5	21.9	14.8	10.7	0	0	0	0	0	0	0	100	CCEG	113 (CCAD113
CC114 3115	MYERS	1-D	10.0	90.0	0	0	0	0	0	0	11.0	0	4.1	17.3	33.4	15.4	0.4	0.9	6.9	0.9	9.7	0	0	100	CCEG	114 (CCAD114
CC115 3138	STONEBRAKER	1-AP	5.8	94.2	0	0	0	0	0	0	0	0	3.7	3.8	3.4	30.3	1.4	4.7	32.0	3.2	17.5	0	0	100	CCEG	115 (CCAD115
CC116 3141	STONEBRAKER	AN-4	19.5	80.5	0	0	0	0	0	17.9	0	0	15.6	55.3	7.2	3.1	0	0.9	0	0	0	0	0	100	CCEG	116 (CCAD116
CC117 3146	PURDY	1-A	11.1	88.9	0	0	0	0	0	0	11.9	0	12.4	4.1	2.0	10.4	1.5	3.3	39.7	5.8	0	8.9	0	100	CCEG	117 (CCAD117
CC118 3149	PURDY	1-C	15.5	84.5	0	0	0	0	0	22.2	0	0	11.5	46.8	6.6	12.9	0	0	0	0	0	0	0	100	CCEG	118 (CCAD118
CC119 3150	PURDY	1-E	23.1	76.9	0	0	0	0	0	14.4	0	0	7.7	7.7	0.6	58.9	0	0	7.9	2.8	0	0	0	100	CCEG	119 (CCAD119
CC120 3355	SCHLUCKEBIER	3	29.5	70.5	0	30.7	0	0	0	0	0	0	10.4	19.6	9.6	23.6	0	0	6.1	0	0	0	0	100	CCEG	120	CCAD120
CC121 3780	DACOMA	1-21	20.5	79.5	0	0	0	0	0	12.4	0	0	12.5	12.9	26.3	11.3	2.7	7.2	10.1	1.9	0	0	2.7	100	CCEG	121 0	CCAD121
CC122 3952	GABLER	2-7	36.6	63.4	47.3	0	0	0	0	0	0	0	3.8	23.3	19.4	5.7	0	0	0.5	0	0	0	0	53	CCEG	122 0	CCAD122
CC123 3979	HARRISON	1	26.1	73.9	0	28.0	0	0	0	0	0	0	23.6	1.6	10.7	16.5	0	0	19.6	0	0	0	0	100	CCEG	123 (CCAD123
CC124 4157	STATE	1	25.0	75.0	0	0	0	0	0	20.8	0	0	27.6	3.6	7.8	19.6	1.4	3.3	2.6	0	0	13.3	0	100	CCEG	124	CCAD124
CC125 4164	STATE	1	16.6	83.4	0	0	0	0	0	0	0	7.6	45.9	14.7	13.4	13.0	1.2	2.4	0	0	0	0	1.8	100	CCEG	125 0	CCAD125
CC126 4211	ROWAN	TRUST 1	24.4	75.6	0	27.0	0	0	0	0	0	0	14.4	20.0	10.8	23.8	0	0	4.0	0	0	0	0	100	CCEG	126	CCAD126
CC127 4224	DURHAM	1	26.0	74.0	0	0	0	0	0	27.2	0			20.1			0.5	0.8	0	0	0	0	0.9	100	CCEG	127 0	CCAD127
CC128 4226	SPARKMAN	1	32.1	67.9	0	0	0	0	0	19.2	0	0	31.0	29.7	11.0	8.6	0.1	0.4	0	0	0	0	0	100	CCEG	128 0	CCAD128
CC129 4458	NASH	A 1	24.5	75.5	0	0	0	0	0	17.1	0	0	11.4	9.8	7.1	15.8	0.5	0.6	30.8	0	3.1	0	3.8	100	CCEG	129 (CCAD129
CC130 4515	ARA	2-36	10.6	89.4	0	0	0	0	0	23.7	0	0	12.1	23.2	15.1	13.5	1.1	6.6	0	1.0	0	0	3.7	100	CCEG	130 0	CCAD130
Mixed-Layer	Clays																									-	
R0 M-L I/S 90	0S, 60S - Randomly	Ordered Mix	ed-Laye	r Illite/S	Smectite w	ith 90%	and 6	50% Sn	nectit	e layei	s																
	60S - Randomly Orde									-																	
R1 M-L C/S 4	0S - R1 Ordered Mi	xed-Layer C	hlorite/S	mectite	with 40%	Smect	te laye	ers																			
R1 M-L I/S 40	0S, 30S, 20S - R1 Or	dered Mixed	-Layer I	llite/Sm	ectite with	n 40%,	30% ai	nd 20%	Sme	ctite la	yers																
R3 M-L I/S 10	R3 M-L I/S 10S - R3 Ordered Mixed-Layer Illite/Smectite with 10% Smectite layers																										

APPENDIX C: X-RAY DIFFRACTION (XRD) MEASUREMENTS

APPENDIX D: SURFACE AREA MEASUREMENTS

Sample #1-120

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 1

Serial #: 571

Page 1

Sample: 120 F1 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1103989.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:15PM Warm Free Space: 6.6142 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0912 g Cold Free Space: 15.9867 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.300889098: 7.9796 m³/g

BET Surface Area: 8.1997 m²/g

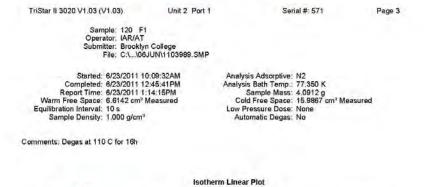
Unit 2 Port 1

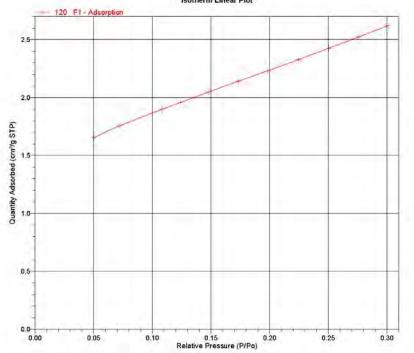
TriStar II 3020 V1.03 (V1.03)

Serial #: 571

Page 2

Sample: 120 F1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103989.SMP


Started: 5/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:15PM Warm Free Space: 6.6142 cm⁹ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm⁹


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0912 g Cold Free Space: 15.9867 cm⁹ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	Isoti	nerm Tabular Re	port	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	and the second second	The second	01:22	741.843933
0.049731815	36.895397	1.6503	01:47	741.887207
0.072145716	53.516987	1,7571	01:54	741.790222
0.107997752	80.119461	1.8984	02:01	741.862305
0.124145216	92.092010	1.9585	02:05	741.808777
0.148193654	109.923439	2.0493	02:10	741.755371
0.173151412	128.421722	2.1410	02:15	741.672974
0.198389808	147.121506	2.2315	02:19	741.577942
0.224427441	166.438782	2,3274	02:23	741.615112
0.250445346	185,709030	2.4259	02:27	741.515198
0.275653031	204.392029	2.5226	02:31	741,482971
0.300889098	223,092316	2,6220	02:34	741,443665

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 571

Page 4

Sample: 120 F1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103989.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:15PM Warm Free Space: 6.6142 cm⁹ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm⁹ Analysis Adsorptive: N2 Analysis Bath Temp:: 77.350 K Sample Mass: 4.0912 g Cold Free Space: 15.9887 cm⁹ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

 BET Surface Area Report

 BET Surface Area: 8.1897 ± 0.0312 m²/g

 Slope: 0.524203 ± 0.001986 g/cm³ STP

 Y-Intercept: 0.006693 ± 0.000381 g/cm³ STP

 C: 79.3256934

 Om: 1.8936 cm²/g STP

 Correlation Coefficient: 0.9999354

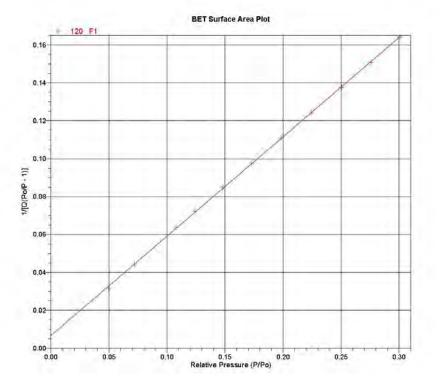
 Molecular Cross-Sectional Area: 0.1620 nm²

 Relative
 Quantity 1/[Q(Po/P - 1)]]

 Pressure
 Adsorbed

 (P/Po)
 (cm²/g STP)

AC. C. A. C. A.	A CONTRACTOR A	
0.049731815	1.6503	0.031713
0.072145716	1.7571	0.044252
0.107997752	1.8984	0.063778
0.124145216	1.9585	0.072372
0.148193654	2.0493	0.084895
0.173151412	2.1410	0.097810
0.198389808	2.2315	0.110908
0.224427441	2.3274	0.124331
0.250445346	2,4259	0.137734
0.275653031	2.5226	0.150857
0.300889098	2.6220	0.164147



 TriStar II 3020 V1.03 (V1.03)
 Unit 2 Port 1
 Serial #: 571
 Page 5

 Sample: 120 F1 Operator: (AR/AT Submitter: Brooklyn College File: C1...006JUNI\1103969.SMP

 Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 12:45:41PM Geport Time: 6/23/2011 12:45:41PM Report Time: 6/23/2011 12:45:41PM Sample Mass: 4.0912 g Cold Free Space: 15.9867 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³
 Analysis Adsorptive: N2 Analysis Bath Temp: 77.350 K Sample Mass: 4.0912 g Cold Free Space: 15.9867 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

142

Sample #2-277

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 2

Serial #: 571

Page 1

Sample: 277 F2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103990.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:57PM Warm Free Space: 6.5038 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.7590 g Cold Free Space: 15.6597 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.299916365: 9.0396 m²/g

BET Surface Area: 9.3872 m²/g

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 2

Serial #: 571

Page 2

Sample: 277 F2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103990.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:57PM Warm Free Space: 6.5038 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.7590 g Cold Free Space: 15.6597 cm³ Measured Low Pressure Dose: None Automatic Degas: No

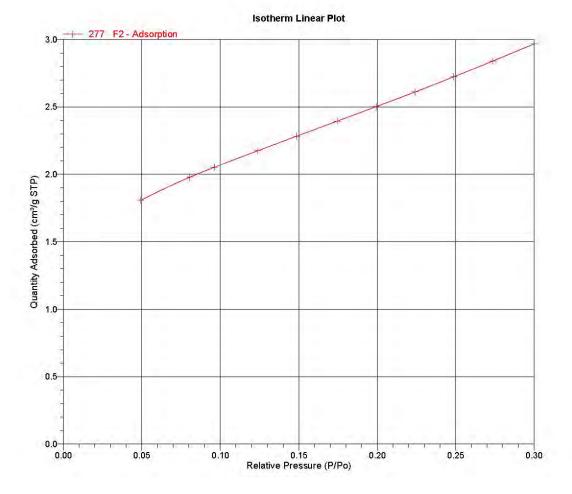
Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:22	741.843933
0.049250856	36.531780	1.8079	01:34	741.749146
0.080580276	59.778412	1.9790	01:43	741.849182
0.096070653	71.275307	2.0522	01:46	741.905090
0.123885923	91.902115	2.1751	01:51	741.828552
0.148632034	110.264458	2.2827	01:54	741.862000
0.174498237	129.453781	2.3946	01:59	741.862976
0.199411697	147.929291	2.5019	02:03	741.828552
0.224198846	166.308990	2.6110	02:06	741.792358
0.248873652	184.617950	2.7235	02:10	741.813965
0.273700462	203.000763	2.8400	02:14	741.689514
0.299916365	222.407242	2.9661	02:18	741.564209

Isotherm Tabular Report

Unit 2 Port 2

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.7590 g Cold Free Space: 15.6597 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 277 F2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103990.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:57PM Warm Free Space: 6.5038 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Unit 2 Port 2

Serial #: 571

Page 4

Sample: 277 F2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103990.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:57PM Warm Free Space: 6.5038 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.7590 g Cold Free Space: 15.6597 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 9.3872 ± 0.0421 m²/g Slope: 0.455403 ± 0.002038 g/cm³ STP Y-Intercept: 0.008336 ± 0.000408 g/cm³ STP C: 55.631397 Qm: 2.1564 cm3/g STP Correlation Coefficient: 0.9999199 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.080580276 1.9790 0.044286 0.096070653 2.0522 0.051789 0.123885923 2.1751 0.065010 0.148632034 2.2827 0.076479 0.174498237 2.3946 0.088276 0.199411697 2.5019 0.099556 0.224198846 2.6110 0.110681 0.248873652 2.7235 0.121657

2.8400

2.9661

0.132692

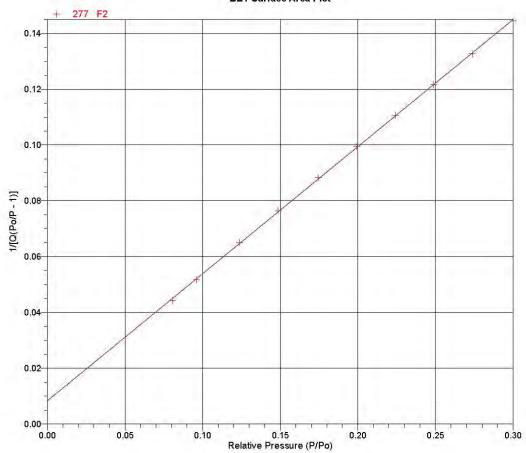
0.144431

0.273700462

0.299916365

Unit 2 Port 2

Serial #: 571


Page 5

Sample: 277 F2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103990.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:14:57PM Warm Free Space: 6.5038 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.7590 g Cold Free Space: 15.6597 cm³ Measured Low Pressure Dose: None Automatic Degas: No

BET Surface Area Plot

Sample #3-601

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 3

Serial #: 571

Page 1

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 12:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area

Single point surface area at P/Po = 0.300959242: 0.5840 m²/g

BET Surface Area: 0.6087 m²/g

Unit 2 Port 3

Serial #: 571

Page 2

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm³ Measured Low Pressure Dose: None Automatic Degas: No

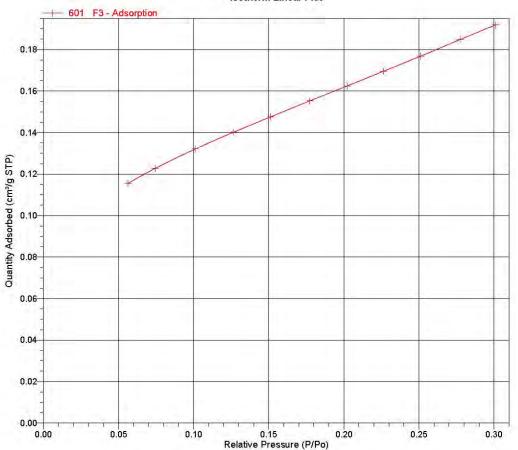
Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:22	741.843933
0.056464083	41.889915	0.1156	01:28	741.886047
0.074542361	55,296432	0.1228	01:30	741.812195
0.101155735	75.036285	0.1321	01:32	741.789734
0.126778886	94.037132	0.1403	01:34	741.741272
0.151274205	112.209663	0.1476	01:37	741.763367
0.177385386	131.585831	0.1553	01:39	741.807617
0.202481474	150.202164	0.1625	01:41	741.806946
0.226344525	167.901413	0.1695	01:43	741.795776
0.251151279	186.324112	0.1768	01:45	741.880005
0.277507236	205.898834	0.1849	01:47	741.958435
0.300959242	223.271896	0.1919	01:50	741.867554

Isotherm Tabular Report

Unit 2 Port 3

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 12:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 2 Port 3

Serial #: 571

Page 4

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 0.6087 ± 0.0027 m²/g Slope: 7.014268 ± 0.030731 g/cm³ STP Y-Intercept: 0.137444 ± 0.005950 g/cm3 STP C: 52.033536 Qm: 0.1398 cm3/g STP Correlation Coefficient: 0.9999136 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.056464083 0.1156 0.517745 0.074542361 0.1228 0.656088 0.101155735 0.1321 0.851797 0.126778886 0.1403 1.035179 0.151274205 0.1476 1.207550 0.177385386 0.1553 1.388407 0.202481474 0.1625 1.561986 0.226344525 0.1695 1.725642 0.251151279 0.1768 1.896457 0.277507236 0.1849 2.077636

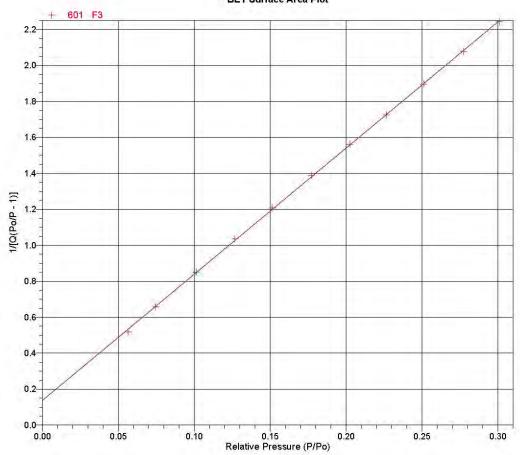
0.1919

2.243477

0.300959242

Unit 2 Port 3

Serial #: 571


Page 5

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.SMP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 12:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm³ Measured Low Pressure Dose: None Automatic Degas: No

BET Surface Area Plot

Sample#4-868

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 1

Serial #: 238

Page 1

Sample: 868 J1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103992.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:54:24AM Warm Free Space: 6.4762 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5000 g Cold Free Space: 15.8123 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.274373192: 18.0327 m²/g

BET Surface Area: 18.5175 m²/g

Unit 3 Port 1

Serial #: 238

Page 2

Sample: 868 J1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103992.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:54:24AM Warm Free Space: 6.4762 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5000 g Cold Free Space: 15.8123 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	10. cf. 5	1.00	01:20	741.708130
0.049384890	36.543079	3.8804	03:24	739.964783
0.073234829	54.191132	4.1426	03:52	739.963928
0.097020301	71.740822	4.3696	04:23	739.441345
0.120641801	89.220009	4.5675	04:45	739.544739
0.144950075	107.195251	4.7659	05:04	739.532227
0.169975759	125.613663	4.9629	05:22	739.009277
0.195934657	144.905243	5.1535	05:38	739.559021
0.222165257	164.246582	5.3404	05:53	739.299133
0.248177743	183.376541	5.5252	06:07	738.891968
0.274373192	202.701569	5.7087	06:21	738.780518
0.301255210	222,580658	5.8917	06:32	738.844177

Isotherm Tabular Report

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 238

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5000 g Cold Free Space: 15.8123 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 868 J1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103992.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:54:24AM Warm Free Space: 6.4762 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

868 J1 - Adsorption 5.5-5.0 4.5 4.0 Quantity Adsorbed (cm³/g STP) 3.5 3.0-2.5 2.0-1.5 1.0-0.5 0.0 0.15 Relative Pressure (P/Po) 0.10 0.25 0.30 0.00 0.05 0.20

Isotherm Linear Plot

Unit 3 Port 1

Serial #: 238

Page 4

Sample: 868 J1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103992.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:54:24AM Warm Free Space: 6/24/2011 7:54:24AM Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5000 g Cold Free Space: 15.8123 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 18.5175 ± 0.0741 m²/g Slope: 0.233241 ± 0.000926 g/cm3 STP Y-Intercept: 0.001845 ± 0.000162 g/cm3 STP C: 127.416384 Qm: 4.2538 cm3/g STP Correlation Coefficient: 0.9999369 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (cm³/g STP) (P/Po) 0.049384890 3.8804 0.013388 0.073234829 4.1426 0.019075 0.097020301 4.3696 0.024589 0.120641801 4.5675 0.030037 0.144950075 4.7659 0.035570 0.169975759 4.9629 0.041263 0.195934657 5.1535 0.047284 0.222165257 5.3404 0.053483 0.248177743 5.5252 0.059745

5.7087

0.066235

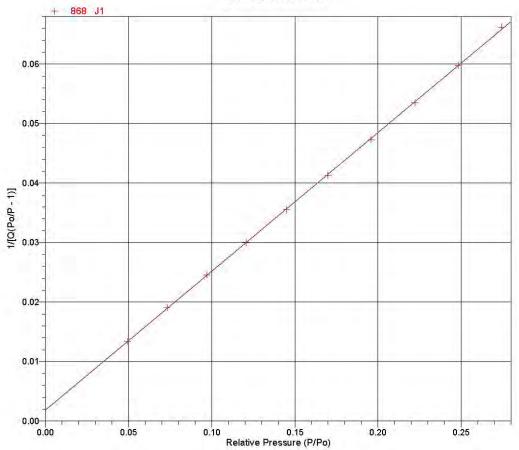
0.274373192

156

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 238


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5000 g Cold Free Space: 15.8123 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 868 J1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103992.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:54:24AM Warm Free Space: 6.4762 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#5-878

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 2

Serial #: 238

Page 1

Sample: 878 J2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103993.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:49:59AM Warm Free Space: 6.5218 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2208 g Cold Free Space: 15.9121 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.300209127: 15.7917 m²/g

BET Surface Area: 16.2197 m²/g

Unit 3 Port 2

Serial #: 238

Page 2

Sample: 878 J2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103993.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:49:59AM Warm Free Space: 6.5218 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2208 g Cold Free Space: 15.9121 cm³ Measured Low Pressure Dose: None Automatic Degas: No

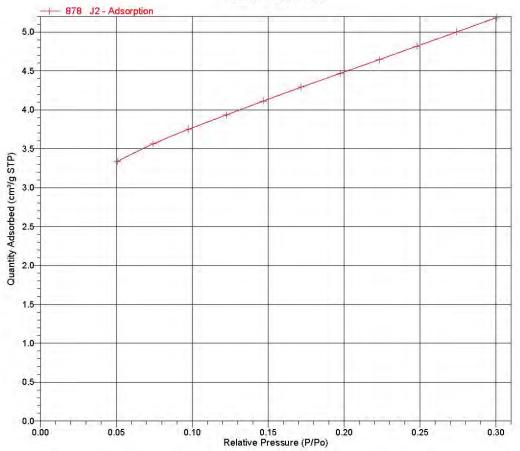
Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:20	741.708130
0.050508215	37.450756	3.3337	01:40	741.478516
0.074175891	54.990929	3.5617	01:46	741.358521
0.097716387	72.459671	3.7518	01:51	741.530396
0.122409807	90.759445	3.9344	01:57	741.439331
0.146909018	108.888580	4.1138	02:01	741.197388
0.171717770	127.284760	4.2910	02:06	741.243958
0.197499549	146.431595	4.4690	02:11	741.427490
0.223132717	165.366470	4.6449	02:15	741.112610
0.248026692	183.814407	4.8185	02:20	741.107361
0.274275745	203.263672	5.0011	02:25	741.092407
0.300209127	222.545609	5.1839	02:29	741.301941

Isotherm Tabular Report

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)


Page 3

Sample: 878 J2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103993.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:49:59AM Warm Free Space: 6.5218 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2208 g Cold Free Space: 15.9121 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 2

Serial #: 238

Page 4

Sample: 878 J2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103993.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:49:59AM Warm Free Space: 6.5218 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2208 g Cold Free Space: 15.9121 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 16.2197 ± 0.0408 m²/g Slope: 0.265648 ± 0.000664 g/cm3 STP Y-Intercept: 0.002741 ± 0.000126 g/cm3 STP C: 97.920146 Qm: 3.7259 cm3/g STP Correlation Coefficient: 0.9999719 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.050508215 3.3337 0.015957 0.074175891 3.5617 0.022495 0.097716387 3.7518 0.028866 0.122409807 3.9344 0.035453 0.146909018 4.1138 0.041861 0.171717770 4.2910 0.048315 0.197499549 4.4690 0.055069 0.223132717 4.6449 0.061835 0.248026692 4.8185 0.068452

5.0011

5.1839

0.075570

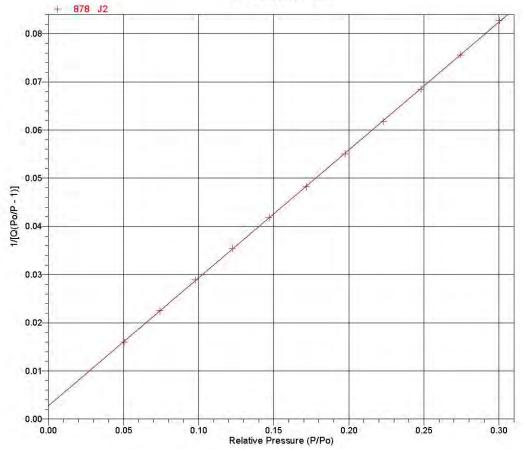
0.082757

0.274275745

0.300209127

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 878 J2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103993.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:49:59AM Warm Free Space: 6.5218 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2208 g Cold Free Space: 15.9121 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#6-900

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 3

Serial #: 238

Page 1

Sample: 900 J3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103994.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:53:48AM Warm Free Space: 6.5300 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.3427 g Cold Free Space: 15.8951 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.276369020: 1.7037 m²/g

BET Surface Area: 1.8399 m²/g

Unit 3 Port 3

Serial #: 238

Page 2

Sample: 900 J3. Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103994.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:53:48AM Warm Free Space: 6.5300 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.3427 g Cold Free Space: 15.8951 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:20	741.708130
0.047846744	35.488468	0.2812	01:27	741.711243
0.077813462	57.726086	0.3427	01:31	741.852173
0.097199938	72.066849	0.3717	01:34	741.428955
0.124709496	92.465515	0.4054	01:37	741.447266
0.150151741	111.327545	0.4321	01:40	741.433594
0.174983602	129.754303	0.4557	01:42	741.522644
0.200144791	148.375626	0.4778	01:44	741.341431
0.226096987	167.618073	0.4998	01:46	741.354736
0.250710688	185.859818	0.5201	01:49	741.331848
0.276369020	204.878525	0.5408	01:51	741.322327
0.300343331	222.620071	0.5605	01:53	741.218628

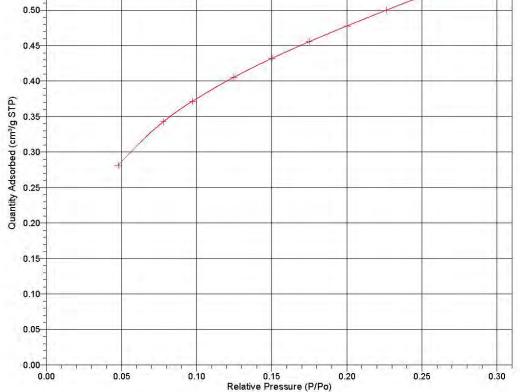
Isotherm Tabular Report

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Serial #: 238

Page 3


Sample: 900 J3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103994.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 10:26:30AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:53:48AM Warm Free Space: 6.5300 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

0.55

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.3427 g Cold Free Space: 15.8951 cm³ Measured Low Pressure Dose: None Automatic Degas: No **Isotherm Linear Plot** 900 J3 - Adsorption

165

Unit 3 Port 3

Serial #: 238

Page 4

Sample: 900 J3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103994.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:53:48AM Warm Free Space: 6.5300 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.3427 g Cold Free Space: 15.8951 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 1.8399 ± 0.0091 m²/g Slope: 2.300247 ± 0.011480 g/cm³ STP Y-Intercept: 0.065788 ± 0.002044 g/cm³ STP C: 35.964607 Qm: 0.4226 cm3/g STP Correlation Coefficient: 0.9999004 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Adsorbed Pressure (P/Po) (cm³/g STP) 0.047846744 0.2812 0.178731 0.077813462 0.3427 0.246192 0.097199938 0.3717 0.289673 0.124709496 0.4054 0.351425 0.150151741 0.4321 0.408871 0.174983602 0.4557 0.465477 0.200144791 0.4778 0.523695 0.226096987 0.4998 0.584569

0.5201

0.5408

0.643346

0.706161

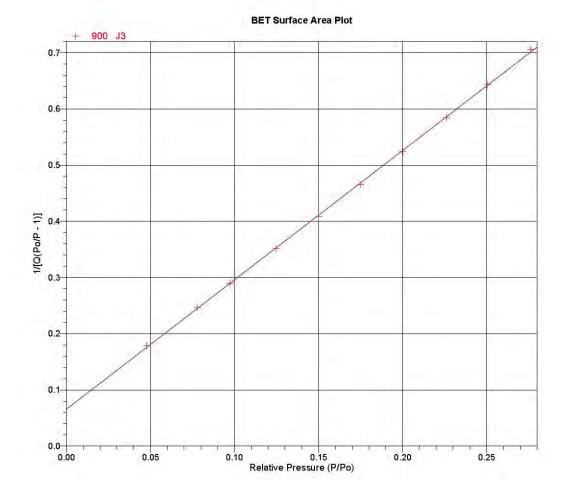
0.250710688

0.276369020

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 900 J3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103994.SMP

Started: 6/23/2011 10:26:50AM Completed: 6/23/2011 5:00:59PM Report Time: 6/24/2011 7:53:48AM Warm Free Space: 6.5300 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.3427 g Cold Free Space: 15.8951 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Sample #7-1081

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 1

Serial #: 571

Page 1

Sample: 1081 J4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103995.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:13:20PM Warm Free Space: 7.0391 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.2893 g Cold Free Space: 17.8098 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.302155307: 0.4771 m²/g

BET Surface Area: 0.5047 m²/g

Unit 2 Port 1

Serial #: 571

Page 2

Sample: 1081 J4 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1103995.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:13:20PM Warm Free Space: 7.0391 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6,2893 g Cold Free Space: 17.8098 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

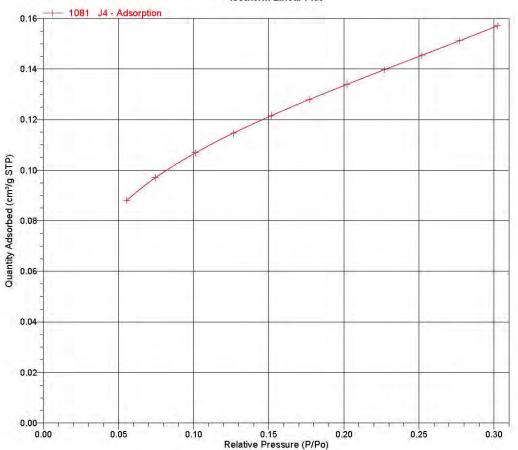
	1300	ienni rabulai ne	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:22	740.285828
0.055391277	41.007862	0.0880	01:27	740.330688
0.074512835	55.164211	0.0970	01:29	740.331665
0.101287389	74.983856	0.1069	01:32	740.307922
0.126510957	93.679031	0.1147	01:34	740.481567
0.151811898	112.391479	0.1216	01:36	740.333801
0.176901077	130.972336	0.1279	01:38	740.370483
0.201993028	149.542007	0.1339	01:40	740.332520
0.227017011	168.083206	0.1397	01:42	740.399170
0.252083983	186.650742	0.1454	01:44	740.430786
0.277126163	205.202316	0.1512	01:46	740.465332
0.302155307	223.748642	0.1570	01:48	740.508728

Isotherm Tabular Report

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.2893 g Cold Free Space: 17.8098 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 1081 J4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103995.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:13:20PM Warm Free Space: 7.0391 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 2 Port 1

Serial #: 571

Page 4

Sample: 1081 J4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103995.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:3:20PM Warm Free Space: 7.0391 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.2893 g Cold Free Space: 17.8098 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 0.5047 ± 0.0017 m²/g Slope: 8.428675 ± 0.028185 g/cm³ STP Y-Intercept: 0.196269 ± 0.005463 g/cm3 STP C: 43.944414 Qm: 0.1159 cm3/g STP Correlation Coefficient: 0.9999497 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (cm³/g STP) (P/Po) 0.055391277 0.0880 0.666192 0.074512835 0.0970 0.829980 0.101287389 0.1069 1.054459 0.126510957 0.1147 1.262945 0.151811898 0.1216 1.472333 0.176901077 0.1279 1.680069 0.201993028 0.1339 1.890202 0.227017011 0.1397 2.101562

0.1454

0.1512

0.1570

2.317479

2.535413

2.757198

0.252083983

0.277126163

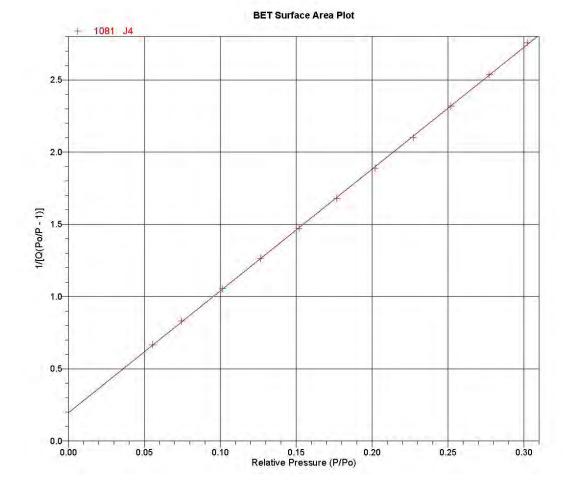
0.302155307

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)

Page 5

172


Sample: 1081 J4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103995.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:13:20PM Warm Free Space: 7.0391 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.2893 g Cold Free Space: 17.8098 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Sample#8-1461

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 2

Serial #: 571

Page 1

Sample: 1461 J5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103996.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:19:11PM Warm Free Space: 6.4193 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7765 g Cold Free Space: 15.3583 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.277826308: 0.1644 m²/g

BET Surface Area: 0.1797 m²/g

Unit 2 Port 2

Serial #: 571

Page 2

Sample: 1461 J5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103996.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:19:11PM Warm Free Space: 6.4193 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7765 g Cold Free Space: 15.3583 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	10.00		01:22	740.285828
0.052659257	38.985714	0.0272	01:27	740.339233
0.074828208	55.401615	0.0315	01:29	740.384094
0.101298348	74.998375	0.0354	01:31	740.371155
0.126901357	93.966141	0.0385	01:33	740.466003
0.152355580	112.799454	0.0413	01:35	740.369690
0.177570225	131.470810	0.0437	01:37	740.387695
0.202712906	150.085510	0.0461	01:39	740.384583
0.227806334	168.657623	0.0482	01:42	740.355286
0.252836522	187.199951	0.0503	01:44	740.399170
0.277826308	205.709015	0.0523	01:46	740.423096
0.302850204	224.236435	0.0543	01:48	740.420288

Isotherm Tabular Report

Unit 2 Port 2

Page 3

Serial #: 571

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7765 g Cold Free Space: 15.3583 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Sample: 1461 J5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103996.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:19:11PM Warm Free Space: 6.4193 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

1461 J5 - Adsorption 0.055 0.050 0.045 0.040 Quantity Adsorbed (cm³/g STP) 0.035 0.030 0.025 0.020 0.015 0.010-0.005 0.000-0.15 0.30 0.00 0.05 0.10 0.20 0.25 Relative Pressure (P/Po)

Isotherm Linear Plot

Unit 2 Port 2

Serial #: 571

Page 4

Sample: 1461 J5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103996.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:19:11PM Warm Free Space: 6.4193 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7765 g Cold Free Space: 15.3583 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

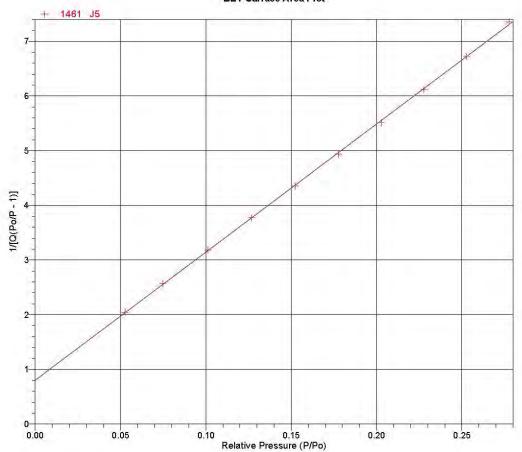
BET Surface Area: 0.1797 ± 0.0008 m²/g Slope: 23.422166 ± 0.109722 g/cm³ STP Y-Intercept: 0.801767 ± 0.019737 g/cm³ STP C: 30.213200 Qm: 0.0413 cm³/g STP Correlation Coefficient: 0.9999122 Molecular Cross-Sectional Area: 0.1620 nm² Polativo Quantitiv 1/(Q/Bc/P, 1))

Pressure (P/Po)	Adsorbed (cm ³ /g STP)	1/[Q(P0/P - 1)]
0.052659257	0.0272	2.045756
0.074828208	0.0315	2.571479
0.101298348	0.0354	3.185633
0.126901357	0.0385	3.772197
0.152355580	0.0413	4.353949
0.177570225	0.0437	4.937506
0.202712906	0.0461	5.519019
0.227806334	0.0482	6.118817
0.252836522	0.0503	6.726772
0.277826308	0.0523	7.358046

Unit 2 Port 2

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 1461 J5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103996.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:19:11PM Warm Free Space: 6.4193 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7765 g Cold Free Space: 15.3583 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

BET Surface Area Plot

Sample#9-1712

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 3

Serial #: 571

Page 1

Sample: 1712 J6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103997.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:21:03PM Warm Free Space: 6.8741 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1956 g Cold Free Space: 16.7665 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.301832390: 1.0401 m²/g

BET Surface Area: 1.0966 m²/g

Unit 2 Port 3

Serial #: 571

Page 2

Sample: 1712 J6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103997.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 1:21:03PM Warm Free Space: 6.8741 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1956 g Cold Free Space: 16.7665 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

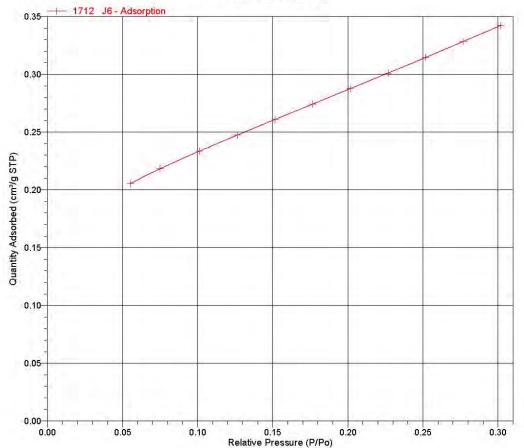
	1500	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:22	740.285828
0.055411857	41.023605	0.2055	01:28	740.339844
0.075027395	55.551018	0.2183	01:30	740.409790
0.101221344	74.942741	0.2335	01:32	740.384766
0.126440970	93.609543	0.2474	01:34	740.341858
0.151629072	112.255211	0.2610	01:36	740.327759
0.176724792	130.840256	0.2743	01:38	740.361633
0.201756833	149.378769	0.2877	01:40	740.390137
0.226791552	167.909439	0.3010	01:42	740.369019
0.251782740	186.409958	0.3145	01:44	740.360352
0.276770940	204.930130	0.3283	01:47	740.432251
0.301832390	223.484207	0.3422	01:49	740.424866

Isotherm Tabular Report

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 3


Sample: 1712 J6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103997.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:21:03PM Warm Free Space: 6.8741 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1956 g Cold Free Space: 16.7665 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Unit 2 Port 3

Serial #: 571

Page 4

Sample: 1712 J6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103997.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:21:03PM Warm Free Space: 6/24/2011 1:21:03PM Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1956 g Cold Free Space: 16.7665 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

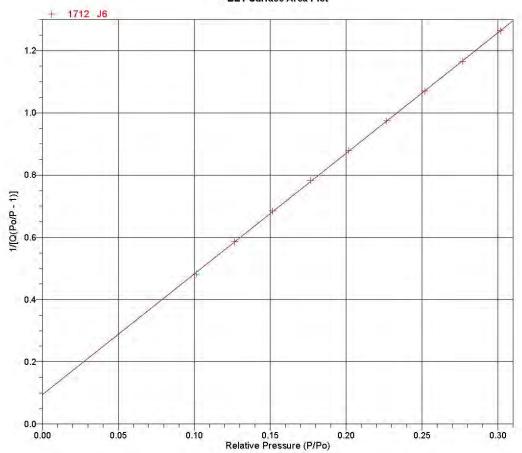
BET Surface Area: 1.0966 ± 0.0038 m²/g Slope: 3.875058 ± 0.013426 g/cm³ STP Y-Intercept: 0.094828 ± 0.002843 g/cm³ STP C: 41.864228 Qm: 0.2519 cm3/g STP Correlation Coefficient: 0.9999580 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.101221344 0.2335 0.482276 0.126440970 0.2474 0.585013 0.151629072 0.2610 0.684881 0.176724792 0.2743 0.782624 0.201756833 0.2877 0.878655 0.226791552 0.3010 0.974349 0.251782740 0.3145 1.069902 0.276770940

0.276770940 0.3283 1.165517 0.301832390 0.3422 1.263272

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 1712 J6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103997.SMP

Started: 6/24/2011 10:04:23AM Completed: 6/24/2011 11:54:46AM Report Time: 6/24/2011 11:21:03PM Warm Free Space: 6.8741 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1956 g Cold Free Space: 16.7665 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

BET Surface Area Plot

Sample#10-2177

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 1

Serial #: 238

Page 1

Sample: 2177 E7 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103998.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:43:29PM Warm Free Space: 6.5325 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.6601 g Cold Free Space: 15.9492 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.199437318: 16.1308 m²/g

BET Surface Area: 16.5203 m²/g

Unit 3 Port 1

Serial #: 238

Page 2

Sample: 2177 E7 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103998.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:43:29PM Warm Free Space: 6.5325 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.6601 g Cold Free Space: 15.9492 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
		100.0	01:19	740.129272
0.049853820	36.894653	3.6266	02:51	740.056702
0.075916077	56.167953	3.8632	03:15	739.869019
0.100664441	74.460991	4.0461	03:36	739.695068
0.121664950	89.946220	4.1845	03:53	739.294434
0.146300222	108.123276	4.3387	04:08	739.050659
0.172563450	127.479111	4.4894	04:22	738.737610
0.199437318	147.252579	4.6286	04:36	738.340149
0.225999717	166.861313	4.7601	04:48	738.325317
0.252830164	186.642532	4.8870	04:58	738.213074
0.279603902	206.334778	5.0101	05:09	737.953857
0.305517777	225.382034	5.1239	05:19	737.705139

Isotherm Tabular Report

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 238

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.6601 g Cold Free Space: 15.9492 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 2177 E7 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103998.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:43:29PM Warm Free Space: 6.5325 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

2177 E7 - Adsorption 5.0 4.5 4.0 3.5 Quantity Adsorbed (cm³/g STP) 3.0-2.5 2.0 1.5 1.0-0.5 0.0 0.15 Relative Pressure (P/Po) 0.25 0.30 0.00 0.05 0.10 0.20

Isotherm Linear Plot

Unit 3 Port 1

Serial #: 238

Page 4

Sample: 2177 E7 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103998.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:43:29PM Warm Free Space: 6:525 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.6601 g Cold Free Space: 15.9492 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 16.5203 ± 0.0724 m²/g Slope: 0.262207 ± 0.001144 g/cm³ STP Y-Intercept: 0.001300 ± 0.000152 g/cm³ STP C: 202.728690 Qm: 3.7950 cm3/g STP Correlation Coefficient: 0.9999524 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (P/Po) (cm³/g STP) 0.049853820 3.6266 0.014468 0.075916077 3.8632 0.021266 0.100664441 4.0461 0.027664 0.121664950 4.1845 0.033102 0.146300222 4.3387 0.039498 0.172563450 4.4894 0.046454

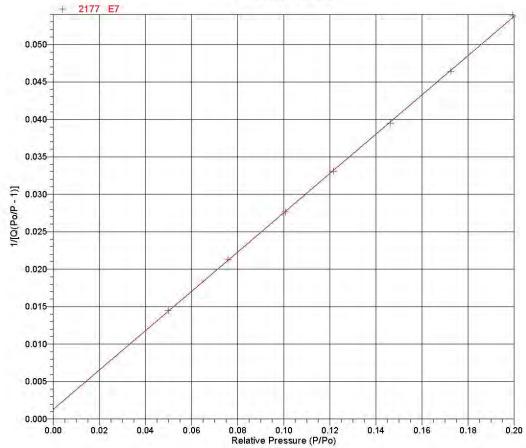
4.6286

0.053822

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 2177 E7 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103998.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:43:29PM Warm Free Space: 6.5325 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.6601 g Cold Free Space: 15.9492 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#11-2472

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 2

Serial #: 238

Page 1

Sample: 2472 E8 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103999.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:42:07PM Warm Free Space: 7.0476 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.0376 g Cold Free Space: 17.8899 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.277312303: 15.9862 m²/g

BET Surface Area: 16.3173 m²/g

Unit 3 Port 2

Serial #: 238

Page 2

Sample: 2472 E8 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103999.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:42:07PM Warm Free Space: 7.0476 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.0376 g Cold Free Space: 17.8899 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

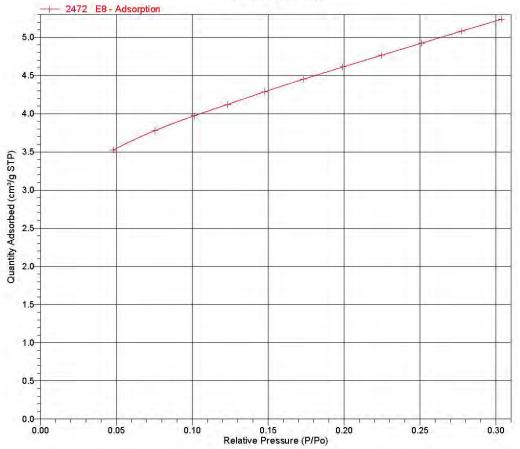
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:19	740.129272
0.047936688	35.484615	3.5264	02:05	740.239197
0.075364315	55,787735	3.7791	02:20	740.240723
0.101116408	74.838516	3.9718	02:31	740.122375
0.123201441	91.178932	4.1222	02:39	740.080078
0.147746630	109.331055	4.2880	02:47	739.990173
0.173136253	128.134628	4.4520	02:54	740.079712
0.199158462	147.368790	4.6110	03:00	739.957458
0.224676864	166.254379	4.7656	03:07	739.971069
0.251086475	185.763840	4.9245	03:13	739.840088
0.277312303	205.166809	5.0814	03:19	739.840271
0.303797274	224.729843	5.2380	03:25	739.736206

Isotherm Tabular Report

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 238


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.0376 g Cold Free Space: 17.8899 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 2472 E8 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103999.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:42:07PM Warm Free Space: 7.0476 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 2

Serial #: 238

Page 4

Sample: 2472 E8 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103999.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:42:07PM Warm Free Space: 7.0476 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.0376 g Cold Free Space: 17.8899 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 16.3173 ± 0.0751 m²/g Slope: 0.265392 ± 0.001209 g/cm³ STP Y-Intercept: 0.001392 ± 0.000215 g/cm³ STP C: 191.586601 Qm: 3.7483 cm3/g STP Correlation Coefficient: 0.9999170 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (cm³/g STP) (P/Po) 0.047936688 3.5264 0.014278 0.075364315 3.7791 0.021568 0.101116408 3.9718 0.028322 0.123201441 4.1222 0.034087 0.147746630 4.2880 0.040429 0.173136253 4.4520 0.047033 0.199158462 4.6110 0.053933 0.224676864 4.7656 0.060807

4.9245

5.0814

0.068082

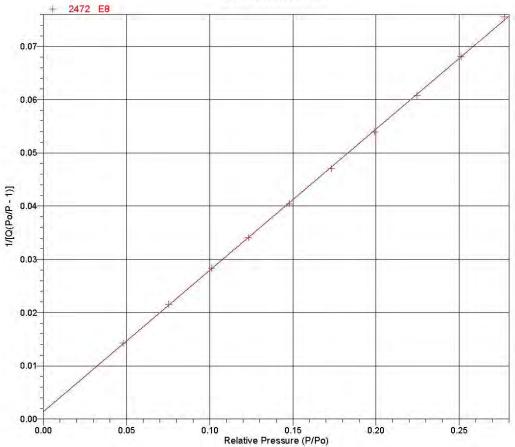
0.075515

0.251086475

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 238


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.0376 g Cold Free Space: 17.8899 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 2472 E8 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103999.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:42:07PM Warm Free Space: 7.0476 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#12-2609

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 3

Serial #: 238

Page 1

Sample: 2609 E9 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104000.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:40:53PM Warm Free Space: 6.8836 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.4809 g Cold Free Space: 16.9239 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.299603226: 0.8488 m²/g

BET Surface Area: 0.8763 m²/g

Unit 3 Port 3

Serial #: 238

Page 2

Sample: 2609 E9 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104000.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:40:53PM Warm Free Space: 6.8836 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.4809 g Cold Free Space: 16.9239 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

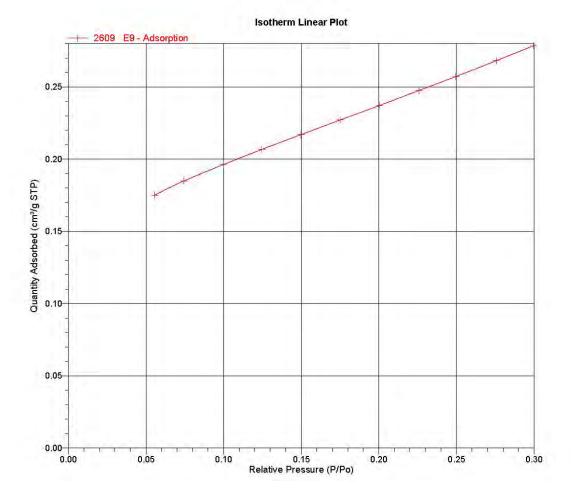
	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	100.000		01:19	740.129272
0.055603672	41.166618	0.1750	01:26	740.357910
0.074412313	55.085949	0.1849	01:29	740.280029
0.099915596	73.965935	0.1962	01:31	740.284180
0.124688222	92.304718	0.2067	01:33	740.284180
0.149923174	110.985352	0.2170	01:35	740.281494
0.175149552	129.679001	0.2271	01:37	740.390137
0.200316805	148.308075	0.2370	01:39	740.367615
0.225751391	167.127762	0.2474	01:41	740.317749
0.249660570	184.813965	0.2571	01:43	740.260925
0.275691723	204.129562	0.2681	01:45	740.426880
0.299603226	221.800598	0.2784	01:47	740.314453

Isotherm Tabular Report

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 3


Serial #: 238

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.4809 g Cold Free Space: 16.9239 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Sample: 2609 E9 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104000.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:40:53PM Warm Free Space: 6.8836 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Unit 3 Port 3

Serial #: 238

Page 4

Sample: 2609 E9 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104000.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:40:53PM Warm Free Space: 6.8836 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3,4809 g Cold Free Space: 16.9239 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 0.8763 ± 0.0034 m²/g Slope: 4.894034 ± 0.018797 g/cm³ STP Y-Intercept: 0.073670 ± 0.003613 g/cm³ STP C: 67.431532 Qm: 0.2013 cm3/g STP Correlation Coefficient: 0.9999336 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.055603672 0.1750 0.336354 0.074412313 0.1849 0.434864 0.099915596 0.1962 0.565657 0.124688222 0.2067 0.689149 0.149923174 0.2170 0.812881 0.175149552 0.2271 0.935072 0.200316805 0.2370 1.056797 0.225751391 0.2474 1.178478 0.249660570 0.2571 1.293981

0.2681

0.2784

1.419490

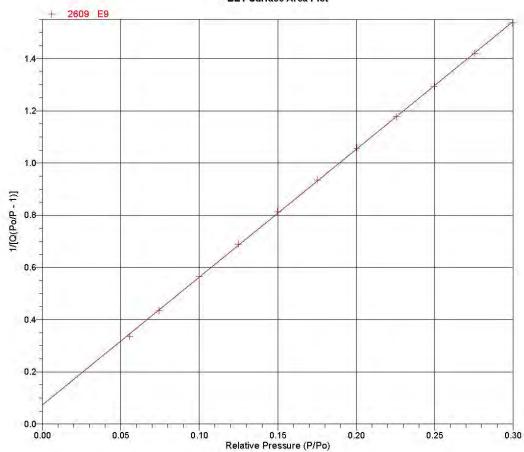
1.536642

0.275691723

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 2609 E9 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104000.SMP

Started: 6/24/2011 10:04:45AM Completed: 6/24/2011 3:25:29PM Report Time: 6/24/2011 3:40:53PM Warm Free Space: 6.8836 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.4809 g Cold Free Space: 16.9239 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

BET Surface Area Plot

Sample#13-3088

TriStar II 3020 V1.03 (V1.03)

Unit 1 Port 1

Serial #: 611

Page 1

Sample: 3088 D1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104001.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:04:01AM Warm Free Space: 6.5484 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1425 g Cold Free Space: 16.2476 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.172569820: 14.0275 m²/g

BET Surface Area: 14.3211 m²/g

Unit 1 Port 1

Serial #: 611

Page 2

Sample: 3088 D1 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1104001.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:04:01AM Warm Free Space: 6.5484 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1425 g Cold Free Space: 16.2476 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

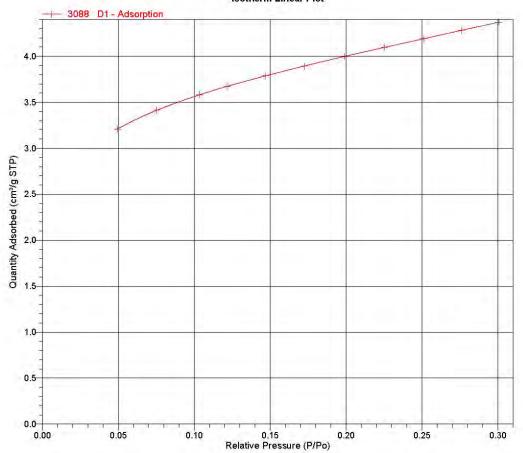
Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
		01:20	740.263062
36.447159	3.2098	05:36	738.410645
55.489822	3.4128	07:03	737.470764
76.301498	3.5811	08:17	737.559937
89.686241	3.6733	08:54	737.543335
108.225700	3.7857	09:27	737.386963
127.245079	3.8944	09:56	737.354187
146.647141	3.9978	10:24	737.306824
166.175964	4.0970	10:48	737.401306
185.306351	4.1908	11:08	737.673035
203.593964	4.2820	11:28	737.465942
221.715637	4.3706	11:47	737.569336
	Pressure (mmHg) 36.447159 55.489822 76.301498 89.686241 108.225700 127.245079 146.647141 166.175964 185.306351 203.593964	Pressure (mmHg) Adsorbed (cm³/g STP) 36.447159 3.2098 55.489822 3.4128 76.301498 3.5811 196.86241 3.6733 108.225700 3.7857 127.245079 3.8944 146.647141 3.9978 166.175964 4.0970 185.06351 4.1908 203.593964 4.2820	Pressure (mmHg) Adsorbed (cm³/g STP) (h:min) 01:20 36.447159 3.2098 05:36 55.499822 3.4128 07:03 76.301498 3.5811 08:17 89.686241 3.6733 08:54 108.225700 3.7857 09:27 127.245079 3.8944 09:56 146.647141 3.9978 10:24 166.175964 4.0970 10:48 185.306351 4.1908 11:08 203.593964 4.2820 11:28

Isotherm Tabular Report

Unit 1 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 611


Page 3

Sample: 3088 D1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104001.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:04:01AM Warm Free Space: 6.5484 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1425 g Cold Free Space: 16.2476 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Isotherm Linear Plot

Unit 1 Port 1

Serial #: 611

Page 4

Sample: 3088 D1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104001.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:04:01AM Warm Free Space: 6.5484 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1425 g Cold Free Space: 16.2476 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 14.3211 ± 0.0919 m²/g Slope: 0.302926 ± 0.001937 g/cm3 STP Y-Intercept: 0.001044 ± 0.000230 g/cm3 STP C: 291.233472 Qm: 3.2898 cm3/g STP Correlation Coefficient: 0.9999183 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (P/Po) (cm³/g STP) 0.049358929 3.2098 0.016176 0.075243420 3.4128 0.023841 0.103451251 3.5811 0.032221 0.121601317 3.6733 0.037687 0.146769208 3.7857 0.045438

3.8944

0.053554

Unit 1 Port 1

TriStar II 3020 V1.03 (V1.03)

Page 5

Serial #: 611

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1425 g Cold Free Space: 16.2476 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Sample: 3088 D1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104001.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:04:01AM Warm Free Space: 6.5484 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot 3088 D1 + 0.050 0.045 0.040 0.035 I/[Q(Po/P - 1)] 0.030 0.025 0.020 0.015-0.010 0.005 0.000-0.02 0.16 0.00 0.04 0.06 0.08 0.10 0.12 0.14 Relative Pressure (P/Po)

Sample#14-3155

TriStar II 3020 V1.03 (V1.03)

Unit 1 Port 2

Serial #: 611

Page 1

Sample: 3115 D2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104002.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:05:35AM Warm Free Space: 6.4778 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8311 g Cold Free Space: 15.5441 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.150569975: 0.7929 m²/g

BET Surface Area: 0.8360 m²/g

Unit 1 Port 2

Serial #: 611

Page 2

Sample: 3115 D2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104002.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:05:35AM Warm Free Space: 6.4778 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8311 g Cold Free Space: 15.5441 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:20	740.263062
0.055060474	40.757141	0.1743	01:25	740.225037
0.074213958	54.934368	0.1834	01:28	740.216125
0.099823166	73.894531	0.1943	01:30	740.254333
0.125412562	92.829178	0.2045	01:32	740.190430
0.150569975	111.456879	0.2144	01:34	740.233093
0.175675772	130.041428	0.2244	01:36	740.235413
0.200741804	148.605896	0.2345	01:38	740.283752
0.226453510	167.625839	0.2452	01:40	740.221863
0.250494884	185.395294	0.2559	01:43	740.116089
0.275227501	203.710129	0.2673	01:45	740.151794
0.299997955	222.043732	0.2793	01:47	740.150818

Isotherm Tabular Report

Unit 1 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 611

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8311 g Cold Free Space: 15.5441 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3115 D2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104002.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:05:35AM Warm Free Space: 6.4778 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Unit 1 Port 2

Serial #: 611

Page 4

Sample: 3115 D2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104002.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:05:35AM Warm Free Space: 6:4778 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8311 g Cold Free Space: 15.5441 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 0.8360 ± 0.0065 m²/g Slope: 5.153888 ± 0.040152 g/cm³ STP Y-Intercept: 0.053352 ± 0.004283 g/cm3 STP C: 97.601278 Qm: 0.1920 cm3/g STP Correlation Coefficient: 0.9999090 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (P/Po) (cm³/g STP) 0.055060474 0.1743 0.334209 0.074213958 0.1834 0.437020 0.099823166 0.1943 0.570820 0.125412562 0.2045 0.701190

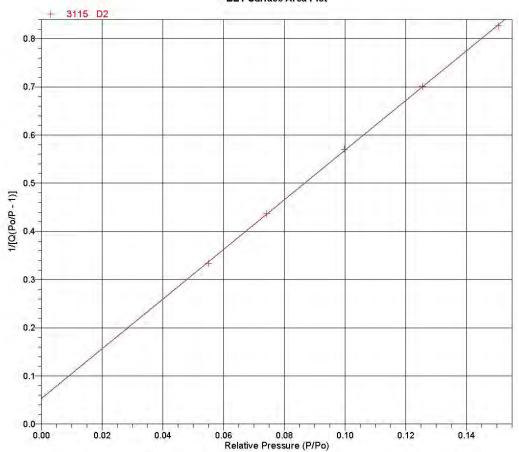
0.2144

0.826648

Unit 1 Port 2

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 3115 D2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104002.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:05:35AM Warm Free Space: 6.4778 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8311 g Cold Free Space: 15.5441 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 611

BET Surface Area Plot

Sample#15-3138

TriStar II 3020 V1.03 (V1.03)

Unit 1 Port 3

Serial #: 611

Page 1

Sample: 3138 D3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104003.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:01:55AM Warm Free Space: 6.5387 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2565 g Cold Free Space: 16.0216 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.300305127: 1.6383 m³/g

BET Surface Area: 1.6925 m²/g

Unit 1 Port 3

Serial #: 611

Page 2

Sample: 3138 D3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104003.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:01:55AM Warm Free Space: 6.5387 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2565 g Cold Free Space: 16.0216 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1500	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:20	740.263062
0.049920433	36.949387	0.3292	01:28	740.165588
0.081717025	60.488464	0.3616	01:31	740.218628
0.098740152	73.096207	0.3767	01:33	740.288574
0.125275125	92.737473	0.3986	01:35	740.270447
0.150534182	111.429024	0.4186	01:37	740.224060
0.175592976	129.984619	0.4381	01:39	740.260925
0.200716409	148.572800	0.4575	01:42	740.212524
0.224656529	166.288956	0.4762	01:44	740.191956
0.249955828	185.037292	0.4964	01:46	740.279968
0.275060220	203.573456	0.5168	01:48	740.105042
0.300305127	222.254974	0.5379	01:50	740.097168

Isotherm Tabular Report

Unit 1 Port 3

TriStar II 3020 V1.03 (V1.03)

Serial #: 611

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2565 g Cold Free Space: 16.0216 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3138 D3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104003.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:01:55AM Warm Free Space: 6.5387 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

0.05

0.00

0.10

Comments: Degas at 110 C for 16h

0.15

Relative Pressure (P/Po)

0.20

0.25

Unit 1 Port 3

Serial #: 611

Page 4

Sample: 3138 D3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104003.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:01:55AM Warm Free Space: 6.5387 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2565 g Cold Free Space: 16.0216 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 1.6925 ± 0.0071 m²/g Slope: 2.532762 ± 0.010667 g/cm³ STP Y-Intercept: 0.039247 ± 0.002052 g/cm³ STP C: 65.534009 Qm: 0.3888 cm3/g STP Correlation Coefficient: 0.9999202 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.049920433 0.3292 0.159614 0.081717025 0.3616 0.246119 0.098740152 0.3767 0.290826 0.125275125 0.3986 0.359330 0.150534182 0.4186 0.423368 0.175592976 0.4381 0.486156 0.200716409 0.4575 0.548953 0.224656529 0.4762 0.608420 0.249955828 0.4964 0.671363 0.275060220 0.5168 0.734129

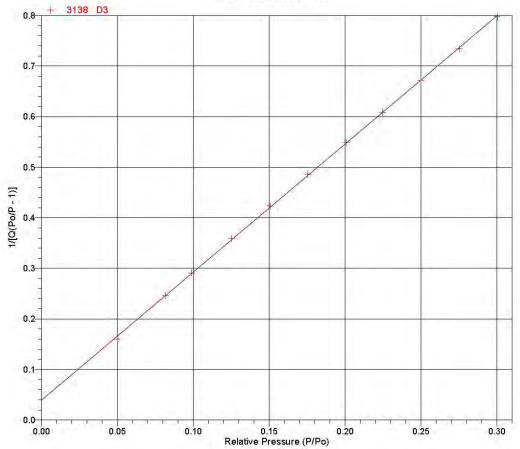
0.5379

0.797935

Unit 1 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 3138 D3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104003.SMP

