

# Statistical Analysis of the <br> Phase 3 Emissions Data <br> Collected in the EPAct/V2/E89 <br> Program 

January 7, 2010 - July 6, 2012
Richard F. Gunst
Southern Methodist University
NREL Technical Monitor: Matthew Thornton

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency \& Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

## Subcontract Report

NREL/SR-5400-52484
May 2013

# Statistical Analysis of the Phase 3 Emissions Data Collected in the EPAct/V2/E89 Program 

January 7, 2010 - July 6, 2012

Richard F. Gunst
Southern Methodist University
NREL Technical Monitor: Matthew Thornton
Prepared under Subcontract Nos. BB07.5910 and FC08.9182

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401
303-275-3000 • www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency \& Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Subcontract Report
NREL/SR-5400-52484
May 2013

## This publication received minimal editorial review at NREL.

## NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov
Available for sale to the public, in paper, from:

## U.S. Department of Commerce National Technical Information Service <br> 5285 Port Royal Road

Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Printed on paper containing at least $50 \%$ wastepaper, including $10 \%$ post consumer waste.

## Executive Summary

Phase 3 of the EPAct/V2/E-89 Program investigated the effects of 27 program fuels and 15 program vehicles on exhaust emissions and fuel economy. In this phase of the EPAct/V2/E-89 Program, all vehicles were tested over the California Unified Driving Cycle (LA-92) at $75^{\circ} \mathrm{F}$. The program fuels differed on five fuel parameters: $\mathrm{T}_{50}\left({ }^{\circ} \mathrm{F}\right)$, $\mathrm{T}_{90}\left({ }^{\circ} \mathrm{F}\right)$, ethanol (vol. \%), RVP (psi), and aromatics (vol. \%). The vehicles were a selection of new, low-mileage 2008 model year Tier 2 vehicles. A total of 956 test runs were made on these 27 fuels and 15 vehicles between March 2009 and June 2010. Comprehensive statistical modeling and analyses were conducted on methane ( $\mathrm{g} / \mathrm{mi}$ ), carbon dioxide $\mathrm{g} / \mathrm{mi}$ ), carbon monoxide ( $\mathrm{g} / \mathrm{mi}$ ), fuel economy ( mpg ), non-methane hydrocarbons ( $\mathrm{g} / \mathrm{mi}$ ), non-methane organic gases $(\mathrm{g} / \mathrm{mi})$, oxides of nitrogen $(\mathrm{g} / \mathrm{mi})$, particulate matter $(\mathrm{mg} / \mathrm{mi})$, and total hydrocarbons $(\mathrm{g} / \mathrm{mi})$.

In general, the model fits determined that emissions and fuel economy were complicated functions of the five fuel parameters. Fitted models were obtained for a Baseline Model that contained 17 linear, quadratic, and cross-product terms of the fuel parameters. Reduced models that deleted terms that were not statistically significant were also obtained. An extensive evaluation of alternative model fits produced a number of competing model fits from which the broad corpus of scientific, engineering, and emissions knowledge can be used to select for various intended uses. Many of these alternative fits produce similar estimates of mean emissions for the 27 program fuels but should be carefully evaluated for use with emerging fuels that have combinations of the fuel parameters that were not included in this program.

The strengths of the EPAct/V2/E-89 Program include a detailed database of information on each of the 27 program fuels on each of the 15 vehicles and, conversely, detailed information on each of the vehicles on each of the program fuels. Conclusions from the analysis of the Phase 3 data are germane to the 15 new, Tier 2 vehicles included in this project, the ranges of the five fuel properties tested in this phase of the EPAct/V2/E-89 Program, and the test conditions under which the testing was performed. Absent documented analyses of additional relevant data or other information that are not included in the Phase 3 data base, conclusions from analyses of the Phase 3 data should not be extrapolated to other vehicles or test conditions, including the in-use fleet, high emitting vehicles, other vehicle classes or technologies, testing at ambient temperatures other than $75^{\circ} \mathrm{F}$, or engine operating conditions outside of the LA- 92 test cycle (Unified Driving Cycle).

## Table of Contents

Page
Executive Summary ..... i
I. Introduction ..... 1
A. Overview ..... 1
B. Vehicles ..... 2
C. Fuels .....  2
D. Implications ..... 4
II. Model Specification and Assumptions ..... 6
A. Statistical Model Error Assumptions ..... 6
1.Constant Variance Assumption ..... 7
2.Normal Probability Distribution for Errors ..... 8
B. Model Specification. ..... 9
1.Fuel Parameters: Fixed Effects. ..... 10
2.Vehicles and Model Errors: Random Effects ..... 13
III. Additional Modeling Issues. ..... 14
A. Collinearity Detection ..... 14
B. Collinearities in the Benchmark Model ..... 14
C. Influential Data Values ..... 16
D. Measurement Drift ..... 16
E. Carryover Effects. ..... 17
F. Zero (Nondetectable) Emissions Measurements ..... 17
IV. Procedures for Selecting Reduced Model Fits ..... 19
A. The Challenge of Identifying a Single "Best" Model Fit ..... 19
B. Variable Selection Methods: Measurements and Bags with Five or Fewer Data Values. ..... 20
1.Initial Screening of Model Terms ..... 20
2.Final Model Fits. ..... 21
C. Variable Selection Methods: Measurements and Bags with More Than Five Data Values. ..... 22
V. Model Fits: Results ..... 22
A. Benchmark Model Fits ..... 22
B. Reduced Model Fits ..... 22
C. Alternative Model Fits. ..... 24
VI. Discussion and Recommendations ..... 25
A. Program Strengths and Limitations ..... 25
B. Recommendations. ..... 26
1.Benchmark vs. Reduced Model Fits. ..... 26
2.Additional Issues ..... 27
References ..... 27

Appendices
I. Constant Variance and Normal Probability Assessments
II. Identification of Influential Data Values
III. Benchmark Model Fits
IV. Benchmark Model Fits Without the $T_{90}{ }^{2}$ Model Term
V. Reduced Benchmark Model Fits
VI. Reduced Benchmark Model Fits Without the T $_{90}{ }^{2}$ Model Term
VII. Composite Reduced Hierarchical Model Terms
VIII. Bag 1 Reduced Hierarchical Model Fit Terms
IX. Bag 2 Reduced Hierarchical Model Fit Terms
X. Bag 3 Reduced Hierarchical Model Fit Terms
XI. Benchmark and Reduced Model Fit Estimates of Mean Emissions for the Program Fuels

