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Fast- and Slow- Mode Field Matching Across a

Plasma Boundary

Max Light

October 30, 2013

Abstract

We determine how the amplitude and phase of each wave field
component of an electromagnetic (EM) wave is split between the fast
and slow roots of the cold plasma dispersion relation as it propagates
across a plasma boundary.
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1 Introduction

As an upward travelling EM wave encounters the underside of the ionosphere,
each vectorial component of the wave’s fields will be separated into two dis-
tinct parts due to the bi-refringent nature of the magnetized plasma in the
ionosphere. Each part, or mode, may or may not propagate depending on
the dispersive characteristics of the plasma at each frequency component of
the incoming wave.

This mode partitioning comes from the four solutions of the Cold Plasma
Dispersion Relation (CPDR): a forward and backward travelling fast wave
root, and a forward and backward travelling slow wave root. These four
roots come from the solution of the wave equation derived from the Maxwell
equations, which is fourth order in a magnetized plasma. From now on, we
will talk about the two principal roots (fast and slow), understanding that
each has a forward and backward component.

Each mode has different dispersive characteristics, and will contribute
differently to the amplitude and phase of each wave field component. Thus,
in order to accurately track the wave as it propagates through the iono-
sphere, we must know how each wave field component is split between the
fast and slow wave roots of the CPDR at the entrance and exit of the iono-
sphere. This information is critical in applications where EM radiation is
propagated through the ionosphere and detected at a satellite-based antenna.
For example, in ray tracing techniques, the amplitude and phase of the fast
and slow wave modes is tracked separately through the ionosphere. Correct
power partitioning between the modes is required to be able to superpose
the transmitted fields at the receiver.

Our goal is to accurately partition the contribution of each mode in each
wave field component (or mode polarization) as the wave encounters, tra-
verses, and exits the ionospheric plasma. We explain the method of deter-
mining this partitioning assuming a smooth plasma transition, where the
reflected wave field components are neglected; and also an abrupt transition
where reflections are included.

For this report, we assume a cold, collisionless plasma in which the ions
are too massive to respond to any phenomena on the time scale of the EM
wave (RF frequency).

Figure 1 shows the general situation of EM propagation through the iono-
sphere. A signal is assumed to originate on the surface of the earth, or
somewhere in the lower atmosphere. It then encounters the underside of
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earth

ionosphere

refracted ray paths

Figure 1: EM wave propagation through the ionosphere represented by rays.
The ionosphere introduces a bi-refringent mode splitting of the incident wave.

the ionosphere and undergoes a bi-refringent mode splitting inside the mag-
netized ionospheric plasma. Each mode will then propagate through the
ionosphere suffering different dispersive characteristics (sometimes only one
or neither will traverse the whole ionospheric width at a given frequency),
and then emerge on the topside, where the total electric field can then be
calculated as the superposition of each mode contribution to each wave field
component. Figure 2 shows the same situation, focusing on the point where
the wave first encounters the ionosphere. In general, the wave will undergo
reflection and refraction at the boundary, with both parts being partitioned
into fast and slow mode components. In order to characterize the partition-
ing of each mode component for the refracted (and reflected) parts, it is first
necessary to decompose the incident EM wave into these components, which
can then be followed across the boundary. This means that we must be able
to partition the mode contributions of the incident EM wave fields in vacuum

prior to crossing the initial plasma boundary. Basically, we need to solve for
the vacuum EM wave fields using the CPDR for a zero density plasma. In
order to continue with the calculation of the wave fields’ mode polarizations,
then, we need to summarize the main points in the derivation and solution
of the CPDR.
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Figure 2: EM wave interaction at a plasma boundary. The plasma boundary
has an oblique orientation to the magnetic field B0 and the incident wave ki.

2 Cold plasma dispersion relation (CPDR)

2.1 Derivation

In this section, we will assume that the CPDR is found in the local coordinate
system of the plasma, and we will choose to let B0 lie along one of the
principal axes (z). We will draw heavily from standard texts by Swanson [8],
Budden [2], Kraus [6], and Allis et. al. [1]. Vector quantities are bold.

We assume a time harmonic form for the fields, that is

E(r, t) = E(r)e−iωt H(r, t) = H(r)e−iωt (1)

where E(r),H(r) are complex valued. We also assume a plane wave spatial
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structure for the propagating EM signals considered in this report. This
is accurate given that we are concerned with the VHF band of frequencies
propagating in the ionosphere. These assumptions give the final form of the
fields as

E(r, t) = E0e
i(k·r−ωt) H(r, t) = H0e

i(k·r−ωt) (2)

The electric field wave equation inside the plasma is

n × n× E + ǫr ·E = 0 (3)

with n defined as the index of refraction

n =
c

ω
k (4)

ǫr is the plasma dielectric tensor, whose elements we will leave in a general
form for now

ǫr =





ǫ11 ǫ12 ǫ13
ǫ21 ǫ22 ǫ23
ǫ31 ǫ32 ǫ33



 (5)

This tensor is, in general, not Hermitian (for instance, when collisional effects
are included); where a Hermitian matrix has the property (* denotes complex
conjugate)

ǫij = ǫ∗ji (6)

However, it does have Onsager symmetry, that is

ǫij(B0) = ǫji(−B0) (ωc → −ωc) (7)

where B0 is the magnetic field and ωc is the electron cyclotron frequency.
Equation 3 is