Started: 6/29/2011 11:10:09AM Completed: 6/29/2011 10:58:30PM Report Time: 6/30/2011 8:01:55AM Warm Free Space: 6.5387 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.2565 g Cold Free Space: 16.0216 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 611

BET Surface Area Plot

Sample#16-3141

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 1

Serial #: 238

Page 1

Sample: 3141 D4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104004.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:08:08AM Warm Free Space: 6.6629 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5497 g Cold Free Space: 16.2515 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.275185534: 8.3188 m²/g

BET Surface Area: 8.5142 m²/g

Unit 3 Port 1

Serial #: 238

Page 2

Sample: 3141 D4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104004.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:08:08AM Warm Free Space: 6.6629 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5497 g Cold Free Space: 16.2515 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

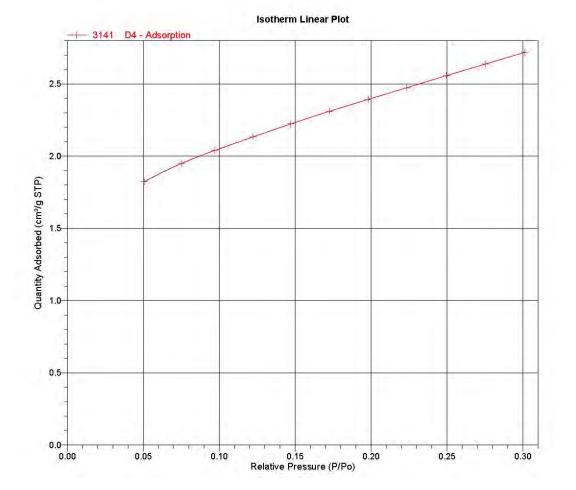
	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
-		1 - NO-4	01:19	742.560242
0.050574352	37.527206	1.8226	02:47	742.020508
0.075013926	55.637871	1.9486	03:19	741.700562
0.097197835	72.050797	2.0402	03:36	741.279846
0.122363704	90.674492	2.1330	03:49	741.024414
0.147163971	109.041344	2.2227	04:00	740.951355
0.172607623	127.918083	2.3100	04:10	741.091736
0.197963038	146.675049	2.3918	04:19	740.921387
0.223577599	165.618027	2.4730	04:27	740.763062
0.249736105	185.049652	2.5570	04:35	740.980774
0.275185534	203.909424	2.6365	04:42	740.988892
0.301238250	223.150269	2.7179	04:48	740.776672

Isotherm Tabular Report

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Page 3


Sample: 3141 D4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104004.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:08:08AM Warm Free Space: 6.6629 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5497 g Cold Free Space: 16.2515 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

215

Unit 3 Port 1

Serial #: 238

Page 4

Sample: 3141 D4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104004.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:08:08AM Warm Free Space: 6.6629 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5497 g Cold Free Space: 16.2515 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 8.5142 ± 0.0385 m²/g Slope: 0.508087 ± 0.002278 g/cm³ STP Y-Intercept: 0.003202 ± 0.000402 g/cm³ STP C: 159.678415 Qm: 1.9558 cm3/g STP Correlation Coefficient: 0.9999196 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.050574352 1.8226 0.029227 0.075013926 1.9486 0.041618 0.097197835 2.0402 0.052770 0.122363704 2.1330 0.065364 0.147163971 2.2227 0.077636 0.172607623 2.3100 0.090310 0.197963038 2.3918 0.103197 0.223577599 2.4730 0.116439

2.5570

2.6365

0.130177

0.144003

0.249736105

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 238

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5497 g Cold Free Space: 16.2515 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 3141 D4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104004.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:08:08AM Warm Free Space: 6.6629 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

3141 D4 + 0.14 0.12-0.10-1/[Q(Po/P - 1)] 0.08 0.06 0.04 0.02 0.00-0.20 0.05 0.10 0.00 0.15 0.25 Relative Pressure (P/Po)

BET Surface Area Plot

Sample#17-3146

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 2

Serial #: 238

Page 1

Sample: 3146 D5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104005.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:09:57AM Warm Free Space: 6.3537 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7452 g Cold Free Space: 15.3380 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.298758126: 5.0601 m²/g

BET Surface Area: 5.2811 m²/g

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)

Page 2

Sample: 3146 D5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104005.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:09:57AM Warm Free Space: 6.3537 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7452 g Cold Free Space: 15.3380 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

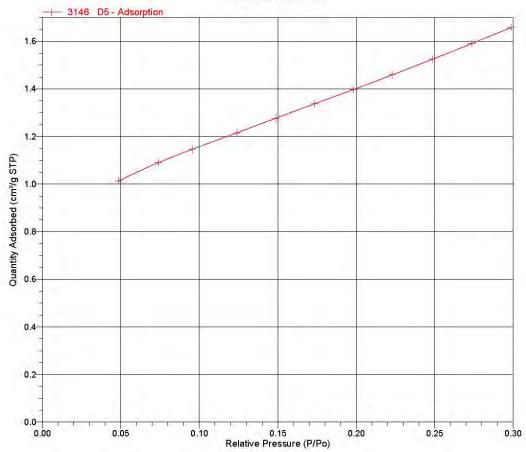
	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
1000000			01:19	742.560242
0.048633172	36.105824	1.0131	01:40	742.411438
0.073914172	54.869728	1.0902	01:46	742.343811
0.095469984	70.866051	1.1462	01:51	742.286194
0.123783825	91.896042	1.2150	01:56	742.391357
0.148779945	110.425812	1.2769	02:00	742.208984
0.173679972	128.935913	1.3380	02:04	742.376404
0.198263360	147.144073	1.3972	02:08	742.164734
0.222976021	165.490479	1.4586	02:12	742.189575
0.248565009	184.497787	1.5245	02:16	742.251648
0.273679811	203.130905	1.5903	02:20	742.221008
0.298758126	221.797913	1.6576	02:24	742.399597

Isotherm Tabular Report

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 238


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7452 g Cold Free Space: 15.3380 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3146 D5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104005.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:09:57AM Warm Free Space: 6.3537 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 2

Serial #: 238

Page 4

Sample: 3146 D5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104005.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:09:57AM Warm Free Space: 6.3537 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7452 g Cold Free Space: 15.3380 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 5.2811 ± 0.0223 m²/g Slope: 0.808160 ± 0.003404 g/cm³ STP Y-Intercept: 0.016142 ± 0.000710 g/cm³ STP C: 51.066716 Qm: 1.2131 cm3/g STP Correlation Coefficient: 0.9999379 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (cm³/g STP) (P/Po) 0.095469984 1.1462 0.092085 0.123783825 1.2150 0.116273 0.148779945 1.2769 0.136885 0.173679972 1.3380 0.157090 0.198263360 1.3972 0.176995 0.222976021 1.4586 0.196735

1.5245

1.5903

1.6576

0.216975

0.236936

0.257023

0.248565009

0.273679811

0.298758126

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)

Page 5

Sample: 3146 D5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104005.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:09:57AM Warm Free Space: 6.3537 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.7452 g Cold Free Space: 15.3380 cm^a Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#18-3149

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 3

Serial #: 238

Page 1

Sample: 3149 D6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104006.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:12:58AM Warm Free Space: 6.1167 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5678 g Cold Free Space: 14.6261 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.225746917: 9.4471 m³/g

BET Surface Area: 9.7036 m²/g

Unit 3 Port 3

Serial #: 238

Page 2

Sample: 3149 D6 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1104006.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:12:58AM Warm Free Space: 6.1167 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5678 g Cold Free Space: 14.6261 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

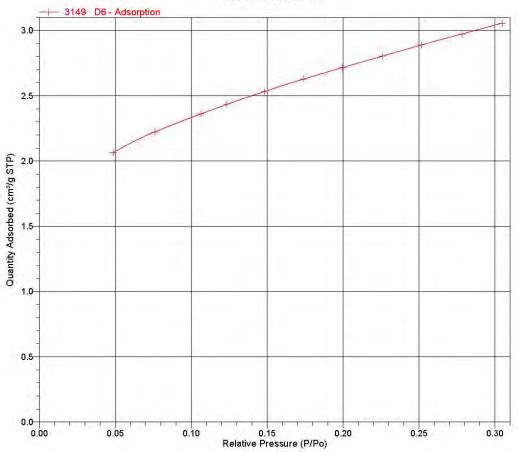
	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:19	742.560242
0.048554771	36.014435	2.0660	03:08	741.728027
0.075950093	56.296787	2.2239	03:38	741.233948
0.106351617	78.797012	2.3615	04:02	740.910339
0.123504217	91.521080	2.4344	04:17	741.036072
0.148231036	109.841568	2.5332	04:29	741.015991
0.173943423	128.844620	2.6281	04:40	740.727173
0.199828384	148.058075	2.7167	04:48	740.926147
0.225746917	167.240051	2.8029	04:56	740.829834
0.251476974	186.294830	2.8887	05:03	740.802734
0.278421121	206.223129	2.9742	05:10	740.687805
0.304805768	225.760651	3.0565	05:15	740.670532

Isotherm Tabular Report

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Serial #: 238


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5678 g Cold Free Space: 14.6261 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3149 D6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104006.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:12:58AM Warm Free Space: 6.1167 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 3

Serial #: 238

Page 4

Sample: 3149 D6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104006.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:12:58AM Warm Free Space: 6/31167 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5678 g Cold Free Space: 14.6261 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 9.7036 ± 0.0389 m²/g Slope: 0.445678 ± 0.001779 g/cm³ STP Y-Intercept: 0.002941 ± 0.000265 g/cm3 STP C: 152.563786 Qm: 2.2291 cm3/g STP Correlation Coefficient: 0.9999522 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.048554771 2.0660 0.024701 0.075950093 2.2239 0.036959 0.106351617 2.3615 0.050396 0.123504217 2.4344 0.057882 0.148231036 2.5332 0.068699 0.173943423 2.6281 0.080124

2.7167

2.8029

0.091926

0.104024

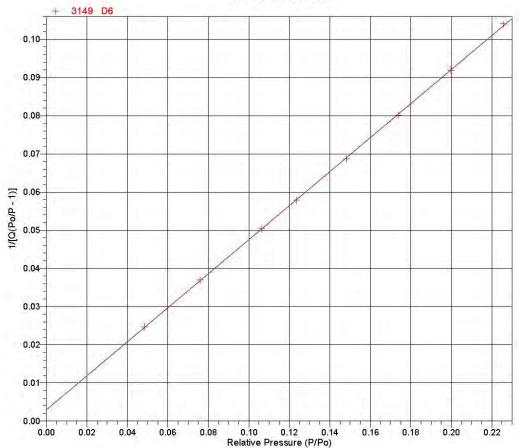
0.199828384

0.225746917

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 3149 D6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104006.SMP

Started: 6/29/2011 11:14:09AM Completed: 6/29/2011 4:30:51PM Report Time: 6/30/2011 8:12:58AM Warm Free Space: 6.1167 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5678 g Cold Free Space: 14.6261 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

BET Surface Area Plot

Sample#19-3150

TriStar II 3020 V1.03 (V1.03)

Unit 4 Port 1

Serial #: 240

Page 1

Sample: 3150 A1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104007.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:13:47AM Warm Free Space: 6.3502 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1387 g Cold Free Space: 15.3187 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.301969327: 11.9610 m²/g

BET Surface Area: 12.2388 m²/g

Unit 4 Port 1

Serial #: 240

Page 2

Sample: 3150 A1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104007.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:13:47AM Warm Free Space: 6.3502 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1387 g Cold Free Space: 15.3187 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
		1.00	01:20	739.981445
0.050056856	37.037567	2.5769	02:35	739.909973
0.073356245	54.257393	2.7504	03:04	739.642456
0.097548383	72.138702	2.8955	03:20	739.517151
0.122487368	90.553467	3.0294	03:32	739.288208
0.147620660	109.132690	3.1630	03:41	739.277893
0.173468675	128.197723	3.2952	03:50	739.025208
0.199386446	147.357025	3.4208	03:57	739.052368
0.223886698	165.454880	3.5442	04:07	739.011658
0.250172256	184.865677	3.6751	04:13	738.953552
0.276179475	204.082001	3.8043	04:19	738.947021
0.301969327	223.118195	3.9363	04:25	738.877014

Isotherm Tabular Report

Unit 4 Port 1

Page 3

Serial #: 240

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1387 g Cold Free Space: 15.3187 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Sample: 3150 A1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104007.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:13:47AM Warm Free Space: 6.3502 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

3150 A1 - Adsorption 4.0 3.5 3.0-Quantity Adsorbed (cm³/g STP) 2.5 2.0 1.5 1.0 0.5 0.0-0.15 Relative Pressure (P/Po) 0.05 0.10 0.25 0.30 0.00 0.20

Isotherm Linear Plot

Unit 4 Port 1

Serial #: 240

Page 4

Sample: 3150 A1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104007.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:13:47AM Warm Free Space: 6.3502 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1387 g Cold Free Space: 15.3187 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 12.2388 ± 0.0389 m²/g Slope: 0.352967 ± 0.001111 g/cm³ STP Y-Intercept: 0.002721 ± 0.000213 g/cm³ STP C: 130.728346 Qm: 2.8115 cm3/g STP Correlation Coefficient: 0.9999554 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.050056856 2.5769 0.020449 0.073356245 2.7504 0.028782 0.097548383 2.8955 0.037331 0.122487368 3.0294 0.046077 0.147620660 3.1630 0.054753 0.173468675 3.2952 0.063692 0.199386446 3.4208 0.072802 0.223886698 3.5442 0.081393 0.250172256 3.6751 0.090784 0.276179475 3.8043 0.100296

3.9363

0.109901

0.301969327

Unit 4 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 240

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1387 g Cold Free Space: 15.3187 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 3150 A1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104007.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:13:47AM Warm Free Space: 6.3502 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot 3150 A1 + 0.11-0.10 0.09 0.08-0.07 1/[Q(Po/P - 1)] 900 0.04 0.03-0.02-0.01 0.00 0.05 0.10 0.15 0.30 0.00 0.20 0.25 Relative Pressure (P/Po)

Sample#20-3355

TriStar II 3020 V1.03 (V1.03)

Unit 4 Port 2

Serial #: 240

Page 1

Sample: 3355 A2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104008.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:22:46AM Warm Free Space: 6.6045 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0748 g Cold Free Space: 16.0627 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.302062393: 5.3143 m²/g

BET Surface Area: 5.3783 m²/g

Unit 4 Port 2

Serial #: 240

Page 2

Sample: 3355 A2 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1104008.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:22:46AM Warm Free Space: 6.6045 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0748 g Cold Free Space: 16.0627 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

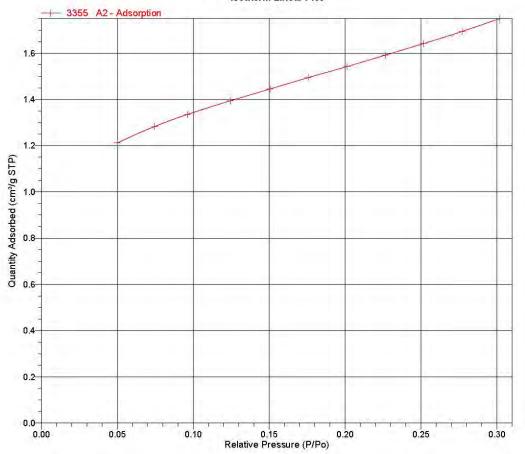
	1500	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	1 mm 1 m		01:20	739.981445
0.049909743	36.885822	1.2113	03:55	739.050537
0.074625597	55.127533	1.2830	04:31	738.721497
0.096070640	70.955292	1.3348	04:55	738.574158
0.124382965	91.829247	1.3939	05:13	738.278320
0.150510461	111.104408	1.4451	05:26	738.183960
0.175766827	129.703323	1.4943	05:37	737.928345
0.201313339	148.544510	1.5418	05:44	737.877136
0.226322574	166.978928	1.5909	05:53	737.791748
0.251629251	185.618378	1.6413	06:00	737.666138
0.277043793	204.338516	1.6938	06:07	737.567566
0.302062393	222.760635	1.7491	06:13	737.465637

Isotherm Tabular Report

Unit 4 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 240


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0748 g Cold Free Space: 16.0627 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3355 A2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104008.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:22:46AM Warm Free Space: 6.6045 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 4 Port 2

Serial #: 240

Page 4

Sample: 3355 A2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104008.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:22:46AM Warm Free Space: 6.6045 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0748 g Cold Free Space: 16.0627 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 5.3783 ± 0.0249 m²/g Slope: 0.807507 ± 0.003677 g/cm³ STP Y-Intercept: 0.001889 ± 0.000709 g/cm³ STP C: 428.446834 Qm: 1.2355 cm3/g STP Correlation Coefficient: 0.9999067 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Adsorbed Pressure (P/Po) (cm³/g STP) 0.049909743 1.2113 0.043369 0.074625597 1.2830 0.062855 0.096070640 1.3348 0.079623 0.124382965 1.3939 0.101913 0.150510461 1.4451 0.122609 0.175766827 1.4943 0.142712 0.201313339 1.5418 0.163482 0.226322574 1.5909 0.183881 0.251629251 1.6413 0.204854 0.277043793 1.6938 0.226245

1.7491

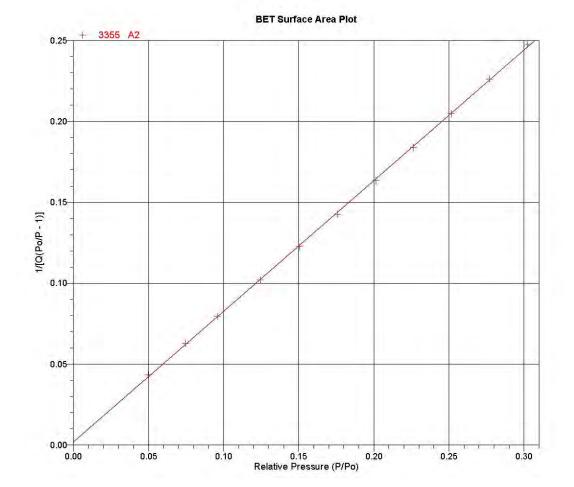
0.247435

0.302062393

Unit 4 Port 2

TriStar II 3020 V1.03 (V1.03)

Page 5


Sample: 3355 A2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104008.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:22:46AM Warm Free Space: 6.6045 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0748 g Cold Free Space: 16.0627 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 240

Sample#21-3780

TriStar II 3020 V1.03 (V1.03)

Unit 4 Port 3

Serial #: 240

Page 1

Sample: 3780 A3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104009.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:23:42AM Warm Free Space: 7.2639 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1602 g Cold Free Space: 18.0443 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.303337331: 17.8562 m²/g

BET Surface Area: 18.2856 m²/g

Unit 4 Port 3

Serial #: 240

Page 2

Sample: 3780 A3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104009.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:23:42AM Warm Free Space: 7.2639 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1602 g Cold Free Space: 18.0443 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	1000	1.00	01:20	739.981445
0.049397551	36.558403	3.8694	02:11	740.085327
0.076236153	56.413715	4.1578	02:24	739.986389
0.106653663	78.906174	4.4187	02:36	739.835571
0.124705098	92.257576	4.5644	02:43	739.805969
0.148547859	109.887680	4.7560	02:49	739.745972
0.174388093	128.994843	4.9548	02:55	739.699829
0.200135724	148.034302	5.1432	03:01	739.669556
0.225652915	166.896637	5.3290	03:06	739.616577
0.250523888	185.294281	5.5106	03:11	739.627197
0.277118263	204.942047	5.7015	03:17	739.547241
0.303337331	224.297165	5.8879	03:22	739.431458

Isotherm Tabular Report

Unit 4 Port 3

TriStar II 3020 V1.03 (V1.03)

.

Page 3

Serial #: 240

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1602 g Cold Free Space: 18.0443 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Sample: 3780 A3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104009.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:23:42AM Warm Free Space: 7.2639 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

- 3780 A3 - Adsorption 5.5-5.0 4.5 4.0 Quantity Adsorbed (cm³/g STP) 3.5 3.0-2.5 2.0-1.5 1.0-0.5 0.0 0.15 Relative Pressure (P/Po) 0.10 0.25 0.30 0.00 0.05 0.20

Isotherm Linear Plot

Unit 4 Port 3

Serial #: 240

Page 4

Sample: 3780 A3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104009.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:23:42AM Warm Free Space: 7.2639 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1602 g Cold Free Space: 18.0443 cm³ Measured Low Pressure Dose: None Automatic Degas: No

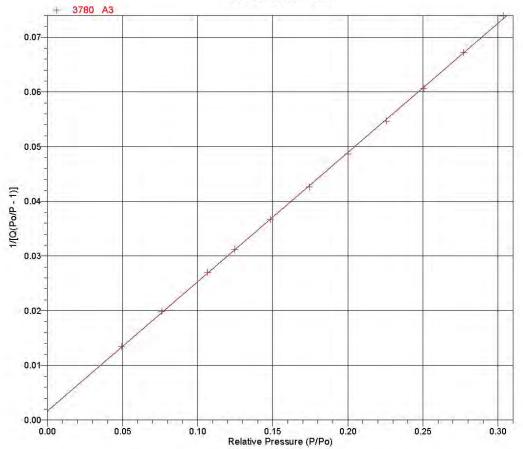
Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 18.2856 ± 0.0851 m²/g Slope: 0.236418 ± 0.001088 g/cm3 STP Y-Intercept: 0.001649 ± 0.000210 g/cm3 STP C: 144.410317 Qm: 4.2005 cm3/g STP Correlation Coefficient: 0.9999047 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Adsorbed Pressure (P/Po) (cm³/g STP) 0.049397551 3.8694 0.013430 0.076236153 4.1578 0.019849 0.106653663 4.4187 0.027018 0.124705098 4.5644 0.031214 0.148547859 4.7560 0.036683 0.174388093 4.9548 0.042630 0.200135724 5.1432 0.048649 0.225652915 5.3290 0.054684 0.250523888 5.5106 0.060659 0.277118263 5.7015 0.067238 0.303337331 5.8879 0.073951

Unit 4 Port 3

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 3780 A3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104009.SMP

Started: 6/29/2011 11:16:17AM Completed: 6/29/2011 5:31:24PM Report Time: 6/30/2011 8:23:42AM Warm Free Space: 7.2639 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 3.1602 g Cold Free Space: 18.0443 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 240

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#22-3952

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 1

Serial #: 571

Page 1

Sample: 3952 A4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104010.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:26:29AM Warm Free Space: 7.5987 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.5921 g Cold Free Space: 19.9221 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.301107910: 9.8051 m²/g

BET Surface Area: 10.0028 m²/g

Unit 2 Port 1

Serial #: 571

Page 2

Sample: 3952 A4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104010.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:26:29AM Warm Free Space: 7.5987 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.5921 g Cold Free Space: 19.9221 cm³ Measured Low Pressure Dose: None Automatic Degas: No

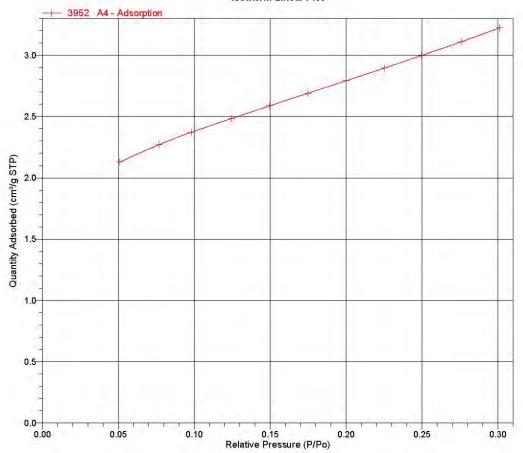
Comments: Degas at 110 C for 16h

	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
		1.0	01:23	742.977234
0.050884911	37.751575	2.1283	03:40	741.901184
0.076772645	56.945824	2.2702	04:08	741.746277
0.097944764	72.621254	2.3716	04:31	741.451111
0.124514282	92.315887	2.4842	04:46	741.408020
0.149767100	111.024223	2.5881	04:57	741.312500
0.174830223	129.559845	2.6903	05:07	741.060913
0.200034804	148.231491	2.7919	05:16	741.028503
0.225226130	166.839981	2.8951	05:24	740.766541
0.249589523	184.874893	2.9972	05:31	740.715759
0.275833106	204.271469	3.1095	05:37	740.561829
0.301107910	223.012695	3.2228	05:44	740.640442

Isotherm Tabular Report

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)


Page 3

Sample: 3952 A4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104010.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:26:29AM Warm Free Space: 7.5987 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.5921 g Cold Free Space: 19.9221 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 2 Port 1

Serial #: 571

Page 4

Sample: 3952 A4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104010.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:26:29AM Warm Free Space: 7.5987 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.5921 g Cold Free Space: 19.9221 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 10.0028 ± 0.0154 m²/g Slope: 0.431851 ± 0.000657 g/cm3 STP Y-Intercept: 0.003348 ± 0.000126 g/cm3 STP C: 129.987414 Qm: 2.2978 cm3/g STP Correlation Coefficient: 0.9999896 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Adsorbed Pressure (P/Po) (cm³/g STP) 0.050884911 2.1283 0.025191 0.076772645 2.2702 0.036629 0.097944764 2.3716 0.045783 0.124514282 2.4842 0.057252 0.149767100 2.5881 0.068062 0.174830223 2.6903 0.078753 0.200034804 2.7919 0.089564 0.225226130 2.8951 0.100410 0.249589523 2.9972 0.110971 0.275833106 3.1095 0.122494

3.2228

0.133684

0.301107910

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.5921 g Cold Free Space: 19.9221 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 3952 A4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104010.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:26:29AM Warm Free Space: 7.5987 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

247

Sample#23-3979

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 2

Serial #: 571

Page 1

Sample: 3979 A5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104011.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:29:45AM Warm Free Space: 6.4430 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1085 g Cold Free Space: 15.8173 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.201713198: 8.3879 m²/g

BET Surface Area: 8.5302 m²/g

Unit 2 Port 2

Page 2

Sample: 3979 A5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104011.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:29:45AM Warm Free Space: 6.4430 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1085 g Cold Free Space: 15.8173 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Comments: Degas at 110 C for 16h

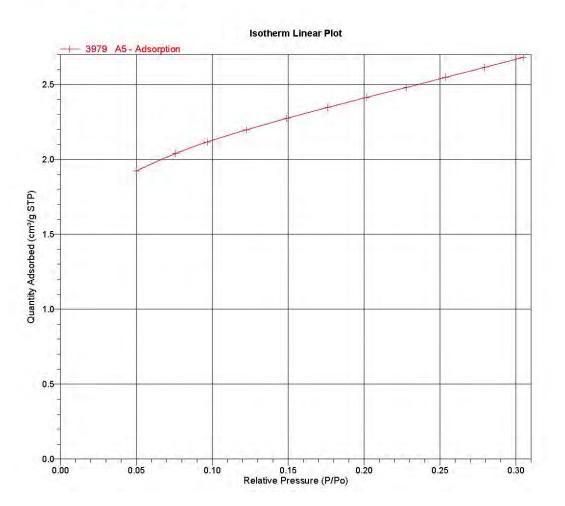
	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	1000	1	01:23	742.977234
0.050022791	37.088642	1.9233	04:29	741.434875
0.075797421	56.157284	2.0387	05:18	740.886475
0.096642989	71.557869	2.1166	05:56	740.435181
0.122435357	90.631264	2.1968	06:23	740.237671
0.149154837	110.388672	2.2739	06:44	740.094482
0.175958276	130.206665	2.3461	06:59	739.986023
0.201713198	149.289398	2.4137	07:14	740.107239
0.227915324	168.682602	2.4798	07:25	740.110840
0.253521941	187.637756	2.5467	07:36	740.124329
0.279522478	206.886368	2.6140	07:45	740.142151
0.304778164	225.582458	2.6805	07:53	740.152954

Isotherm Tabular Report

Unit 2 Port 2

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1085 g Cold Free Space: 15.8173 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 3979 A5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104011.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:29:45AM Warm Free Space: 6.4430 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Unit 2 Port 2

Serial #: 571

Page 4

Sample: 3979 A5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104011.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:29:45AM Warm Free Space: 6.4430 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1085 g Cold Free Space: 15.8173 cm³ Measured Low Pressure Dose: None Automatic Degas: No

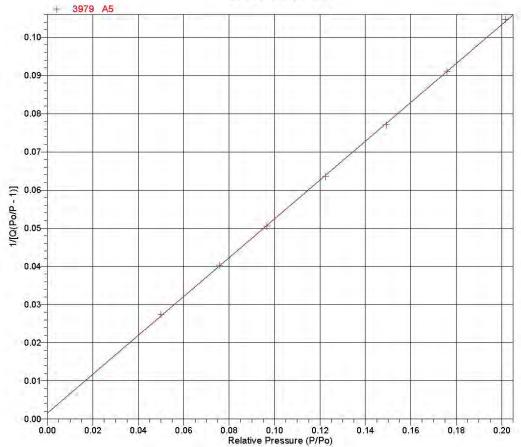
Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 8.5302 ± 0.0464 m²/g Slope: 0.508761 ± 0.002748 g/cm³ STP Y-Intercept: 0.001565 ± 0.000369 g/cm³ STP C: 326.043794 Qm: 1.9595 cm3/g STP Correlation Coefficient: 0.9999271 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (P/Po) (cm³/g STP) 0.050022791 1.9233 0.027379 0.075797421 2.0387 0.040228 0.096642989 2.1166 0.050545 0.122435357 2.1968 0.063508 0.149154837 2.2739 0.077094 0.175958276 2.3461 0.091016 0.201713198 2.4137 0.104686

Unit 2 Port 2

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 3979 A5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104011.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:29:45AM Warm Free Space: 6.4430 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 5.1085 g Cold Free Space: 15.8173 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#24-4157

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 3

Serial #: 571

Page 1

Sample: 4157 A6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104012.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:30:36AM Warm Free Space: 6.6969 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1867 g Cold Free Space: 16.4315 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.276568492; 21.5972 m²/g

BET Surface Area: 22.0987 m²/g

Unit 2 Port 3

Serial #: 571

Page 2

Sample: 4157 A6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104012.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:30:36AM Warm Free Space: 6.6969 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1867 g Cold Free Space: 16.4315 cm[®] Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

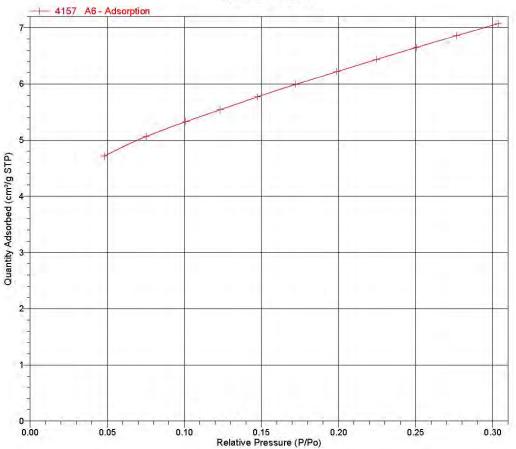
	1500	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	10.000		01:23	742.977234
0.048095053	35.724415	4.7155	02:17	742.787720
0.075120075	55.791107	5.0624	02:33	742.692383
0.101107565	75.076347	5.3300	02:45	742.539368
0.123311696	91.560982	5.5406	02:55	742.516602
0.147391998	109.416023	5.7692	03:05	742.347107
0.172272030	127.881805	5.9923	03:14	742.324829
0.198963991	147.690628	6.2166	03:22	742.298279
0.224604548	166.659851	6.4344	03:30	742.014587
0.250700486	186.008667	6.6498	03:37	741.955750
0.276568492	205.199051	6.8579	03:45	741.946594
0.303508551	225.128616	7.0710	03:52	741.753784

Isotherm Tabular Report

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1867 g Cold Free Space: 16.4315 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 4157 A6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104012.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:30:36AM Warm Free Space: 6.6969 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 2 Port 3

Serial #: 571

Page 4

Sample: 4157 A6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104012.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:30:36AM Warm Free Space: 6.66969 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1867 g Cold Free Space: 16.4315 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 22.0987 ± 0.0979 m²/g Slope: 0.195769 ± 0.000859 g/cm3 STP Y-Intercept: 0.001220 ± 0.000152 g/cm3 STP C: 161.491095 Qm: 5.0764 cm3/g STP Correlation Coefficient: 0.9999229 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.048095053 4.7155 0.010715 0.075120075 5.0624 0.016044 0.101107565 5.3300 0.021103 0.123311696 5.5406 0.025387 0.147391998 5.7692 0.029965 0.172272030 5.9923 0.034733 0.198963991 6.2166 0.039955

6.4344

6.6498

6.8579

0.045018

0.050314

0.055746

0.224604548

0.250700486

0.276568492

Unit 2 Port 3

Serial #: 571

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.1867 g Cold Free Space: 16.4315 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 4157 A6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104012.SMP

Started: 6/29/2011 11:43:38AM Completed: 6/29/2011 7:37:58PM Report Time: 6/30/2011 8:30:36AM Warm Free Space: 6.6969 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

4157 A6 0.055-0.050-0.045 0.040 0.035 [([0(Po/P - 1)] 0.030 0.025 0.020 0.015-0.010-0.005 0.000-0.05 0.20 0.25 0.00 0.10 0.15 Relative Pressure (P/Po)

BET Surface Area Plot

Sample#25-4164

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 1

Serial #: 571

Page 1

Sample: 4164 C1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104013.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:27:28AM Warm Free Space: 6.2275 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8562 g Cold Free Space: 14.9532 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.251800996: 10.7890 m²/g

BET Surface Area: 11.0070 m²/g

Unit 2 Port 1

Serial #: 571

Page 2

Sample: 4164 C1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104013.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:27:28AM Warm Free Space: 6.2275 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8562 g Cold Free Space: 14.9532 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	1.00	128.3	01:22	743.247498
0.049769056	37.010128	2.4107	02:15	743.637329
0.075512599	56.124104	2.5680	02:31	743.241577
0.106052061	78.813148	2.7156	02:41	743.155273
0.124330296	92.392784	2.7987	02:49	743.123657
0.148761011	110.536423	2.9071	02:56	743.046997
0.174592244	129.711914	3.0136	03:03	742.942017
0.200450953	148.893326	3.1141	03:09	742.791809
0.226080058	167.942490	3.2134	03:14	742.845215
0.251800996	187.016983	3.3125	03:20	742.717407
0.277211326	205.864975	3.4085	03:25	742.628296
0.303529524	225.369949	3.5063	03:30	742.497620

Isotherm Tabular Report

Unit 2 Port 1

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8562 g Cold Free Space: 14.9532 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 3

Sample: 4164 C1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104013.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:27:28AM Warm Free Space: 6.2275 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Unit 2 Port 1

Serial #: 571

Page 4

Sample: 4164 C1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104013.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:27:28AM Warm Free Space: 6.2275 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8562 g Cold Free Space: 14.9532 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

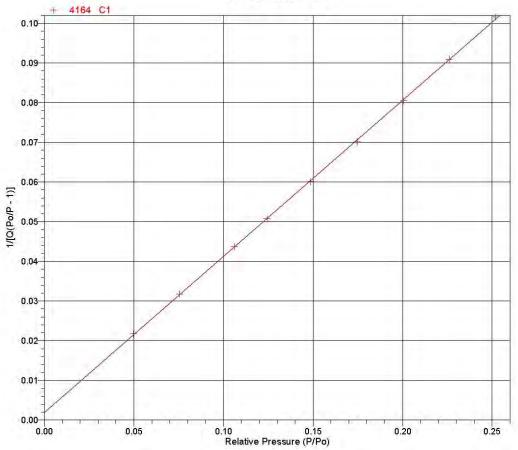
BET Surface Area Report

BET Surface Area: 11.0070 ± 0.0503 m²/g Slope: 0.393605 ± 0.001782 g/cm³ STP Y-Intercept: 0.001890 ± 0.000292 g/cm³ STP C: 209.257391 Qm: 2.5285 cm3/g STP Correlation Coefficient: 0.9999282 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.049769056 2.4107 0.021726 0.075512599 2.5680 0.031807 0.106052061 2.7156 0.043686 0.124330296 2.7987 0.050732 0.148761011 2.9071 0.060115 0.174592244 3.0136 0.070189 0.200450953 3.1141 0.080507 0.226080058 3.2134 0.090909 0.251800996 3.3125 0.101598

Unit 2 Port 1

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.8562 g Cold Free Space: 14.9532 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 4164 C1 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104013.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:27:28AM Warm Free Space: 6.2275 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#26-4211

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 2

Serial #: 571

Page 1

Sample: 4211 C2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104014.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:09AM Warm Free Space: 6.9605 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.1492 g Cold Free Space: 17.6958 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.277943095: 16.3403 m²/g

BET Surface Area: 16.7063 m²/g

Unit 2 Port 2

Page 2

Sample: 4211 C2 Operator: IAR/AT Submitter: Brooklyn College File: C.\...\06JUN\1104014.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:09AM Warm Free Space: 6.9605 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.1492 g Cold Free Space: 17.6958 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
10000		100	01:22	743.247498
0.047844852	35.555935	3.5674	02:42	743.150696
0.074181670	55.114708	3.8258	03:01	742,969360
0.099844938	74.157310	4.0299	03:16	742.724792
0.122564695	91.011101	4.1940	03:27	742.555603
0.147012473	109.151718	4.3659	03:38	742.465698
0.173649501	128.899948	4.5439	03:47	742.299561
0.199817481	148.316574	4.7094	03:55	742.260254
0.225597664	167.404221	4.8722	04:04	742.047668
0.251616192	186.688034	5.0352	04:11	741.955566
0.277943095	206.239273	5.1985	04:18	742.019775
0.304108599	225.653610	5.3625	04:26	742.016541

Isotherm Tabular Report

Unit 2 Port 2


Serial #: 571

Page 3

Sample: 4211 C2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104014.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:09AM Warm Free Space: 6.9605 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.1492 g Cold Free Space: 17.6958 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 2 Port 2

Serial #: 571

Page 4

Sample: 4211 C2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104014.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:09AM Warm Free Space: 6.9605 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.1492 g Cold Free Space: 17.6958 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 16.7063 ± 0.0731 m²/g Slope: 0.259012 ± 0.001123 g/cm³ STP Y-Intercept: 0.001560 ± 0.000200 g/cm³ STP C: 167.021132 Qm: 3.8377 cm3/g STP Correlation Coefficient: 0.9999248 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Adsorbed Pressure (P/Po) (cm³/g STP) 0.047844852 3.5674 0.014085 0.074181670 3.8258 0.020943 0.099844938 4.0299 0.027524 0.122564695 4.1940 0.033306 0.147012473 4.3659 0.039477 0.173649501 4.5439 0.046247 0.199817481 4.7094 0.053025

4.8722

5.0352

5.1985

0.059792

0.066773

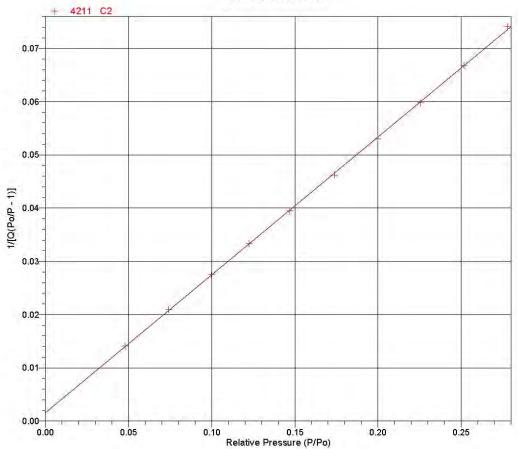
0.074047

0.225597664

0.251616192

0.277943095

Unit 2 Port 2


Serial #: 571

Page 5

Sample: 4211 C2 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104014.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:09AM Warm Free Space: 6.9605 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.1492 g Cold Free Space: 17.6958 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#27-4224

TriStar II 3020 V1.03 (V1.03)

Unit 2 Port 3

Serial #: 571

Page 1

Sample: 4224 C3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104015.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:25:44AM Warm Free Space: 6.4913 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.9629 g Cold Free Space: 15.8843 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.276004864: 17.1907 m²/g

BET Surface Area: 17.6279 m²/g

Unit 2 Port 3

Serial #: 571

Page 2

Sample: 4224 C3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104015.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:44AM Warm Free Space: 6.4913 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.9629 g Cold Free Space: 15.8843 cm[®] Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

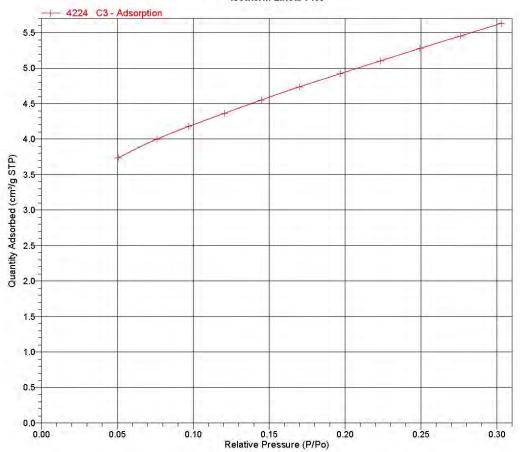
	1500	ienni rabulai Re	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:22	743.247498
0.050555415	37.577778	3.7363	02:33	743.298767
0.076004968	56.464756	3.9998	02:51	742.908752
0.096976696	72.040817	4.1797	03:03	742.867310
0.120536357	89.542320	4.3645	03:14	742.865662
0.144732988	107.483864	4.5512	03:24	742.635559
0.169849334	126.092667	4.7361	03:34	742.379517
0.196607481	145.952927	4.9210	03:43	742.356934
0.223246484	165.699020	5.1025	03:52	742.224548
0.249484163	185.154312	5.2791	04:00	742.148560
0.276004864	204.828964	5.4544	04:07	742.120850
0.302769955	224.634018	5.6302	04:14	741.929688

Isotherm Tabular Report

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

Page 3


Sample: 4224 C3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104015.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:44AM Warm Free Space: 6.4913 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.9629 g Cold Free Space: 15.8843 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 571

Isotherm Linear Plot

Unit 2 Port 3

Serial #: 571

Page 4

Sample: 4224 C3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104015.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:44AM Warm Free Space: 6.4913 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.9629 g Cold Free Space: 15.8843 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 17.6279 ± 0.0715 m²/g Slope: 0.245150 ± 0.000987 g/cm3 STP Y-Intercept: 0.001799 ± 0.000173 g/cm3 STP C: 137.247199 Qm: 4.0494 cm3/g STP Correlation Coefficient: 0.9999352 Molecular Cross-Sectional Area: 0.1620 nm² 1/[Q(Po/P - 1)] Relative Quantity Pressure Adsorbed (cm³/g STP) (P/Po) 0.050555415 3.7363 0.014251 0.076004968 3.9998 0.020565 0.096976696 4.1797 0.025694 0.120536357 4.3645 0.031403 0.144732988 4.5512 0.037182 0.169849334 4.7361 0.043200 0.196607481 4.9210 0.049730 0.223246484 5.1025 0.056327

5.2791

5.4544

0.062968

0.069893

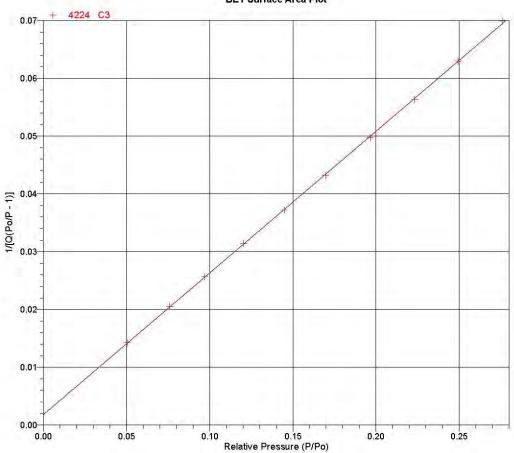
0.249484163

0.276004864

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

Serial #: 571


Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.9629 g Cold Free Space: 15.8843 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Page 5

Sample: 4224 C3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104015.SMP

Started: 6/30/2011 10:24:47AM Completed: 6/30/2011 2:52:04PM Report Time: 7/1/2011 8:28:44AM Warm Free Space: 6.4913 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#28-4226

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 1

Serial #: 238

Page 1

Sample: 4226 C4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104016.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:24:40AM Warm Free Space: 7.1309 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.4081 g Cold Free Space: 18.1263 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.301361079: 5.6555 m²/g

BET Surface Area: 5.8016 m²/g

Unit 3 Port 1

Serial #: 238

Page 2

Sample: 4226 C4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104016.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:24:40AM Warm Free Space: 7.1309 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.4081 g Cold Free Space: 18.1263 cm³ Measured Low Pressure Dose: None Automatic Degas: No

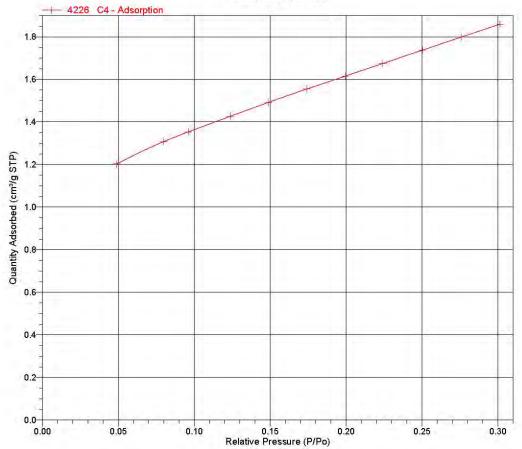
Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:19	743.047363
0.048956330	36.400490	1.2033	01:47	743.529785
0.079725672	59.277336	1.3075	01:56	743.516296
0.095962981	71.347984	1.3533	02:02	743.494873
0.123742825	92.003357	1.4266	02:08	743.504578
0.148833028	110.654068	1.4918	02:13	743.477905
0.174089611	129.412186	1.5547	02:19	743.365356
0.199574232	148.342148	1.6154	02:24	743.293091
0.224097847	166.568466	1.6742	02:28	743.284546
0.250181486	185.945068	1.7371	02:33	743.240723
0.275797783	204.975525	1.7983	02:37	743.209473
0.301361079	223.953918	1.8596	02:41	743.141479

Isotherm Tabular Report

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)


Page 3

Sample: 4226 C4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104016.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:24:40AM Warm Free Space: 7.1309 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.4081 g Cold Free Space: 18.1263 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 1

Serial #: 238

Page 4

Sample: 4226 C4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104016.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:24:40AM Warm Free Space: 7.1309 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.4081 g Cold Free Space: 18.1263 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 5.8016 ± 0.0191 m²/g Slope: 0.743792 ± 0.002427 g/cm³ STP Y-Intercept: 0.006557 ± 0.000466 g/cm³ STP C: 114.430491 Qm: 1.3327 cm3/g STP Correlation Coefficient: 0.9999521 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (cm³/g STP) (P/Po) 0.048956330 1.2033 0.042778 0.079725672 1.3075 0.066260 0.095962981 1.3533 0.078438 0.123742825 1.4266 0.098989 0.148833028 1.4918 0.117216 0.174089611 1.5547 0.135583 0.199574232 1.6154 0.154344 0.224097847 0.172518 1.6742 0.250181486 1.7371 0.192079 0.275797783 1.7983 0.211766

1.8596

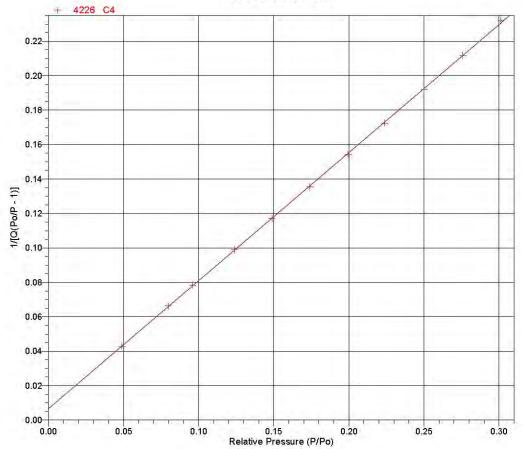
0.231965

0.301361079

276

Unit 3 Port 1

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 4226 C4 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104016.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:24:40AM Warm Free Space: 7.1309 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 6.4081 g Cold Free Space: 18.1263 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#29-4458

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 2

Serial #: 238

Page 1

Sample: 4458 C5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104017.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:07AM Warm Free Space: 6.3961 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5913 g Cold Free Space: 15.4588 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.249894747: 9.1847 m²/g

BET Surface Area: 9.3830 m²/g

Unit 3 Port 2

Serial #: 238

Page 2

Sample: 4458 C5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104017.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:07AM Warm Free Space: 6.3961 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5913 g Cold Free Space: 15.4588 cm³ Measured Low Pressure Dose: None Automatic Degas: No

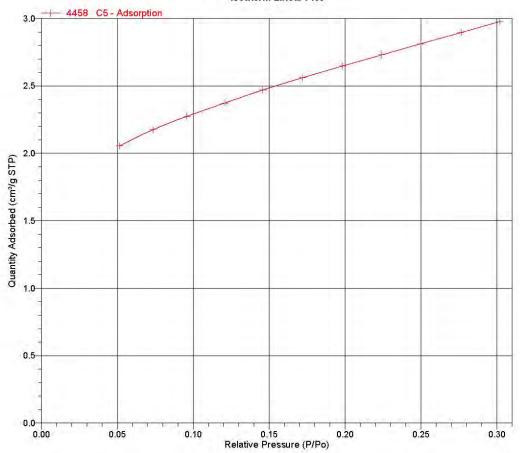
Comments: Degas at 110 C for 16h

	1300	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	10 mil 18		01:19	743.047363
0.051541980	38.258972	2.0546	04:04	742.287598
0.073354847	54.412216	2.1749	04:41	741.767151
0.095855083	71.070091	2.2749	05:05	741.432678
0.120876665	89.604004	2.3739	05:26	741.284546
0.145863363	108.081360	2.4698	05:49	740.976746
0.171990382	127.386444	2.5606	06:04	740.660278
0.198063644	146.664581	2.6466	06:18	740.492188
0.224180275	165.971313	2.7298	06:30	740.347534
0.249894747	185.051697	2.8128	06:42	740.518555
0.276313796	204.510391	2.8954	06:51	740.138184
0.301794512	223.380768	2.9763	07:00	740.175049

Isotherm Tabular Report

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)


Page 3

Sample: 4458 C5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104017.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:07AM Warm Free Space: 6.3961 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5913 g Cold Free Space: 15.4588 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 2

Serial #: 238

Page 4

Sample: 4458 C5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104017.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:07AM Warm Free Space: 6.3961 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5913 g Cold Free Space: 15.4588 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

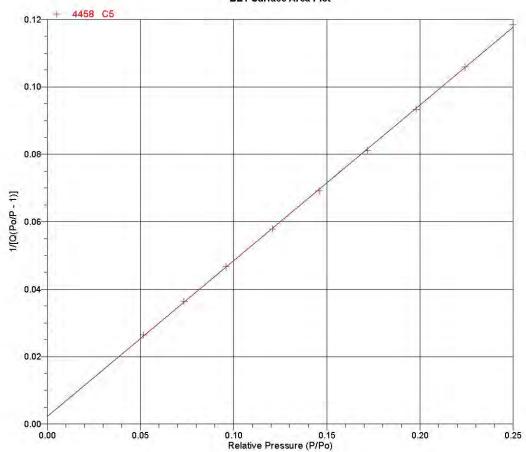
BET Surface Area Report

BET Surface Area: 9.3830 ± 0.0501 m²/g Slope: 0.461667 ± 0.002445 g/cm³ STP Y-Intercept: 0.002276 ± 0.000395 g/cm³ STP C: 203.844543 Qm: 2.1554 cm3/g STP Correlation Coefficient: 0.9999019 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.051541980 2.0546 0.026450 0.073354847 2.1749 0.036397 0.095855083 2.2749 0.046604 0.120876665 2.3739 0.057921 0.145863363 2.4698 0.069144 0.171990382 2.5606 0.081119 0.198063644 2.6466 0.093320 0.224180275 2.7298 0.105853

0.249894747 2.8128 0.118441

Unit 3 Port 2

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 4458 C5 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104017.SMP

Started: 6/30/2011 10:28:39AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:07AM Warm Free Space: 6.3961 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.5913 g Cold Free Space: 15.4588 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

BET Surface Area Plot

Sample#30-4515

TriStar II 3020 V1.03 (V1.03)

Unit 3 Port 3

Serial #: 238

Page 1

Sample: 4515 C6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104018.SMP

Started: 6/30/2011 10:28:40AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:46AM Warm Free Space: 6.3935 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³

Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.4029 g Cold Free Space: 15.4700 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

Summary Report

Surface Area Single point surface area at P/Po = 0.299120580: 3.1990 m²/g

BET Surface Area: 3.3217 m²/g

Unit 3 Port 3

Serial #: 238

Page 2

Sample: 4515 C6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104018.SMP

Started: 6/30/2011 10:28:40AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:46AM Warm Free Space: 6.3935 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.4029 g Cold Free Space: 15.4700 cm³ Measured Low Pressure Dose: None Automatic Degas: No

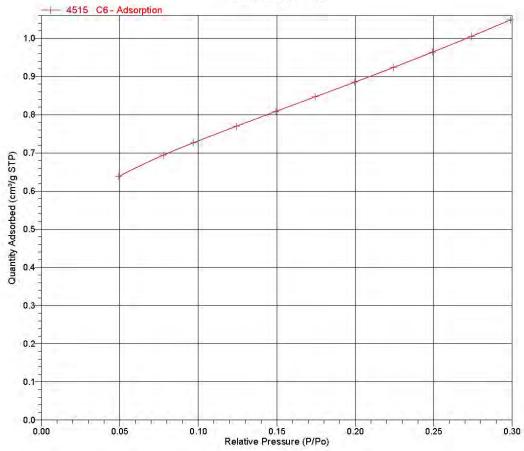
Comments: Degas at 110 C for 16h

	1500	ienni rabulai ke	pon	
Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
	The second		01:19	743.047363
0.049236687	36.599056	0.6381	01:47	743.328979
0.077553395	57.662327	0.6939	01:55	743.517761
0.097109763	72.189919	0.7270	02:00	743.384766
0.124106458	92.273743	0.7696	02:05	743.504761
0.149400259	111.079430	0.8087	02:10	743.502258
0.174524245	129.745728	0.8469	02:14	743.425232
0.199551926	148.343338	0.8851	02:18	743.382141
0.224547436	166.908478	0.9241	02:22	743.310547
0.249260005	185.268356	0.9640	02:26	743.273499
0.274148471	203.767929	1.0054	02:30	743.275818
0.299120580	222,315948	1.0485	02:33	743.231873

Isotherm Tabular Report

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)


Page 3

Sample: 4515 C6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104018.SMP

Started: 6/30/2011 10:28:40AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:46AM Warm Free Space: 6.3935 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.4029 g Cold Free Space: 15.4700 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

Isotherm Linear Plot

Unit 3 Port 3

Serial #: 238

Page 4

Sample: 4515 C6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104018.SMP

Started: 6/30/2011 10:28:40AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:46AM Warm Free Space: 6.3935 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.4029 g Cold Free Space: 15.4700 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Comments: Degas at 110 C for 16h

BET Surface Area Report

BET Surface Area: 3.3217 ± 0.0156 m²/g Slope: 1.286880 ± 0.006029 g/cm³ STP Y-Intercept: 0.023660 ± 0.001207 g/cm3 STP C: 55.391195 Qm: 0.7630 cm3/g STP Correlation Coefficient: 0.9999122 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(Po/P - 1)] Pressure Adsorbed (P/Po) (cm³/g STP) 0.077553395 0.6939 0.121164 0.097109763 0.7270 0.147944 0.124106458 0.7696 0.184108 0.149400259 0.8087 0.217193 0.174524245 0.8469 0.249633 0.199551926 0.8851 0.281677 0.224547436 0.9241 0.313362 0.249260005 0.9640 0.344410

1.0054

1.0485

0.375657

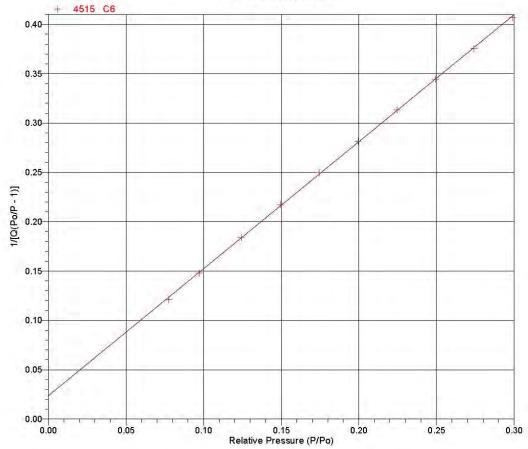
0.407043

0.274148471

0.299120580

Unit 3 Port 3

TriStar II 3020 V1.03 (V1.03)


Page 5

Sample: 4515 C6 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1104018.SMP

Started: 6/30/2011 10:28:40AM Completed: 6/30/2011 5:30:28PM Report Time: 7/1/2011 8:34:46AM Warm Free Space: 6.3935 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.4029 g Cold Free Space: 15.4700 cm³ Measured Low Pressure Dose: None Automatic Degas: No

Serial #: 238

Comments: Degas at 110 C for 16h

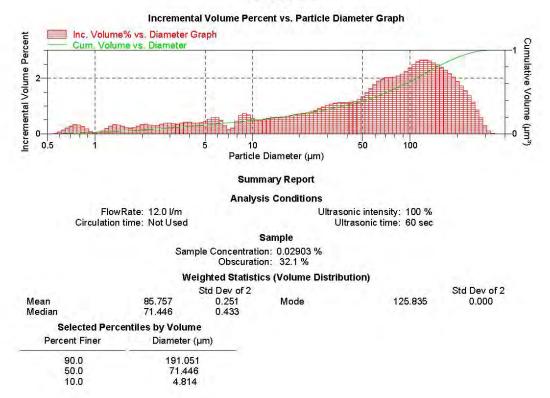
BET Surface Area Plot

APPENDIX E: GRAIN SIZE MEASUREMENTS

Sample#1-120

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 108

Page 2

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 344.747 334.965 100.0 0.0 0.0 325.462 316.228 325.462 307.256 99.9 0.1 0.0 307 256 290.068 298.538 99.6 0.3 0.0 290.068 273.842 281.838 99.0 06 0.0 273.842 258.523 266.073 98.2 0.9 0.0 97.0 258.523 244.062 251.189 1.1 0.1 244.062 230.409 237.137 95.7 1.4 0.1 230.409 217.520 223.872 94.1 1.6 0.1 217.520 205.353 211.349 92.4 1.7 0.0 205.353 193.865 199.526 90.5 1.9 0.0 193.865 183.021 188.365 88.5 2.0 0.1 2.2 2.3 0.2 183.021 172.783 177.828 86.3 172.783 163.117 167.880 84.0 153.993 163.117 158.489 81.7 2.4 0.2 2.5 0.2 153.993 145.378 149.624 79.2 145.378 137.246 141.254 76.6 2.6 0.2 137.246 129.569 133.352 74.0 2.6 0.1 129.569 122.321 125.893 71.4 2.7 0.1 122.321 115.478 118.850 68.7 2.7 0.1 115.478 109.018 112.202 66.1 2.6 0.1 109.018 102.920 105.925 63.6 2.5 0.1 102.920 97.163 100.000 61.2 2.4 0.1 97.163 91.728 94.406 59.0 2.2 0.2 86.596 2.1 0.2 91.728 89.125 56.8 86.596 81.752 84.140 54.8 2.1 0.2 81.752 77.179 79.433 52.7 2.0 0.2 77.179 0.2 72.862 74.989 50.7 2.0 0.2 72.862 68.786 70.795 48.7 2.0 68,786 66.834 2.0 64.938 46.7 64.938 61.306 63.096 0.2 0.2 0.2 0.2 0.2 0.2 0.2 44.8 1.9 61.306 57.876 59.566 43.0 1.8 54.639 51.582 57.876 56.234 41.4 1.6 54.639 53.088 39.9 1.5 51,582 48.697 50.119 38 6 1.3 45.973 47.315 37.4 48 697 12 45.973 43,401 44.668 36.2 1.2 0.2 0.2 35.1 43 401 40 973 42,170 1.1 39.811 40 973 38.681 33.9 1.1 0.1 38.681 36.517 37.584 32.8 1.1 0.1 35.481 36.517 34.475 31.7 1.1 0.1 30.6 34.475 32.546 33,497 1.1 0.2 0.2 32.546 30.726 31.623 29.5 1.1 30.726 29.007 29 854 28.5 1.0 0.2 29.007 27.384 28.184 27.6 1.0

Report by Size Class

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 108

Page 3

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
27.384	25.852	26.607	26.7	0.9	0.2
25.852	24.406	25.119	25.8	0.8	0.2
24.406	23.041	23.714	25.0	0.8	0.2
23.041	21.752	22.387	24.3		0.2
21.752	20.535	21.135	23.5	0.7	0.2
20.535	19.387	19.953	22.8	0.7	0.2
19.387	18.302	18.836	22.1	0.7	0.2
18.302	17.278	17.783	21.5	0.7	0.2
17.278	16.312	16,788	20.8	0.6	0.2
16.312	15.399	15.849	20.2	0.6	0.2
15.399	14.538	14,962	19.6	0.6	0.2
14.538	13.725	14.125	19.1	0.6	0.2
13.725	12.957	13,335	18.5	0.6	0.2
12.957	12.232	12.589	17.9	0.6	0.2
12.232	11.548	11.885	17.4	0.5	0.2
11.548	10.902	11.220	16.9	0.5	0.2
10.902	10.292	10.593	16.5	0.5	0.2
10.292	9.716	10,000	15.9	0.6	0.2
9.716	9.173	9.441	15.2	0.7	0.2
9.173	8.660	8,913	14.5	0.7	0.2
8.660	8.175	8.414	13.8	0.7	0.2
8.175	7,718	7,943	13.4	0.4	0.2
7.718	7.286	7.499	13.1	0.2	0.2
7.286	6.879	7.079	13.0	0.2	0.2
6.879	6.494	6.683	12.7	0.3	0.2
6.494	6.131	6.310	12.2	0.5	0.2
6.131	5.788	5.957	11.6	0.6	0.1
5.788	5.464	5.623	11.0	0.6	0.1
5.464	5.158	5,309	10.5	0.5	0.1
5.158	4.870	5.012	10.1	0.4	0.1
4.870	4.597	4.732	9.7	0.4	0.1
4.597	4.340	4.467	9.3	0.4	0.1
4.340	4.097	4.217	8.9	0.4	0.1
4.097	3.868	3.981	8.5	0.4	0.1
3.868	3.652	3.758	8.1	0.4	0.1
3.652	3.447	3.548	7.7	0.4	0.1
3.447	3.255	3.350	7.3	0.4	0.1
3.255	3.073	3.162	7.0	0.4	0.1
3.073	2.901	2.985	6.6		0.1
2.901	2.738	2.818	6.2	0.4	0.1
2.738	2.585	2.661		0.3	0.1
2.585	2.441	2.512	5.6	0.3	0.1
2.441	2.304	2.371	5.3	0.3	0.1
2.304	2.175	2.239	5.0	0.3	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