Addendum: Responses to EPA Comments on the 5/3/2011 Draft Report

## I. Introduction

## A. Overview

The primary goal of Phase 3 of the EPAct/V2/E-89 Program is to provide data needed to create statistical models that describe the effects of $\mathrm{T}_{50}\left({ }^{\circ} \mathrm{F}\right), \mathrm{T}_{90}\left({ }^{\circ} \mathrm{F}\right)$, ethanol (EtOH, vol. \%), RVP (psi), and aromatics (ARO, vol. \%) content on exhaust emissions from a selection of 2008 model year Tier 2 vehicles. A total of 27 fuels were tested on 15 new, low-mileage, low-emitting vehicles at $75^{\circ}$ F over the LA92 test cycle between March 2009 and June 2010 (Whitney, 2010; Whitney, 2011). This report summarizes the results of the 956 test runs made on these 27 fuels and the 15 vehicles that were included in the test program. Emphasis in this report is on the statistical modeling and analysis of emissions and fuel economy ( $\mathrm{FE}, \mathrm{mpg}$ ) over the LA-92 test cycle at 75 ${ }^{\circ}$ F. Figure I.A. 1 displays the time-speed trace for this driving cycle. The emissions analyzed in this report are methane $\left(\mathrm{CH}_{4}, \mathrm{~g} / \mathrm{mi}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}, \mathrm{~g} / \mathrm{mi}\right)$, carbon monoxide $(\mathrm{CO}, \mathrm{g} / \mathrm{mi})$, nonmethane hydrocarbons (NMHC, $\mathrm{g} / \mathrm{mi}$ ), non-methane organic gases (NMOG, $\mathrm{g} / \mathrm{mi}$ ), oxides of nitrogen $\left(\mathrm{NO}_{\mathrm{x}}, \mathrm{g} / \mathrm{mi}\right)$, particulate matter ( $\mathrm{PM}, \mathrm{mg} / \mathrm{mi}$ ), and total hydrocarbons ( $\mathrm{THC}, \mathrm{g} / \mathrm{mi}$ ).

Fig. I.A.1. LA92 Unified Cycle Time-Speed Trace


The Phase 3 statistical modeling and analyses are applicable only to emissions from new, lowemitting 2008 model year Tier 2 vehicles similar to those in the Phase 3 data file and might not apply to the on-road light-duty fleet, including high emitters, and vehicle operating conditions outside the LA-92 test cycle or for ambient operating conditions different from $75^{\circ} \mathrm{F}$. Effects of ambient temperatures $\left(20^{\circ} \mathrm{F}\right.$ and $\left.95^{\circ} \mathrm{F}\right)$ on emissions from a limited sample of these same vehicles, as well as the effects on emissions from a sample of high-emitting vehicles, are being investigated in Phases 4 and 5 of the EPAct/V2/E-89 Program, respectively.

## B. Vehicles

The vehicles chosen for this program are listed in Table I.B.1. These vehicles are all new 2008 model year Tier 2, low-mileage, low-emissions vehicles. All conclusions drawn on the basis of the analysis of Phase 3 data from this program are valid only for similar new 2008 model year Tier 2, low-mileage, low-emissions vehicles. Inferences based solely on the analyses of the Phase 3 data should not be made about makes, brands, or models not represented by the vehicles in Table I.B.1. In addition, conclusions drawn from the data about this fleet of vehicles are only representative of a fleet of vehicles with the same representation of makes, models, engine sizes, etc.

Table I.B. 1 Phase 3 EPAct/V2/E89 Test Vehicles

| Make | Brand | Model | Engine |  | Bin |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GM | Chevrolet | Cobalt/HHR | 2.4L | 14 | 5 |
| GM | Chevrolet | Impala-FFV | 3.5L | V6 | 5(CA) |
| GM | Saturn | Outlook | 3.6L | V6 | 5(CA) |
| GM | Chevrolet | Silverado-FFV | 5.3L | V8 | 5 |
| Toyota | Toyota | Corolla | 1.8L | 14 | 5(CA) |
| Toyota | Toyota | Camry | 2.4L | 14 | 5(CA) |
| Toyota | Toyota | Sienna | 3.3L | V6 | 5(CA) |
| Ford | Ford | Focus | 2.0L | 14 | 4(CA) |
| Ford | Ford | Explorer | 4.0L | V6 | 4 |
| Ford | Ford | F150 | 5.4L | V6 | 8 |
| Chrysler | Dodge | Caliber | 2.4 L | 14 | 5 |
| Chrysler | Jeep | Liberty | 3.7L | V6 | 5 |
| Honda | Honda | Civic | 1.8L | 14 | 5(CA) |
| Honda | Honda | Odyssey | 3.5L | V6 | 5(CA) |
| Nissan | Nissan | Altima | 2.5 L | 14 | 5(CA |

## C. Fuels

The fuels included in this program were optimally selected using computer software that maximized the efficiency of the fuels in a specified statistical model to predict regulated emissions rates. Input to the computer software consisted of selected values of each of the five fuel properties: $\mathrm{T}_{50}, \mathrm{~T}_{90}, \mathrm{EtOH}, \mathrm{RVP}$, and ARO. The software calculated efficiency values for all combinations of the fuel properties and identified the combinations of properties that produced the
highest efficiency values relative to a specified fractional factorial experimental design based on the same fuel property combinations (Mason and Buckingham 2008).

Several limiting factors restricted the fuels that could be included in the program (Mason and Buckingham 2008). First, some combinations of the fuel properties would not produce effective fuel blends for automobile engines. These combinations of fuel properties were eliminated from further consideration. Second, this test program could support the evaluation of only a limited number of fuels. Third, the fuel combinations chosen for consideration were selected to explore as wide a range on each fuel property as could be tested given the previous two constraints. Finally, the software used to select the combinations of fuel properties required that a prospective model be chosen that could be expected to satisfactorily model the emissions. Optimality was thus a function of the chosen model and subject to the conditions listed above. This important issue will be discussed further in Section II.B. 1 (below).

Most of the fuels included in this test program are regarded as "extreme" because the combinations of fuel properties are at edges and corners of the region of permissible combinations of the fuel properties. These extreme combinations of the fuel properties were chosen for inclusion so that they would bound more typical properties that are the primary focus of predictive models. Thus, it is important to note that, like the limitations on conclusions that can be drawn relative to the vehicles included in this study, any conclusions drawn from the statistical modeling and analyses are restricted by the combined values and ranges of the fuel properties included in the program. One cannot, for example, draw conclusions about $20 \% \mathrm{EtOH}$ without regard to the other fuel properties in the $20 \% \mathrm{EtOH}$ blends, notably $\mathrm{T}_{50}$, since all the fuels with $20 \% \mathrm{EtOH}$ were blended with $\mathrm{T}_{50}$ at approximately $165^{\circ} \mathrm{F}$.

Early in Phase 3, it became clear that blended fuels did not exactly have the targeted fuel properties stipulated by the optimal design. In order to properly accommodate the actual properties of the 27 fuels, a blinded round-robin measurement experiment was conducted to determine the actual properties of the fuels being tested on the vehicles. The laboratory facilities that participated in the round-robin measurements of the fuel properties were BP, Chevron, Conoco Phillips, EPA, Exxon-Mobil, PAC, Marathon, and Shell. A scatterplot of the fuels as a function of $\mathrm{T}_{50}, \mathrm{~T}_{90}$, and EtOH is shown in Figure I.C.1.

The calculated fuel properties (averages across the measurements provided by all participants) for each of the fuels are shown in Table I.C.1. These calculated fuel properties are used in all the statistical modeling and analyses that are included in this report.

Fig. I.C. 1 Phase 3 EPAct/V2/E89 Fuel Properties (Does Not Include E85 Fuel).