K · E = 0 (8)

which, in matrix form is given as





ǫ11 − (n2
y + n2

z) ǫ12 + nxny ǫ13 + nxnz

ǫ21 + nxny ǫ22 − (n2
x + n2

z) ǫ23 + nynz

ǫ31 + nxnz ǫ32 + nynz ǫ33 − (n2
x + n2

y)









Ex

Ey

Ez



 = 0 (9)

This set of equations will have a non-trivial solution only if the determi-
nant of the matrix goes to zero
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det
∣

∣K
∣

∣ = G(k, ω, r, t) = 0

or

∣

∣

∣

∣

∣

∣

ǫ11 − (n2
y + n2

z) ǫ12 + nxny ǫ13 + nxnz

ǫ21 + nxny ǫ22 − (n2
x + n2

z) ǫ23 + nynz

ǫ31 + nxnz ǫ32 + nynz ǫ33 − (n2
x + n2

y)

∣

∣

∣

∣

∣

∣

= 0

(10)

The CPDR can, in general, be quite complicated depending on how the
dielectric tensor matrix ǫr is populated. We know that wave propagation in a
cold, collisionless, magnetized plasma is affected by the anisotropy introduced
by the magnetic field such that the wave propagation is only dependent on
its direction relative to this field. In other words, a potentially three dimen-
sional system is reduced to a two dimensional system because the principle
directions of wave propagation are along and across B0. Mathematically,
this means that we are always free to rotate a magnetized plasma system to
one in which the principle axes are along and across B0 such that k and B0

are co-planar.
Thus, we choose B0 to lie along the z axis and k to lie in the x-z plane in

a 2-D coordinate system, shown in Fig. 3. This is a system with rotational

Figure 3: Orientation for solution to the CPDR.

symmetry about the z axis - we can always pick a coordinate system where
the wave propagation properties in a magnetized plasma are completely de-
scribed in a two dimensional manner. therefore, the y-component of the wave
number, ky, (or refractive index ny) in the rectilinear version of this system
(or kφ, nφ in a cylindrical geometry) can be ignored. The plasma dielectric
tensor in this system reduces to
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ǫr =





S −iD 0
iD S 0
0 0 P



 (11)

whose elements are

S = 1 − X

1 − Y 2

D =
−XY
1 − Y 2

P = 1 −X

(12)

with X and Y defined in the usual way for the ionospheric physics com-
munity

X = ω2
p/ω

2 Y = ωc/ω (13)

From equation 10, setting the determinant of K to zero (neglecting ny,
as outlined earlier) will give the CPDR as a quadratic in n2 = |n|2 as

An4 − Bn2 + C = 0 (14)

where

A = S sin2 ψ + P cos2 ψ
B = (S2 −D2) sin2 ψ + PS(1 + cos2 ψ)
C = P (S2 −D2)

(15)

The solution to this polynomial equation is written in the standard form

n2
± =

B ±
√
B2 − 4AC

2A
(16)

n+ and n− are identified as the slow - and fast- wave roots of the CPDR;
‘slow’ and ‘fast’ referring to the phase velocity of one wave relative to the
other. These two root branches determine the mode splitting of an EM wave
as it traverses the ionosphere.

Note that it is the presence of B0 that causes the bi-refringent nature of
the ionosphere: the two solutions to equation 16 representing the two possible
wave number solutions for propagation. To demonstrate this, set B0 = 0 in
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equations 12. Since we specify B0 → 0, there is no longer an anisotropy in
the plasma and we are free to choose ψ → 0 as well. The plasma dielectric
tensor reduces to a scalar

ǫr →





P 0 0
0 P 0
0 0 P



→ ǫr = P = 1 −X (17)

The CPDR only has one principal root in this case (see equation 10) given
by the familiar CPDR for an unmagnetized plasma

n2 = 1 −X

n = ±
√

1 − ω2
p/ω

2 (18)

Turning back to a magnetized plasma system, the well known Appleton-
Hartree dispersion relation (AHDR) for a cold, collisionless plasma is [2]

n2 = 1 − X(1 −X)

1 −X − 1

2
Y 2 sin2 ψ ±

[

1

4
Y 4 sin4 ψ + Y 2 cos2 ψ(1 −X)2

]1/2
(19)

which appears to be quite different from the CPDR given in equations 14
to 16, and they were, in fact, derived in slightly different coordinate sys-
tems (ours with B0 ‖ z and AHDR with k ‖ z, both cases have k · B0 =
|k||B0| cosψ). However, the symmetry of wave propagation in a magnetized
plasma and the invariance of 3 × 3 matrix determinants to 1, 2, or 3 axis
rotations (coordinate transformations) means that these dispersion relations
for n2 are equivalent, while the individual components of n (ni, nj , nk where
i, j, k represent the coordinate axes and n = [n2

i + n2
j + n2

k]
1/2) will have

different relative values.

2.2 Coordinate transformations for solving the CPDR

Our solution of the CPDR in the previous section relied on the rotational
symmetry inherent in a magnetized plasma system. For a wave travelling
obliquely through a magnetized plasma, we have the choice of either trans-
forming the reference frame to the symmetric coordinate system, where the
plasma dielectric tensor is given from equation 11, or solving for the fields in
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Figure 4: Coordinate transform for solution of the CPDR.

the original coordinate system with the plasma dielectric tensor rotated into
this system. These coordinate systems are illustrated in Fig. 4.