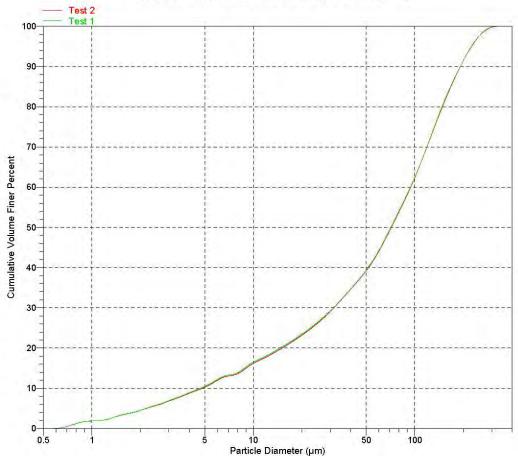
II 5205 V1.01 5200 LSHU V3.00 S/N 108

108 Page 4

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.175	2.054	2.113	4.6	0.3	0.0
2.054	1.939	1.995	4.3	0.3	0.0
1.939	1.830	1.884	4.0	0.3	0.0
1.830	1.728	1.778	3.8	0.2	0.0
1.728	1.631	1.679	3.6	0.2	0.0
1.631	1.540	1.585	3.4	0.2	0.0
1.540	1.454	1.496	3.1	0.3	0.0
1.454	1.372	1.413	2.8	0.3	0.0
1.372	1.296	1.334	2.5	0.3	0.0
1.296	1.223	1.259	2.2	0.3	0.0
1.223	1.155	1.189	2.0	0.2	0.0
1.155	1.090	1.122	1.9	0.1	0.0
1.090	1.029	1.059	1.9	0.0	0.0
1.029	0.972	1.000	1.8	0.0	0.0
0.972	0.917	0.944	1.8	0.1	0.0
0.917	0.866	0.891	1.6	0.2	0.0
0.866	0.818	0.841	1.3	0.3	0.0
0.818	0.772	0.794	1.0	0.3	0.0
0.772	0.729	0.750	0.7	0.3	0.0
0.729	0.688	0.708	0.4	0.3	0.0
0.688	0.649	0.668	0.2	0.2	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.0	0.1	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0


Saturn DigiSizer II 5205 V1.01

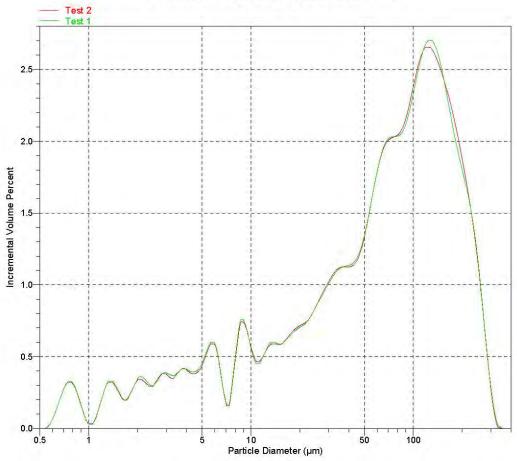
5200 LSHU V3.00 S/N 108

Page 5

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

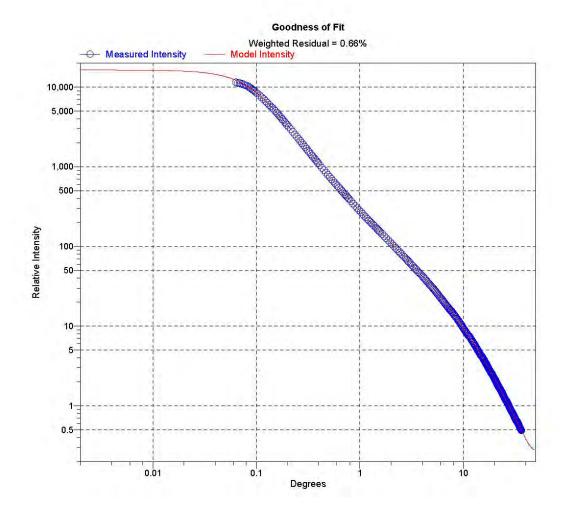
5200 LSHU V3.00 S/N 108

Page 6

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 108

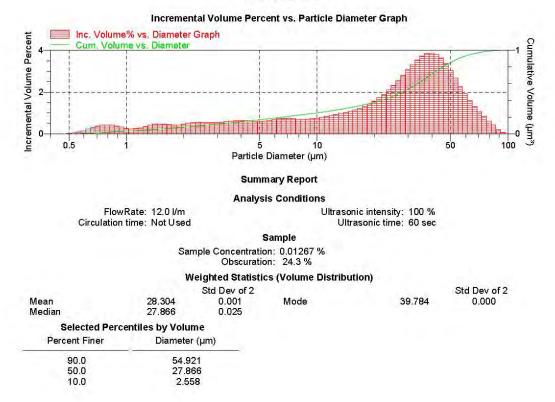
Page 7

Sample: 120 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103989.SMP

Test Number: 2 Analyzed: 6/22/2011 1:49:19PM Reported: 6/22/2011 2:06:44PM Background: 6/22/2011 11:03:38AM

Sample#2-277

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 1

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:23PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 97.163 91.728 91.728 94.406 0.1 0.0 99.9 86.596 89.125 99.7 0.2 0.0 86.596 81.752 84.140 99.3 0.4 0.0 81.752 77.179 79.433 98.7 0.6 0.0 77.179 74.989 72 862 97.9 0.8 0.0 70.795 72.862 68.786 96.8 1.1 0.0 68.786 64.938 66.834 95.5 1.3 0.0 64.938 61.306 63.096 94.0 1.6 0.0 61.306 57.876 59.566 92.1 1.9 0.0 57.876 54.639 56.234 89.8 2.3 0.0 54.639 51.582 53.088 87.1 2.7 0.0 51.582 48.697 50.119 84.1 3.0 0.0 48.697 45.973 47.315 80.7 3.4 0.0 44.668 45.973 43.401 77.1 3.6 0.0 43.401 40.973 42.170 73.3 3.8 0.0 40.973 38.681 39.811 69.4 3.9 0.0 38.681 36.517 37.584 65.6 3.8 0.0 36.517 34.475 35.481 61.9 3.7 0.0 34.475 32.546 33.497 58.4 3.5 0.0 32.546 30.726 31.623 55.0 3.3 0.0 30.726 29.007 29.854 52.0 3.1 0.0 29.007 27.384 28.184 49.2 2.8 0.0 27.384 25.852 26.607 46.6 2.6 0.0 25.852 24.406 2.3 0.0 25.119 44.3 24.406 23.041 23.714 42.2 2.1 0.0 23.041 21.752 22.387 40.3 1.9 0.0 21.135 21.752 20.535 38.6 1.7 0.0 20.535 19.953 37.0 1.6 0.0 19.387 18.302 18.836 35.6 0.0 19.387 1.4 18.302 17.278 17.783 1.3 0.0 34.3 16.788 17.278 16.312 33.1 0.0 1.2 15.849 16 312 15.399 32.0 0.0 1.1 14.538 30.9 0.0 15.399 14.962 1.1 14.538 13.725 14.125 29.9 0.0 1.0 28.9 0.0 13.335 1.0 13.725 12.957 12.589 12.957 12.232 27.9 27.0 0.0 0.0 0.9 12 232 11.885 09 11.548 10.902 11.220 26.2 08 0.0 10.902 10.292 10.593 25.4 0.8 0.0 10.292 10.000 24.7 9.716 0.7 0.0 23.9 23.2 0.0 9.716 9.173 9.441 0.7 8.913 9.173 8.660 0.7 0.0 22.6 8.660 8.175 8.414 0.7 0.0 8.175 7.718 7.943 21.9 0.7 0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
7.718	7.286	7.499	21.1	0.7	0.0
7.286	6.879	7.079	20.4	0.7	0.0
6.879	6.494	6.683	19.7	0.7	0.0
6.494	6.131	6.310	18.9	0.7	0.0
6.131	5.788	5.957	18.3	0.7	0.0
5.788	5.464	5.623	17.6	0.6	0.0
5.464	5.158	5.309	17.0	0.6	0.0
5.158	4.870	5.012	16.5	0.6	0.0
4.870	4.597	4,732	15.9	0.6	0.0
4.597	4.340	4.467	15.3	0.6	0.0
4.340	4.097	4.217	14.6	0.6	0.0
4.097	3.868	3.981	14.0	0.6	0.0
3.868	3.652	3.758	13.4		0.0
3.652	3.447	3.548	12.8	0.6	0.
3.447	3,255	3.350	12.2	0.6	
3.255	3.073	3,162	11.7	0.6	0.
3.073	2.901	2.985	11.1	0.5	Ŭ.
2.901	2.738	2,818	10.6	0.5	0.
2.738	2.585	2.661	10.1	0.5	0.
2.585	2.441	2.512	9.6	0.5	Ŭ.
2.441	2.304	2.371	9.0	0.5	0.
2.304	2.175	2.239	8.5	0.5	0.
2.175	2.054	2,113	8.0	0.5	Ő.
2.054	1,939	1.995	7.5	0.5	0.
1,939	1.830	1.884	7.1	0.4	Ū.
1.830	1.728	1.778	6.7	0.4	0.
1.728	1.631	1.679	6.2	0.4	Ŭ.
1.631	1,540	1.585	5.8	0.5	- 0.
1.540	1,454	1,496	5.3	0.5	0.
1.454	1.372	1.413	4.8	0.5	0.
1.372	1.296	1.334	4.4	0.4	Ő.
1.296	1.223	1.259	4.1	0.3	
1.223	1.155	1.189	3.8	0.3	0.
1.155	1.090	1,122	3.6		0.
1.090	1.029	1.059	3.3	0.2	0.
1.029	0.972	1.000	3.1	0.3	0.
0.972	0.917	0.944	2.8	0.3	0.
0.917	0.866	0.891	2.4	0.4	0.
0.866	0.818	0.841	2.0		0.
0.818	0.772	0.794	1.6	0.4	0.
0.772	0.729	0.750	1.1	0.4	0.
0.729	0.688	0.708	0.8	0.4	0.
0.688	0.649	0.668	0.5		0.
0.649	0.613	0.631	0.3	0.2	0.

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 4

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.613	0.579	0.596	0.1	0.1	0.0
0.579	0.546	0.562	0.0	0.1	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01

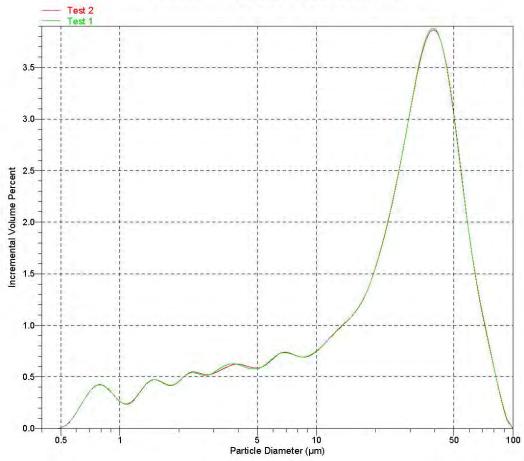
5200 LSHU V2.01 S/N 110

Page 5

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

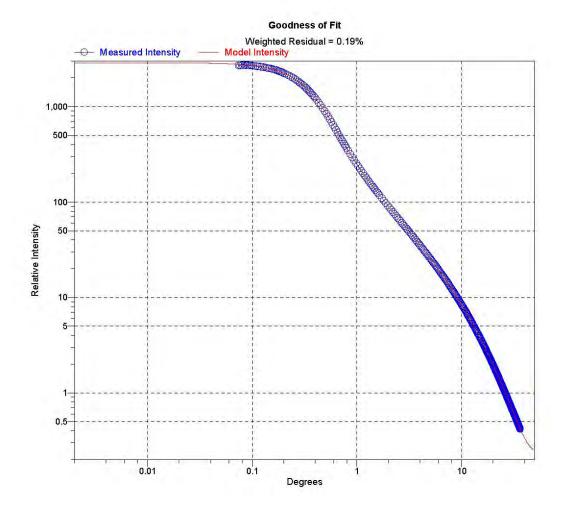
5200 LSHU V2.01 S/N 110

Page 6

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 7

Sample: 277 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103990.SMP

Test Number: 2 Analyzed: 6/22/2011 1:59:04PM Reported: 6/22/2011 2:12:24PM Background: 6/22/2011 11:03:35AM

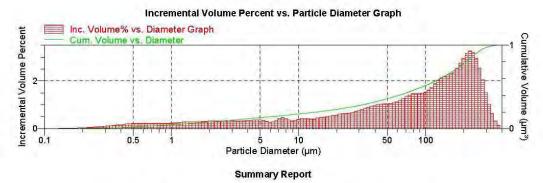
Sample#3-601

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 L

5200 LSHU V3.00 S/N 127


Page 1

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number:	2	
Analyzed:	6/22/2011	2:42:38PM
Reported:	6/22/2011	3:32:49PM
Background:	6/22/2011	2:23:08PM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Analysis Conditions

FlowRate: 12.0 l/m Ultrasonic intensity: 100 % Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.02676 % Obscuration: 37.2 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean Median	112.136 93.794	1.907 2.285	Mode	223.600	0.000
Selected Perc	entiles by Volum	ne			
Percent Finer	Diameter	(µm)			
90.0	249.19	3			
50.0	93.79	4			
10.0	2.88	8			

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 2

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
386.812	365.174	375.837	99.9	0.1	0.0
365.174	344.747	354.813	99.6	0.3	0.0
344.747	325.462	334.965	98.9	0.6	0.1
325.462	307.256	316.228	97.9	1.0	0.1
307.256	290.068	298.538	96.4	1.5	0.2
290.068	273.842	281.838	94.4	2.0	0.4
273.842	258.523	266.073	91.8	2.5	0.5
258.523	244.062	251.189	88.9	2.9	0.6
244.062	230.409	237.137	85.7	3.2	0.7
230.409	217.520	223.872	82.5	3.3	0.8
217.520	205.353	211.349	79.3	3.2	0.9
205.353	193.865	199.526	76.3	3.0	0.9
193.865	183.021	188.365	73.6	2.7	0.9
183.021	172.783	177.828	71.0	2.6	0.9
172.783	163.117	167.880	68.6	2.4	0.9
163.117	153.993	158.489	66.3	2.3	0.9
153.993	145.378	149.624	64.1	2.3	1.0
145.378	137.246	141.254	61.9	2.2	1.0
137.246	129.569	133.352	59.7	2.1	1.0
129.569	122.321	125.893	57.7	2.0	1.0
122.321	115.478	118.850	55.8	1.9	0.9
115.478	109.018	112.202	54.1	1.7	0.9
109.018	102.920	105.925	52.4	1.6	0.8
102.920	97.163	100.000	50.9	1.5	0.7
97.163	91.728	94.406	49.4	1.5	0.7
91.728	86.596	89.125	47.9	1.5	0.6
86.596	81.752	84.140	46.5	1.5	0.5
81.752	77.179	79.433	45.0	1.5	0.5
77.179	72.862	74.989	43.6	1.4	0.5
72.862	68.786	70,795	42.2	1.3	0.5
68.786	64.938	66.834	41.0	1.3	0.5
64.938	61.306	63.096	39.8	1.2	0.5
61.306	57.876	59.566	38.7	1.1	0.4
57.876	54.639	56.234	37.6	1.1	0.4
54.639	51.582	53.088		1.1	0.4
51.582	48.697	50.119	35.5	1.1	0.4
48.697	45.973	47.315		1.0	0.4
45.973	43.401	44.668		1.0	0.4
43.401	40.973	42.170	32.4	1.0	0.4

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
40.973	38.681	39.811	31.5	1.0	0.4
38.681	36.517	37.584	30.5	0.9	0.3
36.517	34.475	35.481	29.6	0.9	0.3
34.475	32.546	33.497	28.8	0.8	0.3
32.546	30.726	31.623		0.8	0.3
30.726	29.007	29.854	27.2	0.7	0.3
29.007	27.384	28.184	26.5	0.7	0.3
27.384	25.852	26.607	25.9	0.7	0.3
25.852	24.406	25.119	25.2	0.6	0.3
24,406	23.041	23.714	24.6	0.6	0.3
23.041	21.752	22.387	23.9	0.6	0.3
21.752	20.535	21.135	23.3	0.6	0.2
20.535	19.387	19.953	22.8	0.6	0.2
19.387	18.302	18.836	22.2	0.5	0.2
18.302	17.278	17.783		0.5	0.2
17.278	16.312	16.788	21.2	0.5	0.2
16.312	15.399	15.849	20.7	0.5	0.2
15.399	14.538	14.962	20.2	0.5	0.2
14.538	13.725	14.125	19.8	0.4	0.2
13.725	12.957	13.335	19.4	0.4	0.2
12.957	12.232	12.589	19.0	0.4	0.2
12.232	11.548	11.885	18.5	0.4	0.2
11.548	10.902	11.220	18.1	0.4	0.2
10.902	10.292	10.593	17.7	0.4	0.2
10.292	9.716	10.000	17.3	0.4	0.2
9.716	9.173	9.441	17.0	0.3	0.2
9.173	8.660	8.913	16.6	0.3	0.2
8.660	8.175	8.414	16.3	0.4	0.2
8.175	7.718	7.943	15.8	0.4	0.2
7.718	7.286	7.499	15.4	0.5	0.1
7.286	6.879	7.079	14.9	0.4	0.1
6.879	6.494	6.683	14.6	0.3	0.1
6.494	6.131	6.310	14.3	0.3	0.1
6.131	5.788	5.957		0.3	0.1
5.788	5.464	5.623		0.3	0.1
5.464	5.158	5.309		0.3	0.1
5.158	4.870	5.012		0.4	0.1
4.870	4.597	4.732	12.7	0.4	0.1
4.597	4.340	4.467	12.3	0.4	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
4.340	4.097	4.217	12.0	0.3	0,1
4.097	3.868	3.981	11.7	0.3	0.1
3.868	3.652	3.758	11.3	0.3	0.1
3.652	3.447	3.548	11.0	0.3	0.1
3.447	3.255	3.350	10.7	0.3	0.1
3.255	3.073	3.162	10.4	0.3	0.1
3.073	2.901	2.985	10.0	0.3	0.1
2.901	2.738	2.818	9.7	0.3	0,1
2.738	2.585	2.661	9.4	0.3	0.1
2.585	2.441	2.512	9.0	0.3	0.1
2.441	2.304	2.371	8.7	0.3	0.1
2.304	2.175	2.239	8.4	0.3	0.1
2.175	2.054	2.113	8.1	0.3	0.1
2.054	1.939	1.995	7.8	0.3	0.1
1.939	1.830	1.884	7.5		0.1
1.830	1.728	1.778		0.3	0.1
1.728	1.631	1.679		0.3	0.1
1.631	1.540	1.585		0.3	0.1
1.540	1.454	1.496	6.4	0.3	0.1
1.454	1.372	1.413		0.3	0.0
1.372	1.296	1.334	5.8	0.3	0.0
1.296	1.223	1.259		0.3	0.0
1.223	1.155	1.189		0.3	0.0
1.155	1.090	1.122		0.3	0.0
1.090	1.029	1.059	4.8	0.2	0.0
1.029	0.972	1.000		0.2	0.0
0.972	0.917	0.944	4.3	0.2	0.0
0.917	0.866	0.891	4.1	0.2	0.0
0.866	0.818	0.841	3.9	0.2	0.0
0.818	0.772	0.794	3.7	0.2	0.0
0.772	0.729	0.750		0.2	0.0
0.729	0.688	0.708		0.2	0.0
0.688	0.649	0.668		0.2	0.0
0.649	0.613	0.631	2.8	0.2	0.0
0.613	0.579	0.596		0.2	0.0
0.579	0.546	0.562		0.2	0.0
0.546	0.516	0.531	2.1	0.2	0.0
0.516	0.487	0.501	1.9	0.2	0.0
0.487	0.460	0.473	1.7	0.2	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 5

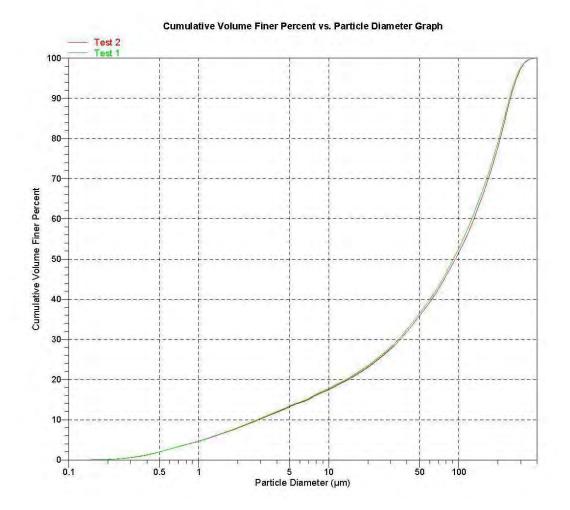
Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Contract of the Albert			
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.460	0.434	0.447	1.5	0.2	0.0
0.434	0.410	0.422	1.3	0.2	0.0
0.410	0.387	0.398	1.2	0.2	0.0
0.387	0.365	0.376	1.0	0.2	0.0
0.365	0.345	0.355	0.9	0.1	0.0
0.345	0.325	0.335	0.7	0.1	0.0
0.325	0.307	0.316	0.6	0.1	0.0
0.307	0.290	0.299	0.5	0.1	0.0
0.290	0.274	0.282	0.4	0.1	0.0
0.274	0.259	0.266	0.4	0.1	0.0
0.259	0.244	0.251	0.3	0.1	0.0
0.244	0.230	0.237	0.2	0.1	0.0
0.230	0.218	0.224	0.2	0.1	0.0
0.218	0.205	0.211	0.1	0.0	0.0
0.205	0.194	0.200	0.1	0.0	0.0
0.194	0.183	0.188	0.1	0.0	0.0
0.183	0.173	0.178	0.1	0.0	0.0
0.173	0.163	0.168	0.0	0.0	0.0
0.163	0.154	0.158	0.0	0.0	0.0
0.154	0.145	0.150	0.0	0.0	0.0
0.145	0.137	0.141	0.0	0.0	0.0
0.137	0.130	0.133	0.0	0.0	0.0
0.130	0.122	0.126	0.0	0.0	0.0
0.122	0.115	0.119	0.0	0.0	0.0
0.115	0.109	0.112	0.0	0.0	0.0
0.109	0.103	0.106	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

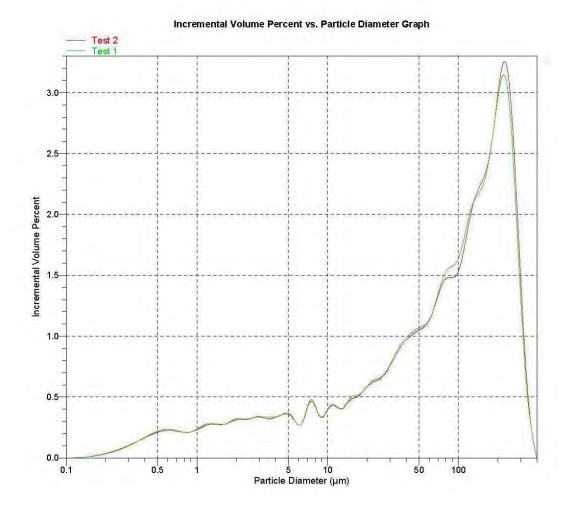
5200 LSHU V3.00 S/N 127

Page 6

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

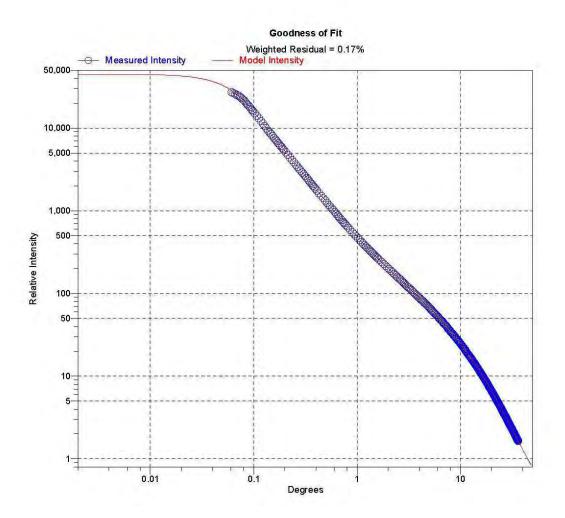
5200 LSHU V3.00 S/N 127

Page 7

Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 8

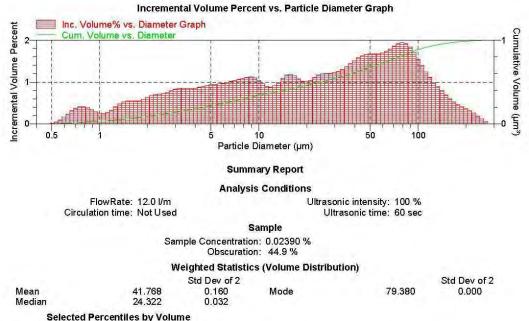
Sample: 601 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103991.SMP

Test Number: 2 Analyzed: 6/22/2011 2:42:38PM Reported: 6/22/2011 3:32:49PM Background: 6/22/2011 2:23:08PM

Sample#4-868

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Percent Finer	Diameter (µm)
90.0	104.540

50.0	24.322
10.0	2.248

Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM

38.681

36.517

34.475

32.546

30,726

29.007

27.384

25.852

24.406

23.041

36 517

34.475

32 546

30.726

29.007

27.384

25.852

24.406

23.041

21.752

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (μm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 273.842 266.073 0.0 258.523 99.9 0.1 258,523 244.062 251.189 99.8 0.1 0.1 244.062 230.409 237.137 99.6 0.2 0.1 230.409 217.520 223.872 99.4 0.3 0.1 217.520 205.353 211.349 99.1 0.3 0.0 199.526 205.353 193,865 98.7 0.4 0.0 193.865 183.021 188.365 98.3 0.4 0.1 183.021 172.783 177.828 97.8 0.5 0.1 172.783 163.117 167.880 97.3 0.5 0.1 163.117 153.993 158.489 96.7 0.6 0.1 153.993 145.378 149.624 96.0 0.7 0.1 145.378 137.246 141.254 95.2 0.8 0.1 137.246 129.569 133.352 94.3 0.9 0.2 129.569 122.321 125.893 93.3 1.0 0.3 122.321 115.478 118.850 92.2 0.3 1.1 115.478 109.018 112.202 91.0 1.2 0.4 109.018 102.920 105.925 89.6 1.4 0.4 102.920 97.163 100.000 88.1 1.5 0.3 97.163 91.728 94.406 86.4 0.3 1.7 0.2 91.728 86.596 89.125 84.5 1.8 86.596 81.752 84.140 82.6 1.9 81.752 77.179 79.433 80.7 1.9 0.1 77.179 72.862 74.989 78.7 1.9 0.0 68.786 70.795 0.0 72.862 76.9 1.9 68.786 64.938 66.834 75.1 1.8 0.0 64.938 61.306 63.096 73.4 1.7 0.0 59.566 61.306 57.876 71.7 1.7 0.1 57.876 54.639 56.234 1.7 0.1 70.0 51.582 53.088 68.3 0.1 54,639 1.7 51.582 48.697 66.6 0.1 50.119 47.315 48.697 65.0 0.1 45,973 44.668 42.170 45.973 43.401 63.4 1.6 0.1 40.973 0.0 43.401 61.8 1.6 40.973 38.681 39.811 60.3 15 0.0

37.584

35.481

33 497

31.623

29.854

28.184

26.607

25.119

23.714

22.387

58.8

57.5

56 2

54.9

53.7

52.5

51.3

50.1

48.9

47.8

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

1.4

1.4

1.3

1.3

1.2 1.2 1.2

1.2

1.2

1.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 3

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter	Size Class Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent
		(µm)	1 00000	- evening	(StdDev)
21.752	20.535	21.135	46.7	1.0	0.0
20.535	19.387	19.953	45.7	1.0	0.0
19.387	18.302	18.836	44.7	1.0	0.0
18.302	17.278	17.783	43.7	1.1	0.0
17.278	16.312	16.788	42.5	1.1	0.0
16.312	15.399	15.849	41.3	1.2	0.0
15.399	14.538	14.962	40.2	1.2	0.0
14.538	13.725	14.125	39.1	1.1	0.0
13.725	12.957	13.335	38.1	1.0	0.0
12.957	12.232	12.589	37.2	0.9	0.0
12.232	11.548	11.885	36.3	0.9	0.0
11.548	10.902	11.220	35.4	0.9	0.0
10.902	10.292	10.593	34.4	1.0	0.0
10.292	9.716	10.000	33.4	1.0	0.0
9.716	9.173	9.441	32.3	1.1	0.0
9.173	8.660	8.913	31.2	1.1	0.0
8.660	8.175	8.414	30.0	1.1	0.0
8.175	7.718	7.943	29.0	1.1	0.0
7.718	7.286	7.499	27.9	1.1	0.0
7.286	6.879	7.079	26.8	1.0	0.0
6.879	6.494	6.683	25.8	1.0	0.0
6.494	6.131	6.310	24.8	1.0	0.0
6.131	5.788	5.957	23.9	1.0	0.0
5.788	5.464	5.623	22.9	1.0	0.0
5.464	5.158	5.309	22.0	0.9	0.0
5.158	4.870	5.012	21.0	0.9	0.0
4.870	4.597	4.732	20.1	0.9	0.0
4.597	4.340	4.467	19.2	0.9	0.0
4.340	4.097	4.217	18.3	0.9	0.0
4.097	3.868	3.981	17.5	0.9	0.0
3.868	3.652	3.758	16.6	0.8	0.0
3.652	3.447	3.548	15.8	0.8	0.0
3.447	3.255	3.350	15.0	0.8	0.0
3.255	3.073	3.162	14.1	0.9	0.0
3.073	2.901	2.985	13.3	0.8	0.0
2.901	2.738	2.818	12.5	0.8	0.0
2.738	2.585	2.661	11.7	0.7	0.0
2.585	2.441	2.512	11.0	0.7	0.0
2.441	2.304	2.371	10.3	0.7	0.0
2.304	2.175	2.239	9.6	0.7	0.0
2.175	2.054	2.113	8.9		0.0
2.054	1.939	1.995	8.3	0.6	0.0
1.939	1.830	1.884	7.7	0.6	0.0
1.830	1.728	1.778	7.2	0.6	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

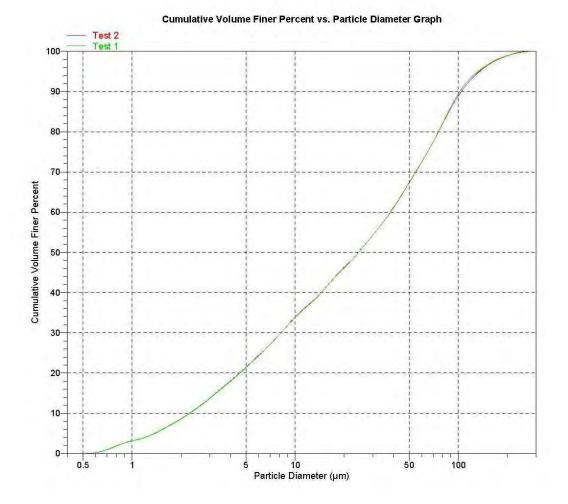
5200 LSHU V2.01 S/N 110

Page 4

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
1.728	1.631	1.679	6.6	0.5	0.0
1.631	1.540	1.585	6.1	0.5	0.0
1.540	1.454	1.496	5.5	0.5	0.0
1.454	1.372	1.413	5.0	0.5	0.0
1.372	1.296	1.334	4.5	0.5	0.0
1.296	1.223	1.259	4.1	0.4	0.0
1.223	1.155	1.189	3.8	0.3	0.0
1.155	1.090	1.122	3.5	0.3	0.0
1.090	1.029	1.059	3.3	0.2	0.0
1.029	0.972	1.000	3.0	0.2	0.0
0.972	0.917	0.944	2.7	0.3	0.0
0.917	0.866	0.891	2.4	0.3	0.0
0.866	0.818	0.841	2.0	0.4	0.0
0.818	0.772	0.794	1.6	0.4	0.0
0.772	0.729	0.750	1.2	0.4	0.0
0.729	0.688	0.708	0.8	0.4	0.0
0.688	0.649	0.668	0.5	0.3	0.0
0.649	0.613	0.631	0.3	0.2	0.0
0.613	0.579	0.596	0.1	0.2	0.0
0.579	0.546	0.562	0.0	0.1	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0


Saturn DigiSizer II 5205 V1.01

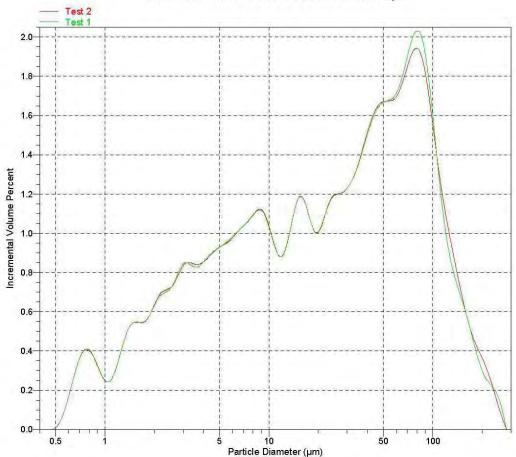
5200 LSHU V2.01 S/N 110

Page 5

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

315


Saturn DigiSizer II 5205 V1.01

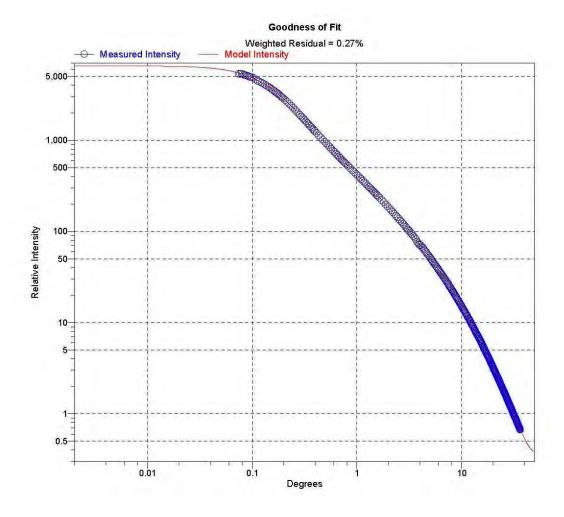
5200 LSHU V2.01 S/N 110

Page 6

Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 7

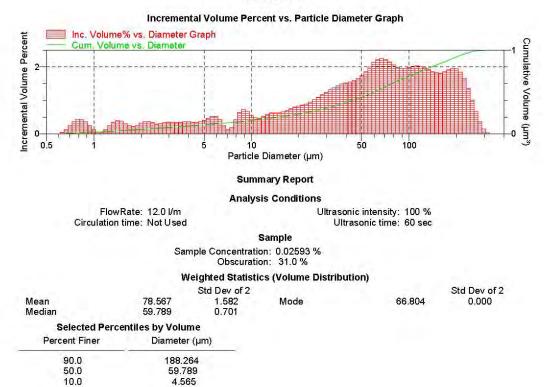
Sample: 868 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103992.SMP

Test Number: 2 Analyzed: 6/22/2011 2:44:32PM Reported: 6/22/2011 3:04:59PM Background: 6/22/2011 11:03:35AM

Sample#5-878

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 108

Page 2

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 307.256 290.068 325.462 316.228 100.0 0.0 0.0 298.538 307.256 99.8 0.1 0.0 290.068 273.842 281.838 99.5 0.4 0.0 273.842 258.523 266.073 98.8 0.7 0.1 258.523 244.062 251.189 97.8 1.0 0.2 244.062 230.409 237.137 96.4 1.4 0.3 230.409 217.520 223.872 94.8 1.6 0.5 217.520 205.353 211.349 92.9 1.8 0.7 205.353 193.865 199.526 91.0 1.9 0.8 193.865 183.021 188.365 89.0 2.0 1.0 183.021 172.783 177.828 87.1 1.9 1.1 172.783 163.117 167.880 85.3 1.9 1.1 163.117 153.993 158.489 83.4 1.8 1.1 153.993 145.378 149.624 81.6 1.8 1.1 1.9 145.378 137.246 141.254 79.8 1.1 77.8 75.8 137.246 129.569 133.352 1.9 1.0 129.569 122.321 125.893 2.0 0.9 122.321 115.478 118.850 73.8 2.0 0.9 115.478 109.018 112.202 71.8 2.0 0.8 109.018 102.920 105.925 69.8 2.0 0.8 102.920 97.163 100.000 67.8 2.0 0.7 97.163 91.728 94.406 65.8 2.0 0.7 91.728 86.596 89.125 63.9 2.0 0.6 2.0 0.6 86.596 81.752 84.140 61.9 81.752 77.179 79.433 59.8 2.1 0.6 77.179 72.862 74.989 57.6 2.1 0.5 72.862 70.795 68.786 55.4 2.2 0.5 64.938 61.306 2.3 0.5 68.786 66.834 53.2 50.9 64.938 63.096 61.306 57.876 59.566 48.8 2.1 0.4 57.876 54.639 56.234 46.8 2.0 0.4 0.4 53.088 54.639 51.582 44.9 1.9 1.7 48.697 51.582 50.119 43.2 48.697 45.973 47.315 41.5 0.3 1.7 45 973 44.668 40.0 0.3 43,401 16 43,401 40.973 42.170 38.4 0.3 1.6 39 811 36.9 40 973 38 681 0.3 15 38 681 35.4 36.517 37.584 1.5 0.2 36.517 34.475 35,481 34.0 1.4 0.2 0.2 0.2 0.2 0.2 34.475 32.546 33.497 32.6 1.4 32,546 30.726 31.623 31.3 1.3 30.726 29.854 29.007 30.0 1.2 1.2 29.007 27.384 28.184 28.9 27.384 0.2 25.852 26.607 27.8 1.1

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5205 V1.01 5200 LSHU V3.00 S/N 108

Page 3

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM

Report by Size Class							
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)		
25.852	24.406	25,119	26.7	1.0	0.2		
24,406	23.041	23,714	25.8	1.0	0.2		
23.041	21.752	22.387	24.9	0.9	0.2		
21.752	20.535	21.135	24.0	0.9	0.2		
20.535	19.387	19.953	23.2	0.8	0.2		
19.387	18.302	18.836	22.4	0.8	0.2		
18.302	17.278	17.783	21.6	0.8	0.2		
17.278	16.312	16.788	20.9	0.7	0.1		
16.312	15.399	15.849	20.3	0.7	0.1		
15.399	14.538	14.962	19.6	0.6	0.1		
14.538	13.725	14.125	19.0	0.6	0.1		
13.725	12.957	13.335	18.4		0.1		
12.957	12.232	12.589	17.8	0.6	0.1		
12.232	11.548	11.885	17.3	0.5	0.1		
11.548	10.902	11.220	16.8	0.5	0.1		
10.902	10.292	10.593	16.3	0.5	0.1		
10.292	9.716	10.000	15.8		0.1		
9.716	9.173	9,441	15.1	0.7	0.1		
9.173	8.660	8.913	14.4		0.1		
8.660	8.175	8.414		0.6	0.1		
8.175	7.718	7.943	13.3	0.4	0.1		
7.718	7.286	7.499	13.1	0.2	0.1		
7.286	6.879	7.079	13.0	0.1	0.1		
6.879	6.494	6.683	12.7	0.2	0.1		
6.494	6.131	6.310	12.3	0.4	0.1		
6,131	5.788	5.957	11.8	0.5	0.1		
5.788	5.464	5.623	11.3	0.5	0.1		
5.464	5.158	5.309	10.8	0.5	0.1		
5.158	4.870	5.012	10.4	0.4	0.1		
4.870	4.597	4.732	10.0	0.4	0.1		
4.597	4.340	4.467	9.7	0.3	0.1		
4.340	4.097	4.217	9.4	0.3	0.1		
4.097	3.868	3.981	9.0	0.4	0.1		
3.868	3.652	3.758	8.6		0.1		
3.652	3.447	3.548	8.3	0.3	0.1		
3.447	3.255	3,350	8.0	0.3	0.1		
3.255	3.073	3.162	7.6		0.1		
3.073	2.901	2.985	7.3		0.1		
2.901	2.738	2.818	6.9		0.1		
2.738	2.585	2.661	6.6		0.1		
2.585	2.383	2.512	6.3	0.3	0.1		
2.585	2.304	2.371	6.0	0.3	0.1		
2.304	2.304	2.239	5.6	0.3	0.1		
2.175	2.054	2.239	5.3	0.4	0.1		
2.175	2.054	2.113	5.5	0.4	0.1		

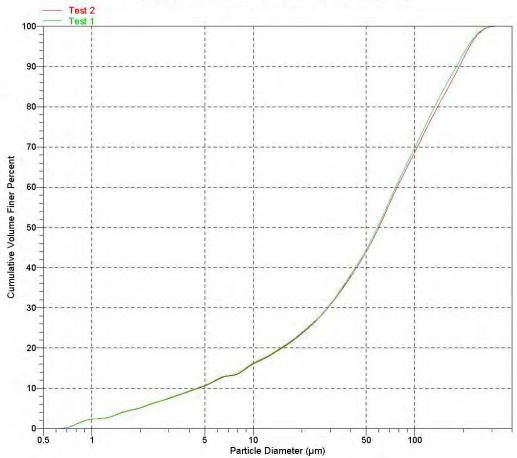
Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 108 Page 4

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM

Linh Dartiala	Lew Destiale	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Size Class	Incompanie	Cumulativa
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.054	1.939	1.995	5.0	0.3	0.0
1.939	1.830	1.884	4.7	0.3	0.0
1.830	1.728	1.778	4.5	0.2	0.0
1.728	1.631	1.679	4.3	0.2	0.0
1.631	1.540	1.585	4.0	0.3	0.0
1.540	1.454	1.496	3.6	0.4	0.0
1.454	1.372	1.413	3.2	0.4	0.0
1.372	1.296	1.334	2.8	0.3	0.0
1.296	1.223	1.259	2.6	0.2	0.0
1.223	1.155	1.189	2.5	0.1	0.0
1.155	1.090	1.122	2.4	0.1	0.0
1.090	1.029	1.059	2.4	0.1	0.0
1.029	0.972	1.000	2.2	0.1	0.0
0.972	0.917	0.944	2.0	0.2	0.0
0.917	0.866	0.891	1.6	0.4	0.0
0.866	0.818	0.841	1.2	0.4	0.0
0.818	0.772	0.794	0.8	0.4	0.0
0.772	0.729	0.750	0.4	0.4	0.0
0.729	0.688	0.708	0.2	0.3	0.0
0.688	0.649	0.668	0.0	0.1	0.0
0.649	0.613	0.631	0.0	0.0	0.0
0.613	0.579	0.596	0.0	0.0	0.0


Saturn DigiSizer II 5205 V1.01

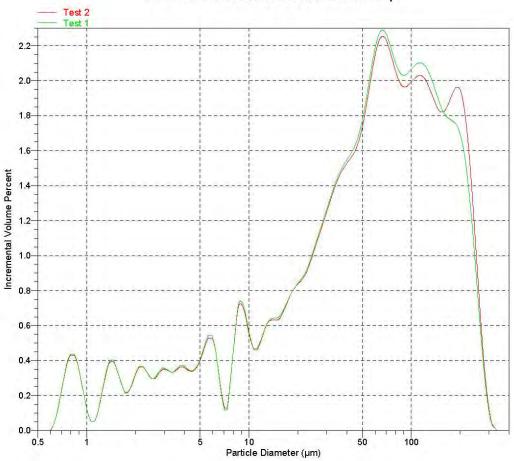
5200 LSHU V3.00 S/N 108

Page 5

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

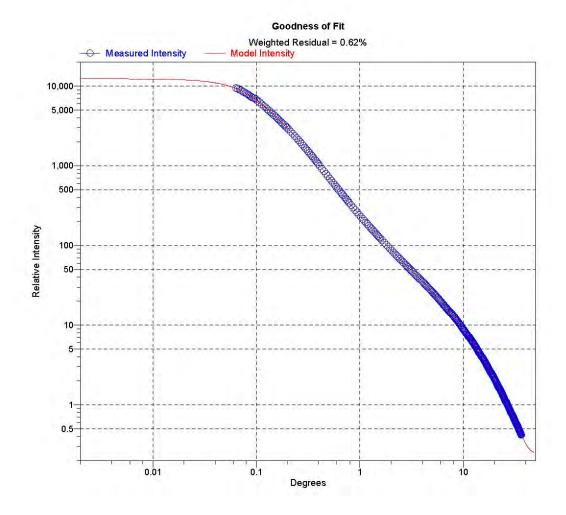
5200 LSHU V3.00 S/N 108

Page 6

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C\...\06JUN\1103993.SMP

Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 108

Page 7

Sample: 878 Operator: TN Submitter: Brooklyn College of CUNY File: C\...\06JUN\1103993.SMP

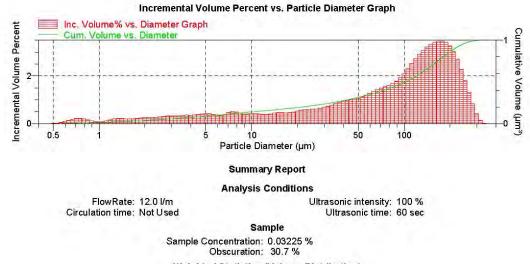
Test Number: 2 Analyzed: 6/22/2011 2:35:14PM Reported: 6/22/2011 3:03:24PM Background: 6/22/2011 11:03:38AM

Sample#6-900

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 L


5200 LSHU V3.00 S/N 127

Page 1

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:15PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean Median	105.878 101.595	1.030 0.252	Mode	167.676	0.000
Selected Perc	entiles by Volum	ie			
Percent Finer	Diameter	(µm)			
90.0	215.06	1			
50.0	101.59	5			
10.0	5.82	0			

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water Ri 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
344.747	325.462	334.965	100.0	0.0	Ō.0
325.462	307.256	316.228	99.9	0.1	0.1
307.256	290.068	298.538	99.4	0.4	0.3
290.068	273.842	281.838	98.6	0.8	0.4
273.842	258.523	266.073	97.3	1.3	0.6
258.523	244.062	251.189	95.5	1.8	0.7
244.062	230.409	237.137	93.3	2.3	0.8
230,409	217.520	223.872	90.6		0.8
217.520	205.353	211.349	87.6	3.0	0.7
205.353	193.865	199.526	84.3	3.3	0.7
193.865	183.021	188.365	80.9		0.6
183.021	172.783	177.828	77.5	3.5	0.6
172.783	163.117	167.880	74.0	3.5	0.5
163,117	153.993	158.489	70.6	3.4	0.4
153.993	145.378	149.624	67.2	3.3	0.4
145.378	137.246	141.254	64.0	3.2	0.3
137.246	129.569	133.352	61.0	3.1	0.2
129.569	122.321	125.893	58.1	2.9	0.1
122.321	115.478	118.850	55.3	2.7	0.0
115.478	109.018	112.202	52.8	2.5	0.1
109.018	102.920	105.925	50.5	2.3	0.1
102.920	97.163	100.000	48.4		0.1
97.163	91.728	94.406	46.5	1.9	0.1
91.728	86.596	89.125	44.7	1.8	0.0
86.596	81.752	84.140	43.0	1.7	0.0
81.752	77.179	79.433	41.4	1.6	0.1
77.179	72.862	74.989	39.9	1.5	0.1
72.862	68.786	70,795	38.4	1.5	0.1
68.786	64.938	66.834		1.4	0.2
64.938	61.306	63.096	35.6	1.3	0.2
61.306	57.876	59.566	34.3		0.2
57.876	54.639	56.234	33.1	1.2	0.2
54.639	51.582	53.088	32.0	1.1	0.2
51.582	48.697	50.119	31.0	1.1	0.1
48.697	45.973	47.315	29.9	1.0	0.1
45.973	43.401	44.668	28.9	1.0	0.1
43.401	40.973	42.170	28.0	1.0	0.1
40.973	38.681	39.811	27.0	0.9	0.1
38.681	36.517	37.584	26.2	0.9	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
36.517	34.475	35.481	25.3	0.8	0,1
34.475	32.546	33.497	24.5	0.8	0.1
32.546	30.726	31.623	23.8	0.7	0.1
30.726	29.007	29.854	23.1	0.7	0.1
29.007	27.384	28.184	22.5	0.6	0.1
27.384	25.852	26.607	21.9	0.6	0.1
25.852	24.406	25.119		0.6	0.1
24,406	23.041	23.714	20.7	0.6	0.1
23.041	21.752	22.387	20.1	0.6	0.1
21.752	20.535	21.135		0.6	0.1
20.535	19.387	19.953		0.5	0.1
19.387	18.302	18.836	18.5	0.5	0.1
18.302	17.278	17.783		0.5	0.1
17.278	16.312	16.788		0.5	
16.312	15.399	15.849		0.5	0.1
15.399	14.538	14.962		0.5	0.1
14.538	13.725	14.125	16.2	0.4	0.1
13.725	12.957	13.335		0.4	0.1
12.957	12.232	12.589		0.4	0.1
12.232	11.548	11.885		0.4	0.1
11.548	10.902	11.220		0.4	0.1
10.902	10.292	10.593		0.4	0.1
10.292	9.716	10.000		0.4	0.1
9.716	9.173	9.441	13.4	0.4	0.1
9.173	8.660	8.913		0.4	0.1
8,660	8.175	8,414		0.4	0.1
8.175	7.718	7.943	12.0	0.5	0.1
7.718	7.286	7.499	11.5	0.5	0.1
7.286	6.879	7.079	11.0	0.5	0.1
6.879	6.494	6.683		0.4	0.1
6.494	6.131	6.310		0.3	
6,131	5.788	5.957		0.3	0.1
5.788	5.464	5.623		0.4	0.1
5.464	5.158	5.309		0.4	0.1
5.158	4.870	5.012		0.4	0.1
4.870	4.597	4.732		0.4	0.1
4.597	4.340	4.467		0.4	0.1
4.340	4.097	4.217		0.4	0.1
4.097	3.868	3.981	7.2		0.1

Satum DigiSizer II 5205 V1.01 Satum DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

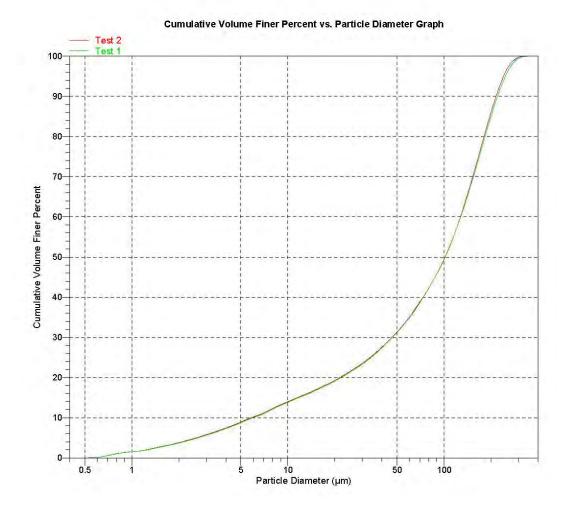
Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.868	3.652	3.758	6.9	0.4	0.1
3.652	3.447	3.548	6.5	0.3	0.1
3.447	3.255	3.350	6.2	0.3	0.1
3.255	3.073	3.162	5.9	0.3	0.1
3.073	2.901	2.985		0.3	0.1
2.901	2.738	2.818	5.3	0.3	0.1
2.738	2.585	2.661	5.0	0.3	0.1
2.585	2.441	2.512	4.7	0.3	0.1
2.441	2.304	2.371	4.4	0.3	0.1
2.304	2.175	2.239	4.2	0.3	0.1
2.175	2.054	2.113	3.9	0.3	0.1
2.054	1.939	1.995	3.6	0.3	0.1
1.939	1.830	1.884	3.4	0.2	0.0
1.830	1.728	1.778	3.2	0.2	0.0
1.728	1.631	1.679	3.0	0.2	0.0
1.631	1.540	1.585	2.8	0.2	0.0
1.540	1.454	1.496	2.6	0.2	0.1
1.454	1.372	1.413	2.4	0.2	0.0
1.372	1.296	1.334	2.2	0.2	0.0
1.296	1.223	1.259	2.0	0.2	0.0
1.223	1.155	1.189	1.8	0.2	0.0
1.155	1.090	1.122	1.7	0.1	0.0
1.090	1.029	1.059	1.6	0.1	0.0
1.029	0.972	1.000	1.5	0.1	0.0
0.972	0.917	0.944	1.4	0.1	0.0
0.917	0.866	0.891	1.3	0.1	0.0
0.866	0.818	0.841	1.1	0.2	0.0
0.818	0.772	0.794	0.9	0.2	0.0
0.772	0.729	0.750	0.7	0.2	0.0
0.729	0.688	0.708	0.5	0.2	0.0
0.688	0.649	0.668	0.3	0.2	0.0
0.649	0.613	0.631	0.2	0.1	0.0
0.613	0.579	0.596	0.1	0.1	0.0
0.579	0.546	0.562	0.0	0.1	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

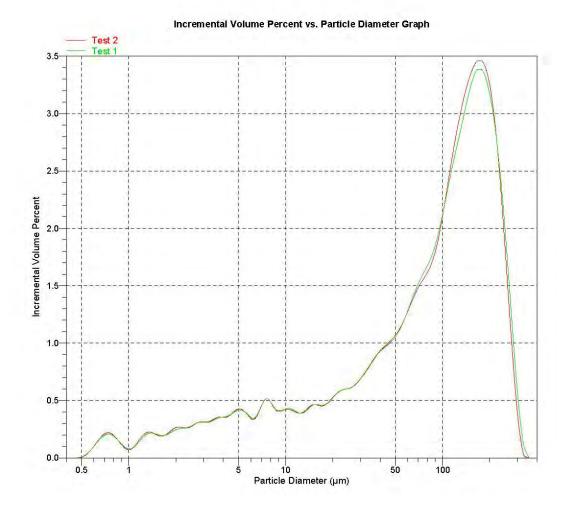
5200 LSHU V3.00 S/N 127

Page 5

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

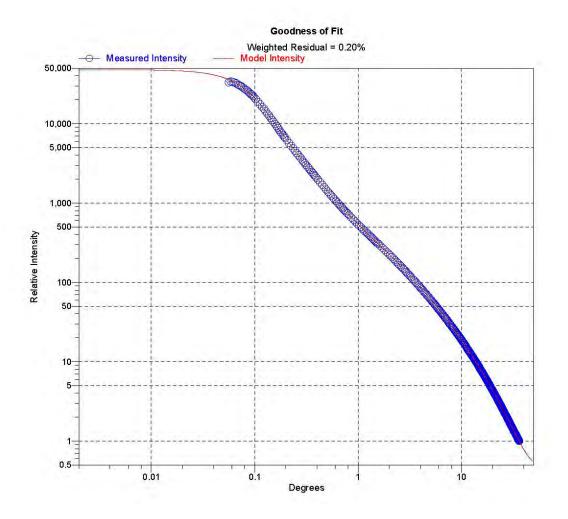
5200 LSHU V3.00 S/N 127

Page 6

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

Sample: 900 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1103994B.SMP

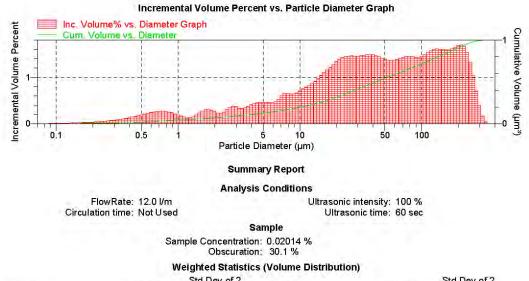
Test Number: 2 Analyzed: 6/23/2011 1:44:44PM Reported: 6/23/2011 2:36:16PM Background: 6/23/2011 10:24:40AM

Sample#7-1081

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU \


5200 LSHU V3.00 S/N 127

Page 1

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

		Std Dev of Z			Std Dev of Z
Mean	72.513	0.160	Mode	211.092	0.000
Median	41.648	0.053			
Selected Perce	entiles by Volum	ne			
Percent Finer	Diameter	Diameter (µm)			
90.0	195.32	27			
50.0	41.64	8			
10.0	3.47	7			

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
344.747	325.462	334.965	100.0	0.0	
325.462	307.256	316.228	99.8	0.2	0.0
307.256	290.068	298.538	99.4	0.4	0.0
290.068	273.842	281.838		0.7	0.0
273.842	258.523	266.073	97.7	1.0	0.0
258.523	244.062	251.189	96.4	1.3	0.0
244.062	230.409	237.137	94.8	1.5	0.0
230.409	217.520	223.872	93.2	1.7	0.0
217.520	205.353	211.349	91.5	1.7	0.0
205.353	193.865	199.526	89.8	1.7	0.0
193.865	183.021	188.365	88.1	1.6	0.0
183.021	172.783	177.828	86.5	1.6	0.0
172.783	163.117	167.880	84.9	1.6	0.1
163.117	153.993	158,489	83.3	1.6	0.1
153.993	145.378	149.624	81.7	1.6	0.2
145.378	137.246	141.254	80.1	1.6	0.2
137.246	129.569	133.352	78.5	1.6	0.2
129.569	122.321	125.893	76.9	1.6	0.2
122.321	115.478	118.850	75.3	1.6	0.1
115.478	109.018	112.202	73.8	1.5	0.1
109.018	102.920	105.925	72.3	1.5	0.1
102.920	97.163	100.000		1.5	0.0
97.163	91.728	94.406	69.4	1.4	0.0
91.728	86.596	89.125	68.0	1.4	0.1
86.596	81.752	84.140		1.4	0.1
81.752	77.179	79.433	65.1	1.5	0.1
77.179	72.862	74.989	63.6	1.5	0.1
72.862	68.786	70.795		1.4	0.1
68.786	64.938	66.834		1.4	0.1
64.938	61.306	63.096	59.4	1.4	0.1
61.306	57.876	59.566		1.4	0.1
57.876	54.639	56.234		1.4	0.1
54.639	51.582	53.088		1.4	0.1
51.582	48.697	50.119			0.0
48.697	45.973	47.315	52.5	1.4	0.0
45.973	43.401	44.668		1.4	0.0
43.401	40.973	42.170	49.6	1.5	0.0
40.973	38.681	39.811	48.1	1.5	0.0
38.681	36.517	37.584	46.6	1.5	0.0

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		report by	GILC GIUSS		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
36.517	34.475	35.481	45.1	1.5	0.0
34.475	32.546	33.497	43.6	1.5	0.0
32.546	30.726	31.623	42.2	1.5	0.0
30.726	29.007	29.854	40.7	1.5	0.0
29.007	27.384	28.184	39.3	1.5	0.0
27.384	25.852	26.607	37.8	1.5	0.0
25.852	24.406	25.119		1.5	0.0
24,406	23.041	23.714	34.9	1.4	0.0
23.041	21.752	22.387	33.5	1.4	0.0
21,752	20.535	21.135		1.4	0.0
20.535	19.387	19.953	30.7	1.3	0.0
19.387	18.302	18.836	29.5	1.3	0.0
18.302	17.278	17,783			0.0
17.278	16.312	16.788		1.2	0.0
16.312	15.399	15.849		1.7	0.0
15.399	14.538	14.962		1.0	0.0
14.538	13.725	14.125	24.0	1.0	0.0
13.725	12.957	13.335	23.0	0.9	0.0
12.957	12.232	12.589	22.2	0.9	0.0
12.232	11.548	11.885		0.8	0.0
11.548	10.902	11.220		0.8	
10.902	10.292	10.593		0.8	0.0
10.292	9.716	10.000	19.1	0.7	0.0
9.716	9.173	9.441	18.4	0.7	0.0
9.173	8.660	8.913			0.0
8.660	8.175	8.414	17.2	0.6	0.0
8.175	7.718	7.943	16.5	0.7	0.0
7.718	7.286	7.499	15.9	0.6	0.0
7.286	6.879	7.079	15.3	0.6	0.0
6.879	6.494	6.683		0.5	0.0
6.494	6.131	6.310		0.5	0.1
6.131	5.788	5.957			0.1
5.788	5.464	5.623		0.4	0.1
5.464	5.158	5.309			0.1
5.158	4.870	5.012		0.5	0.1
4.870	4.597	4.732	12.0	0.5	0.1
4.597	4.340	4.467		0.4	0.1
4.340	4.097	4.217		0.4	0.1
4.097	3.868	3.981	10.7	0.4	0.1

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.868	3.652	3.758		0.4	0.1
3.652	3.447	3.548	10.0	0.3	0.1
3.447	3.255	3.350	9.6	0.3	0.1
3.255	3.073	3.162	9.3	0.3	0.1
3.073	2.901	2.985	8.9	0.4	0.1
2.901	2.738	2.818	8.6	0.4	0.1
2.738	2.585	2.661	8.2	0.4	0.1
2.585	2.441	2.512	7.9	0.3	0.1
2.441	2.304	2.371	7.7	0.2	0.1
2.304	2.175	2.239	7.4	0.2	0.1
2.175	2.054	2.113	7.2	0.2	0.1
2.054	1.939	1.995	7.0	0.3	0.1
1.939	1.830	1.884	6.7	0.3	0.1
1.830	1.728	1.778	6.3	0.3	0.1
1.728	1.631	1.679	6.0	0.3	0.1
1.631	1.540	1.585	5.8	0.3	0.1
1.540	1.454	1.496	5.5	0.2	0.1
1.454	1.372	1.413	5.4	0.2	0.1
1.372	1.296	1.334	5.2	0.1	0.1
1.296	1.223	1.259	5.1	0.1	0.1
1.223	1.155	1.189	5.0	0.1	0.1
1.155	1.090	1.122	4.8	0.1	0.1
1.090	1.029	1.059	4.6	0.2	0.1
1.029	0.972	1.000	4.5	0.2	0.1
0.972	0.917	0.944	4.2	0.2	0.1
0.917	0.866	0.891	4.0	0.2	0.1
0.866	0.818	0.841	3.8	0.3	0.1
0.818	0.772	0.794	3.5	0.3	0.1
0.772	0.729	0.750	3.2	0.3	0.1
0.729	0.688	0.708	3.0	0.3	0.1
0.688	0.649	0.668	2.7	0.3	0.1
0.649	0.613	0.631	2.5	0.2	0.1
0.613	0.579	0.596	2.2	0.2	0.1
0.579	0.546	0.562	2.0	0.2	0.1
0.546	0.516	0.531	1.8	0.2	0.1
0.516	0.487	0.501	1.6	0.2	0.1
0.487	0.460	0.473		0.2	0.1
0.460	0.434	0.447	1.3		0.1
0.434	0.410	0.422	1.1	0.1	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