## D. Implications of Vehicle, Fuel, and Data Restrictions

The conditions on vehicle and fuel interpretations made above are not intended to detract from the relevance and importance of this program. They are necessary in order to ensure that the maximum benefit from the statistical analyses reported below can be obtained and that possible inadvertent misinterpretations of results and conclusions are minimized. As stated previously, the statistical modeling and analyses of the Phase 3 data are applicable only to emissions from new, low-emitting 2008 model year Tier 2 vehicles of similar makes, models, engine sizes, etc. and might not apply to the on-road light-duty fleet, including high emitters, and vehicle operating conditions outside the LA-92 test cycle or for ambient operating conditions different from $75^{\circ} \mathrm{F}$.

Table I.C. 1 Phase 3 EPAct/V2/E89 Fuel Properties.

| Fuel | EtOH | $\boldsymbol{T}_{\boldsymbol{5 0}}$ | $\boldsymbol{T}_{\boldsymbol{9 0}}$ | $\boldsymbol{R V P}$ | $\boldsymbol{A R O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.03 | 148.9 | 300.2 | 10.07 | 15.4 |
| 2 | 0 | 236.7 | 340.1 | 10.2 | 14.1 |
| 3 | 10.36 | 217.5 | 295.9 | 6.93 | 15 |
| 4 | 9.94 | 221.9 | 337.5 | 10.01 | 15.5 |
| 5 | 0 | 237 | 300 | 6.95 | 34.7 |
| 6 | 10.56 | 188.5 | 340.4 | 7.24 | 15 |
| 7 | 0 | 193.1 | 298.4 | 7.15 | 17 |
| 8 | 0 | 221.1 | 303.1 | 10.2 | 15.7 |
| 9 | 0 | 192.8 | 341.8 | 10.3 | 35.8 |
| 10 | 9.82 | 217.1 | 340.2 | 7.11 | 34 |
| 11 | 10.3 | 189.3 | 298.6 | 9.93 | 35 |
| 12 | 9.83 | 152.2 | 339.8 | 10.13 | 34.8 |
| 13 | 0 | 222.5 | 337.9 | 6.92 | 34.1 |
| 14 | 0 | 192.8 | 338.5 | 7.14 | 16.9 |
| 15 | 0 | 189.7 | 299.4 | 10.23 | 35.3 |
| 16 | 10.76 | 218.8 | 300.6 | 7.12 | 35.6 |
| 20 | 20.31 | 162.7 | 298.7 | 6.7 | 15.2 |
| 21 | 20.14 | 167.6 | 305 | 7.06 | 35.5 |
| 22 | 20.51 | 163.2 | 297.3 | 10.21 | 15 |
| 23 | 20.32 | 162.5 | 338.2 | 6.84 | 15.9 |
| 24 | 20.51 | 165.1 | 338.1 | 10.12 | 15.3 |
| 25 | 20.03 | 166.9 | 337.9 | 10.16 | 35.2 |
| 26 | 15.24 | 160.3 | 338.7 | 10.21 | 35.6 |
| 27 | 14.91 | 221.5 | 340.3 | 6.97 | 14.9 |
| 28 | 14.98 | 216.6 | 298.8 | 6.87 | 34.5 |
| 30 | 9.81 | 152.9 | 323.8 | 10.23 | 35.5 |
| 31 | 20.11 | 167.3 | 325.2 | 6.98 | 35.5 |

The fuels selected for this program also restrict the interpretations of the statistical results reported in subsequent sections of this report. Figure I.D. 1 shows the combinations of the $\mathrm{T}_{50}$ and EtOH fuel parameters for the 27 fuels tested in Phase 3. Note that as the ethanol content of the fuels increases, $\mathrm{T}_{50}$ generally decreases. No inferences should be drawn from the statistical modeling and analysis for fuels with EtOH and $\mathrm{T}_{50}$ parameter values outside the region in Fig. I.D. 1 indicated by the dashed lines and the accompanying $\mathrm{T}_{90}$, ARO, and RVP parameter values for those fuels in Table I.C.1.

These restrictions on interpretations of the results of analyses of the Phase 3 data do not mandate that these results cannot, in conjunction with external studies and additional data, be used to provide a broader base of conclusions. No such mandate is stated or implied in this report.

Periodic concerns were raised about the accuracy of the PM measurements because of the large numbers of low and nondetectable measurements (see Table III.F.1) relative to background measurements. Caution should be exercised in interpreting the PM results until additional chemical analyses that are currently underway are completed.

Fig. I.D.1. Phase 3 EPAct/V2/E89 T50 and Ethanol fuel Properties.


## II. Model Specification and Assumptions

A. Statistical Model Error Assumptions

Statistically optimal and computationally efficient modeling and analysis procedures are often achieved when measurements follow normal probability distributions and exhibit constant
variability (e.g., the variability as measured by standard deviations is the same for all fuels and vehicles). Emissions and fuel economy measurements often violate these assumptions. Based on numerous previous emissions testing programs, the natural logarithms of emissions measured in the EPAct/V2/E89 Test Program were expected to exhibit constant variability and follow normal probability distributions with means that might differ for the fuels but with variability that is constant over repeat tests across fuels and vehicles. In addition, the inverse of fuel economy, fuel efficiency, has often been modeled rather than fuel economy itself. Analyses were conducted to investigate the reasonableness of these statistical modeling assumptions.

## 1. Constant Variance Assumption

The first analyses performed on the EPAct/V2/E89 concerned whether test-run-to-test-run variability was constant. If not, transformations of the measurements (logs of emissions, inverse FE) might better satisfy this assumption. One common and powerful graphical method used to assess whether the EPAct/V2/E89 data satisfied the assumption of constant variability was to graph standard deviations of repeat measurements versus the corresponding averages. These calculations and graphs were made and analyzed subject to the following stipulations.

- All valid nonzero data values were used in the calculations. No nonzero data values were deleted from the database. Additional analyses in which influential data values were deleted from the database confirmed the conclusions that were obtained from analyses of the complete database.
- Standard deviations were calculated only if two or more nonzero repeat measurements were available for a vehicle/fuel combination. If a vehicle/fuel had only one valid nonzero measurement, the standard deviation is identically zero and provides no information about measurement variability.
- Emissions that were reported to be identically 0 (non-detectable) were excluded from this analysis for the following reasons. If a vehiclelfuel combination had all repeats identically 0 , both the average and the standard deviation are identically 0 . If one of two repeats is exactly 0 and the other one has a nonzero value, say, $x$, the average is $x / 2$ and the standard deviation is $\mathrm{x} / \sqrt{2}$. When graphed, these averages and standard deviations would fall exactly on a straight line. This is an artifact of the 0 value and provides no information about the constant variability assumption. Very few composite Bag 1 emissions had 0 (non-detectable) measurements. Zero measurements occurred primarily for Bags 2 and 3 measurements on NMHC and NMOG, Bag 3 measurements on $\mathrm{NO}_{\mathrm{x}}$, and for PM measurements in all 3 bags and in the composite (weighted) measurements (see Section III.F).

Appendix I contains graphs of standard deviations vs. averages for each measurement, separately for composite (Figs. 1-9) and bag (Figs. 10 - 18 for Bag 1, Figs. 19 - 27 for Bag 2, Figs. $28-36$ for Bag 3) measurements. The averages and standard deviations in each of the
graphs are calculated across repeats for each vehicle/fuel combination. The upper two graphs in each figure are graphs of the standard deviations versus the corresponding averages for the raw measurements (a) and the transformed measurements (b).