In the symmetric coordinate system, all field quantities are rotated into
this system and the dielectric tensor of equation 11 is employed. The wave
equation is

n′′′ × n′′′ × E′′′ + ǫr · E′′′ = 0 (20)

where the superscript (′′′) signifies that the field quantities are transformed
(rotated) from the original system, for example

n′′′ = R · n (21)

and R is the appropriate coordinate rotation matrix.
In the original coordinate system, the field quantities are not transformed,

but the plasma dielectric tensor (which was originally derived in the sym-
metric coordinate system) must be transformed. The wave equation is then

n× n× E + ǫ′′′r · E = 0 (22)

where ǫ′′′r is the plasma dielectric tensor rotated from the symmetric coor-
dinate system using the coordinate transformation properties of tensors and
the appropriate coordinate transformation matrix R

ǫ′′′r = R
T · ǫr · R (23)

The superscript (T ) corresponds to the matrix transpose. Coordinate trans-
formation matrices are orthogonal by definition, whereupon their transpose
is the same as their inverse.
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2.2.1 Transforming fields to the symmetric coordinate system

We will do this by requiring that ky → 0 in the new coordinate system and
assuming that the magnetic field angles θ and γ in Fig. 4 are known. We want
to rotate the coordinate system such that B0||z and the transformed wave
number k′′′ and B0 are in the x-z plane. This will be accomplished through
three coordinate axis rotations, as described below. For each rotation, a
prime (’) will be added to the coordinate and vector names for clarity. After
the three coordinate rotations, B0 will make an angle ψ with the z

′′′

axis.

Figure 5: The first coordinate rotation about the x axis. This shows the
situation after the rotation.

First coordinate rotation: x axis We first rotate about the x-axis by
an angle γ to make B0 and z′ co-planar (after rotation). This is illustrated
in Fig 5. We use the standard three dimensional axis rotation matrix such
that





kx
′

ky
′

kz
′



 = Rxγ





kx

ky

kz



 (24)
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where the rotation about x is given by

Rxγ =





1 0 0
0 cos γ sin γ
0 − sin γ cos γ



 (25)

Second coordinate rotation: y
′
axis Next, rotate about the y

′

-axis by
an angle θ to place B0 along the z

′′

-axis using Ryθ, as shown in Fig. 6

Figure 6: The second coordinate rotation about the y
′

axis.





k
′′

x

k
′′

y

k
′′

z



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









k
′

x

k
′

y

k
′

z



 (26)

Third coordinate rotation: z
′′

axis Finally, as shown in Fig. 7, we
rotate about the z

′′

-axis by an angle α so that k
′′′

y → 0 using Rzα. After this
rotation, k will have an angle ψ with respect to B0 given by

ψ = arctan
k′′′x

k′′′z

(27)
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Figure 7: The third coordinate rotation about the z
′′

axis.





k
′′′

x

0
k

′′′

z



 =





cosα sinα 0
− sinα cosα 0

0 0 1









k
′′

x

k
′′

y

k
′′

z



 (28)

We find the rotation angle α from the middle equation of 28 in terms of the
known angles γ and θ, and the wave number components kx, ky, and kz:

α = arctan

(

kz sin γ + ky cos γ

kx cos θ − kz cos γ sin θ + ky sin γ sin θ

)

(29)

The symmetric coordinate system in which k
′′′

y → 0 is now completely
specified. We can transform fields from original to symmetric coordinate
systems using the three rotation matrices specified above. For example, the
electric fields are transformed using





E ′′′
x

E ′′′
y

E ′′′
z



 = R





Ex

Ey

Ez



 (30)

where
R = Rzα Ryθ Rxγ (31)
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To transform from symmetric back to the original coordinates, we simply
left multiply by the inverse of the matrix formed by the product of the three
rotation matrices





Ex

Ey

Ez



 = R −1





E ′′′
x

E ′′′
y

E ′′′
z



 (32)

2.2.2 Transforming the plasma dielectric tensor into the original
coordinate system

Here, we work in the original coordinate system, and transform the plasma
dielectric tensor from the symmetric coordinate system into this one. The
tensor transform is given by equations 23 and the rotation matrices in equa-
tions 25 and 26. Note that in this coordinate system, we need only two

coordinate transformations. The magnetic field of the symmetric coordinate
system only needs to be rotated about the x-axis by γ, and the y-axis by θ.

ǫ′′′r = R
T · ǫr · R (33)

where now the rotation matrix R is given by

R = Rxγ Ryθ =





cos θ sin γ sin θ − cos γ sin θ
0 cos γ sin γ

sin θ − cos θ sin γ cos γ cos θ



 (34)

And we write for convenience the transpose of the rotation matrix

R
T

=





cos θ 0 sin θ
sin γ sin θ cos γ − cos θ sin γ

− cos γ sin θ sin γ cos γ cos θ



 (35)

3 Mode decomposition of incident EM wave

vacuum fields

We now look to decompose the incident vacuum EM wave fields into fast and
slow components, that is

Ei = E
fast
i + Eslow

i

= x̂
(

Efast
xi + Eslow

xi

)

+ ŷ
(

Efast
yi + Eslow

yi

)

+ ẑ
(

Efast
zi + Eslow

zi

)

(36)
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so that each mode component of each vector part can be propagated across
the boundary correctly. In order to solve for the individual mode components,
we must solve the CPDR in vacuum (ne → 0 ⇒ X → 0), and look at the
ratio of the field vector parts for each mode.

We will then construct a mode polarization unit vector Q̂ which repre-
sents the partitioning of the fast and slow mode contributions to each vector
part of the incident EM wave field. Once we know how each vector part of
the incident EM wave field is partitioned, we can correctly solve for the prop-
agation characteristics of the EM wave without using any approximations on
the amount of power in each mode. We must know the partitioning between
fast and slow modes before any propagation algorithm is started for correct
results.