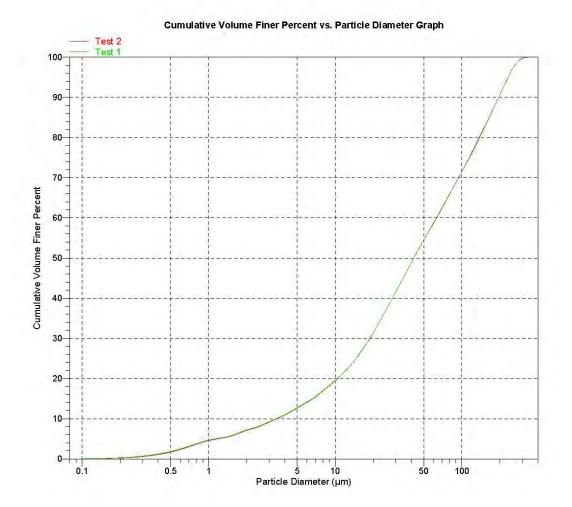
Page 5

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

			and a second a		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.410	0.387	0.398	1.0	0.1	0.1
0.387	0.365	0.376	0.9	0.1	0.1
0.365	0.345	0.355	0.8	0.1	0.1
0.345	0.325	0.335	0.7	0.1	0.1
0.325	0.307	0.316	0.6	0.1	0.1
0.307	0.290	0.299	0.5	0.1	0.1
0.290	0.274	0.282	0.5	0.1	0.1
0.274	0.259	0.266	0.4	0.1	0.1
0.259	0.244	0.251	0.4	0.1	0.1
0.244	0.230	0.237	0.3	0.0	0.1
0.230	0.218	0.224	0.3	0.0	0.1
0.218	0.205	0.211	0.2	0.0	0.1
0.205	0.194	0.200	0.2	0.0	0.0
0.194	0.183	0.188	0.2	0.0	0.0
0.183	0.173	0.178	0.1	0.0	0.0
0.173	0.163	0.168	0.1	0.0	0.0
0.163	0.154	0.158	0.1	0.0	0.0
0.154	0.145	0.150	0.1	0.0	0.0
0.145	0.137	0.141	0.1	0.0	0.0
0.137	0.130	0.133	0.1	0.0	0.0
0.130	0.122	0.126	0.0	0.0	0.0
0.122	0.115	0.119	0.0	0.0	0.0
0.115	0.109	0.112	0.0	0.0	0.0
0.109	0.103	0.106	0.0	0.0	0.0
0.103	0.097	0.100	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

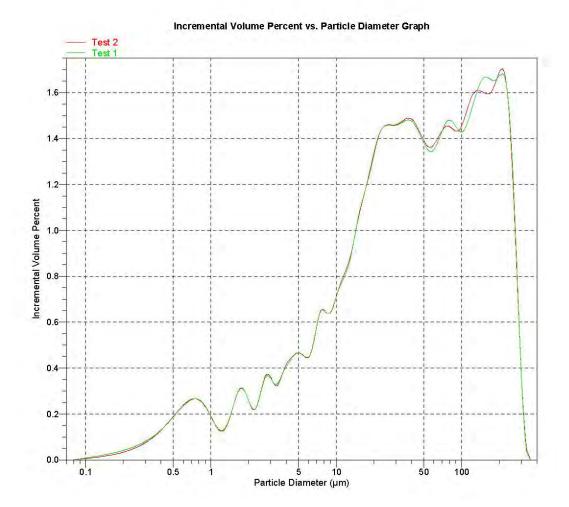
5200 LSHU V3.00 S/N 127

Page 6

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103995.SMP

Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

Sample: 1081 Operator: TN Submitter: Brooklyn College of CUNY File: CA...\06JUN\1103995.SMP

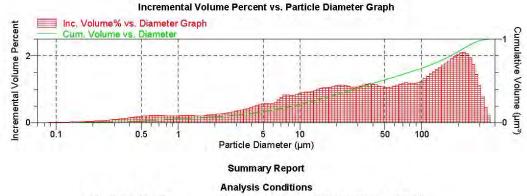
Test Number: 2 Analyzed: 6/23/2011 2:55:06PM Reported: 6/23/2011 3:02:19PM Background: 6/23/2011 10:24:40AM

Sample#8-1461

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 I


5200 LSHU V3.00 S/N 127

Page 1

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

FlowRate: 12.0 l/m Ultrasonic intensity: 100 % Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.02275 % Obscuration: 33.8 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean Median	85.511 46.410	0.698 0.484	Mode	223.600	0.000
	entiles by Volun				
Percent Finer	Diameter (µm)				
90.0	228.54	6			
50.0	46.41	0			
10.0	3.45	1			

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

365.174	344.747 325.462	254 042			(StdDev)
	325 462	354.813	99.8	0.2	0.0
344.747	JZJ.40Z	334.965	99.4	0.4	0.0
325.462	307.256	316.228	98.6	0.8	0.1
307.256	290.068	298.538	97.5	1.1	0.1
290.068	273.842	281.838	96.0	1.4	0.2
273.842	258.523	266.073	94.3	1.7	0.2
258.523	244.062	251.189	92.4	1.9	0.3
244.062	230.409	237.137		2.1	0.3
230.409	217.520	223.872	88.2	2.1	0.4
217.520	205.353	211.349		2.1	0.4
205.353	193.865	199.526	84.0		0.4
193,865	183.021	188.365	82.0	2.0	0.3
183.021	172,783	177.828	80.1	1.9	0.3
172.783	163.117	167.880		1.8	0.3
163,117	153.993	158,489		1.8	0.3
153.993	145.378	149.624	74.8	1.7	0.3
145.378	137.246	141.254		1.7	0.2
137.246	129.569	133.352	71.5	1.6	0.2
129,569	122.321	125.893	70.0	1.5	0.2
122.321	115.478	118.850		1.5	0.2
115.478	109.018	112.202	67.1	1.4	0.2
109.018	102.920	105.925	65.8	1.3	0.2
102.920	97.163	100.000	64.6	1.3	0.2
97,163	91.728	94,406	63.4		0.2
91.728	86.596	89.125	62.2	1.2	0.2
86.596	81.752	84.140	61.0	1.2	0.2
81.752	77.179	79.433			0.2
77.179	72.862	74.989		1.2	0.2
72.862	68.786	70.795	57.4	1.2	0.2
68.786	64.938	66.834		1.2	0.2
64.938	61.306	63.096		1.1	0.2
61.306	57.876	59.566		1.1	0.2
57.876	54.639	56.234	53.0	1.1	0.2
54.639	51.582	53.088	52.0	1.1	0.2
51.582	48.697	50.119	50.9	1.1	0.2
48.697	45.973	47.315	49.8	1.1	0.2
45.973	43.401	44.668		1.1	0.2
43.401	40.973	42.170	48.7	1.1	0.2
40.973	38.681	39.811	46.4	1.2	0.2

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		report by	GILC GIUSS		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
38.681	36.517	37.584	45.3	1.2	0.2
36.517	34.475	35.481	44.1	1.2	0.2
34.475	32.546	33.497	43.0	1.1	0.2
32.546	30.726	31.623	41.9	1.1	0.1
30.726	29.007	29.854	40.8	1.1	0.1
29.007	27.384	28.184	39.8	1.1	0.1
27.384	25.852	26.607	38.7	1.1	0.1
25.852	24.406	25.119	37.6	1.1	0.1
24.406	23.041	23.714	36.5	1.1	0.1
23.041	21,752	22.387	35.4	1.1	0.1
21.752	20.535	21.135	34.2	1.1	0.1
20.535	19.387	19.953	33.1	1.1	0.1
19.387	18.302	18.836			0.1
18,302	17.278	17.783		1.1	0.1
17.278	16.312	16.788		1.0	0.1
16.312		15.849			0.1
15.399	14.538	14.962			0.1
14.538	13.725	14.125		1.0	0.1
13.725	12.957	13.335		1.0	0.1
12.957	12.232				0.1
12.232	11.548	11.885		0.9	0.1
11.548	10.902	11.220		0.9	0.1
10.902	10.292	10.593		0.9	0.1
10.292	9.716	10.000		0.9	0.0
9.716	9.173	9,441			0.0
9.173	8.660	8.913		0.8	0.0
8.660	8.175	8.414		0.8	0.0
8.175		7.943		0.8	0.0
7.718		7.499		0.8	0.0
7.286	6.879	7.499	16.4	0.8	0.0
6.879	6.494	6.683			0.0
6.494		6.310		0.6	0.0
6.131	5.788	5,957	14.6	0.6	0.0
5.788	5.464	5.623			0.0
5.464	5.158	5.309			0.0
5.158	4.870	5.012		0.6	0.0
4.870		4.732		0.6	0.0
4.597	4.340	4.467		0.5	0.1
4.340	4.097	4.217	11.3	0.5	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
4.097	3.868	3.981	10.8	0.5	0.1
3.868	3.652	3.758	10.4	0.4	0.1
3.652	3.447	3.548	10.0	0.4	0.1
3.447	3.255	3.350	9.6	0.4	0.1
3.255	3.073	3.162	9.3	0.4	0.1
3.073	2.901	2.985	8.9	0.3	0.1
2.901	2.738	2.818	8.6	0.3	0.1
2.738	2.585	2.661	8.3	0.3	0.1
2.585	2.441	2.512	8.0	0.3	0.1
2.441	2.304	2.371	7.7	0.3	0.1
2.304	2.175	2.239	7.5	0.3	0.1
2.175	2.054	2.113	7.2	0.3	0.1
2.054	1.939	1.995	7.0	0.2	0.1
1.939	1.830	1.884	6.7	0.2	0.1
1.830	1.728	1.778	6.5	0.2	0.1
1.728	1.631	1.679	6.3	0.2	0.1
1.631	1.540	1.585	6.1	0.2	0.1
1.540	1.454	1.496	5.9	0.2	0.1
1.454	1.372	1.413	5.7	0.2	0.1
1.372	1.296	1.334	5.5	0.2	0.1
1.296	1.223	1.259	5.2	0.2	0.1
1.223	1.155	1.189	5.0	0.2	0.1
1.155	1.090	1.122	4.8	0.2	0.0
1.090	1.029	1.059	4.6	0.2	0.0
1.029	0.972	1.000	4.4	0.2	0.0
0.972	0.917	0.944	4.2	0.2	0.0
0.917	0.866	0.891	4.0	0.2	0.0
0.866	0.818	0.841	3.8	0.2	0.0
0.818	0.772	0.794	3.6	0.2	0.0
0.772	0.729	0.750	3.4	0.2	0.0
0.729	0.688	0.708	3.2	0.2	0.0
0.688	0.649	0.668	2.9	0.2	0.0
0.649	0.613	0.631	2.7	0.2	0.0
0.613	0.579	0.596	2.5	0.2	0.0
0.579	0.546	0.562	2.3	0.2	0.0
0.546	0.516	0.531	2.1	0.2	0.0
0.516	0.487	0.501	1.9	0.2	0.0
0.487	0.460	0.473	1.7	0.2	0.0
0.460	0.434	0.447	1.6	0.2	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

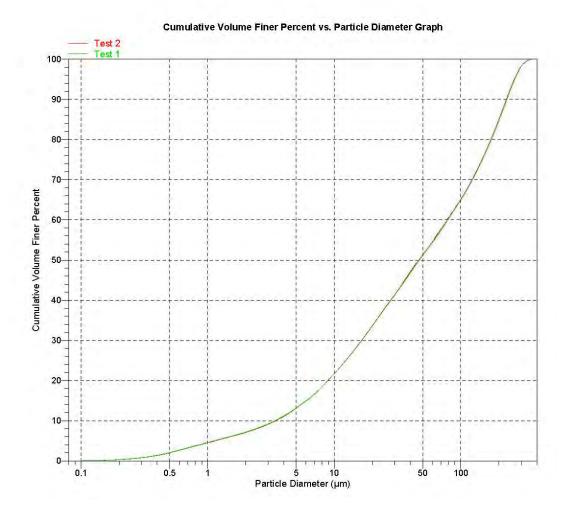
Page 5

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.434	0.410	0.422	1.4	0.2	0.0
0.410	0.387	0.398	1.3	0.1	0.0
0.387	0.365	0.376	1.1	0.1	0.0
0.365	0.345	0.355	1.0	0.1	0.0
0.345	0.325	0.335	0.9	0.1	0.0
0.325	0.307	0.316	0.8	0.1	0.0
0.307	0.290	0.299	0.7	0.1	0.0
0.290	0.274	0.282	0.6	0.1	0.0
0.274	0.259	0.266	0.6	0.1	0.0
0.259	0.244	0.251	0.5	0.1	0.0
0.244	0.230	0.237	0.4	0.1	0.0
0.230	0.218	0.224	0.4	0.1	0.0
0.218	0.205	0.211	0.3	0.0	0.0
0.205	0.194	0.200	0.3	0.0	0.0
0.194	0.183	0.188	0.2	0.0	0.0
0.183	0.173	0.178	0.2	0.0	0.0
0.173	0.163	0.168	0.2	0.0	0.0
0.163	0.154	0.158	0.1	0.0	0.0
0.154	0.145	0.150	0.1	0.0	0.0
0.145	0.137	0.141	0.1	0.0	0.0
0.137	0.130	0.133	0.1	0.0	0.0
0.130	0.122	0.126	0.1	0.0	0.0
0.122	0.115	0.119	0.0	0.0	0.0
0.115	0.109	0.112	0.0	0.0	0.0
0.109	0.103	0.106	0.0	0.0	0.0
0.103	0.097	0.100	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

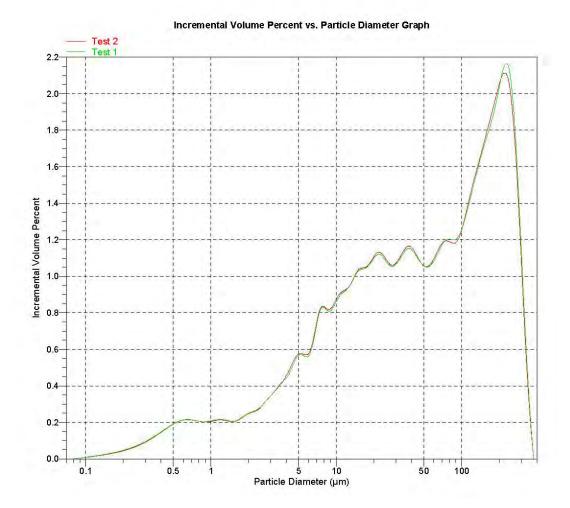
5200 LSHU V3.00 S/N 127

Page 6

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

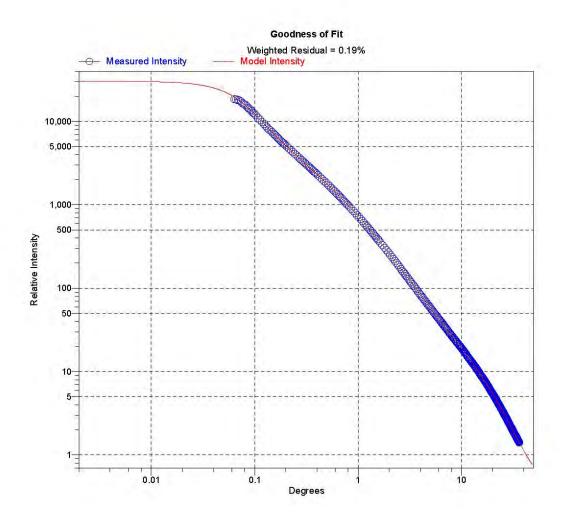
5200 LSHU V3.00 S/N 127

Page 7

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:13AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 8

Sample: 1461 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103996.SMP

Test Number: 2 Analyzed: 6/24/2011 8:03:31AM Reported: 6/24/2011 8:17:14AM Background: 6/24/2011 7:44:28AM

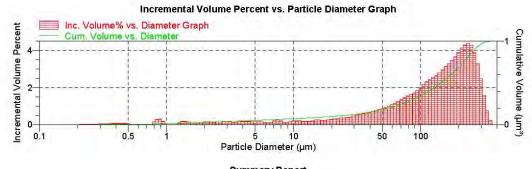
Sample#9-1712

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127


Page 1

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Summary Report

Analysis Conditions

Ultrasonic intensity: 100 % FlowRate: 12.0 l/m Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.05029 % Obscuration: 30.4 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2	
Mean	145.820	1.496	Mode	236.849	0.000	
Median	144.292	1.386				
Selected Per	centiles by Volum	ne				
Percent Finer	Diameter	(µm)				
90.0	266.49	18				
50.0	144.29	12				

00.0	1 1 1.202
10.0	21.453

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 2

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
365.174	344.747	354.813	99.8	0.2	0.0
344.747	325.462	334.965	99.0	0.8	0.1
325.462	307.256	316.228	97.5	1.5	0.3
307.256	290.068	298.538	95.0	2.4	0.5
290.068	273.842	281.838	91.8	3.3	0.6
273.842	258.523	266.073	87.9	3.9	0.8
258.523	244.062	251.189	83.6	4.3	0.9
244.062	230.409	237.137	79.3	4.4	0.9
230.409	217.520	223.872	74.9	4.3	1.0
217.520	205.353	211.349	70.8	4.1	1.0
205.353	193.865	199.526	66.9	3.9	0.9
193,865	183.021	188.365	63.2		0.9
183.021	172.783	177.828	59.8	3.5	0.8
172.783	163.117	167.880	56.5	3.3	0.7
163,117	153.993	158.489	53.3	3.1	0.6
153.993	145.378	149.624	50.4	3.0	0.5
145.378	137.246	141.254	47.6	2.8	0.4
137.246	129.569	133.352	44.9	2.7	0.4
129.569	122.321	125.893	42.4	2.5	0.3
122.321	115.478	118.850	39.9	2.4	0.3
115.478	109.018	112.202	37.6	2.3	0.2
109.018	102.920	105.925	35.4	2.2	0.2
102.920	97.163	100.000	33.4	2.0	0.2
97.163	91.728	94.406			0.2
91.728	86.596	89.125	29.9	1.7	0.2
86.596	81.752	84.140	28.3	1.6	0.1
81.752	77.179	79.433	26.7	1.5	0.1
77.179	72.862	74.989	25.3	1.5	0.1
72.862	68.786	70.795	23.9	1.4	0.1
68.786	64.938	66.834	22.6	1.3	0.1
64.938	61.306	63.096	21.5	1.2	0.1
61.306	57.876	59.566	20.4	1.1	0.1
57.876	54.639	56.234	19.4	1.0	0.1
54.639	51.582	53.088	18.5	0.9	0.1
51.582	48.697	50.119	17.6	0.9	0.1
48.697	45.973	47.315	16.8	0.8	0.1
45.973	43.401	44.668	16.1	0.7	0.1
43.401	40.973	42.170	15.4	0.7	0.1
40.973	38.681	39.811	14.7	0.7	0.1

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		report by	GILC GIUSS		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
38.681	36.517	37.584	14.1	0.6	0.0
36.517	34.475	35.481	13.5	0.6	0.0
34.475	32.546	33.497	12.9	0.6	0.0
32.546	30.726	31.623	12.4	0.5	0.0
30.726	29.007	29.854	11.9	0.5	0.0
29.007	27.384	28.184	11.5	0.4	0.0
27.384	25.852	26.607		0.4	0.0
25.852	24.406	25.119		0.4	0.0
24,406	23.041	23.714		0.4	0.0
23.041	21.752	22.387	10.1	0.3	0.0
21.752	20.535	21.135	9.8	0.3	0.0
20.535	19.387	19.953	9.5	0.3	0.0
19.387	18.302	18.836		0.3	0.0
18.302	17.278	17.783		0.2	0.0
17.278	16.312	16.788		0.2	0.0
16.312	15.399	15.849		0.2	0.0
15.399	14.538	14.962		0.2	0.0
14.538	13.725	14.125		0.2	0.0
13.725	12.957	13.335		0.2	0.0
12.957	12.232			0.2	0.0
12.232	11.548	11.885		0.2	0.0
11.548		11.220			0.0
10.902	10.292	10.593		0.2	0.0
10.292	9.716	10.000	6.9		0.0
9.716	9.173	9,441		0.1	0.0
9,173	8.660	8.913		0.1	0.0
8.660		8.414		0.1	0.0
8.175		7.943		0.1	0.0
7.718	7.286	7.499		0.2	0.0
7.286	6.879	7.079		0.3	0.0
6.879	6.494	6.683		0.2	0.0
6.494		6.310	5.6	0.1	0.0
6.131	5.788	5.957		0.1	0.0
5.788	5.464	5.623		0.1	0.0
5.464	5.158	5.309		0.2	0.0
5.158	4.870	5.012		0.1	0.0
4.870		4.732		0.1	0.1
4.597	4.340	4.467		0.2	0.0
4.340	4.097	4.217	4.5	0.2	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
4.097	3.868	3.981	4.4	0.2	0.0
3.868	3.652	3.758	4.2	0.1	0.0
3.652	3.447	3.548	4.1	0.1	0.0
3.447	3.255	3.350	4.0	0.1	0.0
3.255	3.073	3.162	3.8	0.1	0.0
3.073	2.901	2.985	3.7	0.2	0.0
2.901	2.738	2.818	3.5	0.2	0.0
2.738	2.585	2.661	3.3	0.2	0.0
2.585	2.441	2.512	3.2	0.1	0.0
2.441	2.304	2.371	3.1	0.1	0.0
2.304	2.175	2.239	2.9	0.1	0.0
2.175	2.054	2.113	2.8	0.1	0.0
2.054	1.939	1.995	2.6	0.1	0.0
1.939	1.830	1.884	2.5	0.1	0.0
1.830	1.728	1.778	2.4	0.1	0.1
1.728	1.631	1.679	2.3	0.1	0.0
1.631	1.540	1.585	2.2	0.1	0.0
1.540	1.454	1.496	2.1	0.1	0.0
1.454	1.372	1.413	1.9	0.2	0.0
1.372	1.296	1.334	1.7	0.2	0.0
1.296	1.223	1.259	1.6	0.1	0.1
1.223	1.155	1.189	1.6	0.0	0.1
1.155	1.090	1.122	1.6	0.0	0.1
1.090	1.029	1.059	1.6	0.0	0.1
1.029	0.972	1.000	1.6	0.0	0.1
0.972	0.917	0.944	1.4	0.2	0.0
0.917	0.866	0.891	1.1	0.3	0.1
0.866	0.818	0.841	0.8	0.3	0.0
0.818	0.772	0.794		0.2	0.1
0.772	0.729	0.750	0.7	0.0	0.1
0.729	0.688	0.708	0.7	0.0	0.1
0.688	0.649	0.668	0.7	0.0	0.1
0.649	0.613	0.631	0.7	0.0	0.1
0.613	0.579	0.596	0.7	0.0	0.1
0.579	0.546	0.562	0.7	0.0	0.1
0.546	0.516	0.531	0.7	0.0	0.1
0.516	0.487	0.501	0.6	0.0	0.1
0.487	0.460	0.473	0.6	0.1	0.1
0.460	0.434	0.447	0.5	0.1	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 5

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

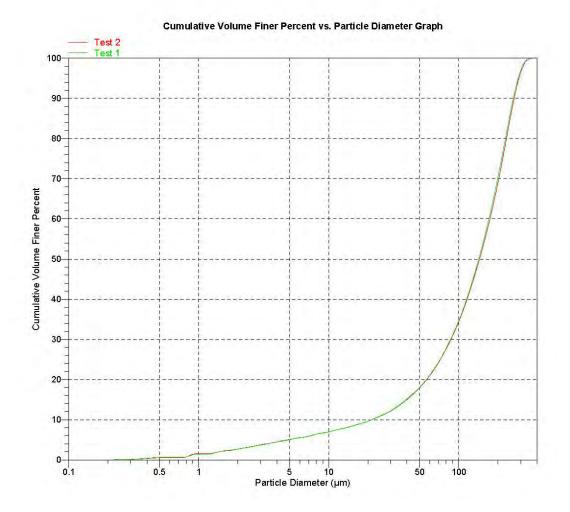
Test Number: 2 Analyzed: 6/24/2011 10:07:35AM

Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.434	0.410	0.422	0.4	0.1	0.0
0.410	0.387	0.398	0.4	0.1	0.0
0.387	0.365	0.376	0.3	0.1	0.0
0.365	0.345	0.355	0.2	0.1	0.0
0.345	0.325	0.335	0.2	0.0	0.0
0.325	0.307	0.316	0.1	0.0	0.0
0.307	0.290	0.299	0.1	0.0	0.0
0.290	0.274	0.282	0.1	0.0	0.0
0.274	0.259	0.266	0.1	0.0	0.0
0.259	0.244	0.251	0.0	0.0	0.0
0.244	0.230	0.237	0.0	0.0	0.0
0.230	0.218	0.224	0.0	0.0	0.0
0.218	0.205	0.211	0.0	0.0	0.0
0.205	0.194	0.200	0.0	0.0	0.0
0.194	0.183	0.188	0.0	0.0	0.0
0.183	0.173	0.178	0.0	0.0	0.0
0.173	0.163	0.168	0.0	0.0	0.0
0.163	0.154	0.158	0.0	0.0	0.0
0.154	0.145	0.150	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 52

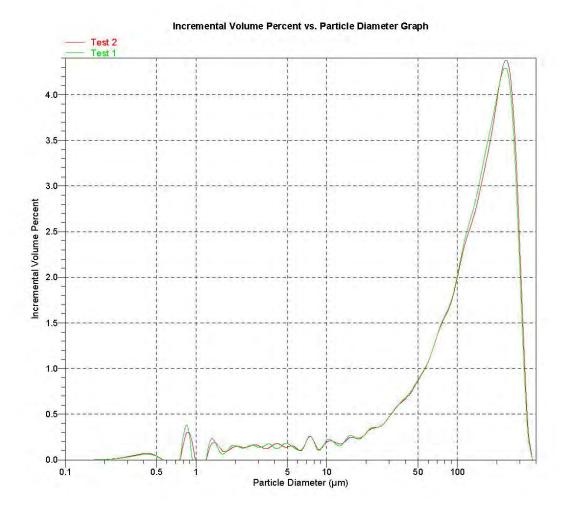
5200 LSHU V3.00 S/N 127

Page 6

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

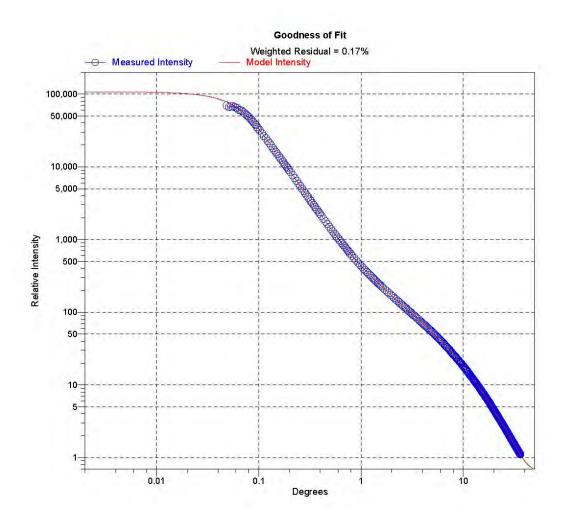
5200 LSHU V3.00 S/N 127

Page 7

Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:19AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 8

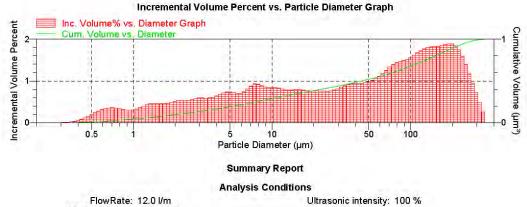
Sample: 1712 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103997.SMP

Test Number: 2 Analyzed: 6/24/2011 10:07:35AM Reported: 6/24/2011 10:14:20AM Background: 6/24/2011 7:44:28AM

Sample#10-2177

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 1

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.01256 % Obscuration: 25.6 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean Median	76.894 44.367	1.865 1.373	Mode	188.136	0.000
Selected Perc	entiles by Volum	ie			
Percent Finer	Diameter	(µm)			
90.0	206.025				
50.0	44.36	7			
10.0	2.110				

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (μm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
344.747	325.462	334.965	99.8	0.2	0.1
325.462	307.256	316.228	99.3	0.5	0.3
307.256	290.068	298.538	98.6	0.7	0.5
290.068	273.842	281.838	97.6	0.9	0.6
273.842	258.523	266.073	96.4	1.2	0.7
258.523	244.062	251.189	95.1	1.4	0.7
244.062	230.409	237.137	93.5	1.6	0.7
230,409	217.520	223.872	91.7	1.7	0.7
217.520	205.353	211.349	89.9	1.8	0.1
205.353	193.865	199.526	88.0	1.9	0.1
193.865	183.021	188.365	86.1	1.9	0.3
183.021	172.783	177.828	84.2	1.9	0.8
172.783	163.117	167.880	82.4	1.8	0.0
163.117	153.993	158,489	80.6	1.8	0.0
153.993	145.378	149.624	78.7	1.8	0,1
145.378	137.246	141.254		1.8	0.
137,246	129.569	133.352	75.1	1.8	0.
129.569	122.321	125.893	73.4		0.0
122.321	115.478	118.850	71.6	1.7	0.1
115.478	109.018	112.202	69.9	1.7	0.
109.018	102.920	105.925	68.3	1.6	0.1
102.920	97,163	100.000	66.8	1.6	0.
97.163	91.728	94.406	65.3	1.5	0.
91.728	86.596	89,125	63.8		0.
86.596	81.752	84.140	62.3	1.5	0.
81.752	77.179	79.433	60.9	1.4	0.
77.179	72.862	74.989	59.5	1.4	0.
72.862	68,786	70,795	58.2	1.3	0.
68,786	64.938	66.834	56.9	1.3	0.
64.938	61.306	63.096	55.7	1.2	0.
61.306	57.876	59.566	54.6		0,
57.876	54.639	56.234	53.5	1.1	0.
54.639	51.582	53.088		1.0	0.
51.582	48.697	50.119	51.5	1.0	0.
48.697	45.973	47.315	50.6	1.0	0.
45.973	43.401	44.668		0.9	0.
43.401	40.973	42.170	48.7	0.9	0.
40.973	38.681	39.811	47.8	0.9	0.1
38.681	36.517	37.584	46.8	0.9	0.4

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
36.517	34.475	35.481	45.9	0.9	0.5
34.475	32.546	33.497	45.0		0.5
32.546	30.726	31.623	44.2	0.9	0.4
30.726	29.007	29.854	43.3	0.8	0.4
29.007	27.384	28.184	42.6	0.8	0.4
27.384	25.852	26.607	41.8	0.8	0.4
25.852	24.406	25,119		0.8	0.4
24,406	23.041	23,714		0.8	0.4
23.041	21.752	22.387		0.8	0.4
21.752	20.535	21.135		0.8	0.4
20.535	19.387	19.953		0.8	0.4
19.387	18.302	18.836	37.2	0.8	0.4
18.302	17.278	17.783		0.8	0.4
17.278	16.312	16.788		0.8	0.3
16.312	15.399	15.849		0.8	0.3
15.399	14.538	14.962		0.8	0.3
14.538	13.725	14.125	33.3		0.3
13.725	12.957	13.335	32.5	0.8	0.3
12.957	12.232	12.589	31.8	0.8	0.3
12.232	11.548	11.885		0.8	0.3
11.548	10.902	11.220	30.1	0.8	0.3
10.902	10.292	10.593		0.8	0.3
10.292	9.716	10.000	28.4	0.8	0.3
9.716	9.173	9.441	27.6	0.8	0.3
9.173	8.660	8.913		0.8	0.3
8.660	8.175	8,414	25.9	0.9	0.3
8.175	7.718	7.943	24.9	0.9	0.2
7.718	7.286	7.499	24.0	0.9	0.2
7.286	6.879	7.079		0.9	0.2
6.879	6.494	6.683		0.8	0.2
6.494	6.131	6.310			0.2
6.131	5.788	5.957		0.7	0.2
5.788	5.464	5.623		0.7	0.2
5.464	5.158	5.309		0.7	0.2
5.158	4.870	5.012		0.7	0.2
4.870	4.597	4.732	18.0	0.7	0.2
4.597	4.340	4.467		0.7	0.2
4.340	4.097	4.217		0.7	0.2
4.097	3.868	3.981	16.0	0.6	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

THE PERMIT	The Berthers	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Olize Gluss	All collectors and	0
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.868	3.652	3.758	15.4	0.6	0.1
3.652	3.447	3.548	14.8	0.6	0.1
3.447	3.255	3.350	14.2	0.6	0.1
3.255	3.073	3.162	13.6	0.6	0.1
3.073	2.901	2.985	13.0	0.6	0.1
2.901	2.738	2.818	12.4	0.6	0.1
2.738	2.585	2.661	11.9	0.6	0.1
2.585	2.441	2.512	11.3	0.5	0.1
2.441	2.304	2.371	10.8	0.5	0.1
2.304	2.175	2.239	10.3		0.1
2.175	2.054	2.113	9.7	0.5	0.1
2.054	1.939	1.995		0.5	0.1
1.939	1.830	1.884		0.5	0.1
1.830	1.728	1.778	8.2	0.5	0.1
1.728	1.631	1.679	7.8	0.5	0.1
1.631	1.540	1.585	7.3	0.5	0.1
1.540	1.454	1.496	6.9	0.5	0.1
1.454	1.372	1.413	6.4	0.5	0.1
1.372	1.296	1.334		0.4	0.1
1.296	1.223	1.259	5.5	0.4	0.0
1.223	1.155	1.189	5.2	0.4	0.0
1.155	1.090	1.122	4.8	0.4	0.0
1.090	1.029	1.059	4.5	0.3	0.0
1.029	0.972	1.000	4.2	0.3	0.0
0.972	0.917	0.944	3.9	0.3	0.0
0.917	0.866	0.891	3.6	0.3	0.0
0.866	0.818		3.2	0.3	0.0
0.818	0.772	0.794	2.9	0.3	0.0
0.772	0.729	0.750	2.6	0.3	0.0
0.729	0.688	0.708		0.4	0.0
0.688	0.649	0.668	1.8	0.4	0.0
0.649	0.613	0.631	1.5	0.3	0.0
0.613	0.579	0.596	1.2	0.3	0.0
0.579	0.546	0.562	0.9	0.3	
0.546	0.516	0.531	0.7	0.2	0.0
0.516	0.487	0.501	0.5	0.2	0.0
0.487	0.460	0.473		0.2	0.0
0.460	0.434	0.447	0.2	0.1	0.0
0.434	0.410	0.422	0.1	0.1	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 5

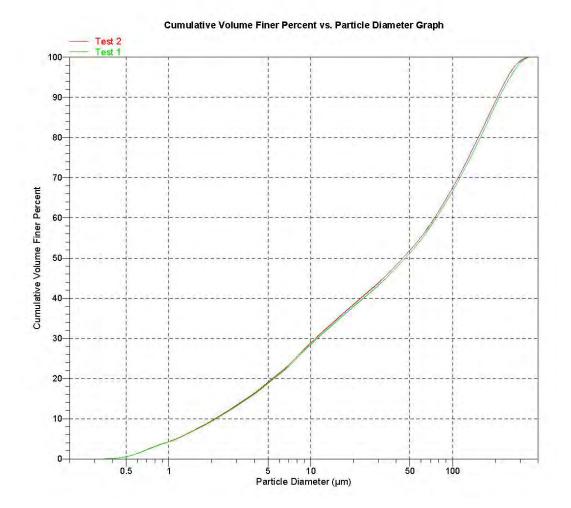
Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.410	0.387	0.398	0,1	0.1	0.0
0.387	0.365	0.376	0.0	0.0	0.0
0.365	0.345	0.355	0.0	0.0	0.0
0.345	0.325	0.335	0.0	0.0	0.0
0.325	0.307	0.316	0.0	0.0	0.0
0.307	0.290	0.299	0.0	0.0	0.0
0.290	0.274	0.282	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

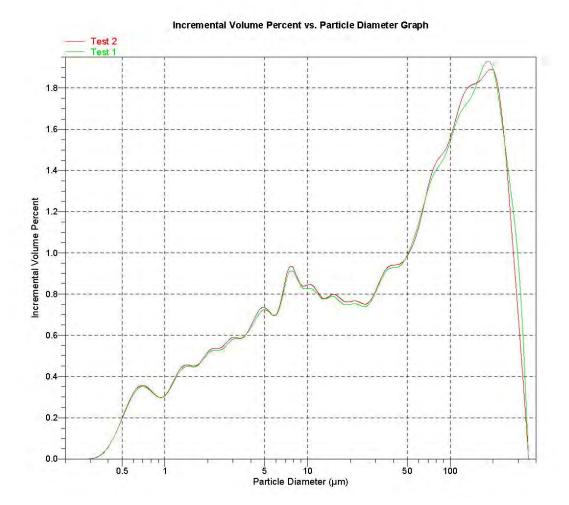
5200 LSHU V3.00 S/N 127

Page 6

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

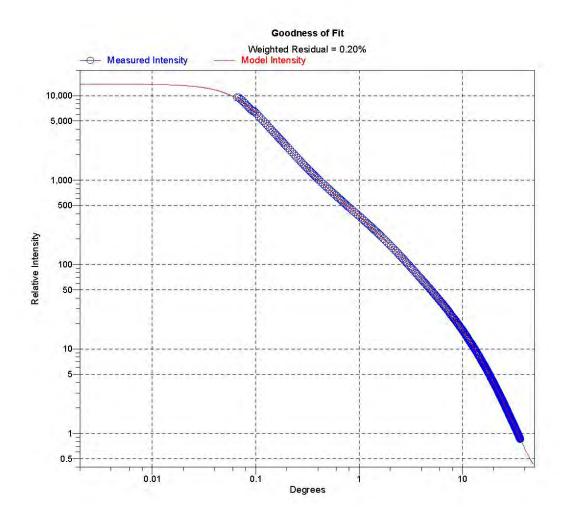
5200 LSHU V3.00 S/N 127

Page 7

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 8

Sample: 2177 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103998A.SMP

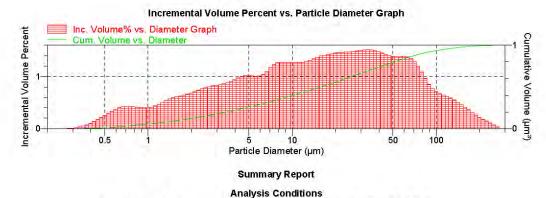
Test Number: 2 Analyzed: 6/24/2011 11:16:49AM Reported: 6/24/2011 11:23:40AM Background: 6/24/2011 7:44:28AM

Sample#11-2472

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


5200 LSHU V3.00 S/N 127

Page 1

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

FlowRate: 12.0 l/m Ultrasonic intensity: 100 % Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.01067 % Obscuration: 28.6 %

Weighted Statistics (Volume Distribution)

	Std Dev of 2			Std Dev of 2
30.776 15.705	0.081 0.037	Mode	33.456	0.000
entiles by Volun	ne			
Diameter	(µm)			
79.16	0			
15.70	5			
1.64	2			
	15.705 entiles by Volum Diameter 	30.776 0.081	30.776 0.081 Mode 15.705 0.037 entiles by Volume Diameter (μm) 79.160 15.705	30.776 0.081 Mode 33.456 15.705 0.037 entiles by Volume Diameter (μm) 79.160 15.705

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
273.842	258.523	266.073	100.0	0.0	0.0
258.523	244.062	251.189	99.9	0.1	0.0
244.062	230.409	237.137	99.8	0.1	0.0
230.409	217.520	223.872	99.6	0.1	0.0
217.520	205.353	211.349	99.5	0.2	0.0
205.353	193.865	199.526	99.2	0.2	0.0
193.865	183.021	188.365	99.0	0.3	0.0
183.021	172.783	177.828	98.7	0.3	0.0
172.783	163.117	167.880	98.3	0.4	0.0
163.117	153.993	158.489	97.9	0.4	0.0
153.993	145.378	149.624	97.4	0.5	0.0
145.378	137.246	141.254	96.9	0.5	0.0
137.246	129.569	133.352	96.4	0.5	0.0
129.569	122.321	125.893	95.8	0.6	0.0
122.321	115.478	118.850	95.2	0.6	0.0
115.478	109.018	112.202	94.5	0.6	0.0
109.018	102.920	105.925	93.9	0.7	0.0
102.920	97.163	100.000	93.2	0.7	0.0
97.163	91.728	94.406	92.4		0.0
91.728	86.596	89.125	91.5	0.8	0.1
86.596	81.752	84.140	90.6	1.0	0.1
81.752	77.179	79.433	89.5	1.1	0.1
77.179	72.862	74.989	88.3	1.2	0.1
72.862	68.786	70.795	87.0	1.3	0.1
68.786	64.938	66.834	85.7	1.3	0.1
64.938	61.306	63.096	84.3	1.4	0.0
61.306	57.876	59.566	82.9	1.4	0.0
57.876	54.639	56.234	81.5	1.4	0.0
54.639	51.582	53.088	80.2	1.4	0.0
51.582	48.697	50.119	78.8	1.4	0.0
48.697	45.973	47.315	77.4	1.4	0.1
45.973	43.401	44.668	76.0	1.4	0.1
43.401	40.973	42.170	74.5	1.5	0.1
40.973	38.681	39.811	73.0	1.5	0.1
38.681	36.517	37.584	71.5	1.5	0.1
36.517	34.475	35,481	70.0	1.5	0.1
34.475		33.497	68.5	1.5	0.1
32.546	30.726	31.623	67.0	1.5	0.1
30.726	29.007	29.854	65.5	1.5	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter	Low Particle Diameter	Average Particle Diameter	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent
(µm)	(µm)	(µm)	Percent	Percent	(StdDev)
29.007	27.384	28.184	64.0	1.5	0.1
27,384	25.852	26.607	62.5	1.5	0.1
25.852	24.406	25.119		1.5	0.1
24,406	23.041	23.714		1.5	0.1
23.041	21.752	22.387	58.1	1.5	0.1
21.752	20.535	21.135	56.6	1.5	0.1
20.535	19.387	19.953			0.1
19.387	18.302	18.836		1.4	0.1
18.302	17.278	17.783		1.4	0.1
17.278	16.312	16,788		1.4	0.1
16.312	15.399	15.849		1.4	0.1
15.399	14.538	14.962		1.4	0.1
14.538	13.725	14.125		1.3	0.1
13,725	12.957	13.335		1.3	0.1
12.957	12.232	12.589			0.0
12.232	11.548	11.885		1.3	0.0
11.548	10.902	11.220		1.3	0.0
10,902	10.292	10.593			0.0
10.292	9.716	10.000		1.3	0.0
9.716	9.173	9.441	37.9	1.3	0.0
9.173	8.660	8.913		1.3	0.0
8.660	8.175	8.414		1.3	0.0
8.175	7.718	7.943		1.3	0.0
7.718	7.286	7.499		1.2	0.0
7.286	6.879	7.079		1.2	0.0
6.879	6.494	6.683		1.1	0.0
6.494	6.131	6.310		1.0	0.0
6.131	5.788	5.957		1.0	0.0
5.788	5.464	5.623		1.0	0.0
5.464	5.158	5.309		1.0	0.0
5.158	4.870	5.012		1.0	0.0
4.870	4.597	4.732			0.0
4.597	4.340	4.467		1.0	0.0
4.340	4.097	4.217		1.0	0.0
4.097	3.868	3.981	21.5	0.9	0.0
3.868	3.652	3.758		0.9	0.0
3.652	3.447	3.548		0.9	0.0
3.447	3.255	3.350		0.9	0.0
3.255	3.073	3.162		0.8	0.0

Satum DigiSizer II 5205 V1.01 Satum DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle	Low Particle	Average	Cumulative	Incremental	Cumulative
Diameter (µm)	Diameter (µm)	Particle Diameter (µm)	Volume Finer Percent	Volume Percent	Volume Percent (StdDev)
3.073	2.901	2.985	17.2	0.8	0.0
2.901	2.738	2.818	16.4	0.8	0.0
2.738	2.585	2.661	15.5	0.8	0.0
2.585	2.441	2.512	14.8	0.8	0.0
2.441	2.304	2.371	14.0	0.8	0.0
2.304	2.175	2.239		0.7	0.0
2.175	2.054	2.113		0.7	0.0
2.054	1.939	1.995	11.9	0.7	0.0
1.939	1.830	1.884		0.7	0.0
1.830	1.728	1.778		0.6	
1.728	1.631	1.679		0.6	0.0
1.631	1.540	1.585	9.3	0.6	0.0
1.540	1.454	1.496		0.6	0.0
1.454	1.372	1.413	8.1	0.6	0.0
1.372	1.296	1.334	7.6	0.5	0.0
1.296	1.223	1.259		0.5	0.0
1,223	1.155	1.189		0.5	0.0
1.155	1.090	1.109	6.2	0.5	0.0
1.090	1.029	1.059		0.4	0.0
1.029	0.972	1.009	5.8	0.4	0.0
0.972	0.972	0.944	5.0	0.4	0.0
0.972	0.866	0.944		0.4	
			4.6		0.0
0.866	0.818	0.841	4.2	0.4	0.0
0.818	0.772	0.794		0.4	0.0
0.772	0.729	0.750	3.3	0.4	0.0
0.729	0.688	0.708		0.4	0.0
0.688	0.649	0.668			0.0
0.649	0.613	0.631	2.1	0.4	0.0
0.613	0.579	0.596		0.4	0.0
0.579	0.546	0.562		0.3	0.0
0.546	0.516	0.531	1.1	0.3	0.0
0.516	0.487	0.501	0.8	0.3	0.0
0.487	0.460	0.473	0.6	0.2	0.0
0.460	0.434	0.447		0.2	0.0
0.434	0.410	0.422	0.3	0.1	0.0
0.410	0.387	0.398	0.2	0.1	0.0
0.387	0.365	0.376		0.1	0.0
0.365	0.345	0.355	0.1	0.1	0.0
0.345	0.325	0.335	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 5

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

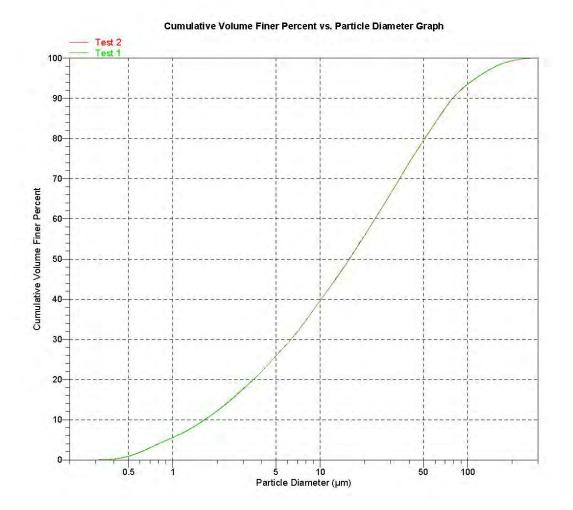
Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM

Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.325	0.307	0.316	0.0	0.0	0.0
0.307	0.290	0.299	0.0	0.0	0.0
0.290	0.274	0.282	0.0	0.0	0.0
0.274	0.259	0.266	0.0	0.0	0.0
0.259	0.244	0.251	0.0	0.0	0.0
0.244	0.230	0.237	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

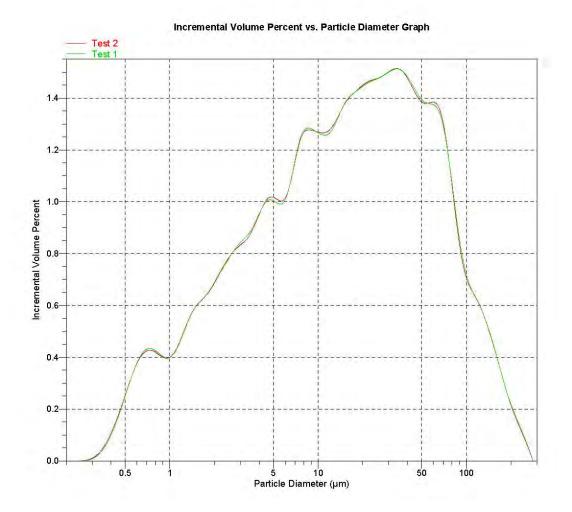
5200 LSHU V3.00 S/N 127

Page 6

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

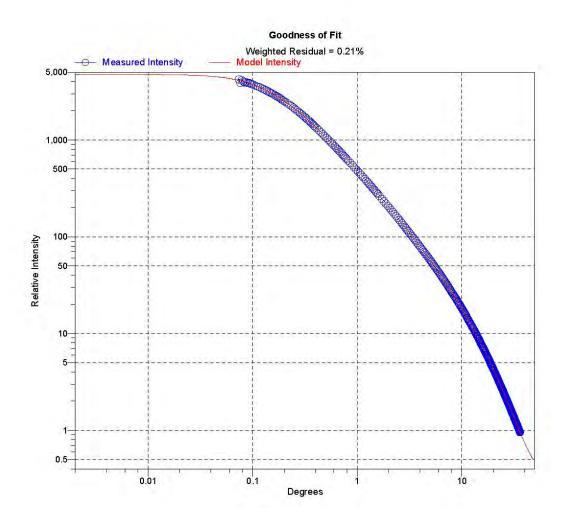
5200 LSHU V3.00 S/N 127

Page 7

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 8

Sample: 2472 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1103999A.SMP

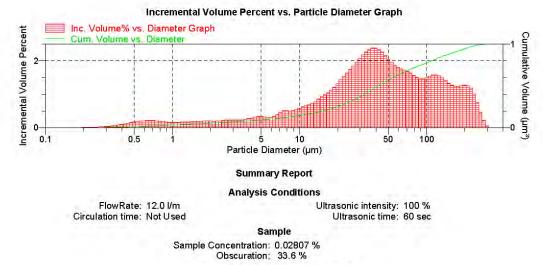
Test Number: 2 Analyzed: 6/24/2011 1:58:50PM Reported: 6/24/2011 2:04:27PM Background: 6/24/2011 7:44:28AM

Sample#12-2609

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU


5200 LSHU V3.00 S/N 127

Page 1

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2	
Mean	64.166	0.365	Mode	37.538	0.000	
Median	41.433	0.144				
Selected Perce	entiles by Volum	ne				
Percent Finer	Diameter	(µm)				
90.0	162.68	19				
50.0	41.43	3				
10.0	5.67	4				

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
307.256	290.068	298.538		0.0	0.0
290.068	273.842	281.838		0.2	0.1
273.842	258.523	266.073	99.3	0.5	0.2
258.523	244.062	251.189	98.5	0.8	0.2
244.062	230.409	237.137	97.5	1.0	0.2
230.409	217.520	223.872	96.3	1.2	0.2
217.520	205.353	211.349	95.1	1.3	0.2
205.353	193.865	199.526	93.8	1.3	0.1
193.865	183.021	188.365	92.5	1.3	0.1
183.021	172.783	177.828	91.3		0.1
172.783	163.117	167.880	90.1	1.2	0.1
163.117	153.993	158.489	88.8	1.3	0.1
153.993	145.378	149.624	87.4	1.3	0.1
145.378	137.246	141.254	86.0	1.4	0.1
137.246	129.569	133.352	84.5	1.5	0.1
129.569	122.321	125,893	83.0	1.6	0.1
122.321	115.478	118.850	81.4	1.6	0.1
115.478	109.018	112.202			0.1
109.018	102.920	105.925	78.3	1.5	0.1
102.920	97.163	100.000			0.2
97.163	91.728	94.406	75.3	1.5	0.2
91.728	86.596	89.125	73.9	1.5	0.2
86.596	81.752	84.140	72.4	1.5	0.1
81.752	77.179	79.433	70.8	1.6	0.1
77.179	72.862	74.989	69.2	1.6	0.*
72.862	68.786	70.795	67.5		0.1
68.786	64.938	66.834	65.7	1.7	0.1
64.938	61.306	63.096	64.0	1.8	0.1
61.306	57.876	59.566	62.2	1.8	0.1
57.876	54.639	56.234			0.2
54.639	51.582	53.088	58.4	2.0	0.2
51.582	48.697	50.119	56.3	2.1	0.2
48.697	45.973	47.315	54.1	2.2	0.2
45.973	43.401	44.668	51.9		0.2
43.401	40.973	42.170	49.5	2.3	0.1
40.973	38.681	39.811		2.4	0.1
38.681	36.517	37.584	44.8	2.4	0.1
36.517	34.475	35.481	42.4	2.3	0.1
34.475	32.546	33.497	40.1	2.3	0.1

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
32.546	30.726	31.623		2.2	0,
30.726	29.007	29.854	35.9	2.1	0.1
29.007	27.384	28.184	33.9	2.0	0.1
27.384	25.852	26.607	32.1	1.8	0.1
25.852	24.406	25.119	30.3	1.7	0.
24.406	23.041	23.714	28.7	1.6	0.
23.041	21.752	22.387	27.2	1.5	0.1
21.752	20.535	21.135	25.7	1.4	0.1
20.535	19.387	19.953	24.4	1.3	0.1
19.387	18.302	18.836	23.2	1.2	0.1
18.302	17.278	17.783	22.1	1.1	0.
17.278	16.312	16.788	21.0	1.1	0.
16.312	15.399	15.849	20.0	1.0	0.
15.399	14.538	14.962	19.1	0.9	0.
14.538	13.725	14.125	18.2	0.9	0.1
13.725	12.957	13.335	17.4	0.8	0.1
12.957	12.232	12.589	16.7	0.7	0.1
12.232	11.548	11.885		0.7	0.1
11.548	10.902	11.220	15.4	0.7	0.
10.902	10.292	10.593		0.6	0.
10.292	9.716	10.000	14.2	0.6	0.
9.716	9.173	9.441	13.6	0.5	0.
9.173	8.660	8.913		0.5	0.
8.660	8.175	8.414	12.6	0.5	0.
8.175	7.718	7.943		0.5	0.
7.718		7.499	11.6	0.5	0.
7.286	6.879	7.079	11.1	0.5	0.
6.879	6.494	6.683	10.7	0.4	0.
6.494	6.131	6.310	10.4	0.3	0.
6.131	5.788	5.957	10.1	0.3	0.
5.788	5.464	5.623	9.8	0.3	0.
5.464	5.158	5.309	9.5	0.3	0.
5.158	4.870	5.012	9.2	0.3	0.
4.870	4.597	4.732	8.8	0.3	
4.597	4.340	4.467	8.5	0.3	0.
4.340	4.097	4.217	8.2	0.3	0.
4.097	3.868	3.981		0.3	0.
3.868	3.652	3.758		0.3	0.
3.652	3.447	3.548	7.5	0.2	0.