Figures 1(a) and 1(b) illustrate how these graphs can be used to assess the assumption of constant variability for composite methane emissions. Figure 1(a) shows the typical wedgeshaped plot that indicates non-constant variability. All the standard deviations for small average $\mathrm{CH}_{4}$ emissions are also small while for larger average $\mathrm{CH}_{4}$ emissions many of the standard deviations increase. In contrast, Fig. 1(b) contains small and large standard deviations across the entire range of average logarithmically transformed $\mathrm{CH}_{4}$ measurements. This is what is expected when variability is constant; i.e., there is no marked change in the magnitudes of standard deviations as the magnitudes of average log-transformed emissions increase. For composite $\mathrm{CH}_{4}$ emissions, the log-transformed emissions better satisfy the constant variance assumption than the untransformed $\mathrm{CH}_{4}$ emissions.

An examination of the figures in Appendix I lead to the following conclusions. The constant variance assumption appears to be better satisfied using log-transformed composite and bag emissions. For FE the constant variance assumption appears to be reasonable for the untransformed FE values. Thus the fuel economy measurements do not have to be transformed in order to reasonably satisfy the constant variance assumption.

In a few graphs it might appear that the log-transformation is not necessary (e.g., Bag $1 \mathrm{CO}_{2}$ ) but this is not true for any of the emissions across all bags and composite measurements. For consistency in the analyses, the assessment of the constant variance assumption leads to the conclusion that all emissions be log-transformed.

## 2. Normal Probability Distributions for Errors

The normal probability error assumption was examined using a model that does not require specification of the form of the fuel property effects. Fixed effects (see Section I.B. 1 below) for the 27 fuels and random effects (see Section I.B. 2 below) for the 15 vehicles were included. Specifically, the 27 fuel effects were included in the model as 27 fixed effects indicator variables ( 1 if a specific fuel, 0 otherwise). Vehicle effects were included as 15 random effects indicator variables. Fuel-by-vehicle indicator variables were also included as random effects indicator variables. This is not the model that will be used to determine the effects of the fuel properties. It was used because it allows the normal probability assumption to be investigated without reliance on correctly specifying the nature of the fuel effects. Alternative model specifications can be used and similar results will be obtained.

The graphs (c) and (d) in each figure in Appendix I provide assessments of the assumption that model errors are normally distributed. From the model fits, individual measurements were predicted for each fuel, vehicle, and repeat test. Residuals, differences between the actual measurements and the predicted measurements, were calculated; i.e., residual $=$ actual
measurement - model-predicted measurement. The residuals were ordered from smallest to largest and then graphed versus normal quantiles, values from a normal probability distribution. If the true model errors followed a normal probability distribution, the graphs of residuals vs. normal quantiles should approximate a straight line.

Figures 1(c) and 1(d) illustrate these normal quantile plots for methane composite emissions. Figure 1(c) is relatively linear in the middle but departs substantially from a straight line at the lower and upper ends of the graph. This departure is common when model errors do not follow a normal probability distribution. In contrast, the plotted values in Fig. 1(d) are much closer to a straight line over most of the range of the data. This indicates that logarithmically transformed $\mathrm{CH}_{4}$ emissions have model errors that more closely follow a normal probability distribution than the untransformed $\mathrm{CH}_{4}$ emissions.

An examination of the figures in Appendix I leads to the general conclusion that for composite and bag emissions the normality assumption appears to be better satisfied using logtransformed measurements. For FE the normality assumption appears to be reasonable for the untransformed FE values. Thus, the fuel economy measurements do not have to be transformed in order to reasonably satisfy the assumption that the model errors are normally distributed.

There are a few figures in which the log-transformed emissions are not closely linear but in those figures the graphs of the transformed emissions are more linear than those for the untransformed emissions. Moreover, in several of the graphs outliers in the untransformed emissions (generally very extreme values at the upper end of the graph) are not outliers in the log-transformed emissions (e.g., Fig. 7 for composite $\mathrm{NO}_{\mathrm{x}}$ ). In addition, analyses in which influential data values are deleted (all data values for which Studentized residuals exceed 3.5 in magnitude, see Section III.C) confirm the need to logarithmically transform emissions measurements. For these reasons, logarithmically transformed emissions will be modeled and analyzed.

## B. Model Specification

Prior to statistical analyses of the data produced in Phase 3 of the EPAct/V2/E89 Program, careful consideration was given to the specification of the models that would be used to describe changes in emissions and fuel economy as a function of the controllable factors in the design of the program, namely the fuel effects and the vehicle effects. The validity of the statistical analyses can be critically dependent on the specification of the model.

Phase 3 of the EPAct/V2/E89 Program was designed to study the effects of fuel parameters on emissions measurements. Both fuels and vehicles contribute to changes in emissions but they do so in different ways. The nature of their influences on emissions must be assessed differently through the specification of their influences as either fixed effects or random effects in statistical models.

## 1. Fuel Parameters: Fixed Effects

The design of the fuels used in Phase 3 of this project was based on a specified EPA model involving the fuel parameters $\mathrm{T}_{50}, \mathrm{~T}_{90}$, Ethanol, RVP, and Aromatics. The first 25 fuels in Table I.C. 1 were selected to optimize the ability to estimate all the linear effects of the fuel parameters and select second-order (quadratic and interaction) effects of the fuel parameters. The model terms corresponding to these effects are statistically modeled as fixed effects. Fixed effect model terms are used when the effects are believed to change the mean emission or fuel economy. In other words, fuel parameter fixed effects produce systematic changes in the mean emission or fuel economy whereas both the vehicles chosen for the program and the repeat test runs produce random deviations around the mean.

The mean of a specified measurement $\left(\mathrm{NO}_{\mathrm{x}}, \mathrm{THC}, \mathrm{FE}\right.$, etc.) for a particular fuel was modeled during the fuel design phase of this project as follows:

$$
\begin{aligned}
& \text { Mean Measurement }=\beta_{0}+\beta_{1} \mathrm{~T}_{50}+\beta_{2} \mathrm{~T}_{90}+\beta_{3} \mathrm{EtOH}+\beta_{4} \mathrm{RVP}+\beta_{5} \mathrm{ARO}+\beta_{6} \mathrm{~T}_{50} * \mathrm{EtOH} \\
& \quad+\beta_{7} \mathrm{~T}_{90} * \mathrm{EtOH}+\beta_{8} \mathrm{RVP} * \mathrm{EtOH}+\beta_{9} \mathrm{ARO}^{*} \mathrm{EtOH}+\beta_{10} \mathrm{~T}_{50}{ }^{2}+\beta_{11} \mathrm{EtOH}^{2} .
\end{aligned}
$$

The last two fuels in Table I.C.1, along with three additional fuels that are not being analyzed as part of the Phase 3 database, were included to permit the estimation of possible quadratic effects of $\mathrm{T}_{90}$ (Mason and Buckingham 2008). There are additional quadratic and interaction (cross-product) terms that could be added to the design model and can be fit using the data in the Phase 3 data base. Consequently, an expanded model that included additional interaction and quadratic terms was extensively investigated to assess whether terms not included in the EPA design model might aid in the prediction of the measured emissions and fuel economy. All interactions (cross-product terms) involving the five fuel properties that are not included in the EPA design model were initially added to form an expanded model. The $\mathrm{T}_{90}{ }^{2}$ term was also added. The squared terms $\mathrm{RVP}^{2}$ and $\mathrm{ARO}^{2}$ were not added to the design model because the design of the program included only two distinct values for each of these fuel properties.