3.1 E-field cofactor ratios

Assume that we have transformed all field quantities into the symmetric
coordinate system, and that the plasma geometry is given by Fig 3. In this
geometry, equation 9 is





S − n2 cos2 ψ −iD n2 cosψ sinψ
iD S − n2 0

n2 cosψ sinψ 0 P − n2 cos2 ψ









Ex

Ey

Ez



 = 0 (37)

where the dispersion relation is is defined as choosing the index of refraction,
n2, such that the determinant of the 3×3 matrix is 0, that is, from equation 19

n2 = 1 − X(1 −X)

1 −X − 1

2
Y 2 sin2 ψ ±

[

1

4
Y 4 sin4 ψ + Y 2 cos2 ψ(1 −X)2

]1/2
(38)

and the slow/fast modes are determined from the ± in the denominator.
We can observe the E-field polarization characteristics by taking the E-

field co-factor ratios in equation 37.

Ex

Ey
= i

S − n2

D

Ez

Ey
=

(S − n2)(n2 cosψ sinψ)

iD(P − n2 sin2 ψ)

(39)
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where we have chosen to take the E-field cofactor ratios relative to Ey. We
could have chosen any of the three vector components. Note that the index of
refraction, n, appears as n2 in the above ratios, and will have two solutions;
a fast and slow root. Thus, we now have a foundation for finding the mode
contribution to the EM wave fields.

3.2 Mode polarization unit vector construction

To continue, we solve the ratios in equation 39 in the limit X → 0

lim
X→0

(

Ex

Ey

)

= i

[

Y sin2 ψ

2

(

1 ±
[

1 +
4 cos2 ψ

Y 2 sin4 ψ

]1/2
)]

lim
X→0

(

Ez

Ey

)

= i

[

Y sin2 ψ

2

(

1 ±
[

1 +
4 cos2 ψ

Y 2 sin4 ψ

]1/2
)]

×

(1 + cos2 ψ) cosψ sinψ

(1 + cos2 ψ) sin2 ψ − 2

(40)

We can then construct a unit vector from these E-field cofactor ratios in this
limit which represents the normalized amplitude of each mode to each vector
wave part

Q̂F/S =

x̂ lim
X→0

(

Ex

Ey

)

F/S

+ 1ŷ + ẑ lim
X→0

(

Ez

Ey

)

F/S
√

√

√

√

[

lim
X→0

(

Ex

Ey

)

F/S

]2

+ 1 +

[

lim
X→0

(

Ez

Ey

)

F/S

]2
(41)

We can now find the fast and slow mode contributions to the incident EM
wave field vectorial components (in the symmetric coordinate system). They
can be transformed into the desired coordinate system and used in an ap-
propriate propagation algorithm. In the symmetric coordinate system, the
individual mode components are found from the dot product of the mode
component of Q̂ and the incident EM wave field vector

Einc · Q̂F
∣

∣

∣

j
= EF

j,inc

Einc · Q̂S
∣

∣

∣

j
= ES

j,inc

(42)
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where j = x, y, z.
We can also solve Q̂F/S in the vacuum coordinate system using Eqns. 33, 34,

and 35 in Eq. 22 and solving the respective field cofactor ratios for each mode.

4 EM Wave propagation and boundaries

As the EM wave passes from one medium to the next, its reflective and re-
fractive properties will change. This is usually treated by either assuming
an abrupt transition, where those properties change over an infinitesimally
small length such as a vacuum/dielectric interface, or a smooth transition,
where they change gradually over an unspecified characteristic length. Each
assumption has advantages and disadvantages depending on the nature of the
propagation characteristic to examine, the EM wave frequency, and charac-
teristic transition length. For an EM wave incident on the ionosphere, we
can quantify the difference between the two extremes in terms of the scale
length over which any gradients in the plasma exist.

In a real-world situation, the ionosphere has a ‘smooth’ transition from
vacuum to plasma, and back again. However, from the perspective of the
incident EM wave, it’s not enough to simply employ this assumption. If the
wavelength of the EM radiation is much smaller than any ionospheric plasma
gradients, for instance in the electron density or background magnetic field,
then the wave will effectively sample a uniform background plasma over dis-
tances larger than a wavelength. On the other hand, an EM wave propa-
gating from one medium to another that experiences plasma gradients over
distances much smaller than the wavelength will see the background change
significantly in a fraction of a wavelength. In either case, the change in back-
ground plasma parameters will affect the solution of the local CPDR, which
will concomitantly change the wavelength. These two situations illustrate a
demarcation between strategies for solving the wave fields. In one, we can
invoke the well known WKB approximation outlined below, that is when the
change of wavelength over a wavelength is small

∣

∣

∣

∣

1

k

dk

dx

∣

∣

∣

∣

≪ k (43)

where x is a spatial coordinate along the gradient. When this is not true, we
must use a different method. Intuitively, then, this illustrates the difference
in a smooth versus abrupt transition for the EM wave.
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4.1 Smooth boundary

For a smooth boundary, we assume the plasma changes over scale lengths
much greater than the wavelength, and we can invoke the WKB approxi-
mation [8, 7, 5] . Under this approximation, the EM wave is treated using
geometric optics wherein its trajectory and amplitude are found from the well
known ray tracing technique. In this technique, the ray equations determine
the trajectory of the ray, or group velocity vector, as it propagates through
the ionospheric plasma

dk

dτ
=

dG

dr

dr

dτ
= −dG

dk

dω

dτ
= −dG

dt

(44)

with the dispersion relation found from equation 10

G(k, ω, r, t) = 0 (45)

In this formalism, the amplitude of the ray along its trajectory is found from
a separate set of equations [8, 7], by tracking ‘bundles’ of rays and observing
their cross sectional spread with distance, or simply by dividing the initial
amplitude by the distance along the ray path. Solution of the amplitude
equations is significantly more difficult than the ray equations, and for that
reason the latter two methods are usually employed.