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.447	3.255	3.350	7.2	0.2	0.0
3.255	3.073	3.162	7.0	0.2	0.0
3.073	2.901	2.985	6.8	0.2	0.0
2.901	2.738	2.818	6.5	0.2	0.0
2.738	2.585	2.661	6.3	0.2	0.0
2.585	2.441	2.512	6.1	0.2	0.0
2.441	2.304	2.371	5.9	0.2	0.0
2.304	2.175	2.239	5.7	0.2	0.0
2.175	2.054	2.113	5.5	0.2	0.0
2.054	1.939	1.995	5.3	0.2	0.0
1.939	1.830	1.884	5.1	0.2	0.0
1.830	1.728	1.778	4.9	0.2	0.0
1.728	1.631	1.679	4.7	0.2	0.0
1.631	1.540	1.585	4.5	0.2	0.0
1.540	1.454	1.496	4.4	0.2	0.0
1.454	1.372	1.413	4.2	0.2	0.0
1.372	1.296	1.334	4.0	0.2	0.0
1.296	1.223	1.259	3.8	0.2	0.0
1.223	1.155	1.189	3.7	0.2	0.0
1.155	1.090	1.122	3.5	0.2	0.0
1.090	1.029	1.059	3.3	0.2	0.0
1.029	0.972	1.000	3.2	0.2	0,0
0.972	0.917	0.944	3.0	0.2	0.1
0.917	0.866	0.891	2.8	0.2	0.0
0.866	0.818	0.841	2.7	0.2	0.
0.818	0.772	0.794	2.5	0.2	0,0
0.772	0.729	0.750	2.3		0.0
0.729	0.688	0.708	2.1	0.2	0.0
0.688	0.649	0.668	1.8	0.2	0.0
0.649	0.613	0.631	1.6		0.0
0.613	0.579	0.596	1.4	0.2	0.0
0.579	0.546	0.562	1.2	0.2	0.0
0.546	0.516	0.531	1.1	0.2	0.0
0.516	0.487	0.501	0.9	0.2	0.0
0.487	0.460	0.473	0.7	0.1	0.0
0.460	0.434	0.447	0.6	0.1	0.0
0.434	0.410	0.422	0.5	0.1	0.0
0.410	0.387	0.398	0.4	0.1	0.0
0.387	0.365	0.376	0.3	0.1	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

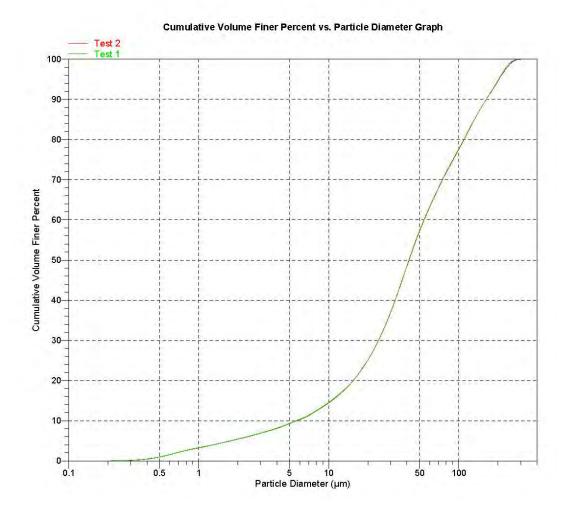
Page 5

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		and the second			
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.365	0.345	0.355	0.2	0,1	0.0
0.345	0.325	0.335	0.2	0,1	0.0
0.325	0.307	0.316	0.1	0.0	0.0
0.307	0.290	0.299	0.1	0.0	0.0
0.290	0.274	0.282	0.1	0.0	0.0
0.274	0.259	0.266	0.0	0.0	0.0
0.259	0.244	0.251	0.0	0.0	0.0
0.244	0.230	0.237	0.0	0.0	0.0
0.230	0.218	0.224	0.0	0.0	0.0
0.218	0.205	0.211	0.0	0.0	0.0
0.205	0.194	0.200	0.0	0.0	0.0
0.194	0.183	0.188	0.0	0.0	0.0
0.183	0.173	0.178	0.0	0.0	0.0
0.173	0.163	0.168	0.0	0.0	0.0
0.163	0.154	0.158	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 520

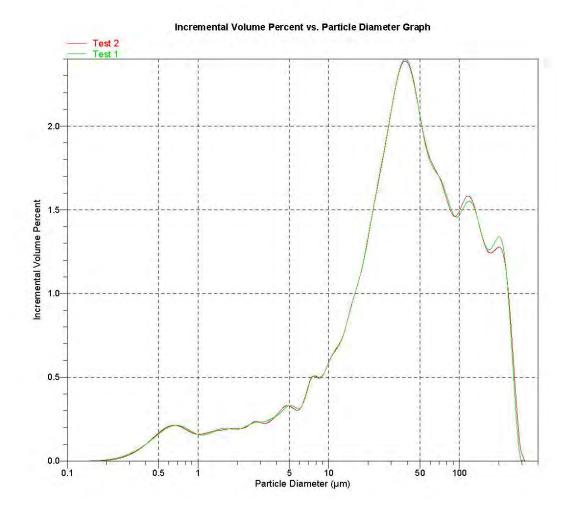
5200 LSHU V3.00 S/N 127

Page 6

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 520

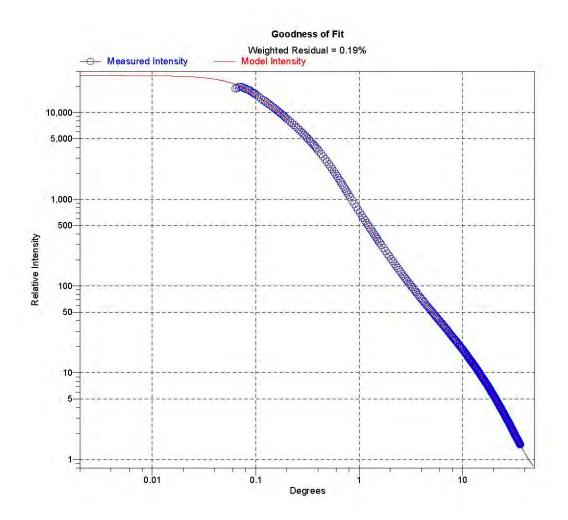
5200 LSHU V3.00 S/N 127

Page 7

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

5200 LSHU V3.00 S/N 127

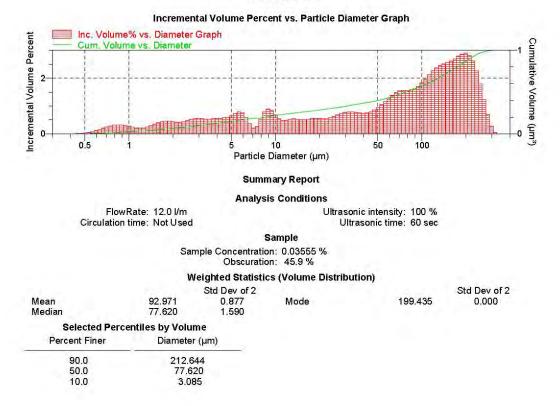
Page 8

Sample: 2609 Operator: TN Submitter: Brooklyn College of CUNY File: C:\...\REPORTED\1104000.SMP

Test Number: 2 Analyzed: 6/23/2011 2:14:37PM Reported: 6/23/2011 2:34:33PM Background: 6/23/2011 10:24:40AM

Sample#13-3088

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

05 V1.01 5200 LSHU V3.00 S/N 108

Page 2

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Report by	Size Class		Sec. State
Hìgh Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
325.462	307.256	316.228	99.9	0.1	0.0
307.256	290.068	298,538	99.7	0.3	0.1
290.068	273.842	281.838	99.0	0.7	0.1
273.842	258.523	266.073	97.7	1.2	0.2
258.523	244.062	251.189	96.0	1.8	0.2
244.062	230.409	237.137	93.7	2.3	0.3
230,409	217.520	223.872	91.1	2.6	0.3
217.520	205.353	211.349	88.3	2.8	0.3
205.353	193.865	199.526	85.4	2.9	0.3
193.865	183.021	188.365	82.5	2.9	0.3
183.021	172.783	177.828	79.7	2.8	0.2
172.783	163.117	167.880	77.0	2.7	0.2
163,117	153.993	158,489	74.4	2.6	0.1
153.993	145.378	149.624	71.9		0.1
145.378	137.246	141.254	69.3	2.5	0.1
137,246	129,569	133,352	66.9	2.5	0.1
129.569	122.321	125.893	64.5	2.4	0.2
122.321	115.478		62.2	2.3	0.2
115.478	109.018	112.202	60.1	2.1	0.3
109.018	102.920	105,925	58.1	2.0	0.4
102.920	97.163	100.000	56.3	1.8	0.4
97,163	91.728	94,406	54.6		0.6
91.728	86.596	89.125	53.0	1.6	0.5
86.596	81.752	84.140	51.4		0.5
81.752	77.179	79.433	49.8	1.6	0.6
77.179	72.862	74,989	48.3		0.6
72.862	68.786	70.795	46.7	1.5	0.6
68.786	64.938	66,834	45.3	1.5	0.6
64.938	61.306	63.096	43.9	1.4	0.6
61.306	57.876	59,566	42.6	1.3	0.5
57.876	54.639	56.234	41.4	1.2	0.5
54.639	51.582	53.088	40.4	1.0	0.5
51.582	48.697	50.119	39.4	0.9	0.5
48.697	45.973	47.315	38.6	0.9	0.5
45.973	43.401	44.668		0.8	0.5
43.401	40.973	42.170	37.0	0.8	0.5
40.973	38.681	39,811	36.3	0.7	0.5
38.681	36.517	37.584	35.5		0.5
36.517	34.475	35.481	34.8	0.8	0.5
34.475	32.546	33,497	34.0	0.8	0.4
32.546	30.726	31.623	33.2	0.8	0.4
30.726	29.007	29,854	32.4		0.4
29.007	27.384	28.184	31.7	0.7	0.4
27.384	25.852	26.607	31.0	0.7	0.4

V1.01 5200 LSHU V3.00 S/N 108

Page 3

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM

Report by Size Class						
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)	
25.852	24.406	25,119	30.4	0.6	0.4	
24.406	23.041	23.714		0.6	0.4	
23.041	21.752	22.387	29.3	0.5	0.4	
21.752	20.535	21.135	28.7	0.5	0.4	
20.535	19.387	19.953	28.2	0.6	0.3	
19.387	18.302	18.836	27.6	0.6	0.3	
18.302	17.278	17.783	27.1	0.6	0.3	
17.278	16.312	16.788		0.5	0.3	
16.312	15.399	15.849	26.0	0.5	0.3	
15.399	14.538	14.962		0.5	0.3	
14.538	13.725	14.125	25.0	0.5	0.3	
13.725	12.957	13.335	24.5	0.5	0.3	
12.957	12.232	12.589	23.9	0.5	0.3	
12.232	11.548	11.885	23.5	0.5	0.3	
11.548	10.902	11.220	23.0	0.5	0.3	
10.902	10.292	10.593	22.5	0.5	0.3	
10.292	9.716	10.000	21.8	0.7	0.	
9.716	9.173	9.441	20.9	0.8	0.	
9.173	8.660	8.913	20.0	0.9	0.	
8.660	8.175	8.414	19.3	0.8	0.	
8.175	7.718	7.943	18.7	0.5	0.	
7.718	7.286	7.499	18.5	0.3	0.1	
7.286	6.879	7.079	18.3	0.2	0.	
6.879	6.494	6.683	17.9	0.4	0.	
6.494	6.131	6.310	17.3	0.6	0.	
6.131	5.788	5.957	16.6	0.7	0.	
5.788	5.464	5.623	15.8	0.8	0.	
5.464	5.158	5.309	15.0	0.7	0.	
5.158	4.870	5.012	14.4	0.7	0.	
4.870	4.597	4.732	13.8		0.	
4.597	4.340	4.467	13.2	0.6	0.1	
4.340	4.097	4.217	12.6		0.	
4.097	3.868	3.981	12.1	0.6	0.	
3.868	3.652	3.758		0.5	0.	
3.652	3.447	3.548	11.0	0.5	0.	
3.447	3.255	3.350	10.5	0.5	0.	
3.255	3.073	3.162	10.0	0.5	0.	
3.073	2.901	2.985	9.4	0.6	0.	
2.901	2.738	2.818				
2.738	2.585	2.661	8.3	0.5		
2.585	2.441	2.512	7.9	0.5		
2.441	2.304	2.371	7.4	0.4	0.	
2.304	2.175	2.239	7.0	0.4	0.1	
2.175	2.054	2.113	6.6	0.4	0.1	

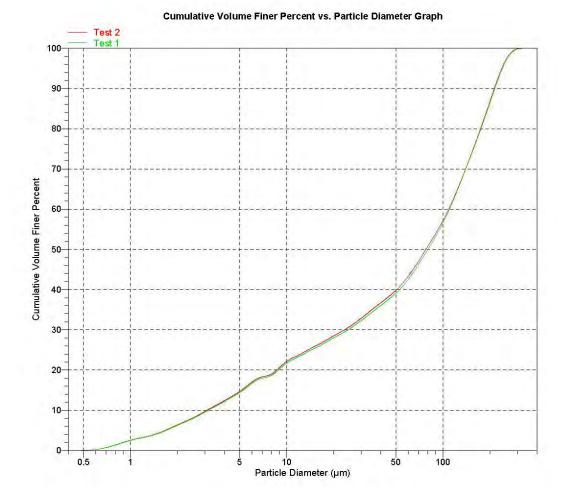
5200 LSHU V3.00 S/N 108 Page 4

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.054	1.939	1.995	6.2	0.4	0.1
1.939	1.830	1.884	5.7	0.4	0.1
1.830	1.728	1.778	5.3	0.4	0.1
1.728	1.631	1.679	4.8	0.4	0.1
1.631	1.540	1.585	4.4	0.4	0.1
1.540	1.454	1.496	4.1	0.3	0.1
1.454	1.372	1.413	3.8	0.3	0.0
1.372	1.296	1.334	3.5	0.2	0.0
1.296	1.223	1.259	3.3	0.2	0.0
1.223	1.155	1.189	3.1	0.2	0.0
1.155	1.090	1.122	2.9	0.2	0.0
1.090	1.029	1.059	2.7	0.2	0.0
1.029	0.972	1.000	2.4	0.3	0.0
0.972	0.917	0.944	2.1	0.3	0.0
0.917	0.866	0.891	1.8	0.3	0.0
0.866	0.818	0.841	1.5	0.3	0.0
0.818	0.772	0.794	1.2	0.3	0.0
0.772	0.729	0.750	0.9	0.3	0.0
0.729	0.688	0.708	0.7	0.2	0.0
0.688	0.649	0.668	0.5	0.2	0.0
0.649	0.613	0.631	0.3	0.2	0.0
0.613	0.579	0.596	0.2	0.1	0.0
0.579	0.546	0.562	0.1	0.1	0.0
0.546	0.516	0.531	0.1	0.1	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0
0.460	0.434	0.447	0.0	0.0	0.0
0.434	0.410	0.422	0.0	0.0	0.0
0.410	0.387	0.398	0.0	0.0	0.0

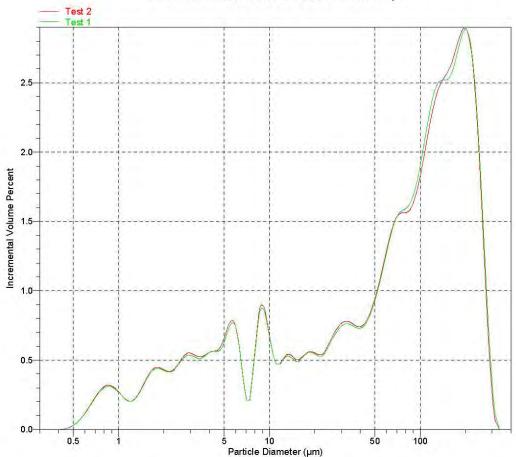

Saturn DigiSizer II 5205 V1.01 52

5200 LSHU V3.00 S/N 108

Page 5

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM


Saturn DigiSizer II 5205 V1.01 52

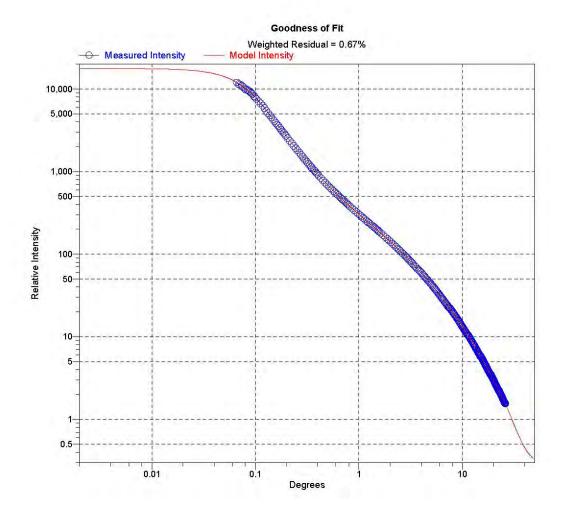
5200 LSHU V3.00 S/N 108

Page 6

Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 108

Page 7

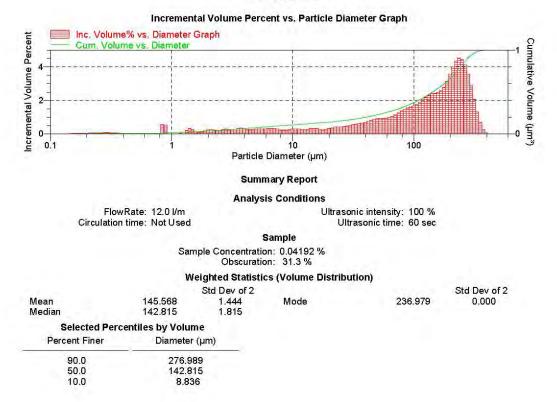
Sample: 3088 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104001.SMP

Test Number: 2 Analyzed: 6/24/2011 8:52:40AM Reported: 6/24/2011 9:28:58AM Background: 6/24/2011 8:21:41AM

Sample#14-3155

Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110


Page 1

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

05 V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle	Low Particle	Average	Cumulative	Incremental	Cumulative
Diameter (µm)	Diameter (µm)	Particle Diameter (µm)	Volume Finer Percent	Volume Percent	Volume Percent (StdDev)
409,732	386.812	398.107	99.9	0.1	0.0
386.812	365.174	375.837		0.3	0.0
365.174	344.747	354.813	99.0	0.7	0.1
344.747	325.462	334.965	97.7		0.2
325,462	307.256	316.228		2.1	0.3
307.256	290.068	298.538	92.8	2.8	0.4
290.068	273.842	281.838	89.2	3.6	0.5
273.842	258.523	266.073	85.1	4.1	0.6
258.523	244.062	251.189	80.7	4.5	0.7
244.062	230.409	237.137	76.1	4.5	0.8
230.409	217.520	223.872	71.8	4.4	0.9
217.520	205.353	211.349	67.7	4.0	1.0
205.353	193.865	199.526	64.2	3.6	1.0
193.865		188.365	61.0	3.1	0.9
183.021	172.783	177.828	58.2	2.8	0.8
172.783	163.117	167.880	55.7	2.6	0.7
163.117	153.993	158,489	53.2		0.6
153.993	145.378	149.624	50.7	2.4	0.6
145.378	137.246	141.254	48.3	2.4	0.5
137,246	129.569	133.352	46.0	2.3	0.5
129.569	122.321	125.893	43.8	2.2	0.5
122.321	115.478	118.850	41.8	2.0	0.5
115.478	109.018	112.202	39.9	1.9	0.5
109.018	102.920	105.925	38.1	1.8	0.4
102.920	97.163	100.000		1.7	0.3
97.163	91.728	94,406	34.9	1.6	0.3
91.728	86.596	89.125	33.3	1.5	0.2
86.596	81.752	84.140	31.9	1.5	0.1
81.752	77.179	79.433	30.5	1.4	0.1
77.179	72.862	74.989	29.2	1.3	0.0
72.862	68.786	70.795	28.1	1.1	0.0
68.786	64.938	66.834	27.0	1.1	0.1
64.938	61.306	63.096	26.0	1.0	0.1
61.306	57.876	59.566	25.1	0.9	0.1
57.876	54.639	56.234	24.2	0.9	0.2
54.639	51.582	53.088	23.3	0.9	0.2
51.582	48.697	50.119	22.4	0.9	0.2
48.697	45.973	47.315	21.5	0.9	0.1
45.973	43.401	44.668	20.7	0.8	0.1
43.401	40.973	42.170	19.9	0.7	0.1
40.973	38.681	39.811	19.3	0.7	0.1
38.681	36.517	37.584	18.6	0.6	0.1
36.517	34.475	35.481	18.0	0.6	0.1
34.475	32.546	33.497	17.5	0.6	0.1

05 V1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM

High Particle	Low Particle	Average	Cumulative	Incremental	Cumulative
Diameter (µm)	Diameter (µm)	Particle Diameter (µm)	Volume Finer Percent		Volume Percent (StdDev)
32.546	30.726	31.623	16.9	0.5	0.*
30.726	29.007	29.854	16.4	0.5	0.1
29.007	27.384	28.184	16.0	0.5	0.1
27.384	25.852	26.607	15.5	0.4	0.1
25.852	24.406	25.119	15.1	0.4	0.1
24.406	23.041	23.714	14.7	0.4	0.1
23.041	21.752	22.387	14.4	0.4	0.1
21.752	20.535	21.135	14.0	0.4	0.1
20.535	19.387	19,953	13.7	0.3	0.1
19.387	18.302	18,836	13.4	0.3	0.1
18.302	17.278	17.783	13.2	0.2	0.1
17.278	16.312	16.788	12.9	0.3	0.1
16.312	15.399	15,849	12.6	0.3	0.1
15.399	14.538	14.962		0.3	0.1
14.538	13.725	14.125	12.0	0.3	0.1
13,725	12.957	13,335	11.7	0.3	0.
12,957	12.232	12,589	11.5	0.2	0.
12.232	11.548	11.885	11.2	0.3	0.1
11.548	10,902	11.220	11.0	0.3	0.1
10.902	10.292	10,593	10.7	0.3	0.1
10.292	9.716	10.000	10.4	0.3	0.1
9,716	9,173	9,441	10.2		0.1
9,173	8.660	8,913			0.1
8,660	8.175	8.414	9.7	0.2	0.
8.175	7.718	7,943		0.2	0.1
7,718	7.286	7,499	9.2		
7.286	6.879	7.079	8.9	0.3	0.
6.879	6,494	6.683	8.5	0.3	0.1
6.494	6.131	6,310	8.2	0.3	0.0
6.131	5.788	5.957		0.3	0.0
5,788	5.464	5,623		0.3	0.0
5,464	5.158	5.309		0.3	
5.158	4.870	5.012	7.1	0.3	0.1
4.870	4.597	4.732	6.8	0.3	0.1
4.597	4.340	4,467	6.6	0.3	0.1
4.340	4.097	4.217	6.3	0.3	0.1
4.097	3.868	3,981	6.0	0.3	0.0
3.868	3.652	3.758		0.3	0.0
3.652	3.447	3.548	5.4	0.3	
3.447	3.255	3.350	5.1	0.3	0.0
3.255	3.073	3.162	4.9	0.2	0.0
3.073	2.901	2.985	4.6	0.3	0.0
2.901	2.738	2.818	4.3		0.0
2.738	2.585	2.661	4.1	0.2	0.0

205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM Modei: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Report by Average Particle Diameter (µm)	Size Class Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.585	2.441	2.512	3.9	0.2	0.0
2,441	2.304	2.371	3.7	0.2	0.0
2.304	2.175	2.239	3.5	0.2	0.0
2.175	2.054	2.113		0.2	0.0
2.054	1.939	1.995	3.0	0.2	0.0
1.939	1.830	1.884	2.8	0.2	0.0
1.830	1.728	1.778		0.1	0.0
1.728	1.631	1.679	2.7		0.0
1.631	1.540	1.585	2.5	0.1	0.0
1.540	1.454	1.496	2.3	0.3	0.0
1.454	1.372	1.413	2.0	0.3	0.0
1.372	1.296	1.334	1.7	0.2	0.0
1.296	1.223	1.259	1.7	0.0	0.0
1.223	1.155	1.189	1.7	0.0	0.0
1.155	1.090	1.122	1.7	0.0	0.0
1.090	1.029	1.059	1.7	0.0	0.0
1.029	0.972	1.000	1.7	0.0	0.0
0.972	0.912	0.944	1.7	0.0	0.0
0.917	0.866	0.891	1.2		0.0
0.866	0.818	0.831	0.6	0.5	0.0
0.818	0.772	0.841	0.6	0.0	0.0
0.772	0.729	0.750	0.6		0.0
0.729	0.688	0.708	0.6		0.0
0.688	0.649	0.668			0.0
0.649	0.613	0.631	0.6		0.0
0.649	0.579	0.631	0.6	0.0	0.0
	0.546	0.596	0.6	0.0	0.0
0.579 0.546	0.546	0.562	0.6	0.0	0.0
0.546		0.531	0.6	0.0	0.0
	0.487				
0.487	0.480	0.473	0.6 0.6	0.0 0.0	0.0 0.0
		0.447			
0.434	0.410	0.422 0.398		0.0 0.0	0.0 0.0
0.410	0.387				
0.387	0.365 0.345	0.376	0.6 0.6	0.0 0.0	0.0
					0.0
0.345	0.325	0.335	0.5	0.1	0.0
0.325	0.307	0.316		0.1	0.0
0.307	0.290	0.299	0.4	0.1	0.0
0.290	0.274	0.282	0.4	0.1	0.0
0.274	0.259	0.266	0,3	0.1	0.0
0.259	0.244	0.251		0.1	0.0
0.244	0.230	0.237	0.2	0.0	0.0
0.230	0.218	0.224	0.1		0.0
0.218	0.205	0.211	0.1	0.0	0.0

Saturn DigiSizer II 5205 V1.01 520

5200 LSHU V2.01 S/N 110

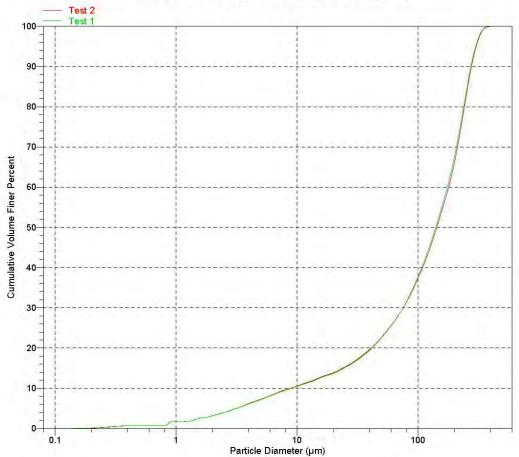
Page 5

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume Percent (StdDev) Percent Diameter Percent (µm) (µm) (µm) 0.0 0.205 0.194 0.200 0.1 0.0 0.183 0.173 0.188 0.0 0.194 0.0 0.1 0.0 0.183 0.0 0.168 0.0 0.173 0.163 0.0 0.0 0.158 0.163 0.0 0.154 0.0 0.0 0.150 0.141 0.133 0.126 0.0 0.154 0.145 0.0 0.145 0.137 0.0 0.0 0.0 0.137 0.130 0.0 0.0 0.130 0.122 0.0 0.0 0.0 0.0 0.0 0.0 0.122 0.115 0.119 0.0 0.115 0.109 0.112 0.0

Saturn DigiSizer II 5205 V1.01


5200 LSHU V2.01 S/N 110

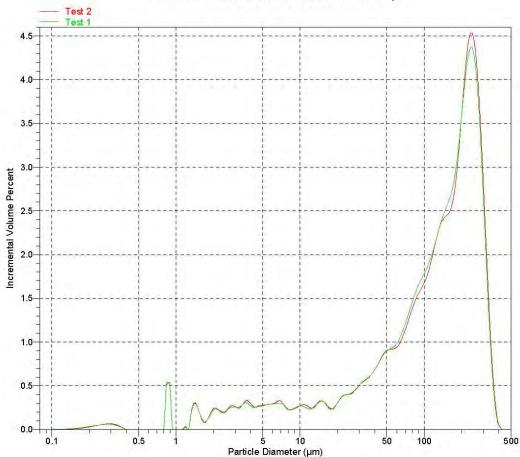
Page 6

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph



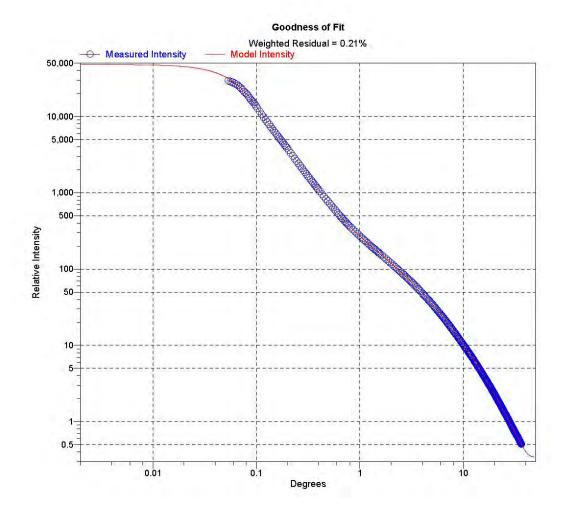
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 8

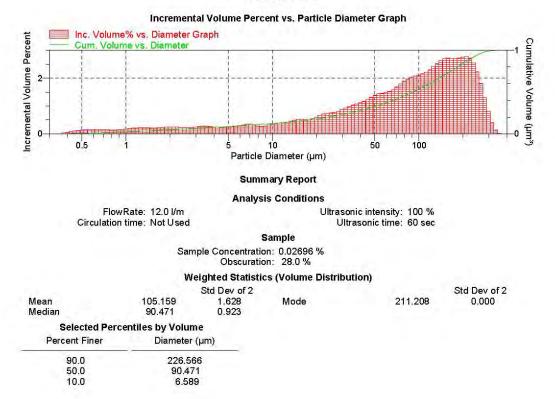
Sample: 3115 Operator: NMT Submitter: Brooklyn College of CUNY File: C:....\06JUN\1104002.SMP

Test Number: 2 Analyzed: 6/24/2011 8:55:45AM Reported: 6/24/2011 9:38:26AM Background: 6/24/2011 8:21:25AM

Sample#15-3138

Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110


Page 1

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		icoboic by			
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
365.174	344,747	354.813	100.0	0.0	0.0
344.747	325.462	334.965	99.9	0.1	0.1
325.462	307.256	316.228	99.5	0.4	0.3
307.256	290.068	298.538	98.7	0.8	0.4
290.068	273.842	281.838	97.4	1.3	0.6
273.842	258.523	266.073	95.6	1.8	0.8
258.523	244.062	251.189	93.3	2.2	0.9
244.062	230.409	237.137	90.8	2.5	0.9
230.409	217.520	223.872	88.1	2.7	0.9
217.520	205.353	211.349	85.3	2.8	0.9
205.353	193.865	199.526	82.5	2.8	0.8
193.865	183.021	188.365	79.8	2.7	0.8
183.021	172.783	177.828	77.1	2.7	0.7
172.783	163.117	167.880	74.4	2.7	0.7
163.117	153.993	158.489	71.7	2.7	0.6
153.993	145.378	149.624	69.0	2.7	0.6
145.378	137.246	141.254	66.3	2.6	0.6
137.246	129.569	133.352	63.8	2.5	0.6
129.569	122.321	125.893	61.4	2.4	0.6
122.321	115.478	118.850	59.1	2.3	0.6
115.478	109.018	112.202	56.8	2.2	0.5
109.018	102.920	105.925	54.7	2.2	0.5
102.920	97.163	100.000	52.6	2.1	0.4
97.163	91.728	94.406	50.5	2.1	0.4
91.728	86.596	89.125	48.5	2.0	0.3
86.596	81.752	84.140	46.5	2.0	0.3
81.752	77.179	79.433	44.6	1.9	0.3
77.179	72.862	74.989	42.8	1.8	0.3
72.862	68.786	70.795	41.1	1.7	0.2
68.786	64.938	66,834	39.5	1.6	0.2
64.938	61.306	63.096	38.0	1.5	0.2
61.306	57.876	59.566	36.5	1.5	0.1
57.876	54.639	56.234	35.1	1.5	0.1
54.639	51.582	53.088	33.6	1.4	0.1
51.582	48.697	50.119	32.3	1.4	0.1
48.697	45.973	47.315	30.9	1.3	0.1
45.973	43.401	44.668	29.7	1.2	0.1
43.401	40.973	42.170	28.5		0.1
40.973	38.681	39.811	27.4	1.1	0.1
38.681	36.517	37.584	26.4		0.1
36.517	34.475	35.481	25.3	1.0	0.1
34.475	32.546	33.497	24.3	1.0	0.1
32.546	30.726	31.623	23.4	0.9	0.1
30.726	29.007	29.854	22.5	0.9	0.1

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM

Report by Size Class							
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)		
29.007	27.384	28.184	21.7	0.8	0.1		
27.384	25.852	26.607	21.0	0.8	0.1		
25.852	24.406	25.119	20.2	0.7	0.1		
24.406	23.041	23.714	19.5	0.7	0.1		
23.041	21.752	22.387			0.1		
21.752	20.535	21.135	18.1	0.7	0.1		
20.535	19.387	19.953	17.5	0.6	0.1		
19.387	18.302	18.836	17.0	0.5	0.1		
18.302	17.278	17.783	16.4		0.1		
17.278	16.312	16,788	15.9	0.5	0.0		
16.312	15.399	15.849	15.4	0.5	0.0		
15.399	14.538	14.962	14.9	0.5	0.0		
14.538	13,725	14.125	14.4	0.5	0.0		
13.725	12.957	13.335	14.0	0.4	0.0		
12.957	12.232	12.589	13.5	0.4	0.0		
12.232	11.548	11.885	13.1	0.4	0.0		
11.548	10.902	11.220	12.8	0.4	0.0		
10,902	10.292	10,593	12.4	0.4	0.0		
10.292	9.716	10.000	12.0	0.3	0.0		
9.716	9.173	9.441	11.7	0.3	0.0		
9.173	8.660	8.913	11.5	0.3	0.0		
8.660	8.175	8,414	11.2	0.3	0.0		
8.175	7.718	7.943	10.9	0.3	0.0		
7.718	7.286	7,499	10.6	0.3	0.0		
7.286	6.879	7.079	10.3	0.3			
6.879	6.494	6.683	9.9	0.3	0.0		
6.494	6.131	6.310	9.6	0.3	0.0		
6.131	5.788	5.957	9.3	0.3	0.0		
5.788	5.464	5.623	9.0	0.3	0.0		
5.464	5.158	5.309	8.8	0.3	0.0		
5.158	4.870	5.012	8.5	0.2	0.0		
4.870	4.597	4.732	8.3	0.2	0.0		
4.597	4.340	4.467	8.1	0.2	0.0		
4.340	4.097	4.217	7.8	0.2	0.0		
4.097	3.868	3.981	7.6	0.2	0.0		
3.868	3.652	3.758	7.3	0.3	0.0		
3.652	3.447	3.548	7.1	0.3	0.0		
3.447	3.255	3,350	6.8	0.3	0.0		
3.255	3.073	3.162	6.6				
3.073	2.901	2.985	6.3	0.2	0.0		
2.901	2.738	2.818	6.1	0.2	0.0		
2.738	2.585	2.661	5.9	0.2	0.0		
2.585	2.441	2.512	5.6	0.2	0.0		
2.441	2.304	2.371	5.4		0.0		

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

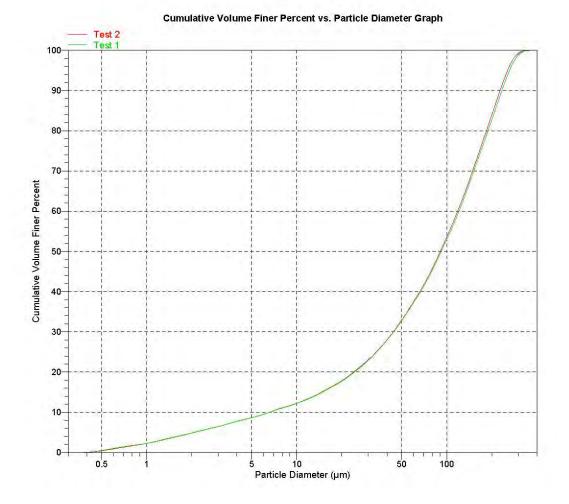
II 5205 V1.01 5200 LSHU V2.01 S/N 110

) Page 4

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.304	2.175	2.239	5.2	0.2	0.0
2.175	2.054	2.113	5.0	0.2	0.0
2.054	1.939	1.995	4.7	0.2	0.0
1.939	1.830	1.884	4.5	0.2	0.0
1.830	1.728	1.778	4.3	0.2	0.0
1.728	1.631	1.679	4.0	0.2	0.0
1.631	1.540	1.585	3.8		0.0
1.540	1.454	1.496	3.6	0.2	0.0
1.454	1.372	1.413	3.4	0.2	0.0
1.372	1.296	1.334	3.2	0.2	0.0
1.296	1.223	1.259	3.0	0.2	0.0
1.223	1.155	1.189	2.7	0.2	0.0
1.155	1.090	1.122	2.5	0.2	0.0
1.090	1.029	1.059	2.3	0.2	0.0
1.029	0.972	1.000	2.2	0.2	0.0
0.972	0.917	0.944	2.0	0.2	0.
0.917	0.866	0.891	1.9	0.1	0.
0.866	0.818	0.841	1.7	0.1	0.
0.818	0.772	0.794	1.6	0.1	0.
0.772	0.729	0.750	1.4	0.1	0.
0.729	0.688	0.708	1.3	0.2	0.
0.688	0.649	0.668	1.1	0.2	0.
0.649	0.613	0.631	1.0	0.2	0.
0.613	0.579	0.596	0.8	0.2	0.
0.579	0.546	0.562	0.7	0.2	0.
0.546	0.516	0.531	0.5	0.1	0.1
0.516	0.487	0.501	0.4	0.1	0.
0.487	0.460	0.473	0.3	0.1	0.
0.460	0.434	0.447	0.2	0.1	0.0
0.434	0.410	0.422	0.1	0.1	0.
0.410	0.387	0.398		0.1	0.
0.387	0.365	0.376	0.0		0.0
0.365	0.345	0.355	0.0	0.0	0.0

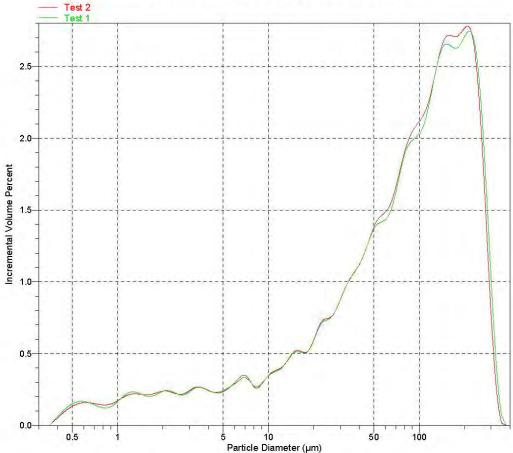


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM


Saturn DigiSizer II 5205 V1.01 52

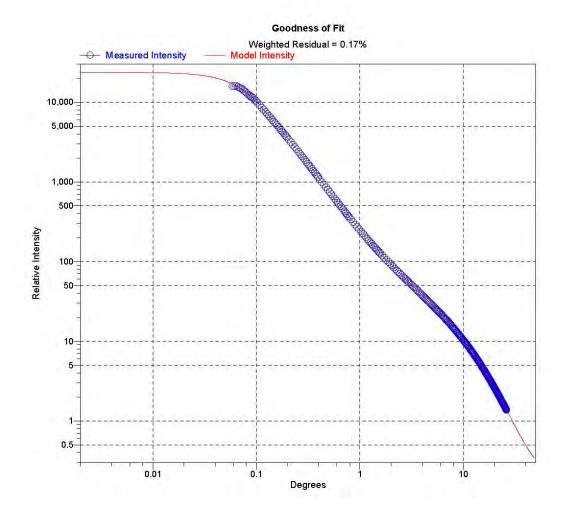
5200 LSHU V2.01 S/N 110

Page 6

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

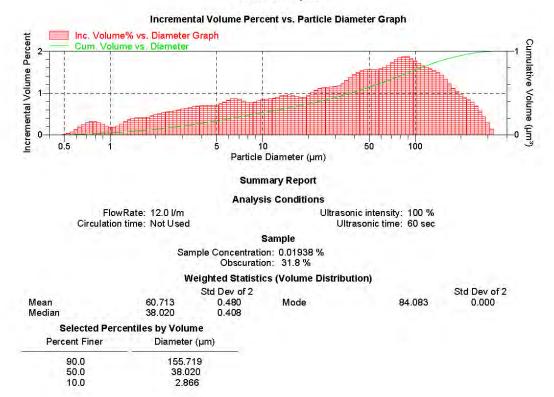
Page 7

Sample: 3138 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104003A.SMP

Test Number: 2 Analyzed: 6/24/2011 10:37:17AM Reported: 6/24/2011 10:48:44AM Background: 6/24/2011 8:21:25AM

Sample#16-3141

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 1

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

5200 LSHU V2.01 S/N 110

Page 2

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 307.256 290.068 325.462 316.228 0.0 99 9 0.1 298.538 307.256 99.6 0.1 0.3 290.068 273.842 281.838 99.1 0.4 0.1 273.842 258.523 266.073 98.6 0.6 0.1 258.523 244.062 251.189 97.9 0.7 0.0 244.062 230.409 237,137 97.1 0.8 0.1 230.409 217.520 223.872 96.3 0.8 0.2 217.520 205.353 211.349 95.4 0.9 0.3 205.353 193.865 199.526 94.4 1.0 0.3 193.865 183.021 188.365 93.4 1.0 0.3 183.021 172.783 177.828 92.3 1.1 0.3 172.783 163.117 167.880 91.1 1.2 0.3 163.117 153.993 158.489 89.7 1.3 0.2 153.993 145.378 149.624 88.3 1.4 0.2 0.2 145.378 137.246 141.254 86.8 1.5 0.2 137.246 129.569 133.352 85.3 1.5 129.569 122.321 125.893 83.7 1.6 122.321 115.478 118.850 82.1 1.6 0.2 115.478 109.018 112.202 80.4 0.2 1.7 0.2 109.018 102.920 105.925 78.7 1.7 102.920 97.163 100.000 76.9 1.8 0.2 97.163 91.728 94.406 75.1 1.8 91.728 86.596 89.125 73.2 1.9 0.2 86.596 81.752 84.140 71.4 1.9 0.2 81.752 77.179 79.433 69.5 1.9 77.179 72.862 74.989 67.7 1.8 72.862 70.795 0.2 68.786 66.0 17 64.938 61.306 64.3 62.7 0.2 68.786 66.834 1.7 1.6 64.938 63.096 61.306 57.876 59.566 1.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 61.1 57.876 54.639 56.234 59.6 1.6 53.088 54.639 51.582 58.0 1.6 48.697 50.119 51.582 56.4 1.6 48.697 45.973 47.315 54.9 16 45 973 44.668 53.4 43,401 1.5 43,401 40.973 42.170 51.9 0.3 0.3 1.5 39 811 40 973 38 681 504 1.4 38 681 36.517 37.584 49.0 1.4 0.3 36.517 34.475 35.481 47.8 1.3 0.3 1.2 1.2 34.475 32.546 33.497 46.5 0.3 32,546 0.3 30.726 31.623 45.3 30.726 29.854 1.2 29.007 44.2 0.3 29.007 27.384 28.184 43.0 1.1 0.3 27.384 25.852 26.607 41.9 1.1 0.3

5200 LSHU V2.01 S/N 110

Page 3

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM

2.738

2.585

2.441 2.304

2.175

2.585

2.441

2.304

2175

2.054

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class Low Particle High Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (StdDev) (µm) 25.119 23.714 22.387 25.852 24,406 40.8 1.1 0.3 0.3 24,406 23.041 39.6 1 1 21.752 23.041 38.6 1.1 21.752 20.535 21,135 37.6 0.3 10 36.6 20.535 19.387 19.953 0.9 0.3 18.836 19.387 18.302 35.7 0.9 0.3 18.302 17.278 17.783 34.8 09 0.3 17.278 16.312 16,788 33.9 0.3 0.9 15.849 16.312 15.399 33.0 0.9 0.3 15.399 14.538 14.962 32.0 1.0 0.3 14.538 13.725 14.125 31.1 1.0 0.3 13.725 12.957 13.335 30.2 0.9 0.3 12.957 12.232 12.589 29.3 0.9 0.3 12.232 11.548 11.885 28.4 0.9 0.3 11.548 10.902 11.220 27.5 0.9 0.3 10.902 10.292 10.593 26.6 0.9 0.3 10.292 9.716 10.000 25.8 0.8 0.3 9.716 9.173 9.441 25.0 0.8 0.3 9.173 8.660 8.913 24.2 0.8 0.2 8.660 8.175 8.414 23.4 0.8 0.2 8.175 7.718 7.943 22.7 0.8 0.2 7.718 7.286 7.499 21.9 0.8 0.2 7.286 6.879 7.079 21.0 0.8 0.2 6.879 6.494 6.683 20.1 0.9 0.2 6.494 6.131 6.310 19.3 0.9 0.2 0.2 6.131 5.788 5.957 18.4 0.8 5.788 5.464 5.623 17.7 0.8 5.464 5.158 5.309 16.9 0.7 0.2 5.158 4.870 5.012 0.7 0.2 16.2 4.870 4.597 0.7 0.2 4.732 15.5 4.340 4.467 14.8 0.7 0.1 4.597 4.340 4.097 4.217 14.1 0.7 0.1 4.097 3.981 0.7 0.1 3.868 13.4 3.868 3.652 3.758 127 0.7 0.1 3.652 3.447 3.548 12.0 0.7 0.1 3.447 3.255 3.350 0.7 0.1 11.4 3.255 3.073 0.6 0.1 3.162 10.7 3.073 0.6 0.1 2.901 2.985 10.1 2.901 2.738 2.818 9.5 0.1 0.6

2.661

2.512

2.371

2.239

2.113

9.0

8.4

7.9

6.8

0.6

06

0.5

05

05

0.1

0.1

0.1

0.1

0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

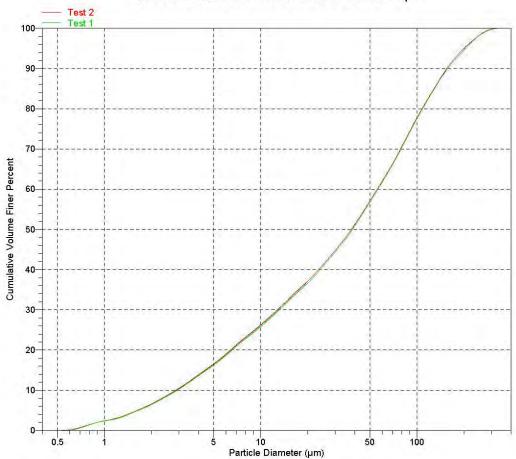
5205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.054	1.939	1.995	6.3	0.5	0.1
1.939	1.830	1.884	5.9	0.5	0.1
1.830	1.728	1.778	5.4	0.4	0.1
1.728	1.631	1.679	5.0	0.4	0.1
1.631	1.540	1.585	4.6	0.4	0.1
1.540	1.454	1.496	4.2	0.4	0.1
1.454	1.372	1.413	3.8	0.4	0.1
1.372	1.296	1.334	3.5	0.4	0.1
1.296	1.223	1.259	3.1	0.3	0.1
1.223	1.155	1.189	2.9	0.3	0.1
1.155	1.090	1.122	2.7	0.2	0.0
1.090	1.029	1.059	2.5	0.2	0.0
1.029	0.972	1.000	2.3	0.2	0.0
0.972	0.917	0.944	2.1	0.2	0.0
0.917	0.866	0.891	1.8	0.2	0.0
0.866	0.818	0.841	1.6	0.3	0.0
0.818	0.772	0.794	1.2	0.3	0.0
0.772	0.729	0.750	0.9	0.3	0.1
0.729	0.688	0.708	0.7	0.3	0.1
0.688	0.649	0.668	0.4	0.2	0.1
0.649	0.613	0.631	0.2	0.2	0.1
0.613	0.579	0.596	0.1	0.1	0.0
0.579	0.546	0.562	0.0	0.1	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0


Saturn DigiSizer II 5205 V1.01 52

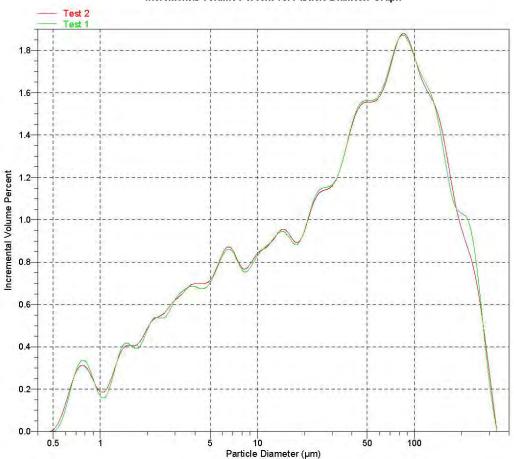
5200 LSHU V2.01 S/N 110

Page 5

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01 5

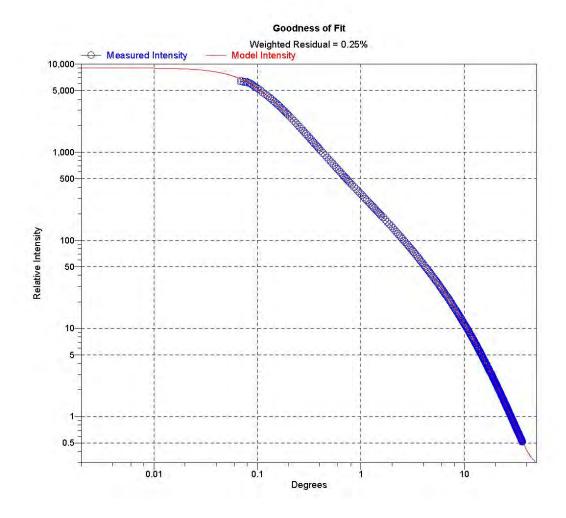
5200 LSHU V2.01 S/N 110

Page 6

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 7

Sample: 3141. Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104004.SMP

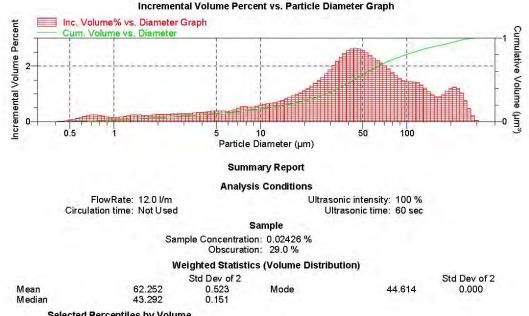
Test Number: 2 Analyzed: 6/24/2011 11:28:28AM Reported: 6/24/2011 11:30:32AM Background: 6/24/2011 8:21:25AM

Sample#17-3146

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 520


5200 LSHU V3.00 S/N 127

Page 1

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Selected Perce	Selected Percentiles by volume					
Percent Finer	Diameter (µm)					
90.0	154.107					
50.0	43.292					
10.0	5.259					

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
307.256	290.068	298.538	99.9	0.1	0.0
290.068	273.842	281.838	99.7	0.2	0.1
273.842	258.523	266.073	99.3	0.5	0.2
258.523	244.062	251.189	98.5	0.8	0.3
244.062	230.409	237.137	97.5	1.0	0.4
230.409	217.520	223.872	96.3	1.2	0.4
217.520	205.353	211.349	95.0	1.2	0.4
205.353	193.865	199.526	93.8		0.4
193.865	183.021	188.365	92.7	1.1	0.3
183.021	172.783	177.828	91.8	1.0	0.2
172.783	163.117	167.880	90.9	0.9	0.2
163.117	153.993	158,489	90.0	0.9	0.1
153.993	145.378	149.624	89.0	1.0	0.1
145.378	137.246	141.254	88.0	1.1	0.2
137.246	129.569	133.352	86.7	1.2	0.2
129.569	122.321	125,893	85.4	1.3	0.2
122.321	115.478	118.850	84.0	1.4	0.2
115.478	109.018	112.202	82.6	1.4	0.2
109.018	102.920	105.925	81.2	1.4	0.1
102.920	97.163	100.000	79.7	1.4	0.*
97.163	91.728	94.406	78.2	1.5	0.0
91.728	86.596	89.125	76.7	1.6	0.*
86.596	81.752	84.140	75.0	1.7	0.1
81.752	77.179	79.433	73.3	1.8	0.0
77.179	72.862	74.989	71.4	1.9	0.0
72.862	68.786	70.795	69.4	2.0	0.0
68.786	64,938	66.834	67.3	2.1	0.*
64.938	61.306	63.096	65.1	2.2	0.1
61.306	57.876	59.566	62.8	2.3	0.2
57.876	54.639	56.234	60.4	2.4	0.2
54.639	51.582	53.088	57.9	2.5	0.2
51.582	48.697	50.119	55.4	2.6	0.2
48.697	45.973	47.315	52.8	2.6	0.2
45.973	43.401	44.668	50.1	2.6	0.2
43.401	40.973	42.170	47.5	2.6	0.2
40.973	38.681	39.811	44.9	2.6	0.*
38.681	36.517	37.584	42.5	2.5	0.1
36.517	34.475	35.481	40.2	2.3	0.1
34.475	32.546	33.497	38.0	2.2	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
32.546	30.726	31.623			0.1
30.726	29.007	29.854		1.9	0.1
29.007	27.384	28.184	32.4	1.7	0.1
27.384	25.852	26.607	30.8	1.6	0.1
25.852	24.406	25.119	29.3	1.5	0.1
24.406	23.041	23.714	27.9	1.4	0.1
23.041	21.752	22.387	26.6	1.3	0.1
21.752	20.535	21.135	25.4	1.2	0.1
20.535	19.387	19.953	24.3	1.1	0.1
19.387	18.302	18.836			0.1
18.302	17.278	17.783		1.0	0.1
17.278	16.312	16.788		0.9	0.1
16.312	15.399	15.849		0.9	0.
15.399	14.538	14.962		0.8	0.1
14.538	13.725	14.125		0.8	0.0
13.725	12.957	13.335	18.2	0.7	0.0
12.957	12.232	12.589		0.7	0.0
12.232	11.548	11.885		0.7	0.0
11.548	10.902	11.220		0.6	0.0
10.902	10.292	10.593		0.6	0.
10.292	9.716	10.000		0.6	0.1
9.716	9.173	9.441	14.5	0.6	0.
9.173	8.660	8.913		0.5	0.
8.660	8.175	8.414		0.5	0.0
8.175	7.718	7.943		0.5	0.
7,718	7,286	7,499		0.5	0.0
7.286	6.879	7.079			0.
6.879	6.494	6.683		0.4	0.0
6.494	6.131	6.310	11.0	0.4	0.0
6.131	5.788	5.957		0.4	0.1
5.788	5.464	5.623		0.4	0.0
5.464	5.158	5.309		0.4	0.1
5.158	4.870	5.012		0.4	0.0
4.870	4.597	4.732		0.4	0.1
4.597	4.340	4.467		0.4	Ŭ.
4.340	4.097	4.217		0.3	0.1
4.097	3.868	3.981		0.3	0.1
3.868	3.652	3.758		0.3	0.1
3.652	3.447	3.548		0.3	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

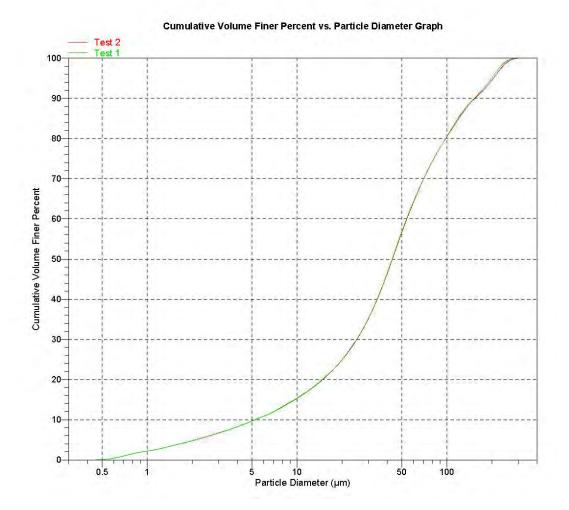
Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.447	3.255	3.350		0.3	0.0
3.255	3.073	3.162		0.3	
3.073	2.901	2.985	6.5	0.3	0.0
2.901	2.738	2.818	6.2	0.3	0.0
2.738	2.585	2.661	5.9	0.3	0.0
2.585	2.441	2.512	5.7	0.3	0.0
2.441	2.304	2.371	5.4	0.3	0.0
2.304	2.175	2.239	5.1	0.3	0.0
2.175	2.054	2.113	4.9	0.3	0.0
2.054	1.939	1.995	4.6	0.3	0.0
1.939	1.830	1.884		0.2	0.0
1.830	1.728	1.778	4.2	0.2	0.0
1.728	1.631	1.679		0.2	0.0
1.631	1.540	1.585	3.7	0.2	0.0
1.540	1.454	1.496	3.5	0.2	0.0
1.454	1.372	1.413	3.2	0.2	0.0
1.372	1.296	1.334	3.0	0.2	0.0
1.296	1.223	1.259	2.8	0.2	0.0
1.223	1.155	1.189	2.6	0.2	0.0
1.155	1.090	1.122	2.4	0.2	0.0
1.090	1.029	1.059	2.3	0.2	0.0
1.029	0.972	1.000	2.1	0.1	0.0
0.972	0.917	0.944	2.0	0.2	0.0
0.917	0.866	0.891	1.8	0.2	0.0
0.866	0.818	0.841	1.6	0.2	0.0
0.818	0.772	0.794		0.2	0.0
0.772	0.729	0.750	1.1	0.2	0.0
0.729	0.688	0.708		0.2	0.0
0.688	0.649	0.668		0.2	0.0
0.649	0.613	0.631	0.5	0.2	0.0
0.613	0.579	0.596	0.3	0.2	0.0
0.579	0.546	0.562	0.2	0.1	0.0
0.546	0.516	0.531	0.1	0.1	0.0
0.516	0.487	0.501	0.1	0.1	0.0
0.487	0.460	0.473	0.0	0.0	0.0
0.460	0.434	0.447		0.0	0.0
0.434	0.410	0.422			0.0
0.410	0.387	0.398		0.0	0.0
0.387	0.365	0.376	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

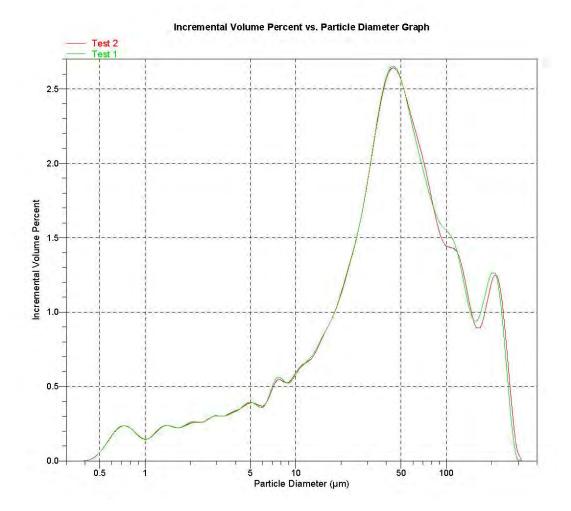
5200 LSHU V3.00 S/N 127

Page 5

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

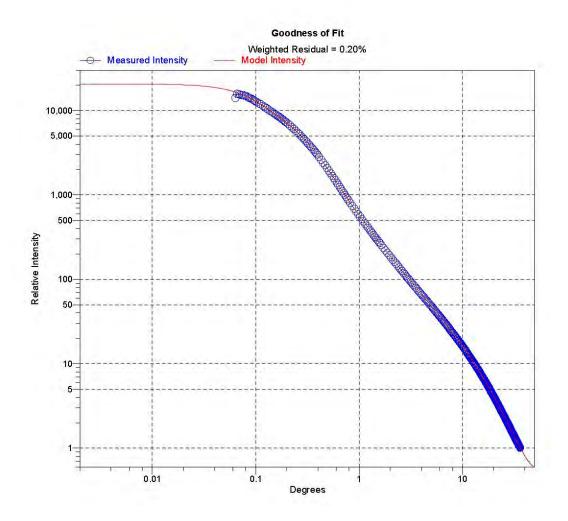
5200 LSHU V3.00 S/N 127

Page 6

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

Sample: 3146 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104005.SMP

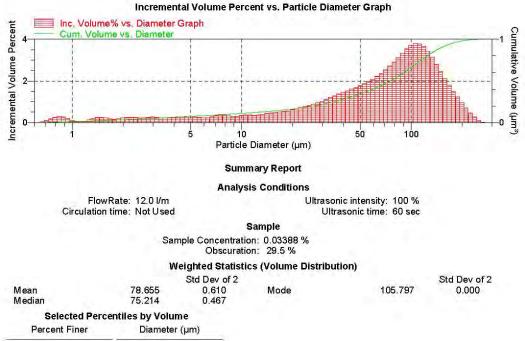
Test Number: 2 Analyzed: 6/24/2011 2:33:04PM Reported: 6/24/2011 2:45:39PM Background: 6/24/2011 7:44:28AM

Sample#18-3149

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


5200 LSHU V3.00 S/N 127

Page 1

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Percent Finer	Diameter (µm)		
90.0	150.753		
50.0	75.214		
10.0	8.337		

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
273.842	258.523	266.073	100.0	0.0	0.0
258.523	244.062	251.189	99.9	0.1	0.0
244.062	230.409	237.137	99.6	0.3	0.1
230.409	217.520	223.872	99.1	0.5	0.2
217.520	205.353	211.349	98.4	0.7	0.3
205.353	193.865	199.526	97.5	1.0	0.4
193.865	183.021	188.365	96.3	1.2	0.5
183.021	172.783	177.828	94.8	1.5	0.5
172.783	163.117	167.880	93.0	1.8	0.5
163.117	153.993	158.489	90.9	2.1	0.4
153.993	145.378	149.624	88.4	2.4	0.3
145.378	137.246	141.254	85.6	2.8	0.2
137.246	129.569	133.352	82.5	3.1	0.2
129,569	122.321	125.893	79.1	3.4	0.1
122.321	115.478	118.850	75.4	3.7	0.1
115.478	109.018	112.202	71.7	3.8	0.1
109.018	102.920	105.925	67.9	3.8	0.2
102.920	97.163	100.000	64.2	3.7	0.2
97.163	91.728	94.406	60.6	3.5	0.3
91.728	86.596	89.125	57.3	3.3	0.3
86.596	81.752	84.140	54.2	3.1	0.3
81.752	77.179	79.433	51.2	2.9	0.3
77.179	72.862	74.989	48.5	2.7	0.3
72.862	68,786	70.795	46.0	2.5	0.3
68.786	64.938	66.834	43.6	2.4	0.3
64.938	61.306	63.096	41.4	2.2	0.2
61.306	57.876	59.566	39.3	2.1	0.2
57.876	54.639	56.234	37.3	2.0	0.2
54.639	51.582	53.088	35.5	1.9	0.2
51.582	48.697	50,119	33.7	1.8	0.2
48.697	45.973	47.315	32.0	1.7	0.2
45.973	43.401	44.668	30.4	1.6	0.2
43.401	40.973	42.170	28.9	1.5	0.2
40.973	38.681	39.811	27.4	1.4	0.2
38.681	36.517	37.584	26.0	1.4	0.2
36.517	34.475	35.481	24.7	1.3	0.2
34.475		33.497	23.5	1.2	0.2
32.546	30.726	31.623	22.4	1.1	0.2
30.726	29.007	29.854	21.4	1.0	0.2

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		report by	GILC GIUSS		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
29.007	27.384	28.184	20.5	0.9	0.2
27.384	25.852	26.607	19.6	0.9	0.2
25.852	24.406	25.119	18.8	0.8	0.2
24.406	23.041	23.714	18.0	0.8	0.2
23.041	21.752	22.387	17.3	0.7	0.2
21.752	20.535	21.135	16.6	0.7	0.2
20.535	19.387	19.953	16.0	0.6	0.2
19.387	18.302	18.836	15.4	0.6	0.2
18.302	17.278	17.783		0.5	0.2
17.278	16.312	16.788		0.5	0.2
16.312	15.399	15.849	13.9	0.5	0.2
15.399	14.538	14.962	13.4	0.5	0.2
14.538	13.725	14.125		0.4	0.1
13.725	12.957	13.335		0.4	0.1
12.957	12.232	12.589	12.2	0.4	0.1
12.232	11.548	11.885			0.1
11.548	10.902	11.220		0.4	0.1
10.902	10.292	10.593		0.4	0.1
10.292	9.716	10.000	10.8		0.1
9.716	9.173	9.441	10.5	0.3	0.1
9.173	8.660	8.913	10.2	0.3	0.1
8.660	8.175	8.414		0.3	0.1
8.175	7.718	7.943	9.5	0.4	0.1
7.718	7.286	7.499		0.4	0.1
7.286	6.879	7.079		0.3	0.1
6.879	6.494	6.683		0.3	0.1
6.494	6.131	6.310	8.3		0.1
6.131	5.788	5.957		0.2	0.1
5.788	5.464	5.623	7.9	0.2	0.1
5.464	5.158	5.309		0.3	0.1
5.158	4.870	5.012		0.3	0.1
4.870	4.597	4.732	7.0	0.3	0.1
4,597	4.340	4.467		0.3	
4.340	4.097	4.217		0.3	
4.097	3.868	3.981	6.2	0.3	0.0
3.868	3.652	3.758		0.2	0.1
3.652	3.447	3.548		0.2	0.1
3.447	3.255	3.350	5.5		0.1
3.255	3.073	3,162	5.2	0.3	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

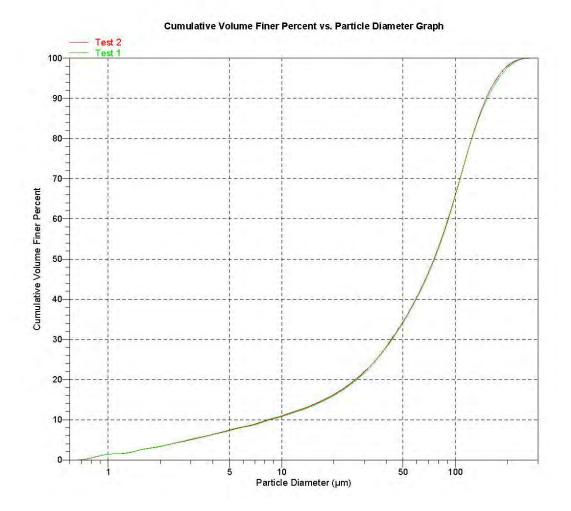
Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM

Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.073	2.901	2.985	5.0	0.3	0.1
2.901	2.738	2.818	4.7	0.3	0.1
2.738	2.585	2.661	4.5	0.2	0.0
2.585	2.441	2.512	4.2	0.2	0.0
2.441	2.304	2.371	4.0	0.2	0.0
2.304	2.175	2.239	3.7	0.3	0.0
2.175	2.054	2.113	3.5	0.2	0.0
2.054	1.939	1.995	3.3	0.2	0.0
1.939	1.830	1.884	3.1	0.2	0.0
1.830	1.728	1.778	2.9	0.2	0.0
1.728	1.631	1.679	2.7	0.2	0.0
1.631	1.540	1.585	2.5	0.2	0.0
1.540	1.454	1.496	2.2	0.3	0.0
1.454	1.372	1.413	2.0	0.3	0.0
1.372	1.296	1.334	1.8	0.2	0.0
1.296	1.223	1.259	1.6	0.1	0.0
1.223	1.155	1.189	1.6	0.1	0.0
1.155	1.090	1.122	1.5	0.0	0.0
1.090	1.029	1.059	1.5	0.1	0.0
1.029	0.972	1.000	1.4	0.1	0.0
0.972	0.917	0.944	1.1	0.2	0.0
0.917	0.866	0.891	0.9	0.3	0.0
0.866	0.818	0.841	0.6	0.3	0.0
0.818	0.772	0.794	0.3	0.3	0.0
0.772	0.729	0.750	0.1	0.2	0.0
0.729	0.688	0.708	0.0	0.1	0.0
0.688	0.649	0.668	0.0	0.0	0.0
0.649	0.613	0.631	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

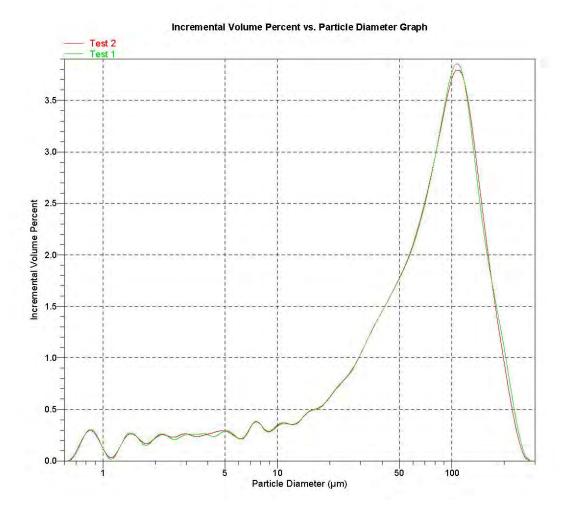
5200 LSHU V3.00 S/N 127

Page 5

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

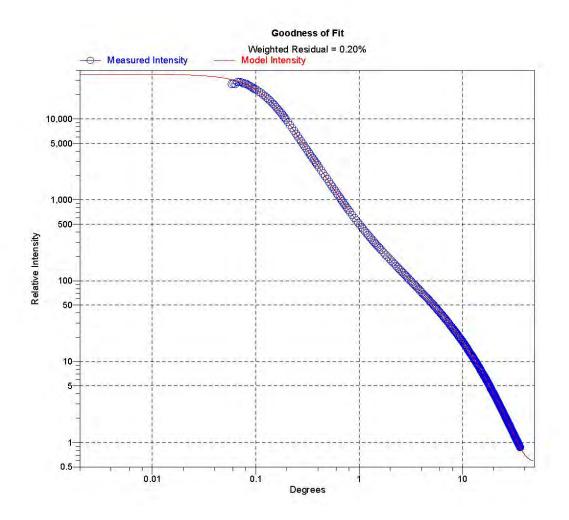
5200 LSHU V3.00 S/N 127

Page 6

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C\...\06JUN\1104006.SMP

Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

Sample: 3149 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104006.SMP

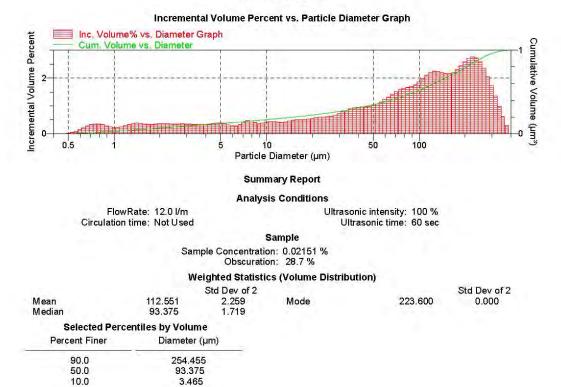
Test Number: 2 Analyzed: 6/24/2011 3:07:23PM Reported: 6/24/2011 3:25:13PM Background: 6/24/2011 7:44:28AM