There was concern raised over the inclusion of the $\mathrm{T}_{90}{ }^{2}$ term since only two of the original five fuels that were included in the design to estimate the effect of this term were ultimately included in the database. These two fuels have the lowest $\mathrm{T}_{50}$ and highest ARO parameter values. Inclusion of the $\mathrm{T}_{90}{ }^{2}$ term might detrimentally affect the prediction of emissions for the other fuels that do not have these extreme fuel parameter values and those for fuels that do not have extreme combinations of the fuel parameter values.

A number of analyses were performed to investigate the possible inclusion of the $\mathrm{T}_{90}{ }^{2}$ model term. Figures II.B. 1 and II.B. 2 provide a visual summary of the general conclusions reached in these investigations.

Fig. II.B. 1 Model-Estimated Mean Bag 1 THC Emissions for the 27 Program Fuels. Exponentiated Log-transformed Data Averages (Triangles), Benchmark Model Estimates (Circles), Benchmark Model Estimates without the T $_{90}{ }^{2}$ Term (Squares). Fuel Mean Estimates Color-Coded Separately for 0, 10\%, 15\%, and 20\% Ethanol Content.


These figures display the exponentiated averages of the log-transformed Bag 1 THC emissions for each of the 27 fuels (Fig. II.B.1) and the averages of the log-transformed Bag 1 THC emissions (Fig. II.B.2), both indicated by the triangles. In each figure, model estimates of the mean emissions (Fig. II.B.1) and the mean log-emissions (Fig. II.B.2) for a model that includes all permissible quadratic terms, including the $\mathrm{T}_{90}{ }^{2}$ model term (circles), and the same model without the $\mathrm{T}_{90}{ }^{2}$ term (squares) are also displayed. In order to make comparisons easier, the 27 fuels are color-coded in the figures, separately for each of the fuels having the 4 targeted ethanol contents $(0,10 \%, 15 \%, 20 \%)$. The purpose of presenting these figures is not to compare estimated mean emissions for various fuels or to assess how well the model estimates agree with the averages calculated from the data. Rather, the purpose for displaying these figures is to compare the model predictions with and without the $\mathrm{T}_{90}{ }^{2}$ model term. Thus,
the feature that is important in these figures is a comparison of the circles (estimates with the $\mathrm{T}_{90}{ }^{2}$ model term) and squares (estimates without the $\mathrm{T}_{90}{ }^{2}$ model term) that are of the same color.

Fig. II.B. 2 Model-Estimated Mean Logarithmically Transformed Bag 1 THC Emissions for the 27 Program Fuels. Log-transformed Data Averages (Triangles), Benchmark Model Estimates (Circles), Benchmark Model Estimates without the T $_{90}{ }^{2}$ Term (Squares). Fuel Mean Estimates Color-Coded

Separately for 0, 10\%, 15\%, and 20\% Ethanol Content.


For each of the 27 fuels, the estimated means for the models with and without the $\mathrm{T}_{90}{ }^{2}$ model term are very similar. Some fuels have means estimated from the model with the $\mathrm{T}_{90}{ }^{2}$ term slightly closer to the averages calculated from the data and for others the means estimated from the model without this term are slightly closer to the averages calculated from the data. There is no consistent preference for estimated mean emissions or mean log-emissions from either model fit. Quantitative assessments lead to the same conclusion. For completeness, all
the model fits in this report are included for the Benchmark Model with and without the $\mathrm{T}_{90}{ }^{2}$ term.

After standardizing the polynomial terms and accommodating collinear terms (see Section III.B below), the following fixed-effects portion of an expanded model includes all permissible (see Section III.B) quadratic and interaction terms for the statistical modeling and analysis of logarithmically transformed emissions and untransformed fuel economy:

$$
\begin{aligned}
& \text { Mean Measurement }=\beta_{0}+\beta_{1} \mathrm{~T}_{50}+\beta_{2} \mathrm{~T}_{90}+\beta_{3} \mathrm{EtOH}+\beta_{4} \mathrm{RVP}+\beta_{5} \mathrm{ARO} \\
& \\
& \quad+\beta_{6} \mathrm{~T}_{50}{ }^{2}+\beta_{7} \mathrm{EtOH}^{2}+\beta_{8} \mathrm{~T}_{90}{ }^{2}+\beta_{9} \mathrm{~T}_{50} * \mathrm{~T}_{90}+\beta_{10} \mathrm{~T}_{50} * \mathrm{EtOH}+\beta_{11} \mathrm{~T}_{50} * \mathrm{ARO} \\
& \\
& \quad+\beta_{12} \mathrm{~T}_{90} * \mathrm{EtOH}+\beta_{13} \mathrm{~T}_{90} * \mathrm{RVP}+\beta_{14} \mathrm{~T}_{90} * \mathrm{ARO}+\beta_{15} \mathrm{EtOH} * \mathrm{RVP}+\beta_{16} \mathrm{EtOH} * \mathrm{ARO} \\
& \\
& \quad+\beta_{17} \mathrm{RVP} * \mathrm{ARO} .
\end{aligned}
$$

## 2. Vehicles and Model Errors: Random Effects

Statistical models include random effects for two reasons: (1) the effects represent influences on measurements from factors whose levels or values represent only a small sample of possible levels or values, or (2) the effects represent uncontrolled variation from various sources; e.g., measurement error, test-run-to-test-run variability, equipment or operational variability, etc. Both of these sources of random effects are present in the data from the EPAct/V2/E89 Program.

The 15 vehicles chosen for inclusion in this program represent a very small selection of lowmileage, low-emitting Tier 2 vehicles. As such, they represent a random sample from a larger fleet of similar vehicles (not necessarily all possible Tier 2 vehicles). Due to the known large vehicle-to-vehicle variability in emissions, even for vehicles of the same model type, the effects of vehicles on emissions are not systematic but random. Similarly, repeat-test variation is random due to the numerous small but consequential variations in the testing and measurement processes.

Vehicle effects are modeled as random changes in the overall level of emissions, changes that are due to the individual vehicles being tested. To model these random vehicle effects, a random intercept term $b_{v}$ is added to the constant overall mean effect $\beta_{0}$; i.e., the model intercept term $\beta_{0}$ is replaced by $\beta_{0}+b_{v}$, where $b_{v}$ represents the random change attributable to vehicle v from the overall mean emission level $\beta_{0}$. The test-run variability is specified by an additive random error, e. Inclusion of these random effects in the expanded fixed effects model defined above results in the following model for a measurement on a single test run for a specified vehicle and fuel:

$$
\begin{aligned}
& \text { Measured Value }=\beta_{0}+\mathrm{b}_{\mathrm{v}}+\beta_{1} \mathrm{~T}_{50}+\beta_{2} \mathrm{~T}_{90}+\beta_{3} \mathrm{EtOH}+\beta_{4} \mathrm{RVP}+\beta_{5} \mathrm{ARO} \\
& \quad+\beta_{6} \mathrm{~T}_{50}{ }^{2}+\beta_{7} \mathrm{EtOH}^{2}+\beta_{8} \mathrm{~T}_{90}{ }^{2}+\beta_{9} \mathrm{~T}_{50} * \mathrm{~T}_{90}+\beta_{10} \mathrm{~T}_{50} * \mathrm{EtOH}+\beta_{11} \mathrm{~T}_{50} * \mathrm{ARO} \\
& \quad+\beta_{12} \mathrm{~T}_{90} * \mathrm{EtOH}+\beta_{13} \mathrm{~T}_{90} * \mathrm{RVP}+\beta_{14} \mathrm{~T}_{90} * \mathrm{ARO}+\beta_{15} \mathrm{EtOH} * \mathrm{RVP}+\beta_{16} \mathrm{EtOH}^{*} * \mathrm{ARO} \\
& \quad+\beta_{17} \mathrm{RVP} * \mathrm{ARO}+\mathrm{e} .
\end{aligned}
$$

This model is referred to in this report as the Benchmark Model. Both the Benchmark Model and the expanded model without the $\mathrm{T}_{90}{ }^{2}$ model term are fit and discussed in subsequent sections of this report.