Reflections due to media changes are higher order in the ray tracing tech-
nique and usually ignored. Furthermore, if the wave encounters a local cutoff
or resonance, that is k → 0 or k → ∞, then this method will break down,
and the wave field solution in this region must be found using alternative
methods. So, even though the wavelength may change slowly, it can still ap-
proach a cutoff or resonance which will invalidate the ray tracing solution at
those local points, and care must be used to guide the field solutions through
these regions.

4.1.1 Smooth boundary - propagation implications

We can track the fields as they traverse the plasma under this formalism with
a priori knowledge of the mode content of each field vectorial component,
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which we can find with the help of the mode polarization unit vector Q̂F/S.
Once this is solved, the fields can be propagated through the plasma using
the ray tracing technique in the absence of reflections. Once the topside is
reached, the individual field mode components are superposed and the total
field is then propagated to the receiver. Reflection loss, as described above,
is neglected in this approach.

4.2 Abrupt boundary

Abrupt boundary transitions are best illustrated by the classic problem of an
EM wave incident on a dielectric half-space [5], where it undergoes reflection
and refraction at the interface. These characteristics are found directly by
solving for the transmission, T , and reflection, Γ, coefficients at the interface.
It is important to note that reflections, which are usually ignored in the ray
tracing technique, can be quite significant depending on the plasma gradient
structure and EM wave frequency.

4.2.1 Abrupt boundary - propagation implications

In order to account for reflections, we must consider an abrupt plasma bound-
ary, effectively squeezing down the transition thickness to be infinitesimally
small. To propagate the EM wave through this layered ionosphere, we can
choose to approach the layers as follows:

Single layer plasma with gradient Under this assumption, we solve for
the reflection losses at the entrance and exit of the ionosphere, and propa-
gate the individual modes under the ray tracing approximation through a
single layer - which can be assumed to be homogeneous or inhomogeneous
depending on the desired fidelity of the propagation model.

Multi layered plasma Here, we separate the plasma into many layers
with the plasma density and background magnetic field constant in each
layer. This allows us to solve the CPDR in each layer, and propagate the wave
across layers by taking into account the reflection and refraction, through so-
lution of Γ and T , and the boundary conditions at each interface. This
solution method offers greater precision with increasing layers. Multiple re-
flections per layer can also be accommodated.
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4.3 Remarks

Each of the techniques outlined above carries consequences on the field solu-
tion construction in general, and in terms of the mode polarization.

Incidentally, we are free to completely solve the Maxwell equations through-
out the entire region. We would need a complete three dimensional character-
ization of the plasma structure, and a concomitant three dimensional solution
to the equations in the entire region, which would depend on how we treated
the inner and outer ionospheric boundaries. This is, however, an arduous
task, and while not impossible, the boundary assumptions outlined above
make field solutions much easier with no significant loss in accuracy in either
realm.

At this point, we see that we have the necessary tools to solve for each
mode’s wave propagation by assuming a smooth boundary and using the
ray tracing assumption, so we focus now on the correct method of solution
for abrupt plasma boundaries. This involves solving for the reflection and
transmission coefficients at an interface.

5 EM wave reflection and refraction at an

abrupt interface

To find the transmission and reflection characteristics for each mode compo-
nent of the EM wave we must assume an abrupt boundary and satisfy the
boundary conditions at the interface. This situation is illustrated in Fig. 8.
Here, the dielectric represented by refractive index n2 can represent a mag-
netized plasma with a complex value and tensor characteristics. For that
case, the refracted wave number kt would represent the superposition if the
fast and slow mode CPDR solutions.

We are interested in the wave field components just inside the plasma
boundary, so we assume a uniform plasma within which the orientation of
the transmitted wave number and magnetic field, kt · B0, does not change.
This is analogous to dividing the plasma into many thin shells, except that we
are only interested in the first shell. Gradients in n0 and B0 are accounted for
in this manner by changing their values in each successive shell as necessary.

This case is essentially the first step in solving the wave propagation
through a magnetized plasma divided into symmetric shells, accounting for
reflection at each shell boundary. Here, we find the reflection and transmis-
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Figure 8: Geometry for an EM wave incident on a dielectric half space. The
dielectric has refractive index n2, which can be complex.

sion coefficients (Γ and T respectively) for the wave field amplitudes at the
boundary for each mode, and then multiply each spatial component of the
wave field mode components by Γ and T for each mode (fast, or slow) to get
their respective amplitudes.

5.1 Boundary conditions

Wave reflection and refraction at a plane interface is well understood, and
can be described in terms of two general properties [5]:

Kinematic

These properties follow from the wave nature of the interaction and do not
depend on the specific type of wave (acoustic, electromagnetic, etc.). The
first is that the angle of reflection equal to the angle of incidence,

θi = θr (46)
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and the second is Snell’s law:

sin θi/ sin θt = nt/ni (47)

where θi, θt are the angles of incidence and transmission with respect to the
interface normal, and ni, nt are the indices of refraction in the medium of the
incident and transmitted waves respectively.