Sample#19-3150

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 520


5200 LSHU V3.00 S/N 127

Page 1

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
386.812	365.174	375.837	99.7	0.3	0.1
365.174	344.747	354.813	99.1	0.6	0.3
344.747	325.462	334.965	98.1	1.0	0.5
325.462	307.256	316.228	96.8	1.3	0.7
307.256	290.068	298.538	95.1	1.7	0.9
290.068	273.842	281.838	93.0	2.1	1.0
273.842	258.523	266.073	90.7	2.4	1.0
258.523	244.062	251.189	88.1	2.6	0.9
244.062	230.409	237.137	85.4	2.7	0.9
230.409	217.520	223.872	82.6	2.8	0.9
217.520	205.353	211.349	79.9	2.7	0.9
205.353	193.865	199.526	77.3	2.6	0.9
193.865	183.021	188.365	74.9	2.4	1.0
183.021	172.783	177.828	72.6	2.3	1.0
172.783	163.117	167.880	70.4	2.2	1.0
163.117	153.993	158,489	68.2	2.2	0.9
153.993	145.378	149.624	66.1	2.2	0.8
145.378	137.246	141.254	63.9	2.2	0.8
137.246	129.569	133.352	61.6	2.2	0.7
129.569	122.321	125.893	59.4	2.2	0.7
122.321	115.478	118.850	57.2	2.2	0.7
115.478	109.018	112.202	55.1	2.1	0.7
109.018	102.920	105.925	53.1	2.0	0.6
102.920	97.163	100.000	51.2	1.9	0.6
97.163	91.728	94.406	49.5		0.6
91.728	86.596	89.125	47.8	1.7	0.5
86.596	81.752	84.140	46.1	1.7	0.5
81.752	77.179	79.433	44.5	1.6	0.4
77.179	72.862	74.989	42.9	1.6	0.4
72.862	68.786	70.795	41.4	1.5	0.4
68.786	64.938	66.834	40.0	1.4	0.3
64.938	61.306	63.096	38.6	1.3	0.3
61.306	57.876	59.566	37.4		0.3
57.876	54.639	56.234	36.3	1.1	0.3
54.639	51.582	53.088		1.1	0.2
51.582	48.697	50.119	34.2		0.2
48.697	45.973	47.315	33.2	1.0	0.2
45.973	43.401	44.668	32.3	1.0	0.2
43.401	40.973	42.170	31.3	1.0	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
40.973	38.681	39.811	30.4	1.0	0.1
38.681	36.517	37.584	29.4	0.9	0.1
36.517	34.475	35.481	28.5	0.9	0.1
34.475	32.546	33.497	27.7	0.8	0.1
32.546	30.726	31.623	26.9	0.8	0.1
30.726	29.007	29.854	26.2	0.7	0.1
29.007	27.384	28.184	25.5	0.7	0.1
27.384	25.852	26.607	24.9	0.6	0.1
25.852	24.406	25.119	24.3	0.6	0.1
24.406	23.041	23,714	23.7		
23.041	21.752	22.387	23.1	0.6	0.0
21.752	20.535	21.135	22.5	0.6	0.0
20.535	19.387	19.953	22.0	0.5	0.0
19.387	18.302	18.836	21.5	0.5	0.0
18.302	17.278	17.783	21.0	0.5	0.0
17.278	16.312	16.788		0.5	0.0
16.312	15.399	15.849	20.0	0.5	0.0
15.399	14.538	14.962	19.5	0.5	0.0
14.538	13.725	14.125	19.0	0.4	0.0
13.725	12.957	13.335	18.6	0.4	0.0
12.957	12.232	12.589	18.2	0.4	0.0
12.232	11.548	11,885	17.8	0.4	0.0
11.548	10.902	11.220	17.4	0.4	0.0
10.902	10.292	10.593	16.9	0.4	0.0
10.292	9.716	10.000	16.5		0.0
9,716	9.173	9,441	16.1	0.4	0.0
9.173	8.660	8.913	15.8	0.4	0.0
8.660	8.175	8.414	15.4	0.4	0.0
8.175		7.943	14.9	0.5	0.0
7.718	7.286	7.499		0.5	0.0
7.286	6.879	7.079	14.0	0.4	0.0
6.879	6.494	6.683	13.7	0.3	0.0
6.494	6.131	6.310	13.4	0.3	0.0
6.131	5.788	5.957		0.3	0.0
5.788	5.464	5.623	12.8	0.3	0.0
5.464	5.158	5.309	12.4		0.0
5.158	4.870	5.012	12.1	0.4	0.0
4.870	4.597	4.732	11.7	0.4	0.0
4.597	4.340	4.467	11.3	0.4	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
4.340	4.097	4.217	11.0	0.3	0.0
4.097	3.868	3.981	10.6	0.3	0.0
3.868	3.652	3.758	10.3	0.3	0.0
3.652	3.447	3.548	10.0	0.3	0.0
3.447	3.255	3.350	9.6	0.3	0.0
3.255	3.073	3.162	9.3	0.3	0.0
3.073	2.901	2.985	9.0	0.4	0.0
2.901	2.738	2.818	8.6	0.4	0.0
2.738	2.585	2.661	8.2	0.4	0.0
2.585	2.441	2.512	7.9	0.3	0.0
2.441	2.304	2.371	7.6	0.4	0.0
2.304	2.175	2.239	7.2	0.4	0.0
2.175	2.054	2.113	6.8	0.4	0.0
2.054	1.939	1.995	6.5		0.0
1.939	1.830	1.884	6.1	0.3	0.0
1.830	1.728	1.778	5.8		0.0
1.728	1.631	1.679	5.4	0.3	0.0
1.631	1.540	1.585	5.1	0.4	0.0
1.540	1.454	1.496	4.7	0.4	0.0
1.454	1.372	1.413	4.3	0.4	0.0
1.372	1.296	1.334	4.0	0.4	0.0
1.296	1.223	1.259	3.6	0.3	0.0
1.223	1.155	1.189	3.4	0.3	0.0
1.155	1.090	1.122	3.1	0.2	0.0
1.090	1.029	1.059	2.9	0.2	0.0
1.029	0.972	1.000	2.7	0.2	0.0
0.972	0.917	0.944	2.4	0.2	0.0
0.917	0.866	0.891	2.1	0.3	0.0
0.866	0.818	0.841	1.8	0.3	0.0
0.818	0.772	0.794	1.5	0.3	0.0
0.772	0.729	0.750	1.1	0.3	0.0
0.729	0.688	0.708	0.8	0.3	0.0
0.688	0.649	0.668	0.5	0.3	0.0
0.649	0.613	0.631	0.3	0.2	0.0
0.613	0.579	0.596	0.2	0.2	0.0
0.579	0.546	0.562	0.1	0.1	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 52

5200 LSHU V3.00 S/N 127

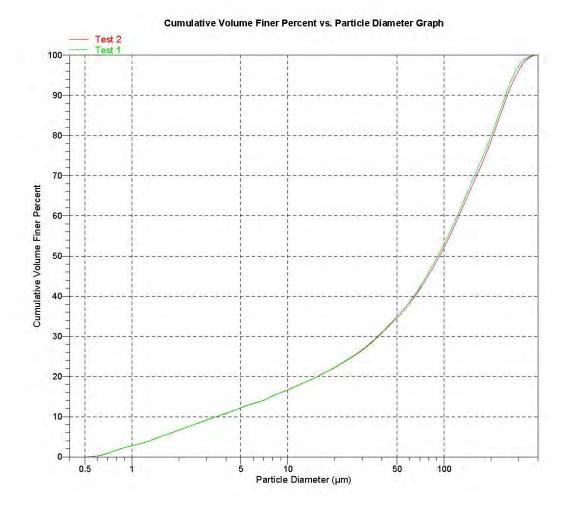
Page 5

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Cumulative Average Incremental Cumulative Volume Finer Diameter Diameter Particle Volume Volume Percent (µm) (µm) Diameter Percent Percent (StdDev) (µm) 0.460 0.434 0.447 0.0 0.0 0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

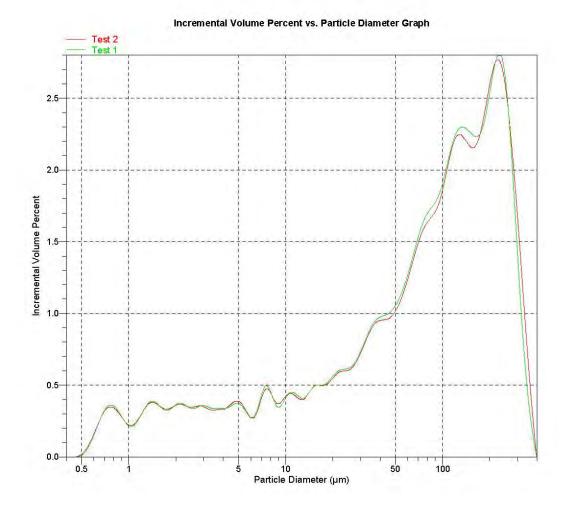
5200 LSHU V3.00 S/N 127

Page 6

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

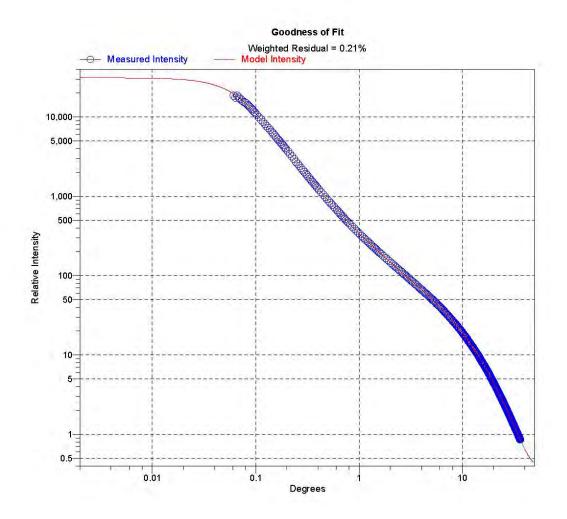
5200 LSHU V3.00 S/N 127

Page 7

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

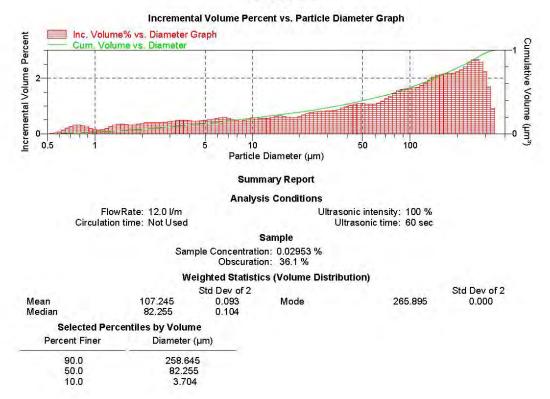
Page 8

Sample: 3150 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104007B.SMP

Test Number: 2 Analyzed: 6/24/2011 4:58:56PM Reported: 6/25/2011 10:09:17AM Background: 6/24/2011 7:44:28AM

Sample#20-3355

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 1

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 334.965 316.228 344.747 0.0 325.462 99.1 0.9 325.462 307.256 97.4 0.0 1.7 2.2 2.6 2.7 2.6 307 256 290.068 298.538 95.2 0.0 290.068 273.842 281.838 92.7 0.1 273.842 258.523 266.073 90.0 0.1 87.3 258.523 244.062 251.189 0.2 244.062 230.409 237.137 84.8 2.5 0.2 230.409 217.520 223.872 82.4 2.4 0.2 2.3 217.520 205.353 211.349 80.1 0.1 205.353 193.865 199.526 77.8 2.2 0.1 2.2 193.865 183.021 188.365 75.7 0.0 2.2 2.2 183.021 172.783 177.828 73.5 0.0 172.783 163.117 167.880 71.3 0.1 153.993 163.117 158.489 69.2 2.2 0.1 2.1 153.993 145.378 149.624 67.1 0.1 145.378 137.246 141.254 65.0 2.0 0.1 137.246 129.569 133.352 63.1 1.9 0.1 129.569 122.321 125.893 61.3 1.8 0.1 122.321 115.478 118.850 59.5 0.1 1.7 115.478 109.018 112.202 57.9 0.1 1.7 109.018 102.920 105.925 56.2 1.6 0.1 102.920 97.163 100.000 54.6 1.6 0.0 97.163 91.728 94.406 53.0 1.6 0.0 86.596 89.125 0.0 91.728 51.4 1.6 86.596 81.752 84.140 49.8 1.5 0.0 81.752 77.179 79.433 48.4 1.5 0.0 77.179 72.862 74.989 47.0 0.0 14 1.3 72.862 68.786 70.795 45.8 0.0 64.938 66.834 0.0 68,786 44.6 64.938 61.306 63.096 43.5 0.0 1.1 61.306 57.876 59.566 42.4 0.0 1.1 54.639 51.582 57.876 56.234 41.4 0.1 1.1 40.3 54.639 53.088 0.1 1.1 51,582 48.697 50.119 47.315 39.2 01 1.1 45.973 38.1 48 697 01 1.1 45.973 43,401 44.668 37.0 1.1 0.1 36.0 43 401 40 973 42,170 0.1 10 39.811 40 973 38.681 35.0 10 0.1 38,681 36.517 37.584 34.1 0.9 0.1 35.481 36.517 34.475 33.2 0.9 0.1 32.4 34.475 32.546 33.497 0.8 0.1 32.546 30.726 31.623 31.6 0.8 0.1 30.726 29.007 29 854 30.7 0.8 0.1 29.007 27.384 28.184 29.9 0.8 0.1

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 3

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
27.384	25.852	26.607	29.1	0.8	0.1
25.852	24.406	25,119		0.8	0,1
24.406	23.041	23.714	27.6	0.8	0.1
23.041	21.752	22.387		0.7	0.1
21.752	20.535	21.135	26.1	0.7	0.1
20.535		19,953		0.6	0.1
19.387	18.302	18.836	24.9		0.1
18.302	17.278	17.783		0.6	0.1
17.278	16.312	16.788	23.8	0.6	0.1
16.312	15.399	15.849		0.6	0.1
		15.849	23.2	0.6	0.1
15.399	14.538		22.5		0.1
14.538	13.725	14.125		0.6	
13.725	12.957	13.335	21.3	0.6	0.1
12.957	12.232	12.589	20.7 20.2	0.6	0.1
12.232	11.548	11.885		0.6	
11.548	10.902	11.220		0.6	0.1
10.902	10.292	10.593	19.0	0.6	0.1
10.292	9.716	10.000		0.6	0.1
9.716	9.173	9.441	17.9	0.5	0.1
9.173	8.660	8.913		0.5	0.1
8.660	8.175	8.414		0.5	0.1
8.175	7.718	7.943	16.5	0.5	0.1
7.718	7.286	7.499	16.0	0.5	0.1
7.286	6.879	7.079	15.4	0.6	0.*
6.879	6.494	6.683			0.1
6.494	6.131	6.310	14.3		0.1
6.131	5.788	5.957	13.7	0.6	0.1
5.788	5.464	5.623	13.2	0.5	0.4
5.464	5.158	5.309		0.5	0.1
5.158	4.870	5.012	12.2	0.5	0.0
4.870	4.597	4.732	11.7	0.5	0.0
4.597	4.340	4.467	11.3	0.5	0.0
4.340	4.097	4.217	10.8	0.5	0.*
4.097	3.868	3.981	10.4	0.5	0.1
3.868	3.652	3.758		0.5	0.0
3.652	3.447	3.548		0.5	0.0
3.447	3.255	3.350		0.5	0.0
3.255	3.073	3.162	8.4	0.5	0.0
3.073	2.901	2.985	8.0	0.4	0.0
2.901	2.738	2.818	7.6		0.1
2.738	2.585	2.661	7.2	0.4	0.0
2.585	2.441	2.512	6.8	0.4	0.0
2.441	2.304	2.371	6.4	0.4	0.0
2.304	2.175	2.239	6.0	0.4	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

zer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.175	2.054	2.113	5.6	0.4	0.0
2.054	1.939	1.995	5.2	0.4	0.0
1.939	1.830	1.884	4.9	0.3	0.0
1.830	1.728	1.778	4.6	0.3	0.0
1.728	1.631	1.679	4.3	0.3	0.0
1.631	1.540	1.585	3.9	0.3	0.0
1.540	1.454	1.496	3.6	0.3	0.0
1.454	1.372	1.413	3.3	0.3	0.0
1.372	1.296	1.334	2.9	0.3	0.0
1.296	1.223	1.259	2.7	0.3	0.0
1.223	1.155	1.189	2.5	0.2	0.0
1.155	1.090	1.122	2.3	0.1	0.0
1.090	1.029	1.059	2.2	0.1	0.
1.029	0.972	1.000	2.1	0.1	0.0
0.972	0.917	0.944	1.9	0.2	0.0
0.917	0.866	0.891	1.6	0.2	0.0
0.866	0.818	0.841	1.3	0.3	0.0
0.818	0.772	0.794	1.0	0.3	0.0
0.772	0.729	0.750	0.7	0.3	0.0
0.729	0.688	0.708	0.4	0.3	0.0
0.688	0.649	0.668	0.2	0.2	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.0	0.1	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0



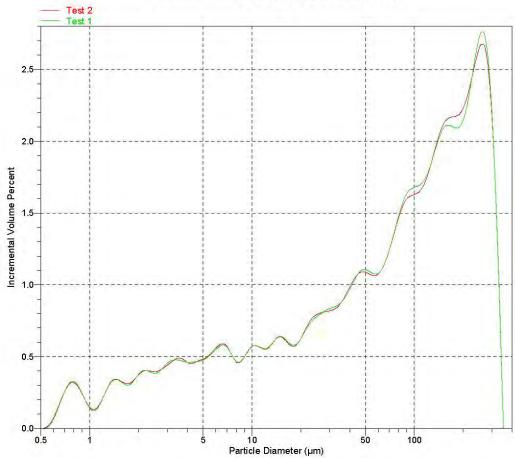
Saturn DigiSizer II 5205 V1.01 5

5200 LSHU V2.01 S/N 110 Page 5

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph



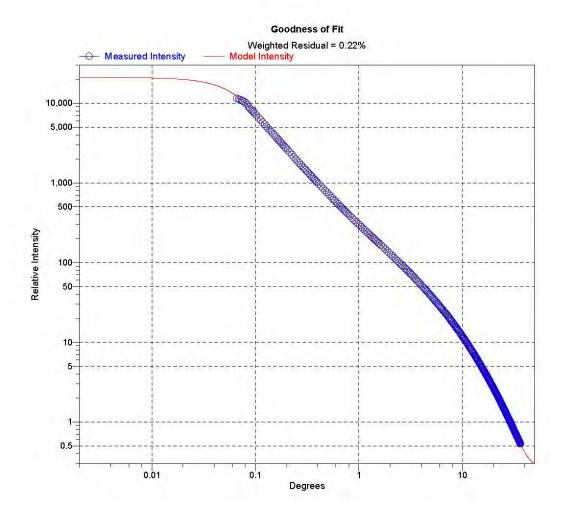
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 6

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 7

Sample: 3355 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104008.SMP

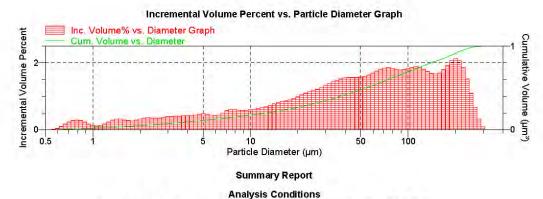
Test Number: 2 Analyzed: 6/24/2011 4:01:03PM Reported: 6/24/2011 4:02:04PM Background: 6/24/2011 8:21:25AM

Sample#21-3780

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU \


5200 LSHU V3.00 S/N 127

Page 1

Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

FlowRate: 12.0 l/m Ultrasonic intensity: 100 % Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.02377 % Obscuration: 29.0 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean	76.566	0.243	Mode	199.284	0.000
Median	53.516	0.384			
Selected Perc	entiles by Volun	ne			
Percent Finer	Diameter	(µm)			
90.0	192.32	25			
50.0	53.51	6			
10.0	4.40	8			

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
307.256	290.068	298.538		0.1	0.0
290.068	273.842	281.838	99.6	0.3	0.0
273.842	258.523	266.073	98.9	0.7	0.0
258.523	244.062	251.189	97.9	1.1	0.0
244.062	230.409	237.137	96.3	1.5	0.0
230.409	217.520	223.872	94.5	1.9	0.0
217.520	205.353	211.349	92.4	2.1	0.1
205.353	193.865	199.526	90.3	2.1	0.1
193.865	183.021	188.365	88.2	2.1	0.1
183.021	172.783	177.828	86.3	1.9	0.0
172.783	163.117	167.880	84.5	1.8	0.0
163.117	153.993	158.489	82.8	1.7	0.0
153.993	145.378	149.624	81.1	1.7	0.0
145.378	137.246	141.254	79.4	1.7	0.0
137.246	129.569	133.352	77.7	1.7	0.0
129.569	122.321	125.893	75.9	1.8	0.1
122.321	115.478	118.850	74.0	1.9	0.2
115.478	109.018	112.202	72.1	1.9	0.2
109.018	102.920	105.925	70.3	1.9	0.3
102.920	97.163	100.000	68.4	1.8	0.3
97.163	91.728	94.406	66.6		0.3
91.728	86.596	89.125	64.9	1.8	0.3
86.596	81.752	84.140	63.0	1.8	0.3
81.752	77.179	79.433	61.2	1.8	0.3
77.179	72.862	74.989	59.4	1.9	0.2
72.862	68.786	70.795	57.5	1.9	0.2
68.786	64.938	66.834	55.7	1.8	0.2
64.938	61.306	63.096	53.9		0.2
61.306	57.876	59.566	52.2	1.7	0.2
57.876	54.639	56.234	50.6	1.6	0.2
54.639	51.582	53.088		1.6	0.2
51.582	48.697	50.119	47.4	1.6	0.2
48.697	45.973	47.315	45.8	1.6	0.2
45.973	43.401	44.668		1.6	0.2
43.401	40.973	42.170	42.7	1.6	0.2
40.973	38.681	39.811	41.1	1.6	0.2
38.681	36.517	37.584	39.6	1.5	0.2
36.517	34.475	35.481	38.1	1.5	0.2
34.475	32.546	33,497	36.7	1.4	0.2

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
32.546	30.726	31.623	35.3	1,4	0.1
30.726	29.007	29.854	34.0	1.3	0.1
29.007	27.384	28.184	32.7	1.3	0.1
27.384	25.852	26.607	31.5	1.2	0.1
25.852	24.406	25.119	30.4	1.2	0.1
24.406	23.041	23.714	29.2	141	0.1
23.041	21.752	22.387	28.1	1.1	0.1
21.752	20.535	21.135	27.1	1,1	0.1
20.535	19.387	19.953	26.1	1.0	0.1
19.387	18.302	18.836	25.1	0.9	0.1
18.302	17.278	17.783	24.3	0.9	0.1
17.278	16.312	16.788	23.4	0.9	0.0
16.312	15.399	15.849	22.6	0.8	0.0
15.399	14.538	14.962	21.7	0.8	0.0
14.538	13.725	14.125	21.0	0.8	0.0
13.725	12.957	13.335	20.2	0.7	0.1
12.957	12.232	12.589	19.6	0.7	0.1
12.232	11.548	11.885	18.9	0.7	0.0
11.548	10.902	11.220	18.3	0.6	0.0
10.902	10.292	10.593	17.7	0.6	0.0
10.292	9.716	10.000	17.1	0.6	0.0
9.716	9.173	9.441	16.5	0.6	0.0
9.173	8.660	8.913		0.6	0.0
8.660	8.175	8.414	15.3	0.6	0.0
8.175	7.718	7.943		0.6	0.0
7.718		7.499	14.1	0.6	0,0
7.286	6.879	7.079	13.5	0.6	0.0
6.879	6.494	6.683	13.0	0.5	0.0
6.494	6.131	6.310	12.6	0.4	0.0
6.131	5.788	5.957	12.2	0.4	0.0
5.788	5.464	5.623	11.7	0.4	0.0
5.464	5.158	5.309	11.3	0.5	0.0
5.158	4.870	5.012		0.5	0.0
4.870	4.597	4.732	10.3	0.5	0.0
4.597	4.340	4.467	9.9	0.4	0.0
4.340	4.097	4.217	9.5	0.4	0.0
4.097	3.868	3.981	9.0	0.4	0.0
3.868	3.652	3.758	8.6	0.4	0.0
3.652	3.447	3.548	8.2	0.4	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

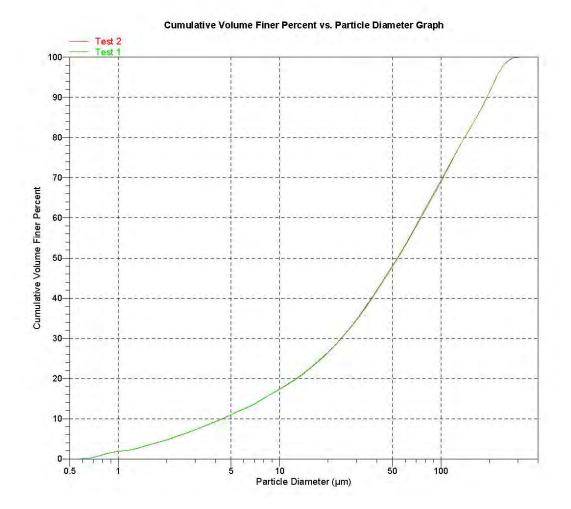
Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.447	3.255	3.350	7.8	0.4	0.0
3.255	3.073	3.162	7.4	0.4	0.0
3.073	2.901	2.985	7.0	0.4	0.0
2.901	2.738	2.818	6.7	0.4	0.0
2.738	2.585	2.661	6.3	0.4	0.0
2.585	2.441	2.512	6.0	0.3	0.0
2.441	2.304	2.371	5.6	0.4	0.0
2.304	2.175	2.239	5.3	0.4	0.0
2.175	2.054	2.113	4.9	0.4	0.0
2.054	1.939	1.995	4.6	0.3	0.0
1.939	1.830	1.884	4.3	0.3	0.0
1.830	1.728	1.778	4.0	0.3	0.0
1.728	1.631	1.679	3.8	0.3	0.0
1.631	1.540	1.585	3.5	0.3	0.0
1.540	1.454	1.496	3.2	0.3	0.0
1.454	1.372	1.413	2.9	0.3	0.0
1.372	1.296	1.334	2.6	0.3	0.0
1.296	1.223	1.259	2.3	0.2	0.0
1.223	1.155	1.189	2.2	0.2	0.0
1.155	1.090	1.122	2.0	0.1	0.0
1.090	1.029	1.059	1.9	0.1	0.0
1.029	0.972	1.000	1.8	0.1	0.0
0.972	0.917	0.944	1.6	0.2	0.0
0.917	0.866	0.891	1.4	0.2	0.0
0.866	0.818	0.841	1.1	0.3	0.0
0.818	0.772	0.794	0.8	0.3	0.0
0.772	0.729	0.750	0.6	0.3	0.0
0.729	0.688	0.708	0.3	0.2	0.0
0.688	0.649	0.668	0.2	0.2	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.0	0.0	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

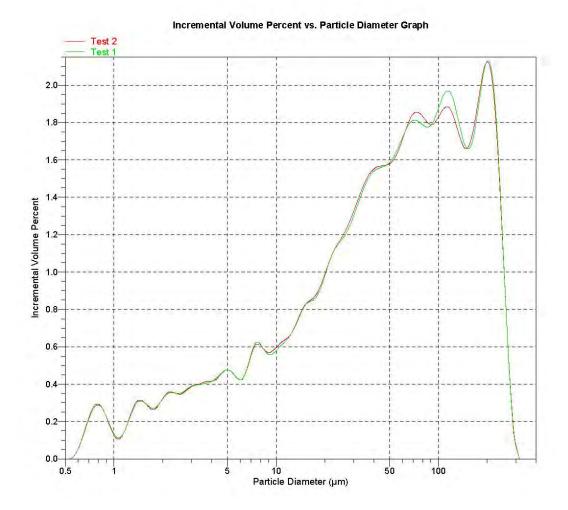
5200 LSHU V3.00 S/N 127

Page 5

Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

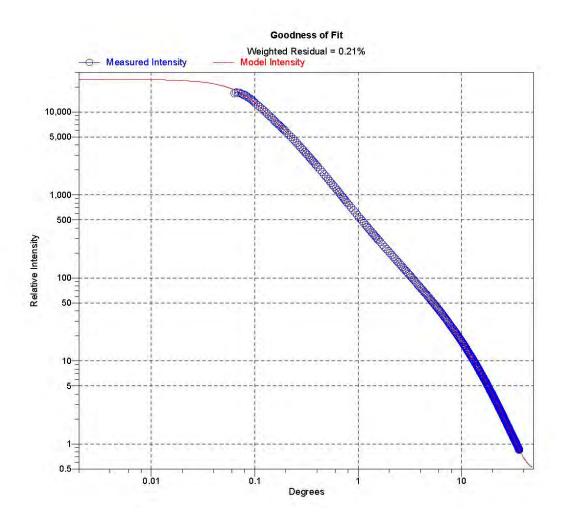
5200 LSHU V3.00 S/N 127

Page 6

Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

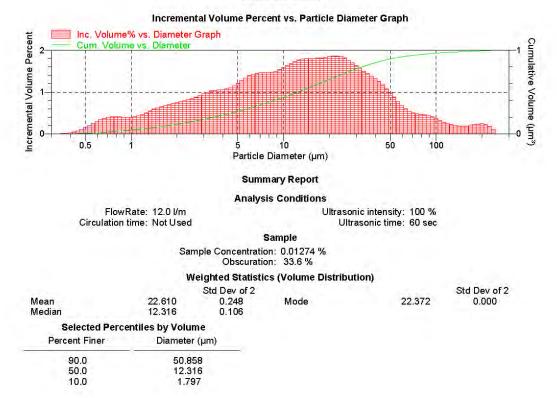
Sample: 3780 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104009.SMP

Test Number: 2 Analyzed: 6/25/2011 10:39:05AM Reported: 6/25/2011 10:50:06AM Background: 6/25/2011 10:27:50AM

Sample#22-3952

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5 V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Sec. Sec.			Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
244.062	230.409	237.137	99.9	0.1	0.0
230.409	217.520	223.872	99.7	0.2	0.0
217.520	205.353	211.349	99.5	0.2	0.0
205.353	193.865	199,526	99.3	0.2	0.0
193.865	183.021	188.365	99.0	0.2	0.0
183.021	172.783	177.828		0.2	0.0
172.783	163.117	167.880	98.6	0.2	0.0
163,117	153.993	158,489	98.4	0.2	0.0
153.993	145.378	149.624	98.2	0.2	0.0
145.378	137.246	141.254	98.0	0.2	0.0
137.246	129.569	133.352	97.9	0.2	0.0
129.569	122.321	125.893	97.6	0.2	0.0
122.321	115.478	118.850	97.4		0.0
115.478	109.018	112.202	97.1	0.2	0.0
109.018	102.920	105.925	96.8		0.0
102.920	97.163	100.000	96.4		0.0
97.163	91.728	94.406	96.0	0.4	0.1
91.728	86.596	89.125	95.6	0.4	0.1
86.596	81.752	84.140	95.1	0.4	0.1
81.752	77.179	79.433	94.7	0.4	0.1
77.179	72.862	79.433	94.7		0.1
72.862	68.786	70.795	93.7	0.5	0.2
68.786	64.938	66,834	93.2	0.5	0.2
64.938	61.306	63.096	92.6	0.6	0.2
61.306	57.876	59.566	92.6	0.8	0.2
57.876	54.639	56.234	91.9	0.8	0.2
54.639	51.582	53.088	90.2		0.2
51.582	48.697	50.119	89.3	1.0	0.2
48.697	45.973	47.315	89.3	1.0	0.3
45.973	43.401	44.668	87.0	1.2	0.3
43.401	40.973	44.000	85.8		0.3
	38.681	39.811	84.4	1.2	0.3
40.973			84.4	1.3	
38.681	36.517	37.584 35.481	81.6	1.4	0.4 0.4
36.517	34.475			1.4	
34.475	32.546	33.497	80.1		0.4
32.546	30.726	31.623	78.6	1.6	0.4
30.726	29.007	29.854	76.9	1.6	0.4
29.007	27.384	28.184	75.2	1.7	0.4
27.384	25.852	26.607	73.5	1.8	0.4
25.852	24.406	25.119	71.7	1.8	0.4
24.406	23.041	23.714	69.8	1.9	0.4
23.041	21.752	22.387	67.9	1.9	0.3
21.752	20.535	21.135	66.1	1.9	0.3
20.535	19.387	19.953	64.2	1.8	0.3

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110

Page 3

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM

and which	i an eastaire		Size Class	The commences	Same
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
19.387	18.302	18.836	62.4	1.8	0.3
18.302	17.278	17.783	60.6	1.8	0.3
17.278	16.312	16.788	58.8	1.8	0.3
16.312	15.399	15.849	57.0	1.8	0.3
15.399	14.538	14.962	55.1	1.8	0.3
14,538	13.725	14,125	53.3	1.8	0.3
13,725	12.957	13.335	51.6		0.3
12,957	12.232	12,589	49.8	1.8	0.3
12.232	11.548	11.885	48.1	1.7	0.2
11.548	10.902	11.220	46.4	1.7	0.2
10.902	10.292	10.593		1.6	0.2
10.292	9.716	10.000	43.1	1.6	0.2
9.716	9.173	9.441	41.6	1.5	0.2
9,173	8.660	8.913		1.5	0.2
8.660	8.175	8.414	38.6		0.2
8.175	7.718	7,943	37.2	1.5	0.2
7.718	7.286	7.499	35.7	1.5	0.2
7.286	6.879	7.079	34.2	1.5	0.2
6.879	6.494	6.683	32.8	1.5	0.2
6.494	6.131	6.310	31.4	1.4	0.2
6.131			30.0	0.000	0.2
5.788	5.788 5.464	5.957 5.623		1.4 1.3	
			28.6		0.1
5.464 5.158	5.158 4.870	5.309 5.012	27.4 26.1	1.3	0.1 0.1
4.870	4.597	4.732	25.0	1.2	0.1
4.597	4.340	4.467	23.9		0.1
4.340	4.097	4.217	22.8	1.1	0.1
4.097	3.868	3.981	21.8		0.1
3.868	3.652	3.758	20.7	1.0	0.1
3.652	3.447	3.548	19.7	1.0	0.1
3.447	3.255	3.350	18.6	1.0	0.1
3.255	3.073	3.162	17.6		0.1
3.073	2.901	2.985	16.7	1.0	0.1
2.901	2.738	2.818	15.8	0.9	0.1
2.738	2.585	2.661	14.9	0.9	0.1
2.585	2.441	2.512	14.1	0.8	0.1
2.441	2.304	2.371	13.3	0.8	0.1
2.304	2.175	2.239	12.5	0.8	0.1
2.175	2.054	2.113	11.7	0.8	0.1
2.054	1.939	1.995	10.9		0.1
1.939	1.830	1.884	10.2	0.7	0.*
1.830	1.728	1.778	9.5	0.7	0.0
1.728	1.631	1.679	8.9	0.7	0.0
1.631	1.540	1.585	8.2	0.7	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

zer II 5205 V1.01 5200 LSHU V2.01 S/N 110

0 Page 4

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM

0.345

0.325

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

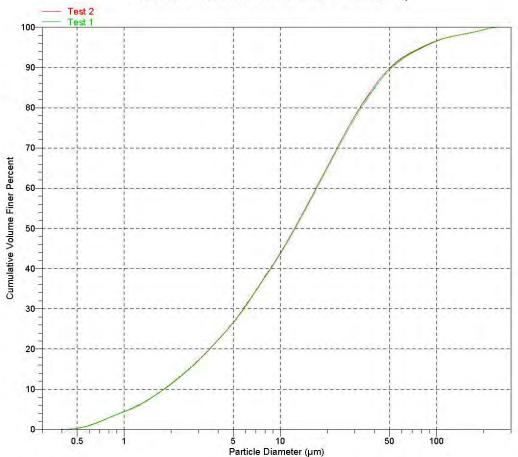
		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
1.540	1.454	1.496	7.6	0.6	0.0
1.454	1.372	1.413	7.0	0.6	0.0
1.372	1.296	1.334	6.4	0.5	0.1
1.296	1.223	1.259	5.9	0.5	0.1
1.223	1.155	1.189	5.5	0.5	0.1
1.155	1.090	1.122	5.0	0.4	0.0
1.090	1.029	1.059	4.6	0.4	0.0
1.029	0.972	1.000	4.3	0.4	0.0
0.972	0.917	0.944	3.9	0.4	0.0
0.917	0.866	0.891	3.5	0.4	0.0
0.866	0.818	0.841	3.1	0.4	0.0
0.818	0.772	0.794	2.6	0.4	0.0
0.772	0.729	0.750	2.2	0.4	0.0
0.729	0.688	0.708	1.8	0.4	0.0
0.688	0.649	0.668	1.5	0.4	0.0
0.649	0.613	0.631	- 1.1	0.3	0.0
0.613	0.579	0.596	0.8	0.3	0.0
0.579	0.546	0.562			0.0
0.546	0.516	0.531	0.4	0.2	0.0
0.516	0.487	0.501	0.3	0.1	0.0
0.487	0.460	0.473	0.1	0.1	0.0
0.460	0.434	0.447	0.1	0.1	0.0
0.434	0.410	0.422	0.0	0.0	0.0
0.410	0.387	0.398	0.0	0.0	0.0
0.387	0.365	0.376	0.0	0.0	0.0
0.365	0.345	0.355	0.0	0.0	0.0

0.335

0.0

0.0

0.0



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph

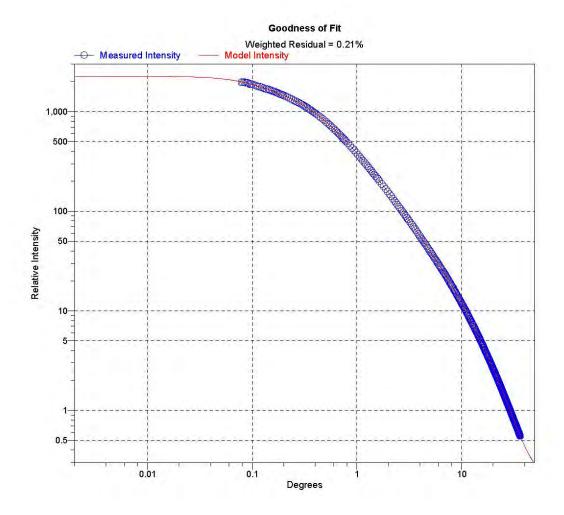

Saturn DigiSizer II 5205 V1.01 5

5200 LSHU V2.01 S/N 110

Page 6

Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

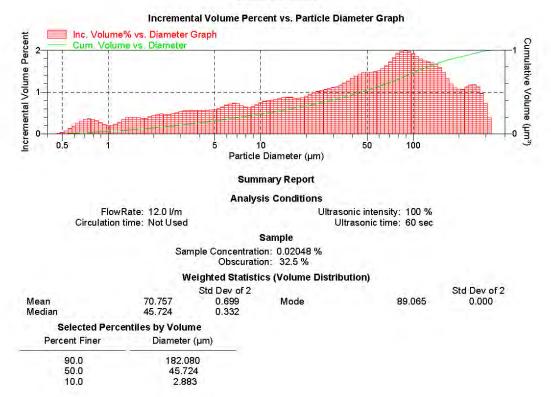
Sample: 3952 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104010.SMP

Test Number: 2 Analyzed: 6/24/2011 4:27:17PM Reported: 6/24/2011 4:36:27PM Background: 6/24/2011 8:21:25AM

Sample#23-3979

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		Report by	Size Class		
Hìgh Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
325.462	307.256	316.228	99.6	0.4	0.0
307.256	290.068	298.538	98.9	0.7	0.1
290.068	273.842	281.838	97.9	1.0	0.1
273.842	258.523	266.073	96.8		0.1
258.523	244.062	251.189	95.6		0.1
244.062	230.409	237.137	94.4	1.2	0.0
230,409	217.520	223.872	93.3	1.1	0.1
217,520	205.353	211.349	92.2	1.1	0.2
205.353	193.865	199.526	91.2	1.1	0.3
193.865	183.021	188.365	90.1	1.1	0.4
183.021	172.783	177.828	88.9	1.2	0.5
172.783	163.117	167.880	87.6	1.3	0.6
163.117	153.993	158,489	86.1	1.5	0.6
153,993	145.378	149.624	84.5	1.6	0.6
145.378	137.246	141.254	82.9		0.5
137.246	129.569	133.352	81.2	1.7	0.5
129.569	122.321	125.893	79.5	1.7	0.5
122.321	115.478		77.7	1.7	0.5
115.478	109.018	112.202	75.9		0.4
109.018	102.920	105,925	74.1	1.9	
102.920	97.163	100.000	72.2	1.9	0.4
97,163	91.728	94.406	70.2	2.0	0.4
91.728	86.596	89.125	68.2	2.0	0.4
86.596	81.752	84.140	66.2		0.4
81.752	77.179	79.433	64.3		0.3
77.179	72.862	74,989	62.5		0.3
72.862	68.786	70.795	60.7	1.7	0.3
68,786	64.938	66,834	59.1	1.6	0.3
64.938	61.306	63.096	57.5	1.6	0.2
61.306	57.876	59,566	56.0	1.5	0.2
57.876	54.639	56.234	54.6		0.2
54.639	51.582	53.088	53.1	1.5	0.2
51.582	48.697	50.119	51.6	1.5	0.2
48.697	45.973	47.315	50.1	1.5	0.2
45.973	43.401	44.668	48.7	1.4	0.2
43.401	40.973	42.170	47.3	1.4	0.2
40.973	38.681	39.811	46.0	1.3	0.2
38,681	36.517	37.584	44.7	1.3	0.2
36.517	34.475	35.481	43.5	1.2	0.2
34.475	32.546	33,497	42.3	1.2	0.2
32.546	30.726	31.623	41.2	1.1	0.2
30.726	29.007	29.854	40.1	1.1	0.2
29.007	27.384	28.184	39.0	1.1	0.2
27.384	25.852	26.607	37.9		0.2

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
25.852	24.406	25,119	36.9	1.0	0.2
24,406	23.041	23,714		1.0	0.2
23.041	21.752	22.387	34.9	1.0	0.2
21.752	20.535	21.135	33.9	0.9	0.2
20.535	19.387	19.953	33.0	0.9	0.1
19.387	18.302	18.836		0.9	0.1
18.302	17.278	17.783		0.9	0.1
17.278	16.312	16.788	30.5	0.9	0.1
16.312	15.399	15.849	29.6		0.1
15.399	14.538	14.962		0.9	0.1
14.538	13.725	14.125	27.8	0.9	0.1
13.725	12.957	13.335		0.8	0.1
12.957	12.232	12.589	26.2	0.8	0.1
12.957	11.548	12.589	26.2	0.8	
12.232	10.902	11.885	25.4		0.1 0.1
				0.8	
10.902	10.292	10.593		0.8	0.1
10.292	9.716	10.000	23.1	0.7	0.1
9.716	9.173	9.441		0.7	0.1
9.173	8.660	8.913	21.7	0.7	0.1
8.660	8.175	8.414		0.6	0.1
8.175	7.718	7.943	20.4	0.6	0.1
7.718	7.286	7.499	19.7	0.7	0.1
7.286	6.879	7.079	19.0	0.7	0.1
6.879	6.494	6.683	18.3	0.7	0.1
6.494	6.131	6.310	17.6		0.1
6.131	5.788	5.957	16.9	0.7	0.1
5.788	5.464	5.623	16.2	0.6	0.1
5.464	5.158	5.309	15.6	0.6	0.1
5.158	4.870	5.012	15.0	0.6	0.1
4.870	4.597	4.732	14.5	0.6	0.1
4.597	4.340	4.467	13.9	0.6	0.1
4.340	4.097	4.217	13.4	0.6	0.1
4.097	3.868	3.981	12.8	0.6	0.1
3.868	3.652	3.758	12.3	0.6	0.1
3.652	3.447	3.548		0.6	0.1
3.447	3.255	3.350		0.6	0.1
3.255	3.073	3.162		0.6	0.1
3.073	2.901	2.985	10.1	0.5	0.1
2.901	2.738	2.818			0.0
2.738	2.585	2.661	9.1	0.5	0.0
2.585	2.441	2.512	8.6		0.0
2.441	2.304	2.371	8.1	0.5	0.0
2.304	2.175	2.239	7.7	0.5	0.0
2.175	2.054	2.113	7.2	0.5	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

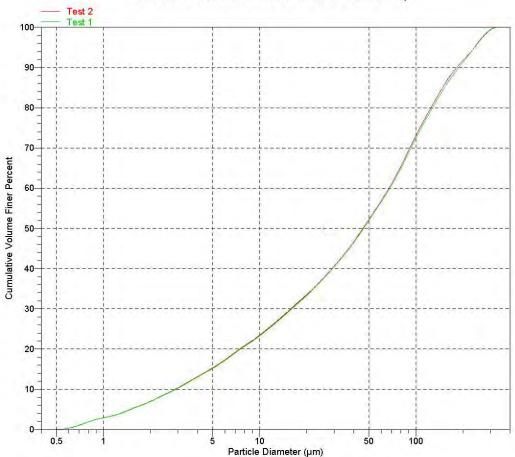
5205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM

La via za		1	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.054	1.939	1.995	6.8	0.4	0.0
1.939	1.830	1.884	6.4	0.4	0.0
1.830	1.728	1.778	6.0	0.4	0.0
1.728	1.631	1.679	5.6	0.4	0.0
1.631	1.540	1.585	5.2	0.4	0.0
1.540	1.454	1.496	4.8	0.4	0.0
1.454	1.372	1.413	4.4	0.4	0.0
1.372	1.296	1.334	4.1	0.4	0.0
1.296	1.223	1.259	3.7	0.3	0.0
1.223	1.155	1.189	3.4	0.3	0.0
1.155	1.090	1.122	3.2	0.2	0.0
1.090	1.029	1.059	3.0	0.2	0.0
1.029	0.972	1.000	2.8	0.2	0.0
0.972	0.917	0.944	2.6	0.2	0.0
0.917	0.866	0.891	2.3	0.3	0.0
0.866	0.818	0.841	2.0	0.3	0.0
0.818	0.772	0.794	1.7	0.3	0.0
0.772	0.729	0.750	1.3	0.4	0.0
0.729	0.688	0.708	1.0	0.3	0.0
0.688	0.649	0.668	0.7	0.3	0.0
0.649	0.613	0.631	0.4	0.2	0.0
0.613	0.579	0.596	0.2	0.2	0.0
0.579	0.546	0.562	0.1	0.1	0.0
0.546	0.516	0.531	0.0	0.1	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0
0.460	0.434	0.447	0.0	0.0	0.0



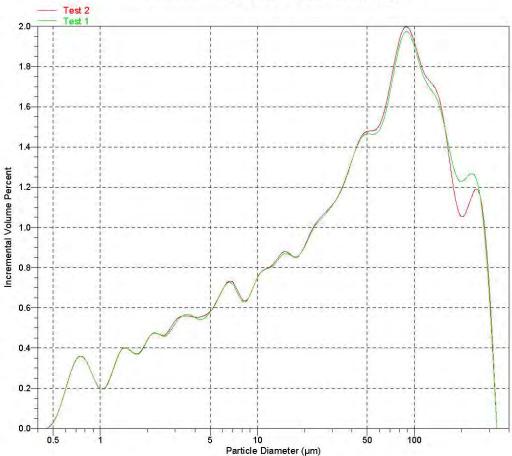
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph



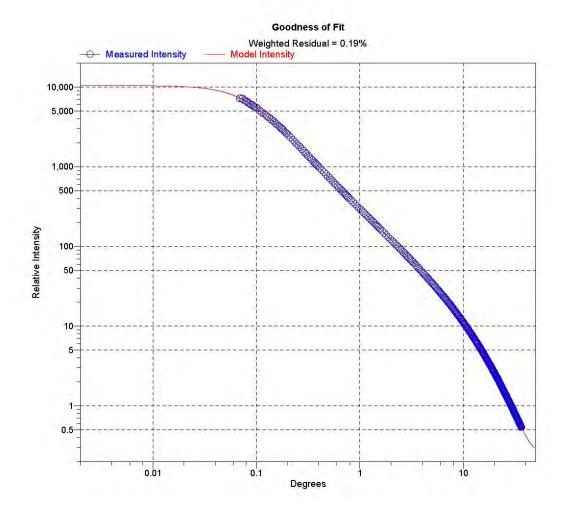
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 6

Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

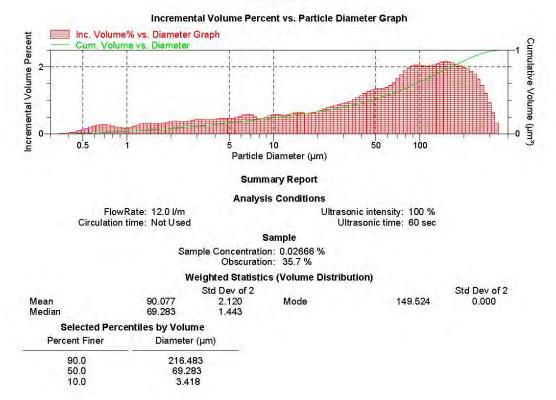
Sample: 3979 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104011.SMP

Test Number: 2 Analyzed: 6/25/2011 10:43:04AM Reported: 6/25/2011 10:52:34AM Background: 6/25/2011 10:17:25AM

Sample#24-4157

Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110


Page 1

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number:	2	
Analyzed:	6/25/2011	11:21:29AM
Reported:	6/25/2011	11:33:23AM
Background:	6/25/2011	10:17:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Hìgh Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Size Class Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
344.747	325,462	334.965	99.7	0.3	0.1
325,462	307.256	316.228		0.6	0.3
307.256	290.068	298.538	98.1	0.9	0.4
290,068	273.842	281.838			0.6
273.842	258.523	266.073	95.4	1.4	0.8
258.523	244.062	251.189		1.6	0.8
244.062	230,409	237.137	92.0	1.8	0.9
230,409	217.520	223.872	90.2	1.9	0.9
217.520	205.353	211.349	88.2		0.9
205.353	193.865	199.526	86.2	2.0	0.8
193.865	183.021	188.365	84.2	2.0	0.8
183.021	172,783	177.828		2.1	0.8
172.783	163.117	167.880	80.0	2.1	0.8
163,117	153.993	158,489	77.8	2.2	0.8
153,993	145.378	149.624	75.7	2.2	0.8
145.378	137.246	141.254	73.5	2.1	0.8
137.246	129.569	133.352	71.4	2.1	0.8
129.569	122.321	125.893	69.3	2.1	0.8
122.321	115.478	118.850	67.3		0.8
115.478	109.018	112.202	65.3	2.0	0.8
109.018	102.920	105.925	63.2	2.0	0.8
102.920	97.163	100.000	61.2	2.1	0.7
97.163	91.728	94.406	59.1	2.1	0.7
91.728	86.596	89.125	57.1	2.0	0.7
86.596	81.752	84.140	55.1	2.0	0.6
81.752	77.179	79.433	53.2	1.9	0.6
77.179	72.862	74.989	51.5	1.8	0.6
72.862	68.786	70.795	49.8	1.7	0.6
68.786	64.938	66.834	48.3	1.5	0.6
64.938	61.306	63.096	46.8	1.5	0.5
61.306	57.876	59.566	45.4	1.4	0.5
57.876	54.639	56.234	44.0	1.4	0.5
54.639	51.582	53.088	42.7	1.4	0.5
51.582	48.697	50.119	41.3	1.3	0.5
48.697	45.973	47.315	40.0	1.3	0.5
45.973	43.401	44.668	38.7	1.3	0.5
43.401	40.973	42.170	37.5	1.2	0.5
40.973	38.681	39.811	36.4	1.1	0.5
38.681	36.517	37.584	35.3	1.1	0.5
36.517	34.475	35.481	34.3	1.0	0.5
34.475	32.546	33.497	33.3	1.0	0.5
32.546	30.726	31.623	32.4		0.5
30.726	29.007	29.854	31.5	0.9	0.5
29.007	27.384	28.184	30.6	0.9	0.5

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
27.384	25.852	26.607	29.8	0.8	0.4
25.852	24.406	25,119	28.9	0.8	0.4
24.406	23.041	23.714	28.2	0.8	0.4
23.041	21.752	22.387	27.4	0.8	
21.752	20.535	21.135	26.7	0.7	0.4
20.535	19.387	19.953	26.0	0.7	0.4
19.387	18.302	18.836	25.4	0.6	0.4
18.302	17.278	17.783	24.8	0.6	0.4
17.278	16.312	16,788	24.8	0.6	0.4
16.312	15.399	15.849	23.6	0.6	0.4
15.399	14.538	14.962	23.0	0.6	0.4
14.538	13.725	14.125	22.3	0.6	0.4
13.725	12.957	13.335	22.3	0.6	0.4
12.957	12.337	12,589	21.7	0.6	0.4
12.232	11.548	12.589	20.6	0.6	
11,548	10.902	11.220	20.0		0.4
10.902	10.302	10.593	19.4	0.6	0.4
10.902	9,716	10.000	19.4		0.3
9.716	9.173	9,441	18.3	0.5	0.3
9.173		8.913	17.8		0.3
8.660	8.660 8.175	8.414	17.8	0.5 0.5	0.3
8.175	7.718	7.943	16.9	0.5	0.3
7,718	7.286	7.499	16.9		0.3
7.286	6.879	7.079	15.8	0.6	0.3
6.879	6.494	6.683	15.8	0.6	0.3
6.494	6.131	6.310	14.7	0.6	0.3
6.131				0.8	
	5.788 5.464	5.957 5.623	14.1 13.7	0.5	0.3
5.788			13.2	0.5	
5.464	5.158	5.309	13.2	0.5	0.3
5.158	4.870 4.597	5.012 4.732	12.7	0.5	0.3 0.3
4.870 4.597	4.340	4.732	12.5		0.3
			11.8		
4.340	4.097	4.217		0.5	0.2
4.097	3.868	3.981	10.9	0.4	0.2
3.868	3.652	3.758	10.5	0.4	0.2
3.652	3.447	3.548	10.1	0.4	0.2
3.447	3.255	3.350	9.6	0.4	0.2
3.255	3.073	3.162	9.2	0.4	0.2
3.073	2.901	2.985	8.8	0.4	0.2
2.901	2.738	2.818	8.4	0.4	0.2
2.738	2.585	2.661		0.4	0.2
2.585	2.441	2.512	7.6	0.4	0.1
2.441	2.304	2.371	7.2	0.4	0.1
2.304	2.175	2.239	6.9	0.4	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

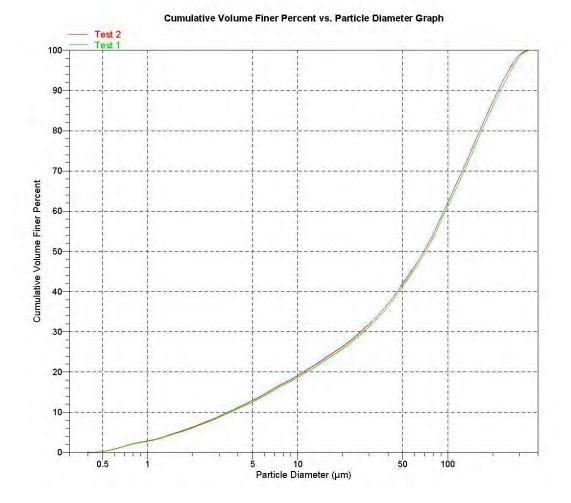
II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.175	2.054	2.113	6.5	0.4	0.
2.054	1,939	1.995	6.1	0.4	0.
1.939	1.830	1.884	5.8	0.3	0.
1.830	1.728	1.778	5.5	0.3	0.
1.728	1.631	1.679	5.2	0.3	0.
1.631	1.540	1.585	4.9	0.3	0.
1.540	1.454	1.496	4.6	0.3	0.
1.454	1.372	1.413	4.3	0.3	0.
1.372	1.296	1.334	3.9	0.3	0.
1.296	1.223	1.259	3.7	0.3	0.
1.223	1.155	1.189	3.4	0.3	0.
1.155	1.090	1.122	3.2	0.2	0.
1.090	1.029	1.059	3.0	0.2	0.
1.029	0.972	1.000	2.8	0.2	0.
0.972	0.917	0.944	2.6	0.2	0.
0.917	0.866	0.891	2.4	0.2	0.
0.866	0.818	0.841	2.2	0.2	0.
0.818	0.772	0.794	2.0	0.2	0.
0.772	0.729	0.750	1.8	0.3	0.
0.729	0.688	0.708	1.5	0.3	0.
0.688	0.649	0.668	1.2	0.3	0.
0.649	0.613	0.631	1.0	0.3	0.
0.613	0.579	0.596	0.7	0.2	0.
0.579	0.546	0.562	0.5	0.2	0.
0.546	0.516	0.531	0.4	0.2	0.
0.516	0.487	0.501	0.2	0.1	0.
0.487	0.460	0.473	0.1	0.1	0.
0.460	0.434	0.447	0.1	0.1	0.
0.434	0.410	0.422	0.0	0.0	0.
0.410	0.387	0.398	0.0	0.0	0.
0.387	0.365	0.376	0.0	0.0	0.
0.365	0.345	0.355	0.0	0.0	0
0.345	0.325	0.335	0.0	0.0	0.