## III. Additional Modeling Issues

## A. Collinearity Detection

In its simplest form, a collinearity occurs when two polynomial terms in a model are highly correlated. An example is a model that includes x and $\mathrm{x}^{2}$ when x takes on only positive values. This type of collinearity is easily detected by examining correlations among all pairs of terms in a model. In order to minimize this common occurrence of collinearities with polynomial models, all the fuel properties in this 27 -fuel database were standardized before polynomial terms were calculated. Standardization replaces values of a fuel property $x\left(e . g ., T_{50}\right)$ by $\left(x-\right.$ mean $\left._{x}\right) / \operatorname{std}_{x}$, where mean ${ }_{x}$ is the average of all the values of $x$ and $\operatorname{std}_{x}$ is the standard deviation of the values of x. Standardization for this project was based on the averages and standard deviations of the 27 values for each of the five fuel properties. All modeling and analysis of model fits use this standardization for the five fuel properties.

Collinearities are not restricted to only two quantitative variables. It is common that interaction terms like $\mathrm{x}_{1} * \mathrm{x}_{2}, \mathrm{x}_{1} * \mathrm{x}_{3}$, and $\mathrm{x}_{2}{ }^{*} \mathrm{x}_{3}$ will not have large correlations with each other but will be highly collinear due to the presence of all three terms and their constituents $x_{1}, x_{2}$, and $x_{3}$ in a model, even if the individual terms $\mathrm{x}_{\mathrm{j}}$ have been standardized. Collinearities like these might not be detectable through an examination of correlations.

Variance inflation factors (VIF) can detect whether a model term is collinear with any number of other model terms. VIF values can be expressed as

$$
\mathrm{VIF}=\frac{1}{1-\mathrm{R}^{2}}
$$

where $R^{2}$ is the proportion of the variability in a specified model term that can be explained by the other terms in the model ( $\mathrm{R}^{2}$ is the coefficient of determination when the specified model term is regressed on the other model terms). A VIF $>10$ is regarded as indicating a serious collinearity problem involving the specified model term.

## B. Collinearities in the Benchmark Model

As will be described below, it is computationally efficient to investigate subset models, models in which terms that are not statistically significant are deleted from the Benchmark Model, by using regression algorithms like Proc Reg in SAS. Proc Reg models only fixed effects but it contains several highly efficient computing routines for examining alternative subset models. Computations for collinearity assessments are also highly efficient using this algorithm. In order to use Proc Reg, however, random effects in the Benchmark Model must be replaced by fixed effects.

Use of a fixed effects algorithm can be justified only if the results are essentially the same as one would obtain using a less efficient but more appropriate algorithm that can model random effects; e.g., Proc Mixed in SAS. Replacing the one fixed effects intercept term $\left(\beta_{0}\right)$ and 15 random vehicle intercept terms $\left(b_{v}\right)$ in the Benchmark Model with 15 individual fixed-effects intercepts $\left(\beta_{v}\right)$, one for each vehicle, enables Proc Reg to be used for collinearity assessments.

Initial calculation of correlations and VIF values for the expanded model that contains the 15 fixed-effects vehicle terms, all the fuel property terms, interactions (cross-products) of the fuel properties, and the quadratic terms for $\mathrm{T}_{50}, \mathrm{~T}_{90}$, and EtOH resulted in large collinearity diagnostic values. This occurred even after the individual fuel property terms were standardized as described in the previous section. Consideration was given to deleting various terms from the Benchmark Model in order to eliminate the collinearities. This option was not considered desirable since several terms would need to be deleted. In addition, some of the terms that would need to be deleted would be terms that were included in the EPA design model that was used to select the fuel properties.

After investigating several alternatives, a simple expedient was found to all but eliminate the problem: standardize the cross-product and squared model terms. Consequently, all analyses included in this report are based on the following standardization steps:

Step 1: Calculate the averages and standard deviations of the five fuel properties across the 27 fuels.

Step 2: Standardize the linear fuel properties $\mathrm{T}_{50}, \mathrm{~T}_{90}, \mathrm{EtOH}, \mathrm{RVP}$, and ARO.
Step 3: Form the cross-product and squared terms from the standardized linear terms.
Step 4: Calculate the averages and standard deviations of the cross-product and squared terms across the 27 fuels.

Step 5: Standardize the cross-product and squared terms.
After standardizing all the model terms in the expanded model, all the VIF values were less than 6 except for the $\mathrm{T}_{50} * \mathrm{RVP}$ and $\mathrm{T}_{50} * E t O H$ terms, which had VIF values that exceeded 10. Accommodation of collinearities generally requires that one of the collinear model terms be deleted. This is required because the terms are redundant - they are repeating information and can lead to coefficient estimates (estimated $\beta_{\mathrm{j}}$ values in the model) that have incorrect signs and/or unacceptably large magnitudes. Since the fuel properties were selected using the EPA design model, a model that contains the $\mathrm{T} 50 * \mathrm{EtOH}$ term, the $\mathrm{T}_{50} * \mathrm{RVP}$ interaction was deleted from the expanded model. This resulted in the Benchmark Model shown in Section II.B.2.

## C. Influential Data Values

A small number of extreme data values can result in substantial and often deleterious changes to estimates of fixed effects relative to a database that does not contain the extreme data values. Consequently, extreme data values, termed influential values if they substantially change model fits, must be identified and their influence on fuel parameter effects must be assessed.

A very powerful statistic that is often used to detect influential data values is a Studentized residual, defined as

$$
\mathrm{t}=\frac{\text { Actual Measurement-Predicted Measurement }}{\text { Standard Error }}
$$

As indicated by this formula, Studentized residuals ( $t$ ) are calculated for each measurement value. A predicted measurement value is calculated from a fit to the fixed and random effects with a very critical condition: the measurement value itself is not used in the fit and hence cannot affect its own prediction. The calculated (externally standardized) standard error in the formula is a scale factor that quantifies the variability of the difference between a measurement value and its predicted value. A Studentized residual greater than 3.5 in magnitude identifies a possible influential measurement value. Subsequent analyses are needed to confirm whether the identified values are indeed influential.

Appendix II lists the individual measurements values that were initially identified as influential. It is important to note that for any specified measure the composite (weighted) and bag emissions model fits identify very few of the 956 measurement values that are possibly influential data values.