Dynamic

These properties are completely dependent on the specific nature of the waves
and their boundary conditions. For electromagnetic waves, they specify the
behaviour of the tangential and normal fields across the interface. Specifi-
cally, the tangential components of E and H (where H = k ×E/ωµ), thus
the tangential components of k, are continuous across the boundary

(Ei + Er − Et) × ξ̂ = 0
1

µi

(ki × Ei + kr × Er −
1

µt

(kt × Et) × ξ̂ = 0
(48)

where ξ̂ is the unit normal to the interface and µi, µt are the permeabilities
in the incident and transmitted wave media respectively (µi = µt = µ0 for
our study).

The normal electromagnetic wave field components are continuous across
the boundary only in the absence of any free charge at the interface. So, for
instance, at the interface of two ideal dielectrics, the boundary conditions on
those components would specify field continuity.

Ideal Dielectric

[ǫi(Ei + Er) − ǫtEt] · ξ̂ = 0

[ki × Ei + kr × Er − kt × Et] · ξ̂ = 0

(49)

where ǫi, ǫt represent the permittivity for the media of the incident and trans-
mitted waves respectively. However, for an interface involving the presence of
free charges such as a plasma, these field components will be discontinuous:

Free Surface Charge

[ǫi(Ei + Er) − ǫtEt] · ξ̂ = ρs

[ki × Ei + kr × Er − kt × Et] · ξ̂ = Js

(50)
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The discontinuity is specified by a surface charge pileup ρs and surface cur-
rent density Js which are driven self consistently by the wave fields. These
discontinuities, or jump conditions, are non-physical only in the sense that
they are localized to an ideal interface described by an infinitesimally thin
planar boundary surface. For example, there are finite scale lengths over
which the plasma density gradient exists, over which the charge and current
will distribute. Their localization to the zero thickness surface of the inter-
face in this formalism is due to our assumption of an ideal boundary with
zero thickness.

Note that calculation of the wave field components across a plasma bound-
ary is completely specified using Snell’s law as manifested by the continuity
of the tangential field components (eqns. 47 and 48) [5]. This includes the
field reflection and transmission coefficients given below.

Before we study the general case of oblique incidence of an electromag-
netic wave on a plasma half space (bounded on the left by the x-y plane -
see Fig. 9), we will review the results of the derivation of Γ and T for waves
in free space incident on a dielectric half space [3, 4, 5] for principal orienta-
tions with respect to the incidence plane, summarizing the results. In terms
of the incident wavenumber, we will review the results for an incident wave
characterized by ki = xkx + zkz, and generalize to oblique incidence, where
ki = xkx + yky + zkz.

5.2 Field polarization nomenclature for field interac-
tion at an interface

We will adopt the general nomenclature for labelling E-field components at an
interface [5, 3, 4]. Referring to Fig. 8, the plane of incidence is defined as the
plane formed by the surface normal vector ξ̂ and the incident wave number
vector ki. E-field components in this plane are referred to as parallel polar-
ized, and E-field components perpendicular of this plane are referred to as
perpendicular polarized. This is different from magnetized plasma nomencla-
ture, where parallel and perpendicular are usually referenced to the direction
of the magnetic field B0.

5.3 Parallel incident electric field polarization

The electric field components of the incident wave that lie in the plane per-

pendicular to the interface plane (Ex and Ez for our case - see Fig. 10) are
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Figure 9: Geometry for an EM wave incident on a plasma half space. The
plasma region is z > 0.

specified across the plasma boundary, for each plasma mode (+ slow, - fast),
with the reflection and transmission coefficients [5]

Γ||(±) =
n2
± cos θi − (n2

± − sin2 θi)
1/2

(n2
± − sin2 θi)1/2 + n2

± cos θi

T||(±) =
2n± cos θi

(n2
± − sin2 θi)1/2 + n2

± cos θi

(51)

where θi is the angle between the interface surface normal ξ̂ and the incoming
wave number ki in the interface (x − z in this case) plane.

5.4 Perpendicular incident electric field polarization

The electric field components of the incident wave that lie parallel to the
interface plane, or perpendicular to ki in this plane (Ey for our case - see
Fig. 11) are specified across the plasma boundary, for each plasma mode (+
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Figure 10: Parallel incident wave electric field polarization at a boundary in
the x-y plane.

slow, - fast), with the following reflection and transmission coefficients [5]

Γ⊥(±) =
cos θi − (n2

± − sin2 θi)
1/2

(n2
± − sin2 θi)1/2 + cos θi

T⊥(±) =
2 cos θi

(n2
± − sin2 θi)1/2 + cos θi

(52)

with θi specified as above. In the above equations for Γ and T for each
incident wave field polarization, we have substituted the plasma refractive
index for slow and fast modes, n±, for the second medium. We can do this as
long as the wave number is properly solved in the plasma when we calculate
the plasma refractive index n2

± = c2/ω2 k2
± in the CPDR.

25



z

θ
i

x

k
t

θ
r

θ
t

E
i

E
r

Figure 11: Perpendicular incident wave electric field polarization at a bound-
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5.5 Oblique incidence - arbitrary electric field polar-
ization

In the previous two sections, we reviewed the reflection and transmission
coefficients for the two possible electric field polarizations with respect to the
plane of incidence: the plane formed by the normal to the plasma interface
and the incident wavenumber ki. This happened to be the x-z plane for
our example, and ki was specified with only x and z components. We now
generalize the situation to oblique incidence, where ki can have components
in all three directions (as in figs. 2 and 9). The vacuum/plasma interface
is specified as the x-y plane, as before. However, care must be taken in
choosing the incidence plane, as it will dictate which electric field polarization
is necessary when calculating Γ and T.