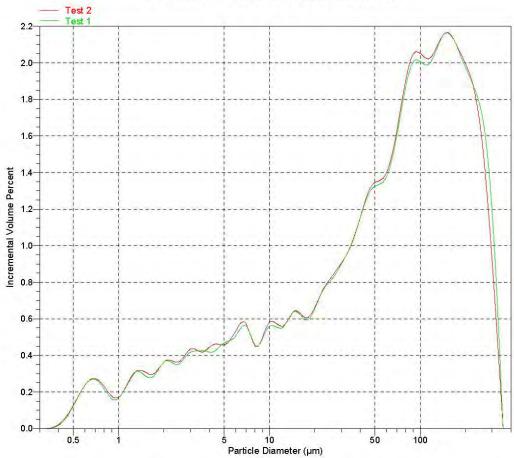


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM



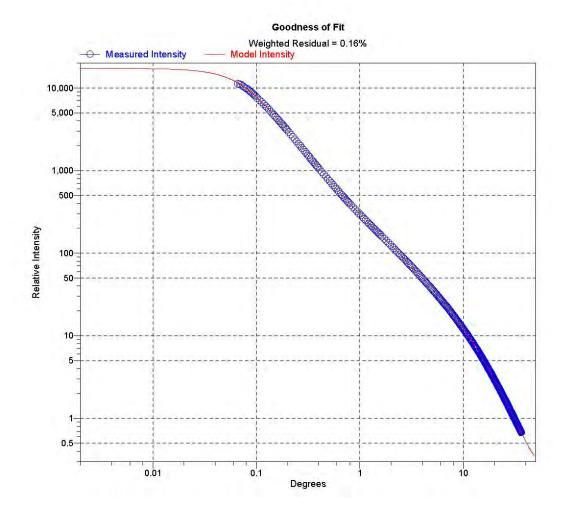
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 6

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:....\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

Sample: 4157 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104012.SMP

Test Number: 2 Analyzed: 6/25/2011 11:21:29AM Reported: 6/25/2011 11:33:23AM Background: 6/25/2011 10:17:25AM

Sample#25-4164

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU


5200 LSHU V3.00 S/N 127

Page 1

Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Sample

Sample Concentration: 0.02633 % Obscuration: 31.6 %

Weighted Statistics (Volume Distribution)

		Std Dev of 2			Std Dev of 2
Mean Median	83.381 62.610	0.455 0.337	Mode	94.291	0.000
	entiles by Volun				
Percent Finer	Diameter				
90.0	206.73	30			
50.0	62.61	0			
10.0	4.37	4			

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 2

Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
344.747	325.462	334.965	100.0	0.0	0.0
325.462	307.256	316.228	99.8	0.2	0.1
307.256	290.068	298.538	99.4	0.4	0.1
290.068	273.842	281.838	98.6	0.8	0.1
273.842	258.523	266.073	97.3	1.2	0.1
258.523	244.062	251.189	95.7	1.6	0.0
244.062	230.409	237.137	93.8	1.9	0.1
230.409	217.520	223.872	91.8	2.0	0.1
217.520	205.353	211.349	89.8	2.0	0.2
205.353	193.865	199.526	87.8	2.0	0.3
193.865	183.021	188.365	85.9	1.9	0.3
183.021	172.783	177.828	84.1	1.8	0.3
172.783	163.117	167.880	82.4	1.7	0.4
163.117	153.993	158,489	80.6	1.7	0.4
153.993	145.378	149.624	78.9	1.7	0.4
145.378	137.246	141.254	77.1	1.8	0.4
137.246	129.569	133.352	75.3	1.8	0.4
129.569	122.321	125.893	73.4	1.9	0.3
122.321	115.478	118.850	71.4	2.0	0.3
115.478	109.018	112.202	69.3	2.1	0.3
109.018	102.920	105.925	67.2	2.1	0.3
102.920	97.163	100.000	65.1	2.1	0.3
97.163	91.728	94.406	62.9	2.2	0.3
91.728	86.596	89.125	60.7	2.2	0.2
86.596	81.752	84.140	58.6	2.1	0.2
81.752	77.179	79.433	56.6	2.1	0.2
77.179	72.862	74.989	54.6	2.0	0.2
72.862	68.786	70,795	52.8	1.8	0.2
68.786	64.938	66.834		1.7	0.2
64.938	61.306	63.096	49.4	1.6	0.1
61.306	57.876	59.566	47.9	1.5	0.1
57.876	54.639	56.234		1.4	0.1
54.639	51.582	53.088		1.4	0.1
51.582	48.697	50.119	43.8	1.3	0.1
48.697	45.973	47.315	42.5	1.3	0.1
45.973	43.401	44.668	41.2	1.3	0.1
43.401	40.973	42.170	39.9	1.3	0.1
40.973	38.681	39.811	38.7	1.2	0.1
38.681	36.517	37.584	37.5	1.2	0.1

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 3

.Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
36.517	34.475	35.481	36.3	1.2	0.1
34.475	32.546	33.497	35.2	1.1	0.1
32.546	30.726	31.623		1.1	0.1
30.726	29.007	29.854	33.0	1.0	0.1
29.007	27.384	28.184	32.0	1.0	0.1
27.384	25.852	26.607	31.1	1.0	0.1
25.852	24.406	25.119	30.1	1.0	0.1
24.406	23.041	23,714	29.1	1.0	0.0
23.041	21.752	22.387	28.2	1.0	0.0
21.752	20.535	21.135		0.9	0.0
20.535	19.387	19.953	26.4	0.9	0.1
19.387	18.302	18.836		0.8	0.0
18.302	17.278	17.783		0.8	0.0
17.278	16.312	16.788	23.9	0.8	0.0
16.312	15.399	15.849	23.1	0.8	0.0
15.399	14.538	14.962		0.8	0.0
14.538	13,725	14.125	21.6	0.8	0.0
13.725	12.957	13.335		0.7	0.0
12.957	12.232	12.589		0.7	0.0
12.232	11.548	11.885	19.5	0.7	0.0
11.548	10.902	11.220	18.9	0.7	0.0
10.902	10.292	10.593		0.6	0.0
10.292	9.716	10.000		0.6	0.0
9.716	9.173	9.441	17.0	0.6	0.0
9.173	8.660	8.913	16.4	0.6	0.0
8.660	8,175	8.414		0.6	0.0
8.175	7.718	7.943	15.1	0.7	0.0
7.718	7.286	7.499	14.5	0.7	0.0
7.286	6.879	7.079		0.6	0.0
6.879	6.494	6.683	13.3	0.6	0.0
6.494	6.131	6.310			0.0
6.131	5.788	5.957	12.3		0.0
5.788	5.464	5.623	11.9	0.5	0.0
5.464	5.158	5.309		0.5	0.0
5.158	4.870	5.012		0.5	0.0
4.870	4.597	4.732		0.5	0.0
4.597	4.340	4.467		0.5	0.0
4.340	4.097	4.217	9.5	0.5	0.0
4.097	3.868	3.981	9.0	0.4	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

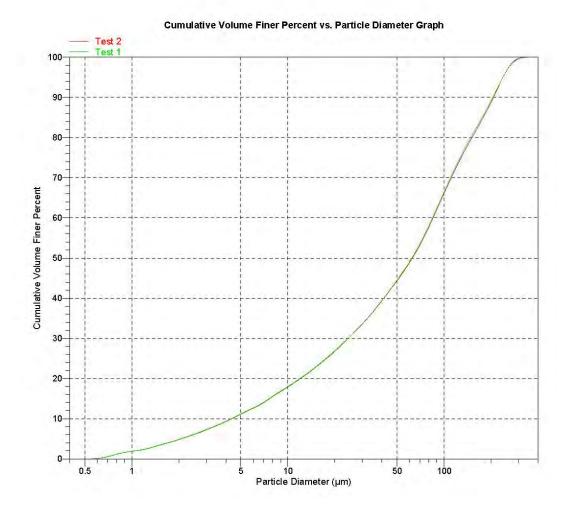
Page 4

Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
3.868	3.652	3.758		0,4	0.0
3.652	3.447	3.548		0.4	0.0
3.447	3.255	3.350	7.8	0.4	0.0
3.255	3.073	3.162	7.4	0.4	0.0
3.073	2.901	2.985		0.4	0.0
2.901	2.738	2.818		0.4	0.0
2.738	2.585	2.661	6.3	0.4	0.0
2.585	2.441	2.512	5.9	0.3	0.0
2.441	2.304	2.371	5.6	0.3	0.0
2.304	2.175	2.239	5.3	0.3	0.0
2.175	2.054	2.113	4.9	0.3	0.0
2.054	1.939	1.995	4.6	0.3	0.0
1.939	1.830	1.884	4.3	0.3	0.0
1.830	1.728	1.778	4.1	0.3	0.0
1.728	1.631	1.679		0.3	0.0
1.631	1.540	1.585	3.5	0.3	0.0
1.540	1.454	1.496	3.2	0.3	0.0
1.454	1.372	1.413		0.3	0.0
1.372	1.296	1.334	2.7	0.3	0.0
1.296	1.223	1.259	2.4	0.2	0.0
1.223	1.155	1.189	2.2	0.2	0.0
1.155	1.090	1.122	2.1	0.1	0.0
1.090	1.029	1.059	2.0	0.1	0.0
1.029	0.972	1.000	1.8	0.1	0.0
0.972	0.917	0.944	1.7	0.2	0.0
0.917	0.866	0.891	1.5	0.2	0,0
0.866		0.841	1.2	0.2	0.0
0.818	0.772	0.794	1.0	0.3	0.0
0.772	0.729	0.750	0.7	0.3	0.0
0.729	0.688	0.708	0.5	0.2	0.0
0.688	0.649	0.668		0.2	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.1	0.1	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0
0.487	0.460	0.473	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

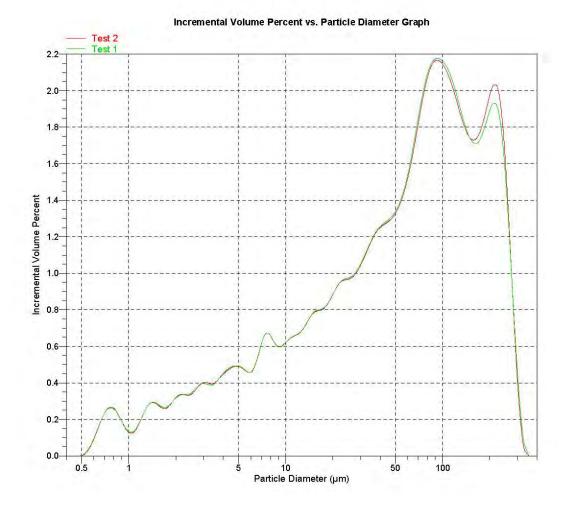
5200 LSHU V3.00 S/N 127

Page 5

Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 52

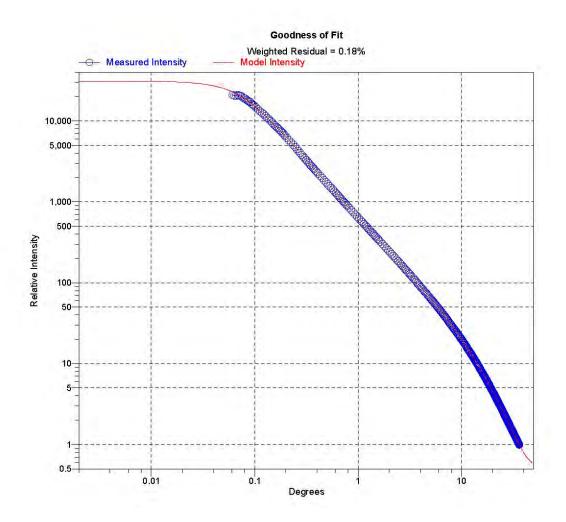
5200 LSHU V3.00 S/N 127

Page 6

Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

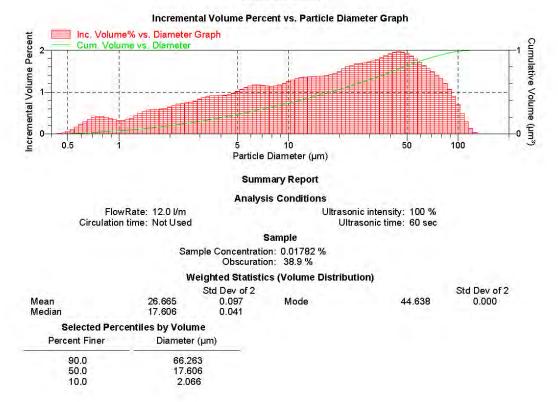
Sample: 4164 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: CA...\06JUN\1104013.SMP

Test Number: 2 Analyzed: 6/25/2011 11:09:37AM Reported: 6/25/2011 11:10:50AM Background: 6/25/2011 10:27:50AM

Sample#26-4211

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01


Page 1

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

5200 LSHU V2.01 S/N 110

Page 2

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM

10.902

10.292

10.593

37.3

1.3

0.1

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Report by Size Class High Particle Low Particle Average Cumulative Incremental Cumulative Diameter Diameter Particle Volume Finer Volume Volume (µm) (µm) Diameter Percent Percent Percent (µm) (StdDev) 122.321 129.569 125.893 100.0 0.0 0.0 115.478 118.850 122.321 99.8 0.1 0.0 115.478 109.018 99.6 112.202 0.3 0.0 109.018 102.920 105.925 99.1 0.5 0.0 102.920 97.163 100.000 98.4 0.7 0.1 97.163 97.5 91.728 94.406 0.9 0.1 91.728 86.596 89.125 96.4 1.1 0.1 86.596 81.752 84.140 95.2 1.2 0.1 81.752 77.179 79.433 93.9 1.3 0.1 77.179 72.862 74.989 92.5 1.4 0.1 72.862 68.786 70.795 91.0 1.5 0.1 68.786 64.938 66.834 89.4 1.6 0.1 64.938 61.306 63.096 87.8 1.6 0.1 61.306 59.566 57.876 86.1 1.7 0.1 57.876 54.639 56.234 84.3 1.8 0.1 54.639 51.582 53.088 82.5 1.9 0.1 51.582 48.697 50.119 80.5 1.9 0.1 48.697 45.973 47.315 78.6 2.0 0.1 45.973 43.401 44.668 76.6 2.0 0.1 43.401 40.973 42.170 2.0 0.1 74.7 40.973 38.681 39.811 72.7 1.9 0.1 38.681 36.517 37.584 70.9 1.9 0.1 36.517 34.475 35.481 69.0 1.8 0.1 33.497 34.475 32.546 67.2 1.8 0.1 32.546 30.726 31.623 65.5 1.7 0.1 30.726 29.007 29.854 63.8 1.7 0.1 29.007 27.384 28.184 62.1 1.7 0.1 27.384 25.852 26.607 60.4 1.7 0.1 25.852 25,119 0.1 24.406 58.7 24.406 23.041 57.1 1.6 0.1 23,714 23.041 21.752 22.387 55.5 0.1 1.6 21.135 19.953 21.752 20 535 53.9 1.6 0.1 20.535 19.387 52.4 0.1 1.5 19.387 18.302 18.836 51.0 1.5 01 18.302 17.783 17.278 49.5 01 1.4 16.788 48.2 17.278 16 312 1.4 0.1 15 849 16.312 15.399 46 8 1.4 01 14.962 15.399 14.538 45.4 1.4 0.1 14.538 13.725 14.125 44.0 1.4 0.1 13.335 13.725 12.957 42.7 1.4 0.1 12.589 12.957 12.232 41.3 1.4 0.1 12.232 11.548 40.0 11.885 1.3 0.1 11.548 10.902 11.220 38.6 1.3 0.1

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1 5200 LSHU V2.01 S/N 110

Page 3

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
10.292	9.716	10.000	36.1	1.2	0.1
9.716	9,173	9.441		1.2	0.1
9.173	8.660	8.913		1.2	0.1
8.660	8.175	8,414	32.6	1.1	0.1
8.175	7.718	7.943	31.4		0.1
7.718	7.286	7.499	30.3	14	0.1
7.286	6.879	7.079	29.1	1.2	0.1
6.879	6.494	6.683	28.0	1.2	0.0
	6.131	6.310	26.8	1.2	
6.494					0.0
6.131	5.788	5.957	25.7	1.1	0.1
5.788	5.464	5.623	24.6	1.1	0.1
5.464	5.158	5.309	23.5	1.1	0.1
5.158	4.870	5.012	22.5		0.1
4.870	4.597		21.5	1.0	0.1
4.597	4.340	4.467	20.6	0.9	0.1
4.340	4.097	4.217	19.6	0.9	0.1
4.097	3.868	3.981	18.7	0.9	0.0
3.868	3.652	3.758	17.8		0.0
3.652	3.447	3.548	16.9	0.9	0.0
3.447	3.255	3.350	16.0	0.9	0.0
3.255	3.073	3.162	15.2	0.9	0.0
3.073	2.901	2.985	14.3	0.8	0.0
2.901	2.738	2.818	13.5	0.8	0.0
2.738	2.585	2.661	12.8	0.8	0.0
2.585	2.441	2.512	12.0	0.7	0.0
2.441	2.304	2.371	11.3		0.0
2.304	2.175	2.239		0.7	0.0
2.175	2.054	2.113	9.9	0.7	0.0
2.054	1.939	1.995	9.3		0.0
1.939	1.830	1.884	8.7	0.6	0.0
1.830	1.728	1.778	8.1	0.6	0.0
1.728	1.631	1.679	7.5	0.6	0.0
1.631	1.540	1.585	6.9		0.0
1.540	1.454	1.496	6.4		0.0
1.454	1.372	1.413	5.8		0.0
1.372	1.296	1.334	5.3	0.5	0.0
1.296	1.223	1.259	4.9	0.5	0.0
1.223	1.155	1.189	4.5	0.4	0.0
1.155	1.090	1.122	4.2	0.3	0.0
1.090	1.029	1.059	3.9		0.0
1.029	0.972	1.000	3.6	0.3	0.0
0.972	0.917	0.944	3.2	0.3	0.0
0.917	0.866	0.891	2.9	0.4	0.0
0.866	0.818	0.841	2.5	0.4	0.0

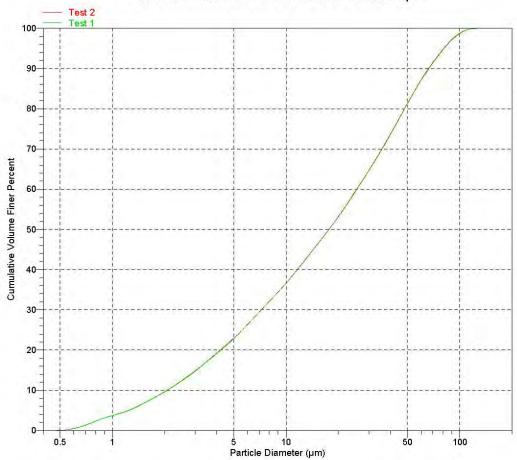
Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110 Page 4

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
0.818	0.772	0.794	2.0	0.4	0.0
0.772	0.729	0.750	1.6	0.4	0.0
0.729	0.688	0.708	1.2	0.4	0.0
0.688	0.649	0.668	0.9	0.4	0.0
0.649	0.613	0.631	0.6	0.3	0.0
0.613	0.579	0.596	0.3	0.2	0.0
0.579	0.546	0.562	0.2	0.2	0.0
0.546	0.516	0.531	0.1	0.1	0.0
0.516	0.487	0.501	0.0	0.1	0.0
0.487	0.460	0.473	0.0	0.0	0.0
0.460	0.434	0.447	0.0	0.0	0.0
0.434	0.410	0.422	0.0	0.0	0.0



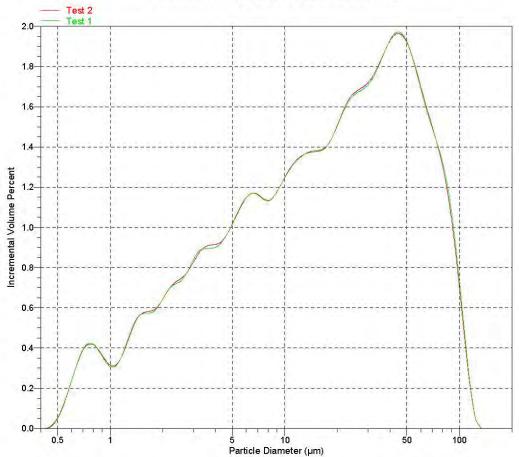
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph



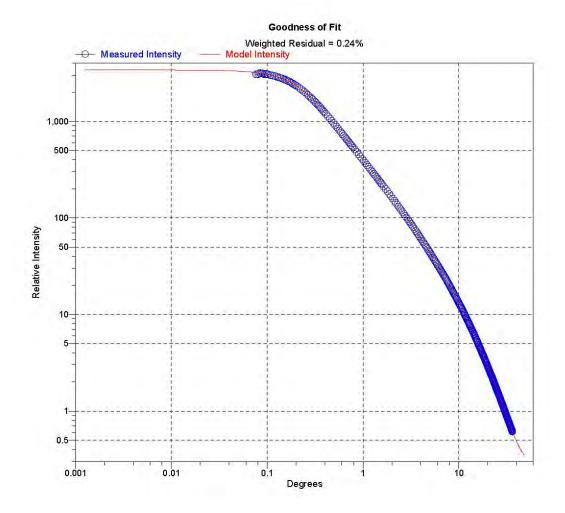
Saturn DigiSizer II 5205 V1.01 52

5200 LSHU V2.01 S/N 110 Page 6

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

Sample: 4211 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104014.SMP

Test Number: 2 Analyzed: 6/25/2011 11:57:09AM Reported: 6/25/2011 12:04:39PM Background: 6/25/2011 10:17:25AM

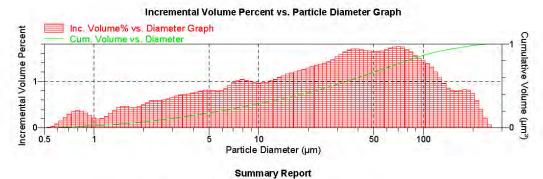
Sample#27-4224

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127


Page 1

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Analysis Conditions

FlowRate: 12.0 l/m Ultrasonic intensity: 100 % Circulation time: Not Used Ultrasonic time: 60 sec

Sample

Sample Concentration: 0.02422 % Obscuration: 40.3 %

Weighted Statistics (Volume Distribution)

	Std Dev of 2			Std Dev of 2
45.584	0.322	Mode	70.709	0.000
27.859	0.281			
ntiles by Volum	ne			
Diameter	(µm)			
115.82	18			
27.85	9			
2 72	5			
	27.859 ntiles by Volun Diameter 115.82 27.85	45.584 0.322	45.584 0.322 Mode 27.859 0.281 ntiles by Volume Diameter (μm) 115.828 27.859	45.584 0.322 Mode 70.709 27.859 0.281 ntiles by Volume Diameter (μm) 115.828 27.859

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
258.523	244.062	251.189	99.9	0.1	0.0
244.062	230.409	237.137	99.7	0.2	0.0
230.409	217.520	223.872	99.3	0.4	0.0
217.520	205.353	211.349	98.8	0.6	0.0
205.353	193.865	199.526	98.0	0.7	0.0
193.865	183.021	188.365	97.2	0.8	0.1
183.021	172.783	177.828	96.4	0.8	0.1
172,783	163.117	167,880	95.6		0.1
163.117	153.993	158.489	94.8	0.8	0.2
153.993	145.378	149.624	94.0	0.8	0.2
145.378	137.246	141,254	93.2	0.9	0.2
137,246	129.569	133.352	92.2	1.0	0.1
129.569	122.321	125.893	91.1	1.1	0.1
122.321	115.478	118.850		1.2	0.1
115.478	109.018	112.202	88.6		0.1
109.018	102.920	105.925	87.3	1.4	0.1
102.920	97.163	100.000	85.8	1.4	0.1
97.163	91.728	94.406	84.3	1.5	0.1
91,728	86.596	89,125	82.7	1.6	0.2
86.596	81.752	84.140	81.1	1.6	0.2
81.752	77.179	79.433	79.4	1.7	0.2
77.179	72.862	74.989		1.7	0.2
72.862	68.786	70.795	75.9	1.8	0.2
68,786	64.938	66.834	74.2	1.7	0.2
64.938	61.306	63.096	72.5	1.7	0.2
61.306	57.876	59.566	70.8	1.7	0.2
57.876	54.639	56.234		1.7	0.2
54,639	51.582	53.088		1.6	0.2
51.582	48.697	50.119		1.6	0.2
48.697	45.973	47.315		1.7	0.2
45.973	43.401	44.668	62.5	1.7	0.2
43.401	40.973	42.170	60.8	1.7	0.2
40.973	38.681	39.811	59.1	1.7	0.2
38.681	36.517	37.584	57.5	1.7	0.3
36.517	34.475	35.481	55.8	1.7	0.3
34.475		33.497	54.1	1.6	0.3
32.546		31.623	52.6	1.6	0.3
30.726	29.007	29.854	51.0	1.5	0.3
29.007	27.384	28.184	49.6	1.5	0.3

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		report by	and the second second second second		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
27.384	25.852	26.607	48.1	1.4	0.3
25.852	24.406	25.119	46.8	1.4	0.3
24.406	23.041	23.714	45.4	1.4	0.3
23.041	21.752	22.387	44.0	1.3	0.3
21.752	20.535	21.135	42.7	1.3	0.3
20.535	19.387	19.953	41.4	1.3	0.3
19.387	18.302	18.836	40.2	1.3	0.3
18.302	17.278	17.783	38.9	1.2	0.3
17.278	16.312	16.788	37.7	1.2	0.2
16.312	15.399	15.849	36.6	1.2	0.2
15.399	14.538	14.962	35.4	1.2	0.2
14.538	13.725	14.125	34.3	1.1	0.2
13.725	12.957	13.335	33.2	1.1	0.2
12.957	12.232	12.589	32.1	1.0	0.2
12.232	11.548	11.885		1.0	0.2
11.548	10.902	11.220	30.1	1.0	0.2
10.902	10.292	10.593	29.2	1.0	0.2
10.292	9.716	10.000	28.2	1.0	0.2
9.716	9.173	9.441	27.3	1.0	0.2
9.173	8.660	8.913	26.3	1.0	0.2
8.660	8.175	8.414	25.3	1.0	0.2
8.175	7.718	7.943	24.2	1.0	0.2
7.718	7.286	7.499	23.2	1.0	0.2
7.286	6.879	7.079	22.2	1.0	0.2
6.879	6.494	6.683	21.3	0.9	0.2
6.494	6.131	6.310	20.5	0.8	0.2
6.131	5.788	5.957	19.7	0.8	0.2
5.788	5.464	5.623	18.9	0.8	0.2
5.464	5.158	5.309	18.1	0.8	0.1
5.158	4.870	5.012	17.3		0.1
4.870	4.597	4.732	16.5	0.8	0.1
4.597	4.340	4.467		0.8	0.1
4.340	4.097	4.217	14.9	0.8	0.1
4.097	3.868	3.981	14.3	0.3	0.1
3.868	3.652	3.758			0.1
3.652	3.447	3.548	12.7	0.7	0.1
3.447	3.255	3.350	12.0	0.7	0.1
3.255	3.073	3.350	12.0		0.1
3.073	2.901	2.985	10.7	0.7	0.1
3.075	2.901	2.985	10.7	0.7	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 4

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		reportay			
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.901	2.738	2.818	10.1	0.6	0.1
2,738	2.585	2.661	9.5	0.6	0.1
2.585	2.441	2.512	8.9	0.6	0.1
2.441	2.304	2.371	8.3		0.1
2.304	2.175	2.239	7.7	0.6	0.1
2.175	2.054	2.113	7.2	0.5	0.1
2.054	1.939	1.995	6.7	0.5	0.1
1.939	1.830	1.884	6.2	0.5	0.1
1.830	1.728	1.778		0.4	0.1
1.728	1.631	1.679	5.3	0.4	0.1
1.631	1.540	1.585	4.9	0.5	0.1
1.540	1.454	1.496	4.4	0.5	0.1
1.454	1.372	1.413	4.0	0.4	0.1
1.372	1.296	1.334	3.6	0.4	0.1
1.296	1.223	1.259	3.3	0.3	0.1
1.223	1.155	1.189	3.0	0.2	0.1
1.155	1.090	1.122	2.8	0.2	0.0
1.090	1.029	1.059	2.7	0.2	0.0
1.029	0.972	1.000	2.4	0.2	0.0
0.972	0.917	0.944	2.2	0.3	0.0
0.917	0.866	0.891	1.9	0.3	0.0
0.866	0.818	0.841	1.5	0.4	0.0
0.818	0.772	0.794	1.1	0.4	0.1
0.772	0.729	0.750	0.8	0.4	0.1
0.729	0.688	0.708	0.5	0.3	0.1
0.688	0.649	0.668	0.3	0.2	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.0	0.1	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

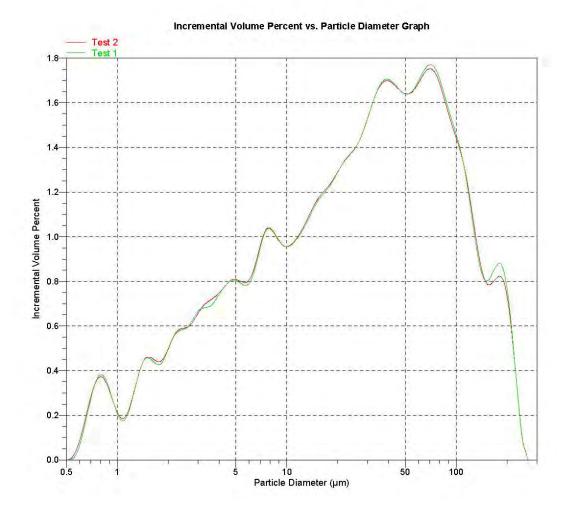
5200 LSHU V3.00 S/N 127

Page 5

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 53

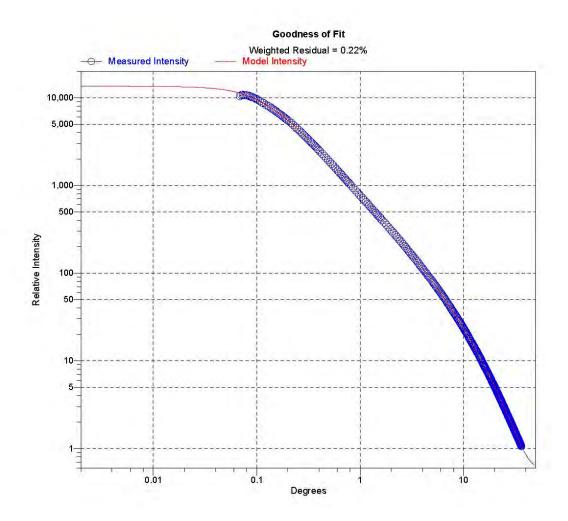
5200 LSHU V3.00 S/N 127

Page 6

Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C.\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

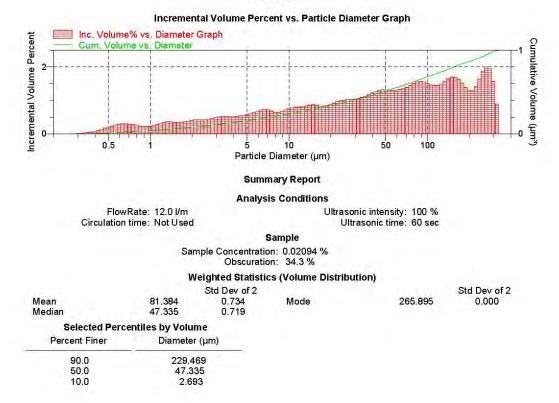
Sample: 4224 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104015.SMP

Test Number: 2 Analyzed: 6/25/2011 11:45:42AM Reported: 6/25/2011 12:02:01PM Background: 6/25/2011 10:27:50AM

Sample#28-4226

Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110


Page 1

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

V1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Hìgh Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
325,462	307.256	316.228	99.1	0.9	0.0
307.256	290.068	298,538	97.6	1.6	0.0
290.068	273.842	281,838	95.6	1.9	0.1
273.842	258.523	266.073	93.6	2.0	0.1
258.523	244.062	251.189	91.7	1.9	0.2
244.062	230,409	237.137	90.1	1.6	0.2
230,409	217.520	223.872	88.7		0.2
217,520	205,353	211,349	87.4	1.3	0.2
205.353	193.865	199.526	86.1	1.3	
193.865	183.021	188.365	84.7	1.4	0.2
183.021	172,783	177.828	83.2	1.5	0.2
172.783	163.117	167.880	81.5	1.6	0.2
163.117	153.993	158,489	79.8		0.2
153.993	145.378	149.624	78.1	1.7	0.3
145.378	137,246	141,254		1.6	0.3
137.246	129,569	133,352	74.9	1.6	0.3
129.569	122.321	125.893	73.4	1.5	0.3
122.321	115.478		72.0	1.4	0.3
115.478	109.018	112.202	70.5	1.4	0.3
109.018	102,920	105,925	69.1	1.5	0.3
102.920	97.163	100.000	67.6	1.5	0.3
97.163	91.728	94,406	66.0	1.5	
91.728	86.596	89,125	64.5	1.6	
86.596	81.752	84.140	62.9	1.5	0.4
81.752	77.179	79,433	61.4	1.5	0.4
77.179	72.862	74.989	60.0	1.5	0.4
72.862	68.786	70.795	58.6		0.4
68.786	64.938	66.834	57.2	1.4	0.4
64.938	61.306	63.096	55.9	1.3	
61.306	57.876	59,566	54.6	1.3	
57.876	54.639	56.234	53.3	1.3	0.4
54,639	51.582	53.088	52.0	1.3	0.3
51.582	48.697	50.119	50.6	1.3	0.3
48.697	45.973	47.315	49.3	1.3	0.3
45.973	43.401	44.668	48.0	1.3	0.3
43.401	40.973	42.170	46.8	1.3	0.3
40.973	38.681	39,811	45.6	1.2	0.3
38.681	36.517	37.584	44.4	1.2	0.3
36.517	34.475	35,481	43.2	1,1	0.3
34.475	32.546	33,497	42.2	1.1	0.3
32.546	30.726	31.623	41.1	1.1	0.3
30.726	29.007	29.854	40.1	1.0	0.3
29.007	27.384	28.184	39.0	1.0	0.3
27.384	25.852	26.607	38.0	1.0	0.3

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

/1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM

		Report by	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
25.852	24,406	25,119	37.0	1.0	0.3
24,406	23.041	23,714	36.0	1.0	0.3
23.041	21.752	22.387	35.0	1.0	0.3
21.752	20.535	21,135	34.1	0.9	0.3
20.535	19.387	19.953	33.2	0.9	0.
19.387	18.302	18,836	32.4		0.3
18,302	17.278	17,783		0.8	0.
17.278	16.312	16,788	30.7	0.8	0.
16.312	15.399	15.849			0.
15,399	14.538	14,962			0.
14.538	13,725	14,125	28.1	0.9	0.3
13.725	12.957	13.335		0.8	0.
12.957	12.232	12.589	26.5	0.8	0.
12.232	11.548	11.885	25.7	0.8	0.
11.548	10.902	11.220	24.9	0.8	Ū.
10,902	10.292	10,593	24.1	0.8	0.
10.292	9.716	10.000	23.3	0.8	Ő.
9,716	9,173	9.441	22.6	0.7	Ŭ.
9.173	8.660	8,913	21.9		0.
8,660	8.175	8,414	21.3	0.6	Ŭ.
8.175	7.718	7.943	20.7	0.6	0.
7.718	7.286	7.499	20.0	0.7	0.
7.286	6.879	7.079	19.3	0.7	Ŭ.
6.879	6.494	6.683	18.5	0.7	Ő.
6.494	6.131	6.310	17.8	0.7	Ŭ.
6.131	5.788	5.957	17.1	0.7	Ő.
5.788	5.464	5.623	16.5	0.6	0.
5.464	5,158	5,309	15.9	0.6	0.
5,158	4.870	5.012	15.3		Ō.
4.870	4.597	4,732	14.7	0.6	0.
4.597	4.340	4.467	14.2	0.5	0.
4.340	4.097	4.217	13.7	0.5	0.
4.097	3,868	3,981	13.2	0.5	0.
3.868	3.652	3,758		0.5	0.
3.652	3.447	3.548	12.1	0.5	0.
3.447	3.255	3,350		0.5	Ō.
3.255	3.073	3.162	11.1	0.5	Ū.
3.073	2.901	2,985	10.6	0.5	0.
2.901	2.738	2.818	10.1	0.5	0.
2.738	2.585	2.661	9.7	0.4	Ŭ.
2.585	2.441	2.512	9.3	0.4	0.
2.441	2.304	2.371	8.9	0.4	0.
2.304	2.175	2.239	8.4	0.4	0. 0.
2.175	2.054	2.113	8.0	0.4	0.

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

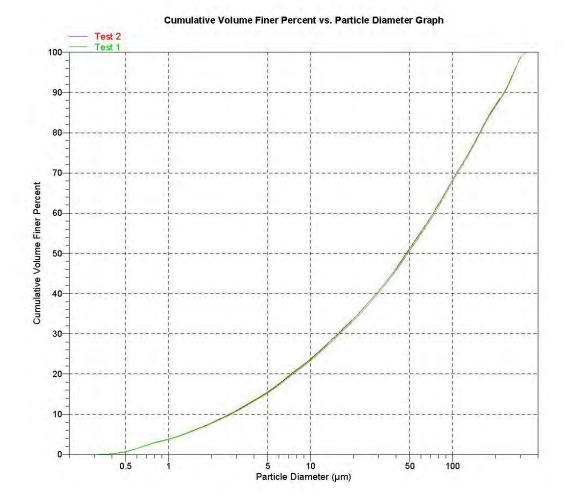
.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM

Report by Size Class							
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)		
2.054	1.939	1.995	7.6	0.4	0.1		
1.939	1.830	1.884	7.2	0.4	0.1		
1.830	1.728	1.778	6.9	0.4	0.1		
1.728	1.631	1,679	6.5	0.3	0.1		
1.631	1.540	1.585	6.2	0.3	0.1		
1.540	1.454	1.496	5.8	0.3	0.1		
1.454	1.372	1.413	5.5	0.4	0.1		
1.372	1.296	1.334	5.1	0.4	0.0		
1.296	1.223	1.259	4.8	0.3	0.0		
1.223	1.155	1.189	4.5	0.3	0.0		
1.155	1.090	1.122	4.2	0.3	0.0		
1.090	1.029	1.059	3.9	0.2	0.0		
1.029	0.972	1.000	3.7	0.2	0.0		
0.972	0.917	0.944	3.5	0.2	0.0		
0.917	0.866	0.891	3.3	0.2	0.0		
0.866	0.818	0.841	3.0		0.0		
0.818	0.772	0.794	2.8	0.3	0.0		
0.772	0.729	0.750	2.5	0.3	0.0		
0.729	0.688	0.708	2.2	0.3	0.0		
0.688	0.649	0.668	1.9	0.3	0.0		
0.649	0.613	0.631	1.6	0.3	0.0		
0.613	0.579	0.596		0.3	0.0		
0.579	0.546	0.562	1.0	0.3	0.0		
0.546	0.516	0.531	0.8	0.2	0.0		
0.516	0.487	0.501	0.6	0.2	0.0		
0.487	0.460	0.473	0.4	0.2	0.0		
0.460	0.434	0.447	0.3	0.1	0.0		
0.434	0.410	0.422	0.2	0.1	0.0		
0.410	0.387	0.398	0.1	0.1	0.0		
0.387	0.365	0.376	0.1	0.1	0.0		
0.365	0.345	0.355	0.0	0.0	0.0		
0.345	0.325	0.335	0.0	0.0	0.0		
0.325	0.307	0.316	0.0	0.0	0.0		
0.307	0.290	0.299	0.0	0.0	0.0		
0.290	0.274	0.282	0.0	0.0	0.0		
0.274	0.259	0.266	0.0	0.0	0.0		
0.259	0.244	0.251	0.0	0.0	0.0		

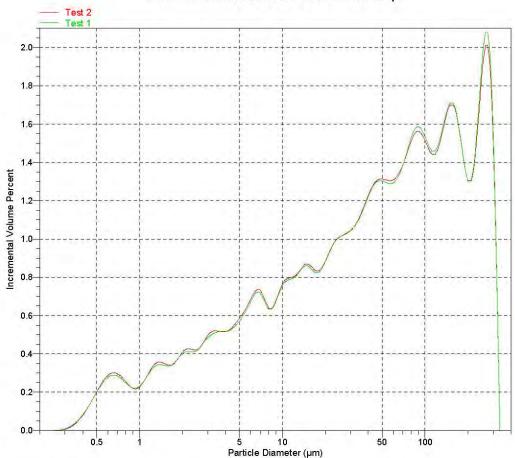


Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM



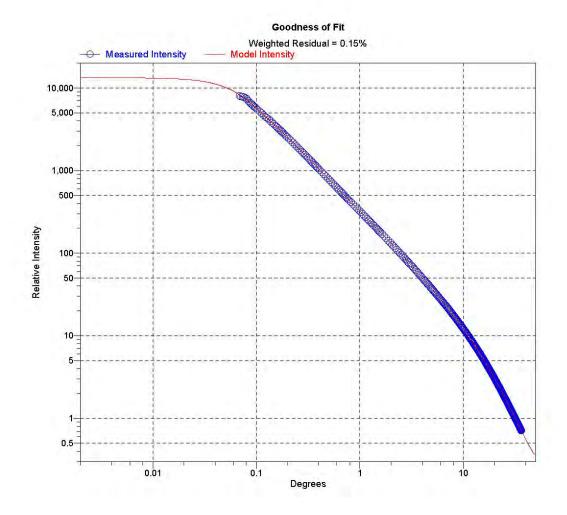
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 6

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph



Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 7

Sample: 4226 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104016.SMP

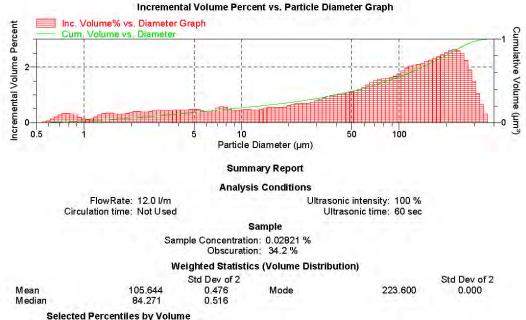
Test Number: 2 Analyzed: 6/25/2011 12:33:50PM Reported: 6/25/2011 12:49:01PM Background: 6/25/2011 10:17:25AM

Sample#29-4458

Micromeritics Instrument Corporation

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSI


5200 LSHU V3.00 S/N 127

Page 1

Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Percent Finer	Diameter (µm)	
90.0	244.325	
50.0	84.271	
10.0	3,770	

Saturn DigiSizer II 5205 V1.01

Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 2

Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
365.174	344.747	354.813	99.7	0.3	0.0
344.747	325.462	334.965	99.1	0.6	0.1
325.462	307.256	316.228	98.0	1.0	0.1
307.256	290.068	298.538	96.5	1.5	0.0
290.068	273.842	281.838	94.7	1.9	0.1
273.842	258.523	266.073	92.4	2.2	0.2
258.523	244.062	251.189	90.0	2.5	0.2
244.062	230.409	237.137	87.4	2.6	0.3
230.409	217.520	223.872	84.7	2.6	0.4
217.520	205.353	211.349	82.1	2.6	0.4
205.353	193.865	199.526	79.6	2.5	0.4
193.865	183.021	188.365	77.1	2.5	0.4
183.021	172.783	177.828	74.7	2.4	0.4
172.783	163.117	167.880	72.4	2.3	0.3
163.117	153.993	158.489	70.2	2.3	0.3
153.993	145.378	149.624	68.0	2.2	0.2
145.378	137.246	141.254	65.8	2.1	0.1
137.246	129.569	133.352	63.7	2.1	0.1
129.569	122.321	125.893	61.7	2.1	0.0
122.321	115.478	118.850	59.6	2.0	0.0
115.478	109.018	112.202	57.7	2.0	0.0
109.018	102.920	105.925	55.8	1.9	0.0
102.920	97.163	100.000	54.0	1.8	0.1
97.163	91.728	94.406	52.4	1.7	0.1
91.728	86.596	89.125	50.7	1.6	0.2
86.596	81.752	84.140	49.2		0.2
81.752	77.179	79.433	47.6	1.6	0.2
77.179	72.862	74.989	46.0	1.6	0.2
72.862	68.786	70.795	44.5	1.5	0.1
68.786	64.938	66.834	43.1	1.4	0.1
64.938	61.306	63.096	41.7	1.4	0.1
61.306	57.876	59.566	40.5	1.3	0.1
57.876	54.639	56.234	39.3		0.1
54.639	51.582	53.088	38.1	1.1	0.1
51.582	48.697	50.119	37.0	1.1	0.1
48.697	45.973	47.315	35.9	1.1	0.1
45.973	43.401	44.668	34.9	1.1	0.1
43.401	40.973	42.170	33.8	1.0	0.1
40.973	38.681	39.811	32.8	1.0	0.1

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 3

Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
38.681	36.517	37.584	31.9	1.0	0.1
36.517	34.475	35.481	30.9	0.9	0.1
34.475	32.546	33.497	30.0	0.9	0.1
32.546	30.726	31.623	29.2	0.8	0.1
30.726	29.007	29.854	28.4	0.8	0.1
29.007	27.384	28.184	27.6	0.7	0.1
27.384	25.852	26.607	26.9	0.7	0.1
25.852	24.406	25.119	26.2	0.7	0.1
24.406	23.041	23.714	25.6	0.7	0.0
23.041	21.752	22.387	24.9	0.7	0.0
21.752	20.535	21.135	24.2	0.6	0.0
20.535	19.387	19.953	23.6	0.6	0.0
19.387	18.302	18.836	23.1	0.6	0.0
18.302	17.278	17.783	22.5	0.5	0.0
17.278	16.312	16.788	22.0	0.5	0.0
16.312	15.399	15.849	21.4	0.5	0.0
15.399	14.538	14.962	20.9	0.5	0.0
14.538	13.725	14.125	20.4	0.5	0.0
13.725	12.957	13.335	19.9	0.5	0.0
12.957	12.232	12.589	19.4	0.5	0.0
12.232	11.548	11.885	19.0	0.5	0.0
11.548	10.902	11.220	18.5	0.5	0.0
10.902	10.292	10.593	18.0	0.5	0.0
10.292	9.716	10.000	17.6	0.4	0.0
9.716	9.173	9.441	17.2	0.4	0.0
9.173	8.660	8.913	16.7	0.4	0.0
8.660	8.175	8.414	16.2	0.5	0.0
8.175	7.718	7.943	15.7	0.5	0.0
7.718	7.286	7.499	15.1	0.6	0.0
7.286	6.879	7.079	14.6	0.5	0.0
6.879	6.494	6.683	14.2	0.4	0.0
6.494	6.131	6.310	13.8	0.4	0.0
6.131	5.788	5,957	13.4	0.4	0.0
5.788	5.464	5.623	13.0	0.4	0.0
5.464	5.158	5.309	12.5	0.5	0.0
5.158	4.870	5.012	12.0	0.5	0.0
4.870	4.597	4.732	11.5	0.5	0.0
4.597	4.340	4.467	11.1	0.5	0.0
4.340	4.097	4.217	10.6	0.4	0.0

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01 5200 LSHU V3.00 S/N 127

Page 4

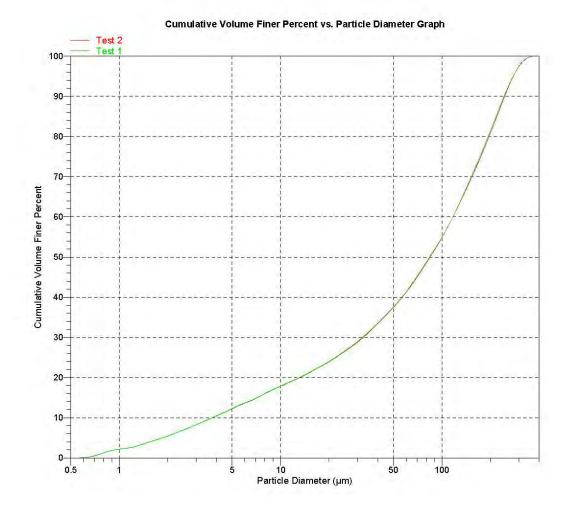
Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM

Model: (1.570, 0.100000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
4.097	3.868	3.981	10.2	0.4	0.0
3.868	3.652	3,758	9.8	0.4	0.0
3.652	3.447	3.548	9.3	0.4	0.0
3.447	3.255	3,350	8.9	0.4	0.0
3.255	3.073	3.162	8.4	0.4	0.0
3.073	2.901	2,985	8.0	0.4	0.
2.901	2.738	2.818	7.6	0.4	0.0
2.738	2.585	2.661	7.2	0.4	0.
2.585	2.441	2.512	6.8	0.4	0.
2.441	2.304	2.371	6.4	0.4	0.
2.304	2.175	2.239	6.0	0.4	0.
2.175	2.054	2.113	5.6	0.4	0.1
2.054	1.939	1.995	5.2	0.4	0.
1.939	1.830	1.884	4.9	0.3	0.
1.830	1.728	1.778	4.6	0.3	0.
1,728	1.631	1.679	4.3	0.3	0.1
1.631	1.540	1.585	4.0	0.3	0.
1.540	1.454	1.496	3.6	0.3	0.)
1.454	1.372	1.413	3.3	0.4	0.
1.372	1.296	1.334	3.0	0.3	0.
1.296	1.223	1.259	2.7	0.3	0.
1.223	1.155	1.189	2.5	0.2	0.
1.155	1.090	1.122	2.4	0.1	0.
1.090	1.029	1.059	2.2	0.1	0.
1.029	0.972	1.000	2.1	0.1	0.
0.972	0.917	0.944	1.9	0.2	0.
0.917	0.866	0.891	1.7	0.2	0.
0.866	0.818	0.841	1.4	0.3	0.
0.818	0.772	0.794	1.0	0.3	0.
0.772	0.729	0.750	0.7	0.3	0.
0.729	0.688	0.708	0.4	0.3	0.
0.688	0.649	0.668	0.2	0.2	0.
0.649	0.613	0.631	0.1	0.1	0.
0.613	0.579	0.596	0.0	0.1	0.
0.579	0.546	0.562	0.0	0.0	0.
0.546	0.516	0.531	0.0	0.0	0.
0.516	0.487	0.501	0.0	0.0	0.

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

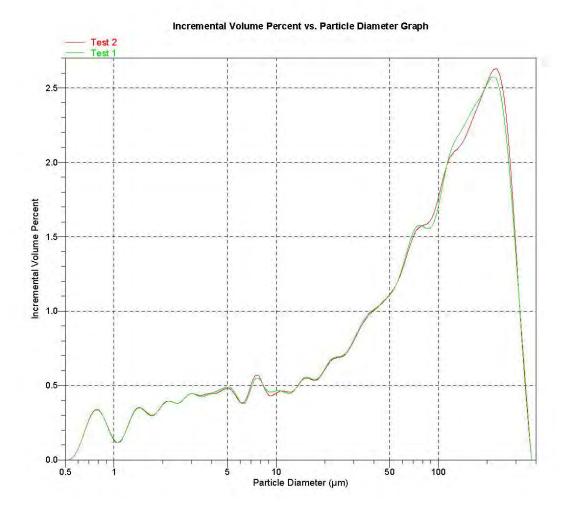
5200 LSHU V3.00 S/N 127

Page 5

Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01 5

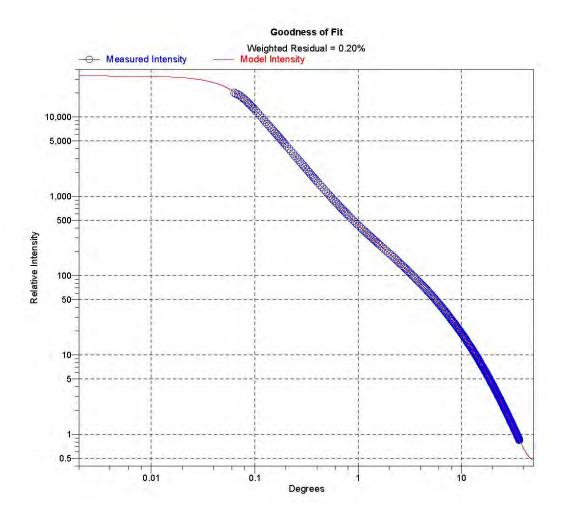
5200 LSHU V3.00 S/N 127

Page 6

Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM

Saturn DigiSizer II 5205 V1.01


Saturn DigiSizer II 5205 V1.01

5200 LSHU V3.00 S/N 127

Page 7

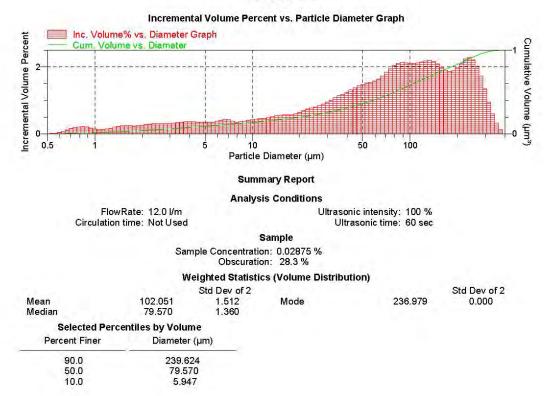
Sample: 4458 Operator: TN/NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104017A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:04:16PM Reported: 6/25/2011 1:16:29PM Background: 6/25/2011 10:27:50AM

Sample#30-4515

Saturn DigiSizer II 5205 V1.01

5200 LSHU V2.01 S/N 110


Page 1

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM

Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Combined Report

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

1.01 5200 LSHU V2.01 S/N 110

Page 2

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		icoboic by			Contract of the second s
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
386.812	365.174	375.837	99.9	0.1	0.0
365.174	344.747	354.813	99.6	0.3	0.1
344.747	325.462	334,965	99.0	0.6	0.1
325.462	307.256	316.228	98.0	0.9	0.2
307.256	290.068	298.538		1.3	0.3
290.068	273.842		95.0	1.7	0.3
273.842	258.523	266.073	92.9	2.0	0.3
258.523	244.062	251.189	90.7	2.2	0.3
244.062	230.409	237.137	88.4	2.3	0.3
230.409	217.520	223.872	86.2	2.2	0.3
217.520	205.353	211.349	84.1	2.1	0.4
205.353	193.865	199.526	82.1	2.0	0.4
193.865	183.021	188.365	80.2	1.9	0.5
183.021	172.783	177.828	78.4	1.9	0.6
172.783	163.117	167.880	76.5	1.9	0.7
163.117	153.993	158.489	74.5	2.0	0.8
153.993	145.378	149.624	72.4	2.1	0.9
145.378	137.246	141.254	70.2	2.2	0.9
137.246	129.569	133.352	68.0	2.2	0.9
129.569	122.321	125.893	65.8	2.2	0.9
122.321	115.478	118.850	63.7	2.1	0.8
115.478	109.018	112.202	61.6	2.1	0.8
109.018	102.920	105.925	59.5	2.1	0.8
102.920	97.163	100.000	57.3	2.1	0.8
97.163	91.728	94.406	55.2	2.1	0.7
91.728	86.596	89.125	53.1	2.1	0.7
86.596	81.752	84.140	51.0	2.1	0.6
81.752	77.179	79.433	48.9	2.0	0.6
77.179	72.862	74.989	47.0	2.0	0.5
72.862	68.786	70.795	45.1	1.8	0.5
68.786	64.938	66.834	43.4	1.7	0.4
64.938	61.306	63.096	41.8	1.6	0.4
61.306	57.876	59.566	40.2	1.6	0.4
57.876	54.639	56.234	38.6	1.5	0.4
54.639	51.582	53.088	37.1	1.5	0.4
51.582	48.697	50.119	35.6	1.5	0.3
48.697	45.973	47.315	34.2	1.4	0.3
45.973	43.401	44.668	32.8	1.4	0.3
43.401	40.973	42.170	31.5	1.3	0.3
40.973	38.681	39.811		1.2	0.3
38.681	36.517	37.584	29.1	1.2	0.3
36.517	34.475	35.481	27.9	1.1	0.3
34.475	32.546	33.497	26.9	1.1	0.2
32.546	30.726	31.623	25.9	1.0	0.2

Report by Size Class

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

/1.01 5200 LSHU V2.01 S/N 110

Page 3

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM

Report by Size Class						
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)	
30.726	29.007	29.854	24.9	1.0	0.2	
29.007	27.384	28,184	24.0	0.9	0.2	
27.384	25.852	26.607	23.2	0.8	0.2	
25.852	24.406	25,119		0.8		
24.406	23.041	23.714			0.2	
23.041	21.752	22.387	20.8	0.8	0.2	
21,752	20.535	21,135	20.8	0.7	0.2	
20.535	19.387	19,953		0.6	0.2	
19.387	18.302	18.836	18.9	0.6	0.2	
18.302	17.278	17.783	18.3	0.6	0.2	
17.278	16.312	16.788	17.7	0.6	0.2	
16.312	15.399	15.849	17.2	0.6	0.2	
15.399	14.538	14.962	16.6	0.6	0.2	
14.538	13.725	14.962	16.1	0.6		
13,725	12.957	13.335	15.6	0.5	0.2	
12.957			15.6	0.5		
	12.232	12.589			0.1	
12.232	11.548	11.885	14.6	0.5	0.1	
11.548	10.902	11.220	14.2	0.5	0.1	
10.902	10.292	10.593	13.8			
10.292	9.716	10.000	13.3	0.4	0.1	
9.716	9.173	9.441	12.9	0.4	0.1	
9.173	8.660	8.913	12.6		0.1	
8.660	8.175	8.414	12.2	0.4	0.1	
8.175	7.718	7.943	11.8	0.4	0.1	
7.718	7.286	7.499	11.5	0.4	0.1	
7.286	6.879	7.079	11.0	0.4	0.1	
6.879	6.494	6.683	10.6	0.4	0.1	
6.494	6.131	6.310	10.2	0.4	0.1	
6.131	5.788	5.957		0.4	0.1	
5.788	5.464	5.623	9.5	0.4	0.1	
5.464	5.158	5.309		0.3	0.1	
5.158	4.870	5.012		0.3		
4.870	4.597	4.732	8.4	0.3	0.1	
4.597	4.340	4.467		0.3	0.1	
4.340	4.097	4.217	7.7	0.4	0.1	
4.097	3.868	3.981	7.4	0.4	0.1	
3.868	3.652	3.758		0.4	0.1	
3.652	3.447	3.548	6.7	0.4	0.1	
3.447	3.255	3.350	6.3	0.3		
3.255	3.073	3.162	6.0	0.3	0.1	
3.073	2.901	2.985	5.7	0.3	0.1	
2.901	2.738	2.818	5.4	0.3	0.1	
2.738	2.585	2.661	5.1	0.3	0.1	
2.585	2.441	2.512	4.8	0.3	0.1	

Saturn DigiSizer II 5205 V1.01 Saturn DigiSizer II 5205 V1.01

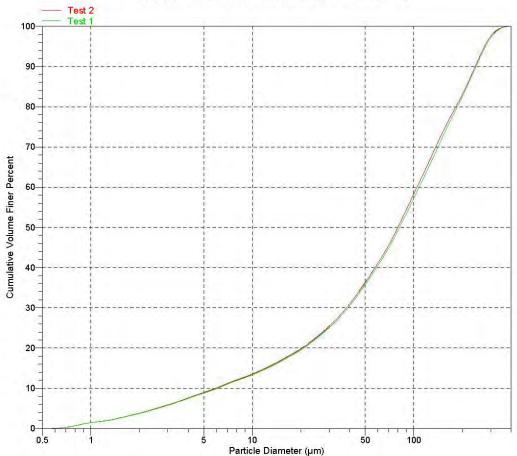
5205 V1.01 5200 LSHU V2.01 S/N 110

Page 4

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

		кероп ру	Size Class		
High Particle Diameter (µm)	Low Particle Diameter (µm)	Average Particle Diameter (µm)	Cumulative Volume Finer Percent	Incremental Volume Percent	Cumulative Volume Percent (StdDev)
2.441	2.304	2.371	4.5	0.3	0.0
2.304	2.175	2.239	4.2	0.3	0.0
2.175	2.054	2.113	3.9	0.3	0.0
2.054	1.939	1.995	3.7	0.3	0.0
1.939	1.830	1.884	3.4	0.2	0.0
1.830	1.728	1.778	3.2	0.2	0.0
1.728	1.631	1.679	3.0	0.2	0.0
1.631	1.540	1.585	2.7	0.2	0.0
1.540	1.454	1.496	2.5	0.2	0.0
1.454	1.372	1.413	2.3	0.2	0.0
1.372	1.296	1.334	2.1	0.2	0.0
1.296	1.223	1.259	1.9	0.2	0.0
1.223	1.155	1.189	1.8	0.1	0.0
1.155	1.090	1.122	1.6	0.1	0.0
1.090	1.029	1.059	1.5	0.1	0.0
1.029	0.972	1.000	1.4	0.1	0.0
0.972	0.917	0.944	1.2	0.2	0.0
0.917	0.866	0.891	1.0	0.2	0.0
0.866	0.818	0.841	0.8	0.2	0.0
0.818	0.772	0.794	0.6	0.2	0.0
0.772	0.729	0.750	0.4	0.2	0.0
0.729	0.688	0.708	0.2	0.2	0.0
0.688	0.649	0.668	0.1	0.1	0.0
0.649	0.613	0.631	0.1	0.1	0.0
0.613	0.579	0.596	0.0	0.0	0.0
0.579	0.546	0.562	0.0	0.0	0.0
0.546	0.516	0.531	0.0	0.0	0.0
0.516	0.487	0.501	0.0	0.0	0.0



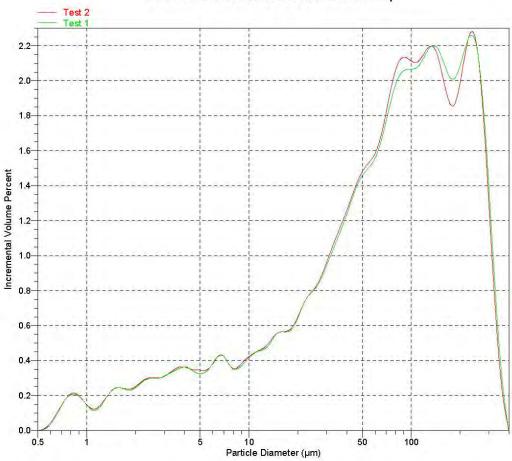
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 5

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Cumulative Volume Finer Percent vs. Particle Diameter Graph


Saturn DigiSizer II 5205 V1.01

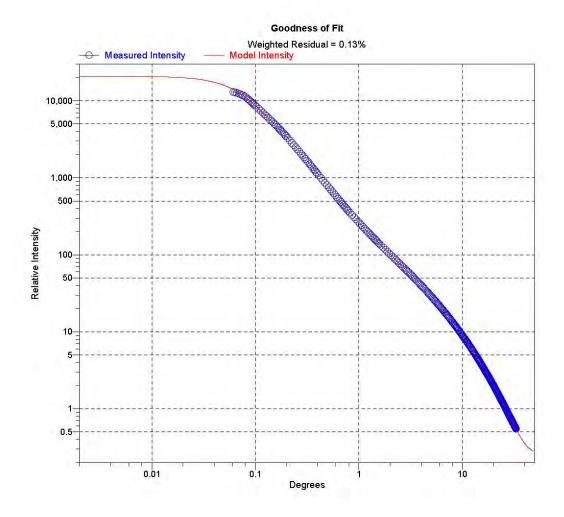
Saturn DigiSizer II 5205 V1.01 5200 LSHU V2.01 S/N 110

Page 6

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

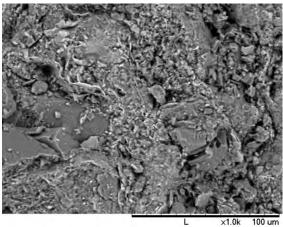
Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

Incremental Volume Percent vs. Particle Diameter Graph

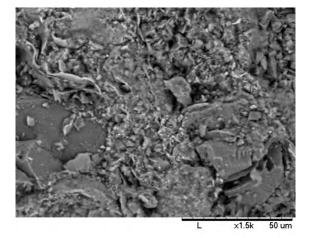

Saturn DigiSizer II 5205 V1.01

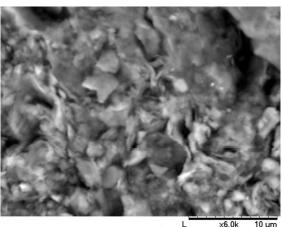
Saturn DigiSizer II 5205 V1.01 52

5200 LSHU V2.01 S/N 110 Page 7

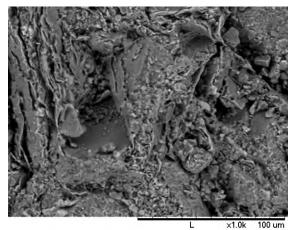

Sample: 4515 Operator: NMT Submitter: Brooklyn College of CUNY File: C:\...\06JUN\1104018A.SMP

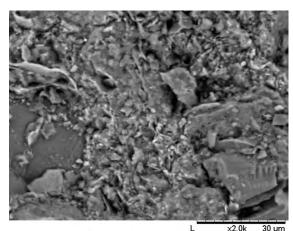
Test Number: 2 Analyzed: 6/25/2011 1:44:19PM Reported: 6/25/2011 2:00:16PM Background: 6/25/2011 10:17:25AM Model: (1.570, 0.1000000), 1.331 Material: Sediment / Water Background: Water RI 1.331 Smoothing: Medium