Any data value corresponding to a Studentized residual greater than 3.5 in magnitude was further evaluated by EPA staff. If a conclusion was drawn that such a value was an aberration, that data value was removed from the database and model fitting was performed using the remaining data values. If no such reason for removal of a data value was found, the data value remained in the database. Only 3 PM values, one for each of Bags 1-3, were ultimately removed from the analyses: Bag 1, Run 6247; Bag 2, Run 5324; and Bag 3, Run 6281. Because these bag measurements were considered aberrant data values, their corresponding composite values were also removed.

## D. Measurement Drift

Measurement values are sometimes affected by any of a variety of sources of drift. Vehicle wear, instrument calibration, and fuel property changes over time are but a few of the possible contributors to measurement drift. To ensure that drift did not affect the comparisons among the fuels in Phase 3 of the EPAct/V2/E89 Program, several fuels were selected for repeat measurements on one or more vehicles. All 15 vehicles were tested on one fuel at the beginning of the program, the middle of the program, and the end of the program. Various statistical analyses of
drift were conducted, including graphical assessment of possible drift, modeling measurements as a function of odometer reading, and modeling measurements as a function of the time of test (beginning, middle, and end). Random vehicle effects were included in all the modeling.

No consistent drift in time-of-test measurements was found. No adjustment for measurement drift is warranted by the analyses performed.

## E. Carryover Effects

Approximately midway through the test program it was discovered that up to five of the 15 test vehicles did not have sufficient drainage of the fuel tanks, leading to concern that carryover effects from one fuel to the next might mitigate the ability to properly determine the effects of the individual fuel properties on emissions. Beginning in August 2009, an additional fuel drain-andfill sequence was added to the two sequences that had previously been in place for the test program.

Following completion of the program a variety of statistical comparisons were made on the suspect vehicles by EPA staff. Analyses included comparing emissions results between the suspect vehicles and the remaining vehicles, comparing fuel-change effects among the suspect vehicles pre- and post-August 2009, and assessments of fitted models with respect to various scenarios involving the percentage of fuel property carryover that might remain after incomplete drainage.

None of the analyses performed provided conclusive evidence of substantive carryover effects. Consequently, no accommodation of possible carryover effects was made in the models or analyses included in this report.

## F. Zero (Nondetectable) Emissions Measurements

Measurements on some of these low-emitting Tier 2 vehicles resulted in vehicle measured values that did not exceed background measured values for a particular species. When this occurred, the values reported in the data files were set to zero. Table III.F. 1 lists the number of recorded zero values for each emission and bag.

Table III.F. 1 Number of Recorded Zero Values.

|  | Bag 1 | Bag 2 | Bag 3 | Composite |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C H}_{\mathbf{4}}$ | 0 | 0 | 0 | 0 |
| $\mathbf{C O}$ | 0 | 0 | 0 | 0 |
| $\mathbf{C O}_{\mathbf{2}}$ | 0 | 0 | 0 | 0 |
| $\mathbf{N M H C}^{\mathbf{N M O G}}$ | 0 | 44 | 128 | 0 |
| $\mathbf{N M O}_{\mathbf{~}}$ | 0 | 44 | 119 | 0 |
| $\mathbf{N O}_{\mathbf{x}}$ | 2 | 4 | 25 | 0 |
| $\mathbf{P M}$ | 45 | 47 | 82 | 8 |
| $\mathbf{T H C}$ | 0 | 3 | 2 | 0 |

The presence of zero values in the data results in an important modeling issue. Since logarithmic transformations are modeled for all the emissions, SAS sets the log-transformed values to "missing." These values are then automatically eliminated from the modeling and analysis.

Alternative accommodation of zero values so that they are not ignored in the modeling and analysis has often been accomplished by assigning small but nonzero values to the nondetectable measurements; e.g., $1 / 2$ of the minimum value that is measured. This can be criticized as being arbitrary and but one of many assignments that could be made. A careful investigation of the consequences of replacing zero values with either the minimum value or a fraction of the minimum value for the respective emissions was undertaken. Also undertaken was the investigation of an alternative estimation method.

There is a widely accepted statistical alternative to the replacement of zero values by small fixed quantities. In the statistical literature on survival modeling, this problem is one of censored data. Survival modeling does not assign (impute) values for the nondetectable measurements nor does it ignore them. Rather, survival modeling estimates the probability of obtaining nondetectable measurements and includes those estimated probabilities in a maximum likelihood estimation procedure for the fixed model effects.
A number of investigations of these alternatives were performed both as part of this contract and separately by EPA staff. A consensus agreement was reached on the accommodation of zero values.

- Five or Fewer Zero Values

If an emission/bag (e.g., Bag 2 NOx) has five or fewer zero values, the values are replaced by the minimum measured value for that emission and bag.

- More than Five Zero Values

If an emission/bag has more than five zero values, censored data modeling using Proc LifeReg in SAS is used to fit and evaluate models.

Proc LifeReg does not permit the modeling of random vehicle effects. The inclusion of fixed intercept parameters, as was done with Proc Reg in the collinearity assessment in Section III.B and is done with the fitting of reduced models in Section V, results in correct estimates of the fixed fuel parameter effects but seemingly does not provide a means for estimating the common intercept $\beta_{0}$ for the Benchmark and reduced models. A common intercept is available: the average of the 15 individual vehicle intercept estimates. This intercept estimate is used in all the models fit by Proc LifeReg.

## IV. Procedures for Selecting Reduced Model Fits

## A. The Challenge of Selecting a Single "Best" Reduced Model Fit

The complete Benchmark Model likely has terms that do not improve the accuracy of emissions predictions. Retaining terms that do not improve the accuracy of predictions can increase the uncertainty in the predictions because any nonzero model terms change the predictions even if the terms are not required for an adequate fit. Usually such changes are small relative to the changes in predicted values attributable to the statistically significant model terms. Nevertheless, it is generally desirable to delete unnecessary model terms.

The process for deleting unnecessary model terms is called variable selection. There are many statistical procedures that can be used to reduce the number of model terms by deleting ones that do not contribute to the prediction of the modeled emissions; none are universally accepted as the best procedure to use for all modeling situations and for all types of data. Similarly, the notion that any statistical procedure can provide a single "best" reduced model is not substantiated in the statistical literature. A "best" reduced model is only best once a variable selection procedure is selected and a criterion for "best" according to that procedure has been selected. These decisions can be highly subjective.

Experience with a variety of variable selection procedures suggests the following important considerations when fitting reduced models to emissions.

- When properly applied, different variable selection methods usually produce similar, although not necessarily identical, reduced model fits.
- Variable selection methods generally identify a number of well-fitting reduced model fits. One should not expect any variable selection method to identify a single "best" model fit from among the $2^{17}=131,072$ possible reduced model fits from the Benchmark Model.
- Although, the criterion for "best" with a particular variable selection method can enable the selection of one of the better-fitting reduced model fits, it is far preferable to use scientific or engineering knowledge to select from among the better fitting models one or more model fits that are consistent with accepted knowledge about fuel parameter effects on emissions.