Consider an incident wave as shown in Figs. 12 and 13. It approaches
from below the y-z plane and in front of the x-z plane, and reflects behind
the x-z plane and above the y-z plane. The electric field associated with
this wave can have components in all three directions. We can choose the
plane of incidence (different from the interface plane, as outlined above) to
be either the x-z or y-z plane.
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y-z plane

This configuration is shown in Fig. 12. Ex is perpendicular, and Ey, Ez are
parallel to the incidence plane. Γ (⊥, ‖) and T (⊥, ‖) are calculated using the
incidence angle θyz , found from the projection of the incident and reflected
wavenumbers in the y-z plane.

x-z plane

This configuration is shown in Fig. 13. Ey is perpendicular, and Ex, Ez are
parallel to the incidence plane. Γ (⊥, ‖) and T (⊥, ‖) are calculated using the
incidence angle θxz, found from the projection of the incident and reflected
wavenumbers in the x-z plane.

x
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θ
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Figure 12: Oblique incidence at the plasma/vacuum interface. Choosing the
y-z plane as the incidence plane.

We are free to choose the incidence plane for oblique incidence; the calcu-
lation of the reflected and transmitted field components will be unaffected as
long as the proper polarization and corresponding angle of incidence are used.
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Figure 13: Oblique incidence at the plasma/vacuum interface. Choosing the
x-z plane as the incidence plane.

Note that we have been concerned with the calculation of the wave field elec-
tric (and magnetic through Maxwell’s equations) components in both media.
Calculation of the transmitted wavenumber is done using the CPDR, shown
below.

5.6 Wave field components - mode contribution

The reflected and transmitted wave electric field components can now be
found for each mode using equations 51 and 52 with either n+ or n−.

E
r,F/S
j = ΓF/S

κ E
i,F/S
j E

t,F/S
j = TF/S

κ E
i,F/S
j (53)

where j can be x, y or z corresponding to the field component and the su-
perscripts i, r, t signify incident, reflected, and transmitted components
respectively. The particular transmission and reflection coefficient polariza-
tion is represented by κ, and can be either parallel ‖ or perpendicular ⊥
depending on the chosen plane of incidence as outlined in section 5.5. The
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incident field is a vacuum solution to Maxwell’s equations, which we have
separated into fast and slow components using the mode polarization unit
vector Q̂F/S from equation 42,

Er,F
j = ΓF

κ

(

Einc · Q̂F
j

)

Er,S
j = ΓS

κ

(

Einc · Q̂S
j

)

Et,F
j = TF

κ

(

Einc · Q̂F
j

)

Et,S
j = TS

κ

(

Einc · Q̂S
j

)

(54)

The wave magnetic fields are found from Faraday’s equation

Hi/r/t,F/S =
1

ωµ0

k ×Ei/r/t,F/S (55)

5.6.1 Remarks

We now have the tools necessary to calculate the transmitted and reflected
fields for each mode at an abrupt plasma boundary. However, in order to
carry them out, we need to solve the magnitude of the plasma index of
refraction for each mode and substitute that in ΓF/S ,TF/S, and Q̂F/S.

5.7 Solving the plasma index of refraction

The solutions for ΓF/S ,TF/S , and Q̂F/S, from equations 51, 52, and 41
respectively, involve the index of refraction. And, as pointed out earlier, the
solution for its magnitude, where ± denotes slow/fast modes respectively,

|n±| = n± = (c/ω)|k±| (56)

is independent of coordinate transforms up to three dimensions. So we are
free to solve for it in any coordinate system we choose. However, we must do
this by satisfying the boundary conditions on k± at the plasma interface. The
boundary condition on the wave vector is that the incident tangential com-
ponent at the boundary, ki,tan, must equal the tangential component of the
wave vector in the plasma ,k±,tan in the same coordinate system. This is best
accomplished by preserving the tangential wave vector across the boundary
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in the original coordinate system, which is where the actual boundary was
specified.

The dispersion relation is found from equation 10

det

∣

∣

∣

∣

∣

∣

ǫ
′′′

11 − (n2
y + n2

z) ǫ
′′′

12 + nxny ǫ
′′′

13 + nxnz

ǫ
′′′

21 + nxny ǫ
′′′

22 − (n2
x + n2

z) ǫ
′′′

23 + nynz

ǫ
′′′

31 + nxnz ǫ
′′′

32 + nynz ǫ
′′′

33 − (n2
x + n2

y)

∣

∣

∣

∣

∣

∣

= 0 (57)

with the plasma dielectric tensor rotated in from the symmetric coordinate
system as outlined in section 2.2.2

ǫ′′′r = R
T · ǫr · R (58)

In this coordinate system (original), with respect to the plane of incidence,
we preserve the tangential components of n and solve for the perpendicular
component. We originally specified a plasma half-space problem, with the
interface between plasma and vacuum being the x-y plane, as illustrated in
Fig. 9, and therefore we are solving for nz,± with nx,± and ny,± given by their
vacuum values.

Once we have computed nz,±, we can then substitute the appropriate
fast/slow mode plasma index of refraction

|n±| = n± =
√

n2
x,± + n2

y,± + n2
z,± (59)

into ΓF/S and TF/S , from equations 51 or 52, and proceed to calculate the
desired wave fields as in equations 54 and 55.