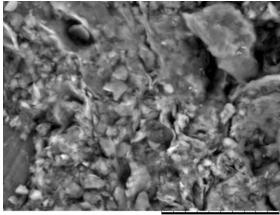


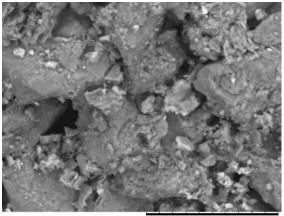

APPENDIX F: SEM MEASUREMENTS

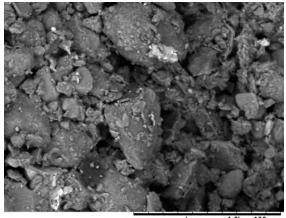
Sample #1 -120

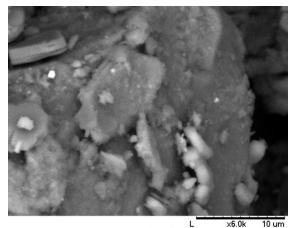


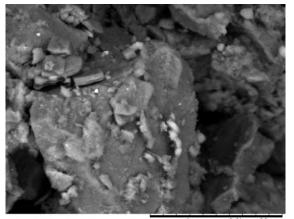


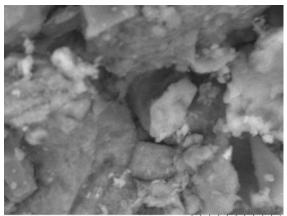

×6.0k 10 um


100 um ×1.0k

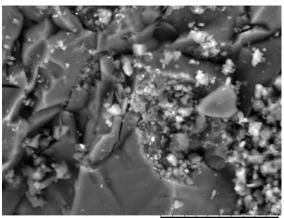

×2.0k 30 um

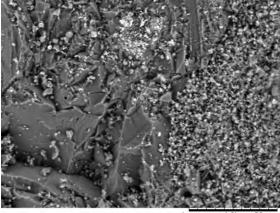

×4.0k 20 um


50 um ×1.8

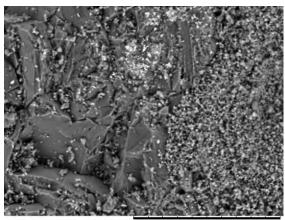

×1.0k 100 um

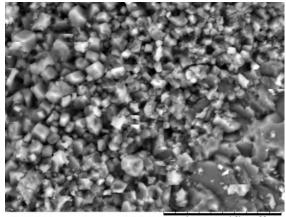
10 um ×6.0k

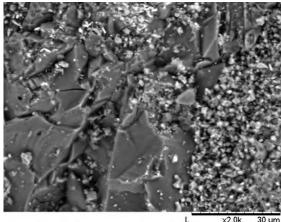

×3.0k 30 um


×6.0k 10 um

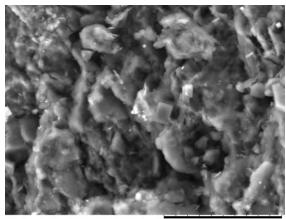
L


Sample #3 – 601

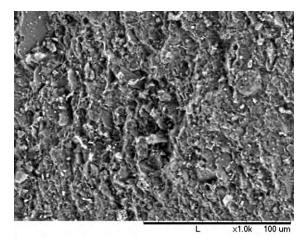

x4.0k 20 um

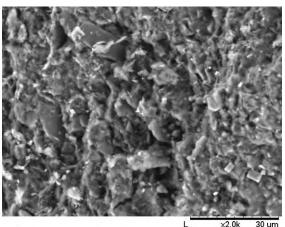

×1.2 50 um

×1.0 100

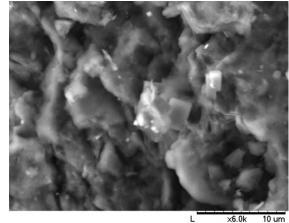


20 um ×4.0k

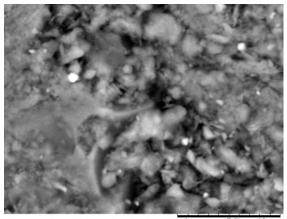


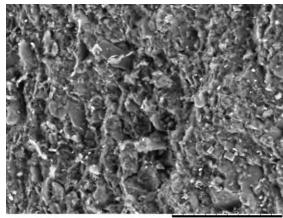

×2.0

Sample#4 – 868

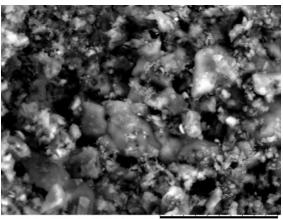


20 um <4.0k

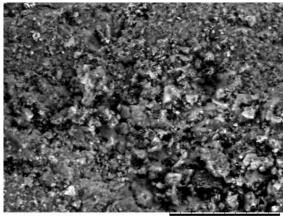



×2.0k 30 um

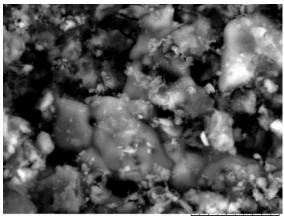
×6.0k 10 um

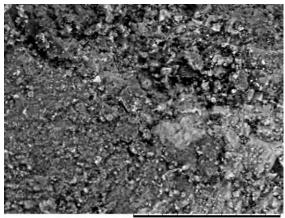


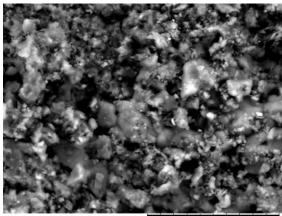
×7.0k 10 um



50 um ×1.5

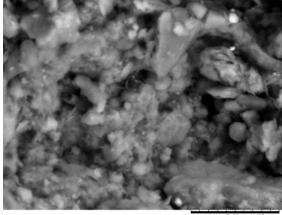

Sample#5 -878


×4.0k 20 um

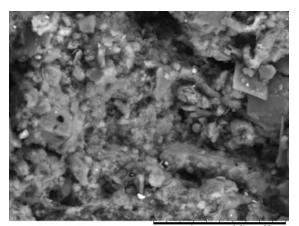

_ ×1.5k 50 um

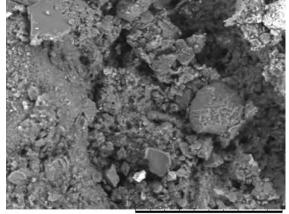
×6.0k 10 un

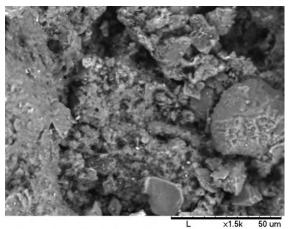
×1.0k 100 um

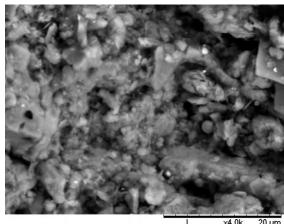


×3.0k 30 um

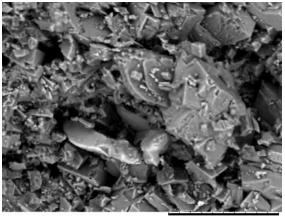

Sample#6 – 900


×6.0k 10 um

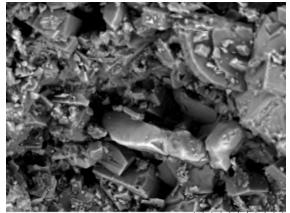

×6.0k 10 um


x3.0k 30 um

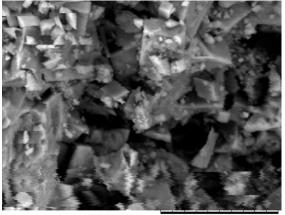
100 um ×1.0k



×1.5k

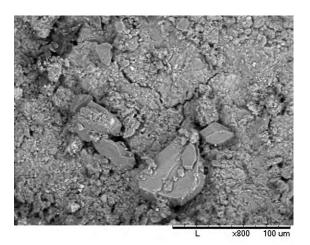


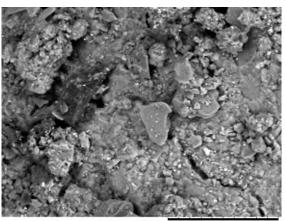
20 um ×4.0k


Sample#7 – 1081

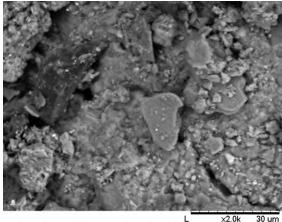
×1.5k 50 um

×2.0k 30 um

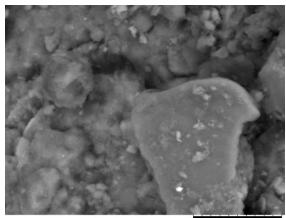


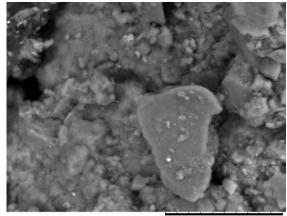

×4.0k 20 um

Sample#8 – 1461

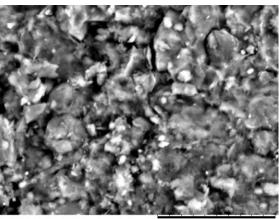

n/a

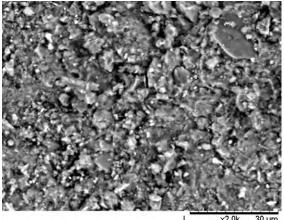
Sample#9 – 1712

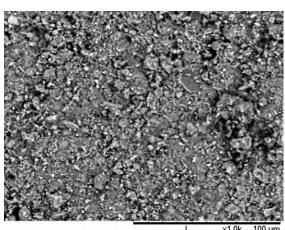



×1.5k 50 um

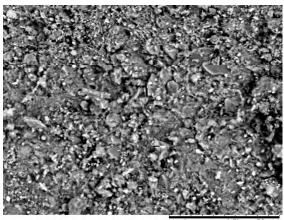
x2.0k 30 um

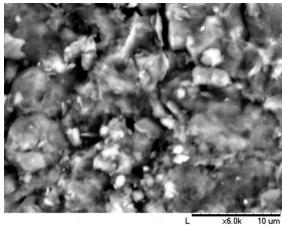



×6.0k 10 um

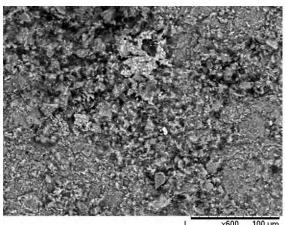

20 um ×4.0k

Sample#10 - 2177

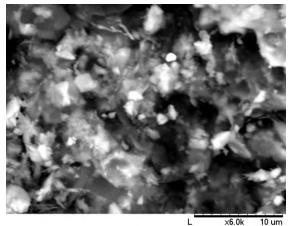



×2.0

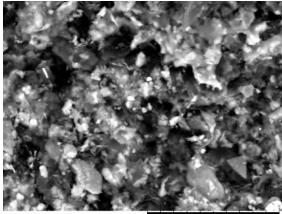
×1.0k 100 un

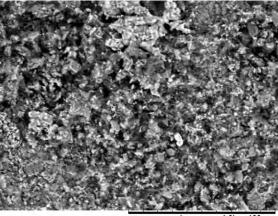


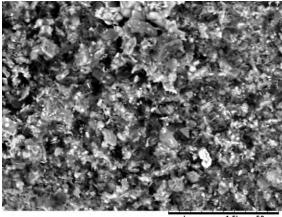
×1.5k 50 um

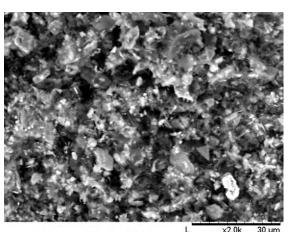


×6.0k 10 um

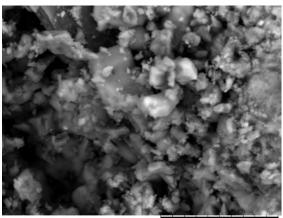

Sample#11 -2472



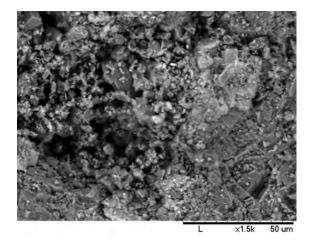

×6.0k 10 um

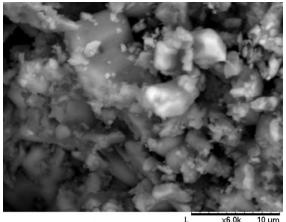

30 um

100 um

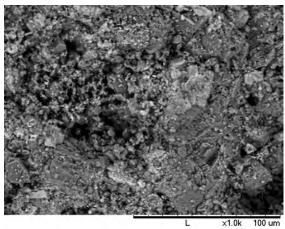


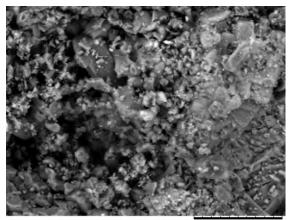
50 um

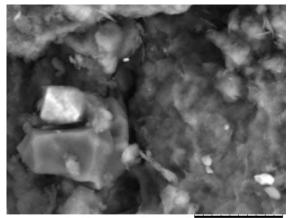


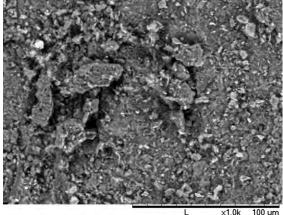

×2.0 30 um

Sample#12 – 2609

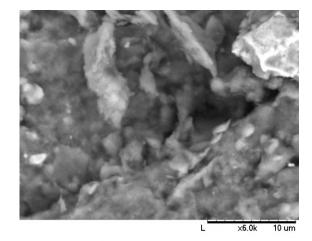


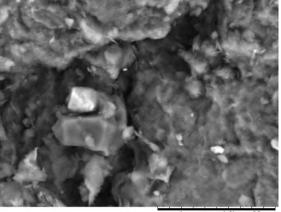

×4.0k 20 um


10 um ×6.0

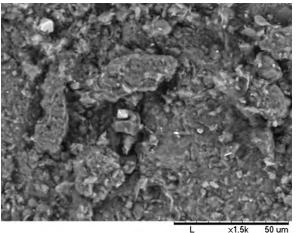


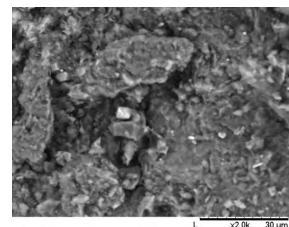
x2.0k 30 um


Sample#13 – 3088

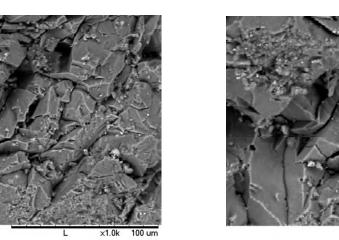


×6.0k 10 um

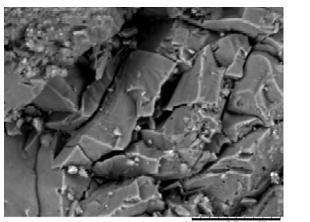




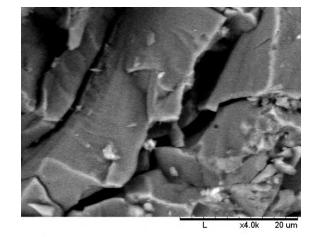
×4.0k 20 um

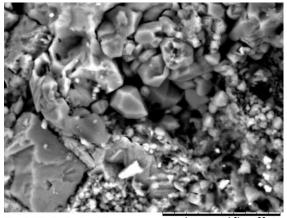


×1.5k 50 um

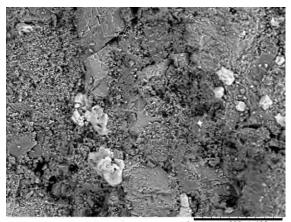


×2.0 30 um

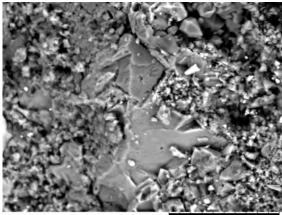

Sample#14 – 3115

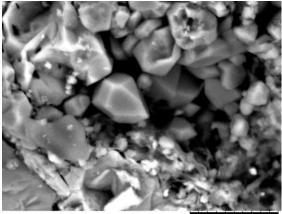


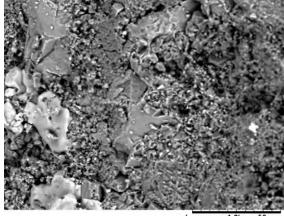
×1.5k 50 um



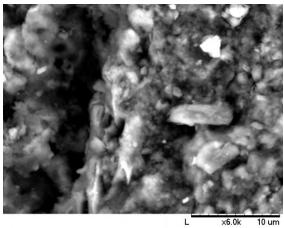
×2.0k 30 um



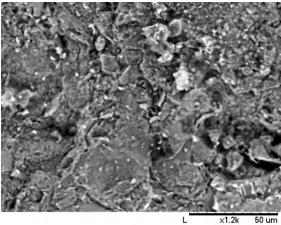

L x4.0k 20 um


×600 100 um

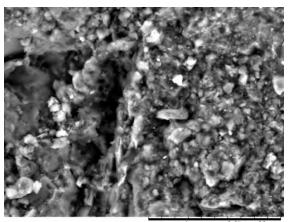
×2.5k 30 um

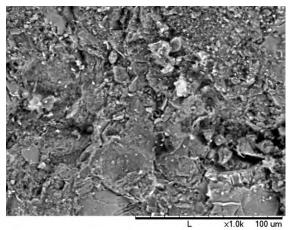


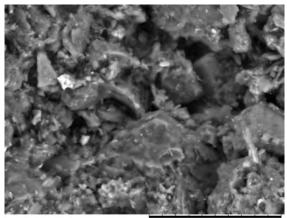
×6.0k 10 um

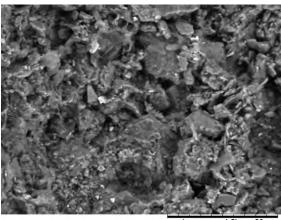


x1.2k 50 um

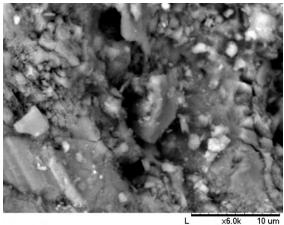

Sample#16 – 3141


×6.0k 10 um

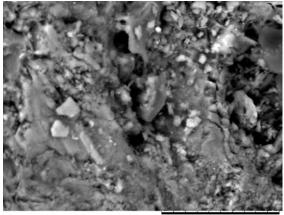

×1.2k 50 um


30 um ×3.0

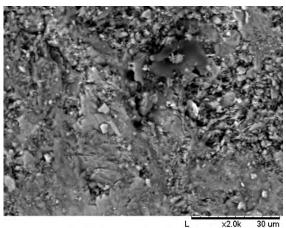
×1.0k 100 um



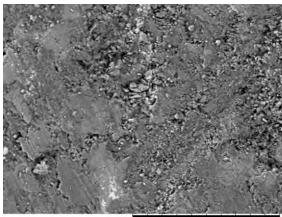
×3.0 30 um

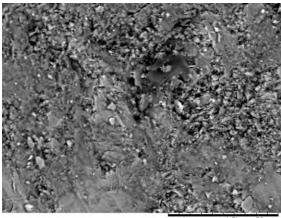


×1.5k 50 um

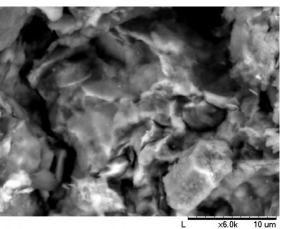

Sample#17 - 3146

×6.0k 10 um

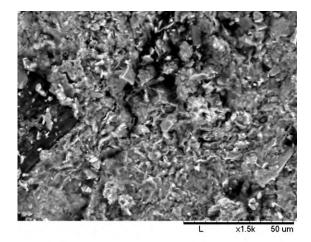

×4.0k 20 um

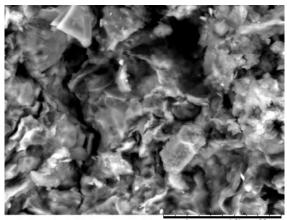

×2.0k

×6.0k

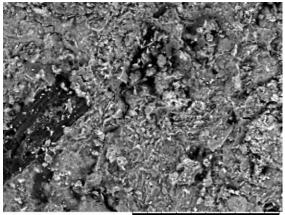


×1.0k 100 um

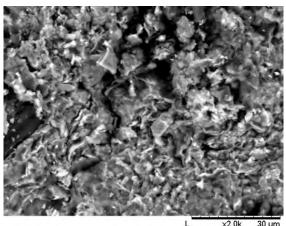


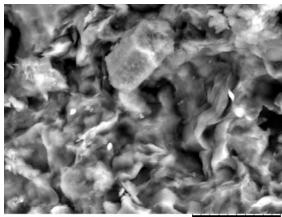

50 um ×1.5k

Sample#18 – 3149

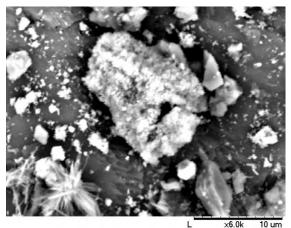


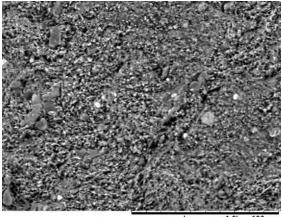
×6.0k 10 um



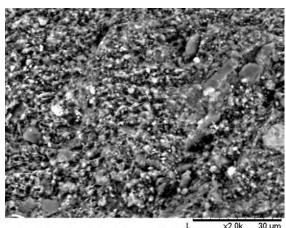

×4.0k 20 um

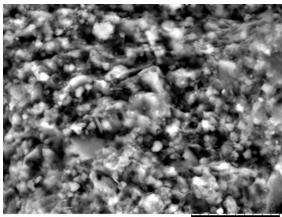
x1.0k 100


×2.0k 30 um

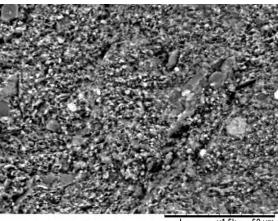

×6.0k 10 um

L

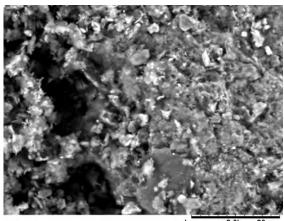

Sample#19 - 3150

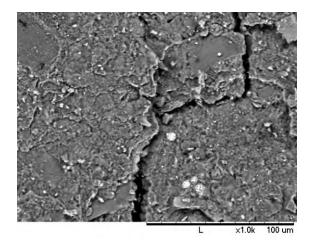


×1.0k 100 um

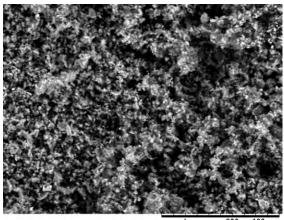


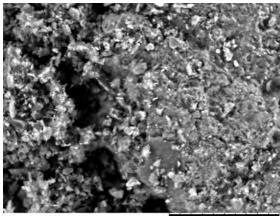
x2.0130 um


×6.0k 10 um

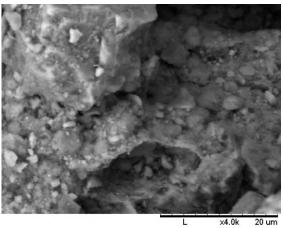


×1.5 50 um

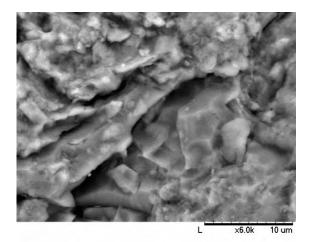

Sample#21 - 3780

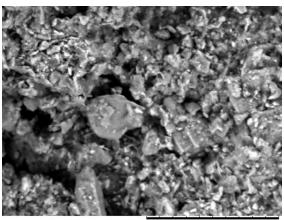

×2.0k 30 um

×6.0k 10 um

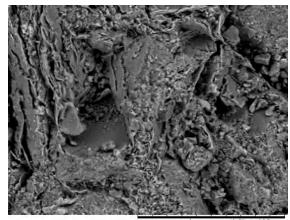


×800 100 um

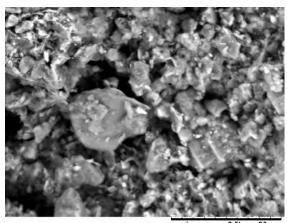


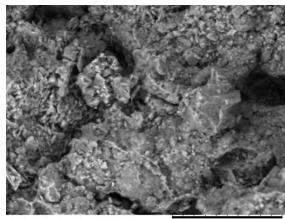

×1.5k 50 um

Sample#22 – 3952

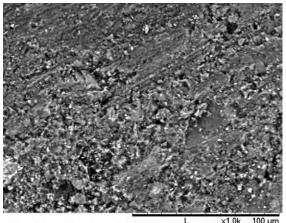


×4.0k

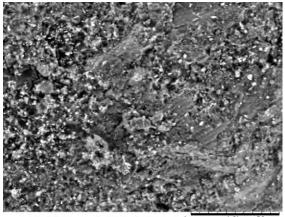



x1.8 50 um

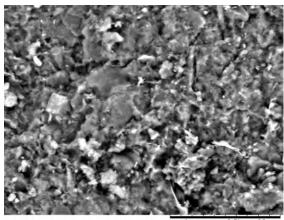
100 um ×1.0k

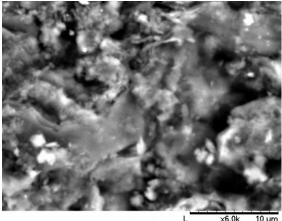


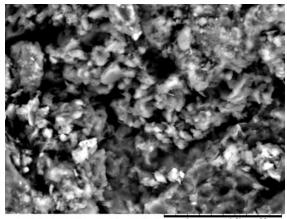
×2.5k 30 um

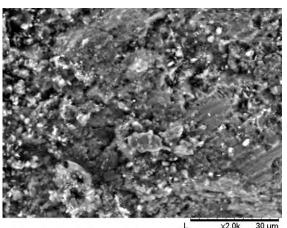


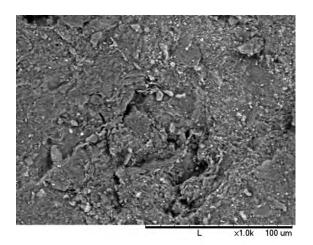
×1.5k 50 um

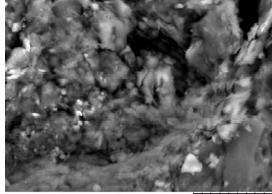

Sample#23 - 3979



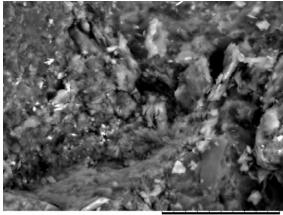

×1.2k 50 um


×2.5 30 um

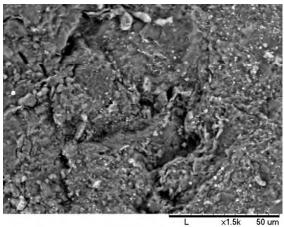

×6.0k 10 um

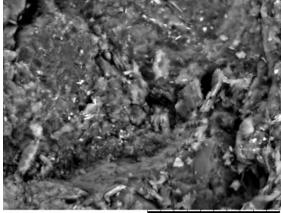


×4.0k 20 um

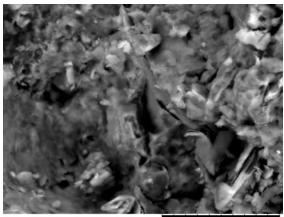


30 um ×2.0k

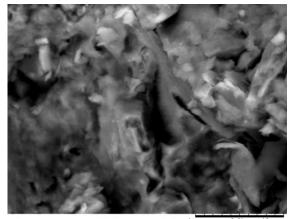



×6.0k 10 um

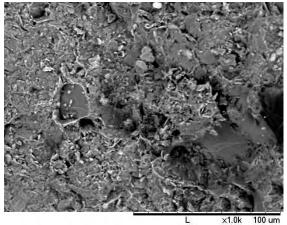
20 um ×4.0k

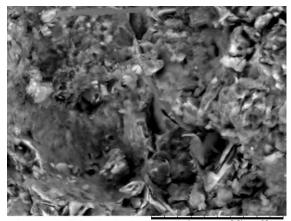


×1.5k

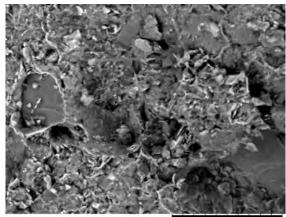


×3.0k 30 um

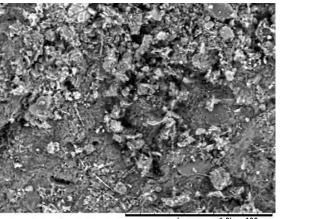

Sample#25 – 4164

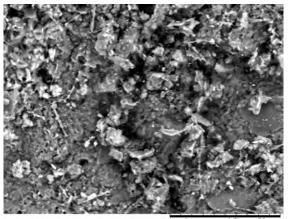


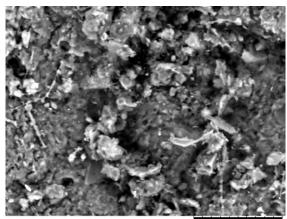
20 um ×4.0



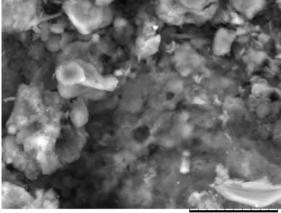
×6.0k 10 um



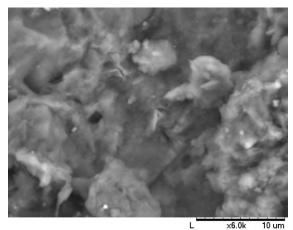

×3.0k 30 um


×1.5k 50 um

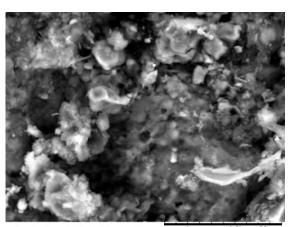
100 um x1.0k

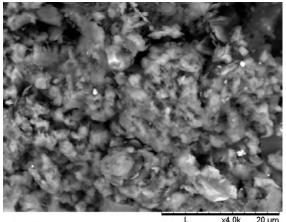


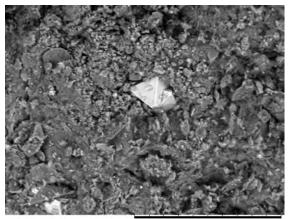
x1.5k 50 um

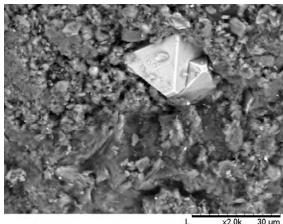


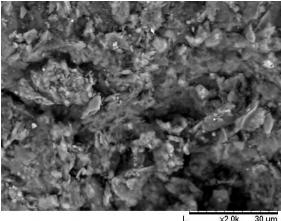
×2.0k 30 um

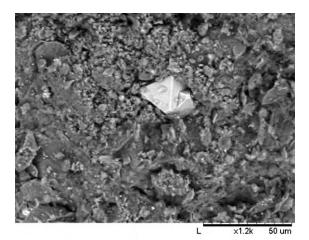

L

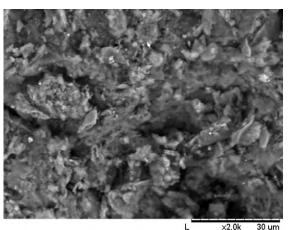

10 um ×6.0k


×6.0k 10 um

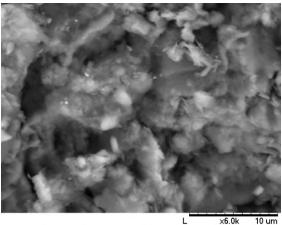

×4.0k 20 um

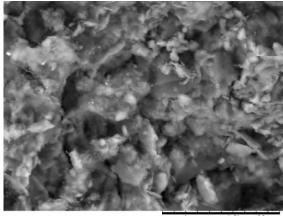

×4.0


×1.0k 100 um

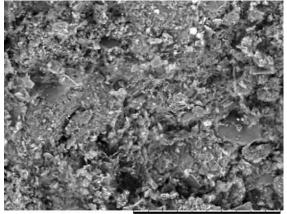


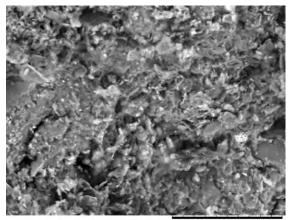
×2.0k 30 um


×2.0k 30 um



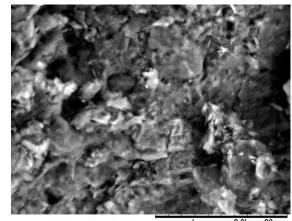
×2.0k 30 um


Sample#28 – 4226

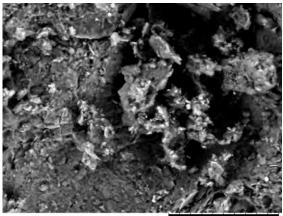

×6.0k 10 um

×4.0k 20 um

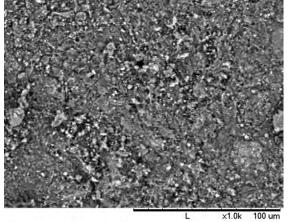
100 um

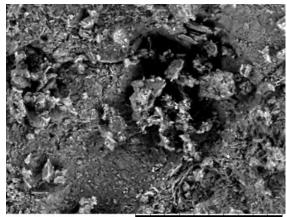


×1.5k 50

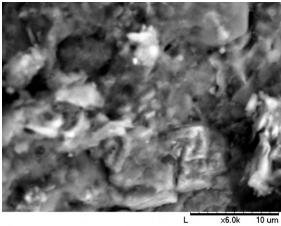


x2.0k 30 um

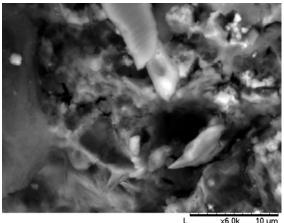

Sample#29 – 4458


×3.0k 30 um

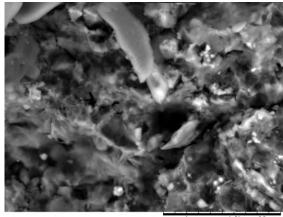
×1.5k 50 um



×1.0k

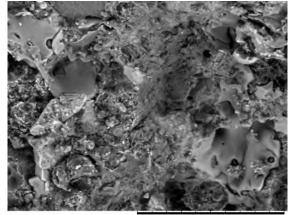

×1.0k 100 um

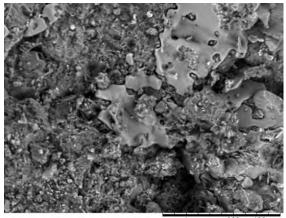
L

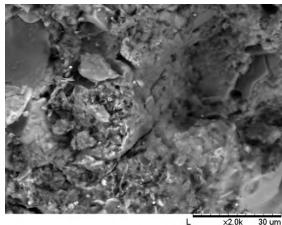


×6.0k 10 um

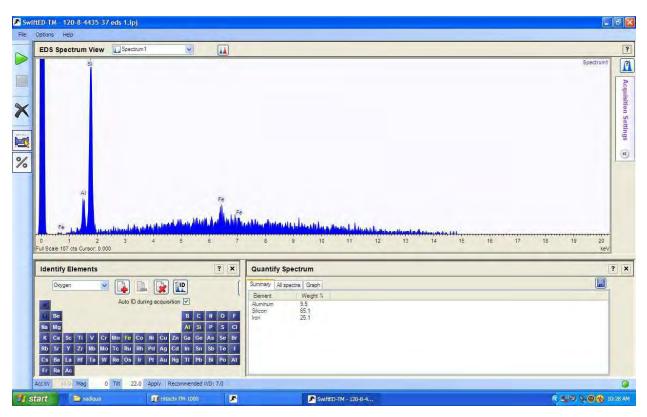

Sample#30 - 4515

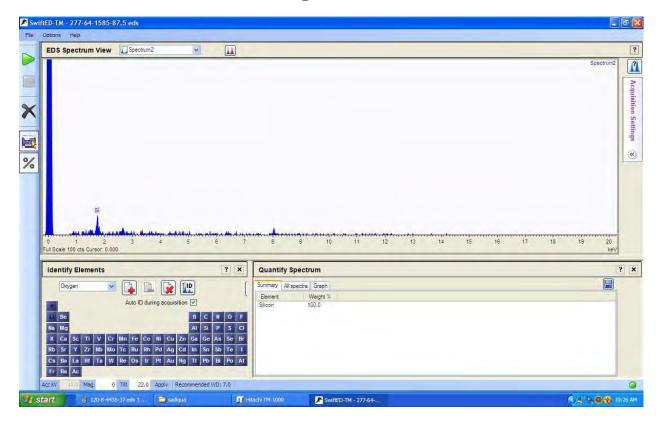

×6.0k 10 um


x4.0k 20 um

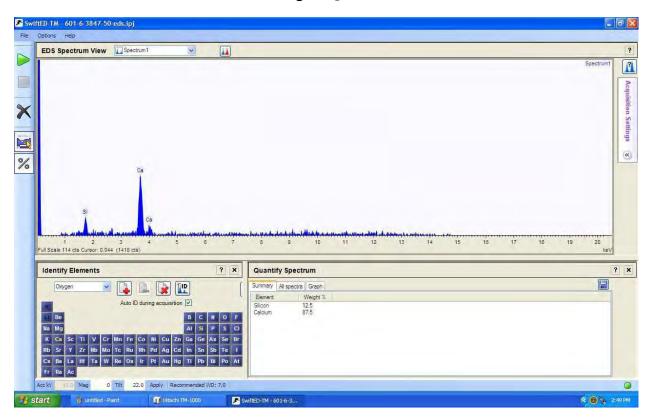

×1.5 50 um

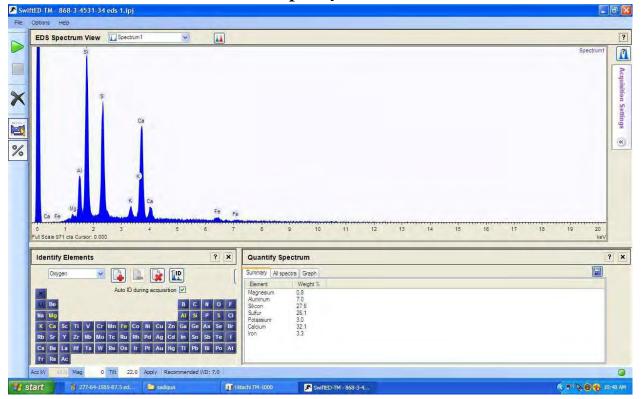
×1.0k 100 um


×800 100 um

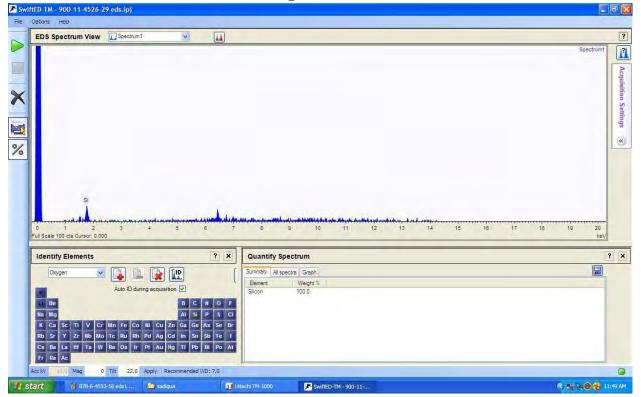

×2.0k 30 um

APPENDIX G – EDS MEASUREMENTS


Sample#1 - 120


Sample#2 - 277

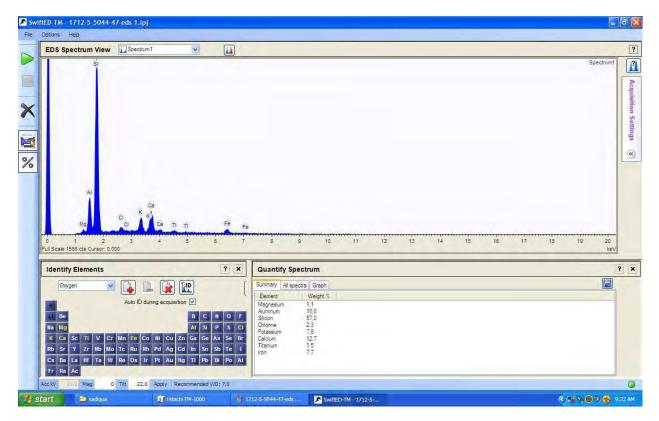
Sample#3 - 601


Sample#4 - 868

Sample#5 - 878

EDS Spectrum View Spectrum2		
		Spectrum2
si		
CI		
Al C 0 1 2 3 4 5 Ul Scale 100 cts Cursor: 0.000	Contract of the second secon	16 17 18 19 20 kel
All C 0 1 2 3 4 5 ul Scale 100 cla Cursor: 0.000	6 7 8 9 10 11 12 13 14 15 ? X Quantify Spectrum Summary All spectre Graph	ke ¹
Al Colores de la	6 7 8 9 10 11 12 13 14 15	ke/
Al C 1 2 3 4 5 Ul Scale 100 cts Cursor: 0.000 Identify Elements Daygen Auto ID during acquisition IV Auto ID during acquisition IV Be B	6 7 8 9 10 11 12 13 14 15 Quantify Spectrum [Summay All spectra Graph Beinent Weight %	ke/
Al C 1 2 3 5 5 1 2 4 5 1 2 4 5 5 1 2 4 5 1 2 4 5	5 7 8 9 10 11 12 13 14 15 ? X Quantify Spectrum Image: Complexity of the system of the sy	ke/
Al C 0 1 2 3 4 5 10 Scale 100 cts Cursor: 0.000 Identify Elements Daygen Carbon Auto ID during acquisition V Auto ID during acquisition V	5 7 8 9 10 11 12 13 14 15 ? X Quantify Spectrum Summary All spectra Graph Berrert Weight % Auminum 9.3 Silcon 9.0 Chiome 50.7 As See Br Br 50.7 50.7 50.7 50.7	ke/

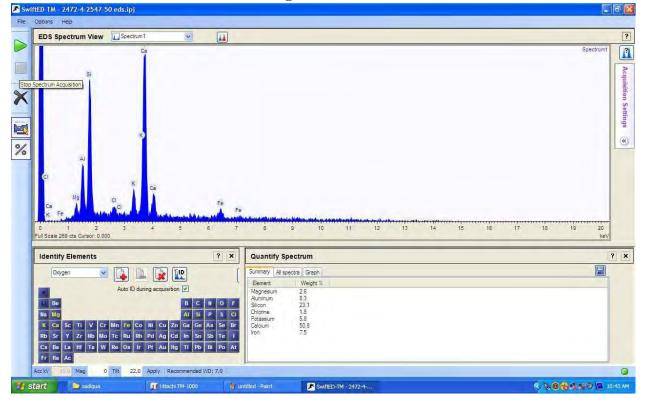
Sample#6 – 900

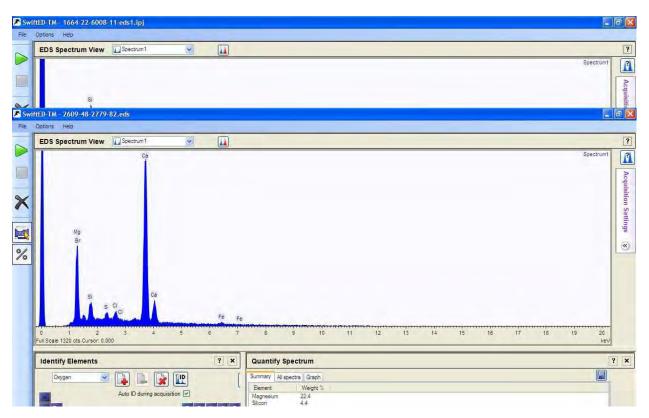

Sample#7 – 1081

n/a

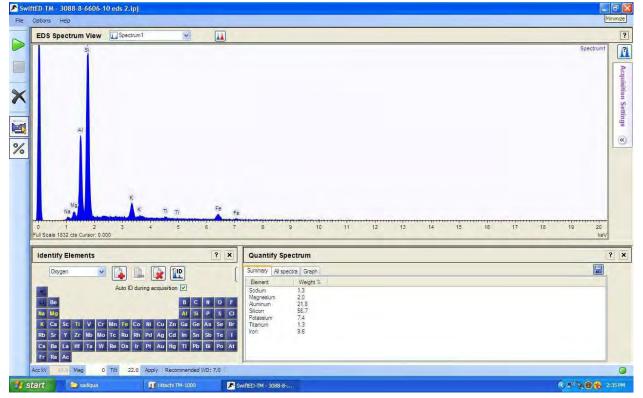
Sample#8 – 1461

n/a

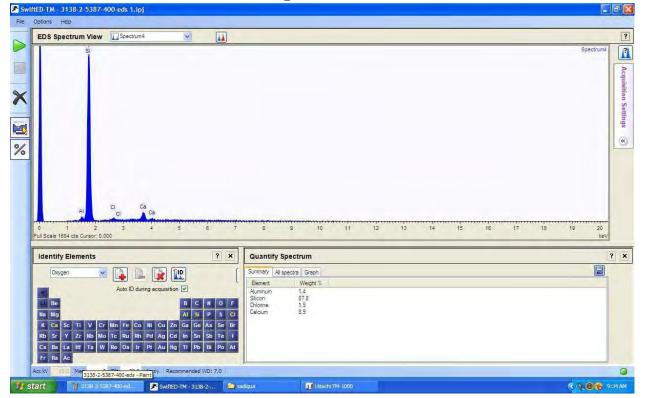

Sample#9 – 1712


Sample#10 - 2177

Options Help EDS Spectrum View Spectrum1	1	
EDS Spectrum View Spectrum1	<u>)</u>	Spectrum1
SI K		
к Са Му Fe 0 1 2 3 4 5 6 ViScale 124 cts Cursor: 0.000	Fe 7 6 9 10 11 12 13 14	15 16 17 18 19 20 key
Mg 0 1 2 3 4 5 6 Tull Scale 1244 cts Cursor; 0.000	NAME AND ADDRESS OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS OF TAXAB	keV
Mg FE 0 1 2 3 4 5 6 Full Scale 1244 cts Cursor: 0.000 Identify Elements ? ?	7 6 9 10 11 12 13 14	
Mg Fe 0 1 2 3 4 5 6 Tull Scale 1244 cts Cursor: 0.000 Identify Elements ?	7 8 9 10 11 12 13 14	keV
Mg Fe 0 1 2 3 4 5 6 VIII Scale 1244 cts Cursor: 0.000 Identify Elements 1 <	7 8 9 10 11 12 13 14 X Quantify Spectrum Image: Complexity Spectrum	keV
Mg Fr 0 1 2 3 4 5 6 full Scale 1244 cts Cursor: 0.000 1 1 7 1 Identify Elements ? ? ? Oxygen Image: Comparison of the second state of the seco	7 8 9 10 11 12 13 14 X Quantify Spectrum Summary All spectral Graph Benerit Weight % Benerit Weight % Magnesium 1.3 Auminum 10.9 Silcon 24.0 Pitassium 5.2 Column 5.3	keV
Mp Free 0 1 2 3 4 5 6 % Scale 1244 cts Cursor: 0.000 1 2 3 4 5 6 Identify Elements ? <th< td=""><td>7 6 9 10 11 12 13 14 IX Quantify Spectrum Image: Construct of the system Image: Construct of the system 13 Benent Weight % Mageneum 13 Aurinum 10 9 F Scoon 24.0 Posesium 5.2 Calcium 53.1 10</td><td>keV</td></th<>	7 6 9 10 11 12 13 14 IX Quantify Spectrum Image: Construct of the system Image: Construct of the system 13 Benent Weight % Mageneum 13 Aurinum 10 9 F Scoon 24.0 Posesium 5.2 Calcium 53.1 10	keV
MD FR 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 0 1 5 6 0 1 2 0 1 5 6 0 1 2 0 1 1 5 7 0 1	7 6 9 10 11 12 13 14 IX Quantify Spectrum Image: Construct of the system Image: Construct of the system 13 Benent Weight % Mageneum 13 Aurinum 10 9 F Scoon 24.0 Posesium 5.2 Calcium 53.1 10	keV

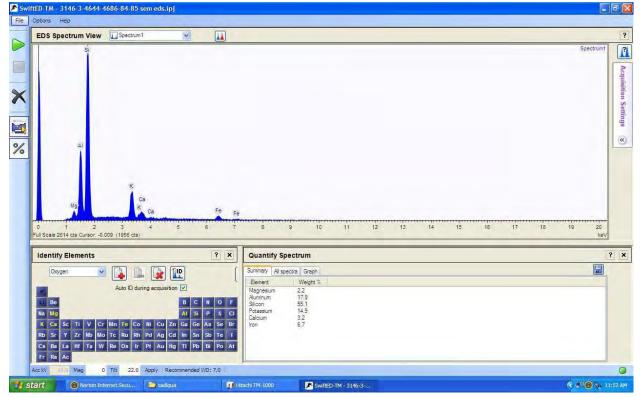

Sample#11 – 2472

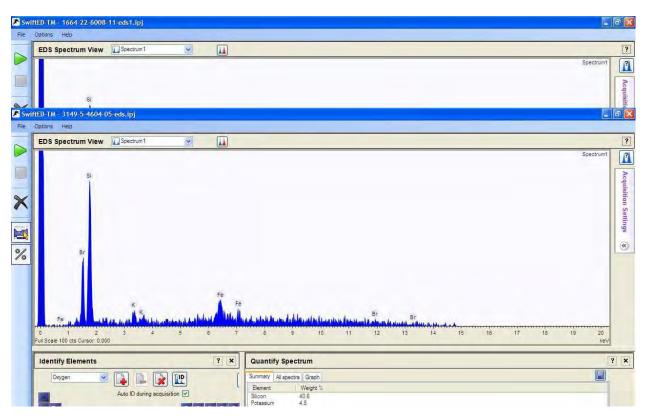
Sample#12 - 2609


Sample#13 - 3088

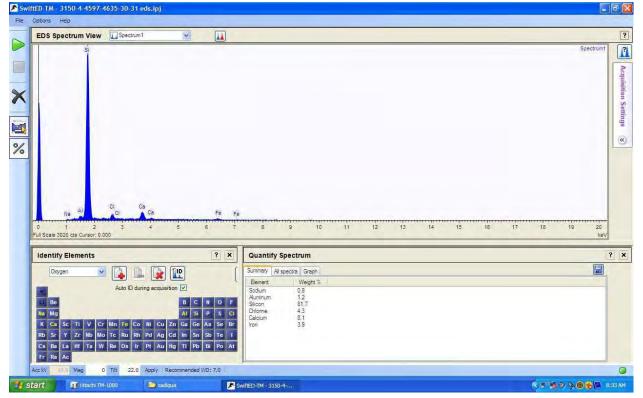
🎤 SwiftED-TM - 3115-4-6544-47. eds - - -File Options Help EDS Spectrum View Spectrum2 ? * 2 Spectru Acquisition × Settings **1**% ~ 10 16 20 keV 8 11 12 13 14 15 18 19 Full Scale 100 cts Cursor: 0.000 Identify Elements ? X Quantify Spectrum ? × 🗵 🚺 🔔 💽 Summary All spectra Graph Oxygen Element Silicon Weight % 100.0 Auto ID during acquisition 🗹 NOI AI SI P S CI Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Na M K Ca Rb Sr Y Zr Nb Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Fr Ra Ac 0 Tilt 22.0 Apply Recommended WD: 7.0 Acc kV Mag P SwiftED-TM - 3115-4-... 🕕 Hitachi TM-1000 K 💓 🌐 4:21 PM 🐉 start 👘 🖾 sadigua

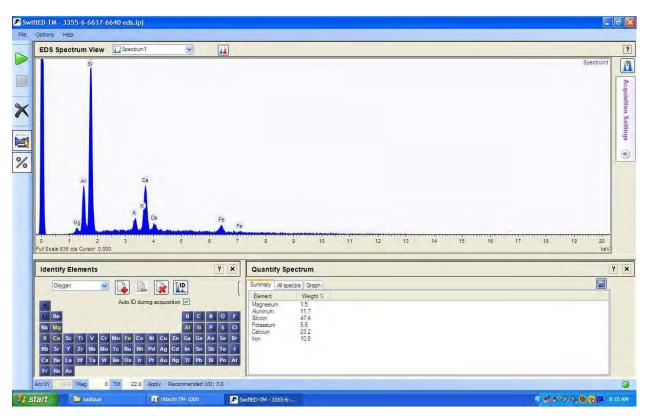
Sample#14 - 3115

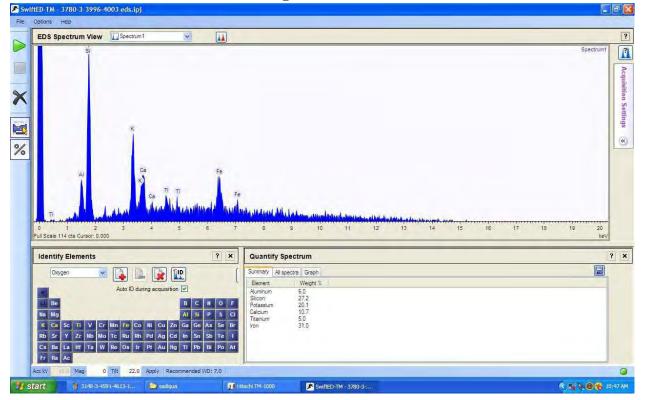

Sample#15 – 3138

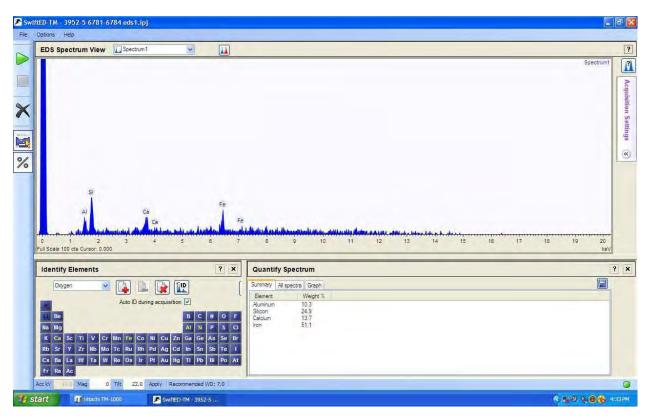

⊁ SwiftED-TM - 3141-6-6267-6273 eds.ipj - - -File Options Help EDS Spectrum View Spectrum2 ? * 2 Spectru Acquisition Settings × % ~ Fe Fe 16 20 keV 10 11 12 13 14 15 17 18 19 4 Full Scale 631 cts Cursor: 0.000 Identify Elements ? X Quantify Spectrum ? × 🗵 🚺 🔔 💽 Summary All spectra Graph Oxygen Weight % 33.6 54.7 5.2 6.5 Element Auto ID during acquisition 🗹 Auminum Silicon Potassium В N O Al si P S Ci Mn Fe Co Ni Cu Zn Ga Ge As Se Br Na M K Ca Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Rb Sr Y Zr Nb Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Fr Ra Ac 0 Tilt 22.0 Apply Recommended WD: 7.0 Acc kV Mag 0 🛃 start 👔 🕅 Hitachi TM-1000 K & @ # 9 & a stop AM F SwiftED-TM - 3141-6

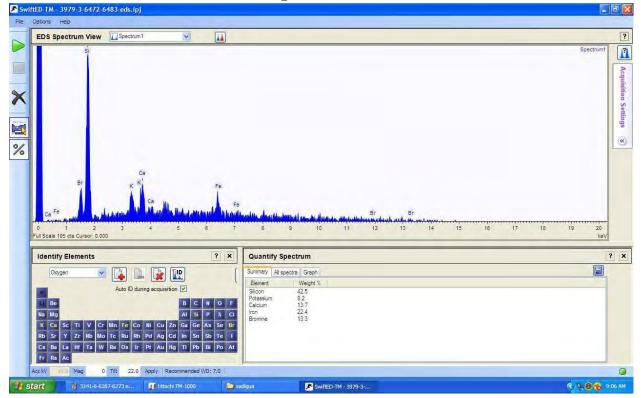
Sample#16 – 3141

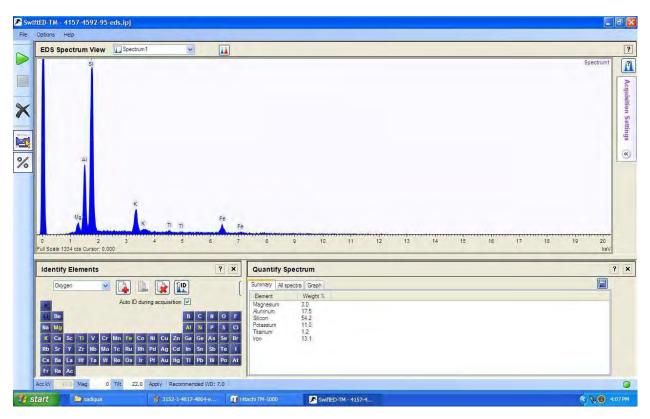

Sample#17 - 3146

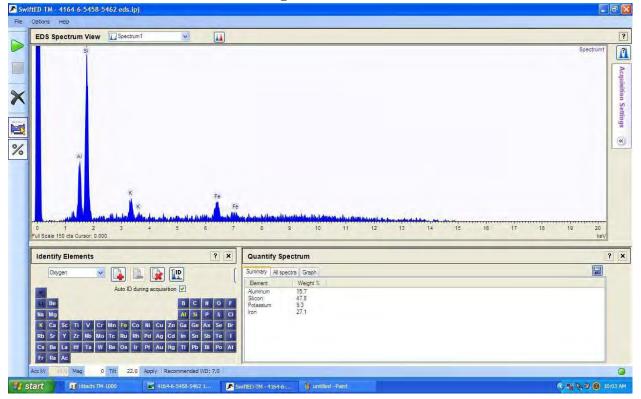

Sample#18 - 3149


Sample#19 - 3150

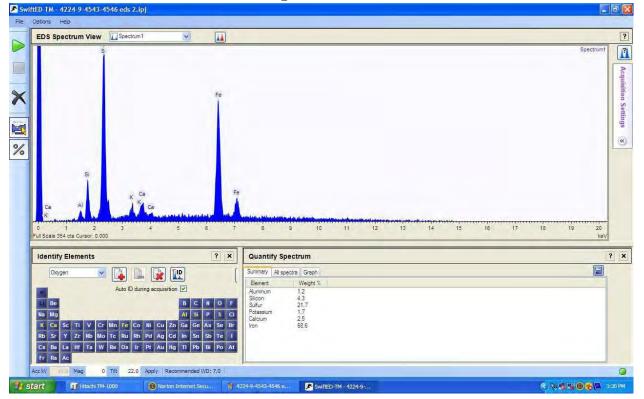

Sample#20 - 3355


Sample#21 - 3780

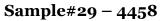

Sample#22 - 3952

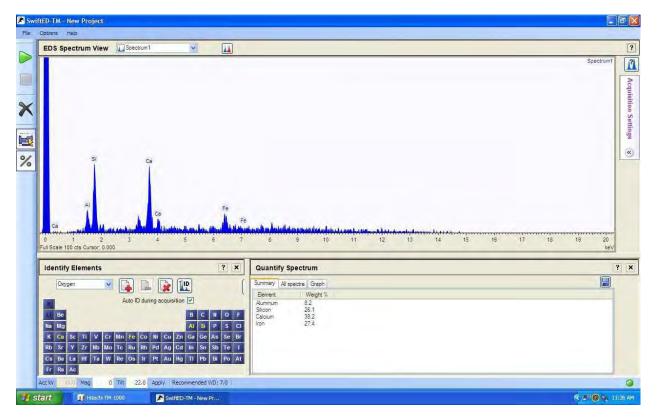

Sample#23 - 3979

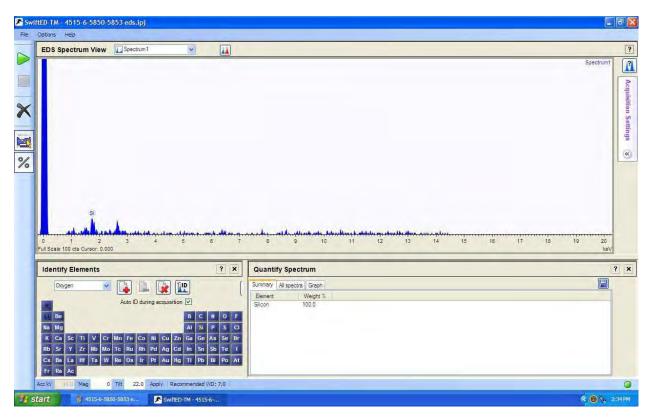
Sample#24 - 4157


Sample#25 - 4164

Sample#26 – 4211


SwiftED-TM - 4211-10-4483-4487eds.ipj e Options Help		
EDS Spectrum View Spectrum1		
		Spectrum
0		
S		
0 1 2 3 4	5 6 7 8 9 10 11 12 13 14	Hinning 15 16 17 18 19 20
		keV
0 1 2 3 4 Full Scale 100 cts Cursor: 0.000 Identify Elements	\$ 6 7 8 9 10 11 12 13 14 ? X Quantify Spectrum Summary, All spectra Graph Summary, All spectra Graph	
0 1 2 3 4 Ful Scale 100 cts Curson 0.000 Identify Elements Daysen V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 7 8 9 10 11 12 13 14 ? X Quantify Spectrum @	kev.
0 1 2 3 4 Ful Scale 100 cls Cursor: 0.000 Identify Elements Doygen Auto ID during acquisit Auto ID during acquisit	5 6 7 8 9 10 11 12 13 14 ? X Quantify Spectrum Image: Compton of the spectra of the spec	kev.
0 1 2 3 4 Full Scale 100 cts Curson 0.000 Identify Elements Oxygen Auto ID during acquisit Be Na Mg K Ca Sc TI V Cr Mn Fe Co M Cu	5 6 7 8 9 10 11 12 13 14 Quantify Spectrum Summay All spectre Graph Bion P Benerit Weight % Slicon 100.0 100.0	keV
0 1 2 3 4 Ful Scale 100 cts Cursor: 0.000 Identify Elements Orygen Auto ID during acquisit I Be Na Mo K Ca Sc TI V Cr Mn Fe Co Hi Cu Rb Sr Y Zr Nb Mo Tc Ru Rh Pet Ap Cs Ba La Hf Ta W Re Os Ir Pt Au	5 6 7 8 9 10 11 12 13 14 Quantify Spectrum Summay All spectra Graph Benerit Weight % Slicion 300.0	keV
0 1 2 3 4 Full Scale 100 cts Curson: 0.000 Identify Elements Oxygen Auto ID during acquisit Be K Ca Sc Ti V Cr Mn Fe Co N Cu Rb Sr V Zr Nb Mo Tc Ru Rh Pd Ag Cs Bo La Ht Ts W Re Os Ir Pt Au Fr Rs Ac	5 6 7 8 9 10 11 12 13 14 ? X Quantify Spectrum Summary All spectre Graph Benerit Weight % Silcon 100.0 Silcon 100.0 C N O F Character Colspan="4">Colspan="4">O F Colspan="4">Colspan="4"Colspan	keV ?


Sample#27 – 4224


Sample#28 - 4226

n/a

Sample#30 - 4515