5.8 Poynting flux conservation at the boundary

We must choose the proper root (for each mode) in order to satisfy wave
energy conservation as it crosses the boundary. This constraint is given
by the conservation of the Poynting power flux; that is, the sum of the
transmitted and reflected components of the EM wave power must equal its
incident power. Computationally, as a result of some of the assumptions that
can be made, this criterion can not be met for all cases, as described below.
Furthermore, thermal and damping effects are, by definition, neglected in
our calculation due to the assumption of a cold, collisionless plasma, which
dictated the specific form of the plasma dielectric tensor used throughout
(Eq. 11). These, as well as mode conversion and non-linear effects can be

30



treated by using the appropriate form of the plasma dielectric tensor, and
concomitant technique, in solving the CPDR; but this is beyond the scope
of the current report. However, in the VHF frequency bandwidth, the cold
plasma assumption is appropriate for the majority of field calculations.

5.8.1 Smooth (gradual) transition

The assumptions outlined earlier regarding field propagation calculations for
a gradual boundary, that is the ray tracing limit, neglect the correct treat-
ment of wave reflections. The reflected wave component is dropped, or in-
sufficiently treated, to the extent that the sum of transmitted and reflected
powers will not equal the incident power. The completely rigorous method
of including reflections at a gradual boundary is to resort to a full wave so-
lution of Maxwell’s equations in the entire region - which can be tedious and
time intensive. Fortunately, the ray tracing technique does not suffer from
comparatively large differences in Poynting flux conservation, compared to
those cases where reflections are included, for most situations of interest in
the VHF frequency band. The definition of ‘comparatively large’, however,
is determined for each specific calculation based on the desired accuracy, and
can lead to incorrect results. The point is that reflections are not properly
treated under the ray tracing approximation, and this must be taken into
account.

We must still choose the proper root for each mode, and this is determined
by the Poynting energy flux direction and behavior at large distances from
the boundary. The power flux perpendicular to the boundary interface must
flow from the incident side to the transmitted side if the mode is not cutoff
or resonant on the transmitted side, and that power must go to zero at long
distances away from the boundary on the transmitted side. If the mode
does experience a cutoff on the transmitted side, the correct root for nz

(or that component perpendicular to the interface boundary) travels from
the transmitted side to the incident side with the power at long distances
from the boundary, on the transmitted side, going to zero - like a reflected
component.

5.8.2 Abrupt boundary

As outlined earlier, in this formalism the boundary is treated as an ideal
interface between two media - for example vacuum and dielectric. Here, we
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can apply Poynting flux conservation in a straightforward manner. In calcu-
lating the transmission and reflection coefficients, T and Γ, at a boundary,
we satisfy the boundary conditions on the tangential field components; that
is, that they are preserved across the boundary. This gives the tangential
fields on the transmitted side. With T and Γ we then find the tangential
transmitted and reflected fields on the incident side. This information gives
us a complete picture of the Poynting flux on both sides, in the direction
perpendicular to the interface plane

P t + P r = P i (60)

where the subscripts t, r, and i represent transmitted, reflected, and inci-
dent respectively. The fluxes in the above equation are found from the field
expressions calculated with the help of the transmission and reflection coef-
ficients.

The harmonic form of the fields given in equation 2 and the definition of
the Poynting flux give

P⊥ =
1

2
Re{E‖ × H∗

‖} (61)

where the subscripts refer to the orientation of the quantities relative to the
interface plane. From Faraday’s Law

∇× E = −∂B
∂t

(62)

we have
k × E = ωµ0H ⇒ E ∼ ωµ0

k
H (63)

Defining the wave impedance η as

η =
ωµ0

k
(64)

(in vacuum, η0 = 377) equation 61 becomes

P⊥ =
1

2
Re

{

E‖E
∗
‖

η∗

}

(65)

and we allow for the complex nature of η in a plasma medium (that is, k can
be complex) by taking its complex conjugate in the above equation.
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Equation 65 can now be used in Eq. 60 with Eq. 54 to verify Poynting
flux conservation.

If a mode does experience a cutoff or resonance on the transmitted side, we
still need to choose the correct root for nz (or that component perpendicular
to the interface boundary) since the reflected field on the incident side will be
determined by Γ, and it must be calculated using the proper plasma refractive
index root in equations 51 and 52.

6 Summary

An EM wave travelling across a plasma boundary, like a signal generated at
the surface of the earth and travelling upward to space, will undergo bire-
fringence due to the dispersive characteristics of the magnetized plasma in
the ionosphere. This birefringence manifests as a mode splitting in the prop-
agating EM wave; that is, the single root solution to Maxwell’s equations
in vacuum (where the one root comprises a forward and backward travelling
wave) will split into a double root solution to Maxwell’s equations in a mag-
netized plasma background. Each of these wave roots, identified as either
the fast or slow, can propagate, be cutoff, or experience a resonance on the
plasma side of the boundary; being partially or completely reflected at the
interface. Once these modes have traversed the ionosphere, they must be
superposed on the topside in order to solve for the wave propagation charac-
teristics. We have presented a method to calculate the correct partitioning
of a propagating EM wave as it traverses a magnetized plasma, as well as the
reflection and transmission coefficients, in the framework of the two mode
solution, at a plasma boundary.

In modelling EM wave propagation across a plasma boundary, we are free
to choose the type of boundary and plasma inhomogeneity, depending on the
desired model fidelity and computation time. However, without resorting
to a full wave solution, the possibility of significant signal reflection from a
plasma boundary dictates that more accurate results are attained using a
many layered plasma model, accounting for reflection and transmission at
each layer.
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