## B. Variable Selection Methods: Measurements and Bags with Five or Fewer Zero Values

## 1. Initial Screening of Model Terms

Proc Reg in SAS includes a wide variety of variable selection algorithms that are widely used, highly efficient, and highly effective for selecting terms that can be deleted from regression models. Fuel parameter terms that should be deleted are those in the Benchmark Model that do not contribute substantively to the prediction of regulated emissions or fuel economy values. Proc Mixed in SAS, the algorithm that is used to fit most of the final models, does not permit the use of these fast, effective algorithms. Using Proc Mixed, reduced model fits must be obtained one by one in separate SAS computer runs. With Proc Reg, statistical criteria for evaluating hundreds of alternative model fits can be obtained very rapidly with a single SAS run.

As mentioned in Section III.B., an issue with the use of Proc Reg instead of Proc Mixed is that vehicles are random effects and Proc Reg fits only fixed effects models. All the fuel parameter terms are fixed effects. However, since all vehicles are to be included in the fitted models and variable selection is to be performed only on the fixed effect fuel properties, Proc Reg can be used for the initial screening of the fuel parameter model terms. To do so, individual intercepts for each vehicle are added to the other fixed effects terms of the model, the overall intercept is deleted, and no random effects other than the error term are included. All the vehicle intercepts are retained in each reduced model fit, which is an option in Proc Reg. This is actually what occurs with Proc Mixed and calculations using both methods are essentially identical for the fixed-effects fuel parameter model terms.

In this initial screening of terms, not only are the vehicle intercepts required to be in each model fit, the principle of hierarchy must be maintained. This principle states that interaction terms (products) and powers of fuel properties can be properly assessed only if the constituent linear terms are also in the model. Only subset models that adhere to this principle are considered candidates for final reduced model fits.

The option in Proc Reg that is used to screen terms from the Benchmark Model is the Best Subset algorithm. This algorithm efficiently searches all the possible subsets of model terms and calculates various statistics that can be used to select better reduced (subset) model fits, model fits with some of the original model terms deleted. A widely used statistic for selecting better reduced model fits is Mallow's $C_{p}$ statistic. Small values of $C_{p}$, values near the number of terms in the reduced model, are regarded as identifying the better reduced model fits. Alternatively, information criteria can be used to select better reduced models. Often Mallows' $\mathrm{C}_{\mathrm{p}}$ and information criteria assessments lead to the same subset model but they need not do so.

Two fundamental and important considerations need to be understood with the use of variable selection methods to select reduced models. First, the goal of variable selection methods is to select reduced models that eliminate model terms that do not contribute substantially to model
predictions. Consequently, it must be verified that reduced model fits predict with strong fidelity to complete model fits. Thus, if only the Phase 3 data are used to identify the better reduced model fits, as is the case for this report, the complete model fits provide the relevant comparisons against which reduced models must be assessed. As mentioned above, if other scientific or engineering data or knowledge are available, that additional information can and should inform the selection of reduced models.

Second, the "best" model should not be selected solely on the basis of the smallest value of a variable selection criterion (e.g., $\mathrm{C}_{\mathrm{p}}$, Bayes Information Criterion). Often, the subset model with the smallest value of a criterion is within tenths or hundredths of a percentage point of several other subset models that have criterion values that are extremely close to the minimum. This point is being emphasized because some of the reduced model fits that provide criterion values near the minimum might be preferable to the fit that produces the minimum criterion value because of external scientific or engineering reasons.

## 2. Final Model Fits

Since only the Phase 3 data are available for this report, reduced models for the various emissions and bags are selected using the minimum $\mathrm{C}_{\mathrm{p}}$ criterion. Once the terms for a reduced model are selected using the $\mathrm{C}_{\mathrm{p}}$ criterion, Proc Mixed is used to fit the reduced model and determine whether all the remaining terms in the model are statistically significant. Occasionally, a term in the selected reduced model is not significant. When this occurs, additional hierarchical model fits with the next smaller $\mathrm{C}_{\mathrm{p}}$ values are examined until a reduced model fit with hierarchical model terms that are all statistically significant is identified.

It is widely recognized that often too small a p-value cutoff for statistical significance is used for subset model selection. With any variable selection technique when there are a number of model terms, the more serious statistical hypothesis testing error generally is not the Type I error (falsely concluding a term is needed when it is not). The more serious error is generally the Type II error (falsely concluding a term is not needed when it is needed). Standard practice is to choose a $p$-value cutoff that is larger than the usual one, $\alpha=0.05$. The significance level used in this report to determine statistical significance is $\alpha=0.10$. Consequently, absent any scientific or engineering knowledge of fuel parameter effect on emissions that would enable the selection of one of the better reduced models, the three criteria for selecting a preferred model fit are:

- Select from among model fits adhering to the hierarchy principle,
- Select the model fit having the smallest $\mathrm{C}_{\mathrm{p}}$ value, and
- Select reduced models that have all model terms, subject to the hierarch principle, that have estimated coefficients that are statistically significant (p-value $<0.10$ ).


## C. Variable Selection Methods: Measurements and Bags with More than Five Zero Values

When a measurement/bag data set contains more than five zero values Proc LifeReg, a censored data statistical model fitting method, is used to fit candidate models. Proc LifeReg fits only a single model in one SAS run. It does not have the efficient best subset algorithm that is available in Proc Reg. When Proc LifeReg is used, variable selection is conducted using Backward Elimination. Backward Elimination deletes terms that are not statistically significant from the Benchmark Model one-by-one until only statistically significant terms remain. Likelihood ratio statistics are calculated and model terms are deleted until all the computed p-values in a hierarchical reduced model fit are less than 0.10.

In Section V, tables are presented with alternative reduced models that are similar to the tables for reduced model fits using Proc Reg and $\mathrm{C}_{\mathrm{p}}$ statistics when there are five or fewer zero values. When there are more than five zero values, however, the reduced model fits eliminate the zero values. Consequently, these reduced model fits might differ from those that would be obtained if Proc LifeReg model fits could be obtained from all possible reduced models. Such an exhaustive model fitting calculation is beyond the scope of this work. The reduced model fits presented in Section V are given to provide some sense of the alternative model fits that would be appropriate had there been no zero data values. Further comments on this are made in Section V.

## V. Model Fits: Results

## A. Benchmark Model Fits

Appendix III contains tables of Benchmark Model fits in which all the 17candidate fuel parameter model terms are included in the fitted model. Separate tables are provided for composite emissions and for each bag. Each table includes all the emissions and fuel economy model fits. Appendix IV contains similar tables of model fits for the Benchmark Model fits that exclude the $\mathrm{T}_{90}{ }^{2}$ model term. As demonstrated in Figs. II.B. 1 and II.B. 2 for Bag 1 THC emissions, these complete model fits produce very similar estimated mean emissions for the 27 program fuels.

## B. Reduced Model Fits

Appendix V contains tables of the reduced Benchmark Model fits that resulted from the variable selection procedures detailed in Sections IV.B and IV.C. The corresponding reduced model fits using the Benchmark Model without the $\mathrm{T}_{90}{ }^{2}$ term are included in Appendix VI. Examination of the reduced model fits in Appendices V and VI reveals that the only differences in the reduced models selected using Benchmark Models with and without the $\mathrm{T}_{90}{ }^{2}$ model term are for FE (composite and all three bags), PM (composite and Bags 1 and 2), and THC (Bag 1).

Fig. V.B. 1 Model-Estimated Mean Bag 1 THC Emissions for the 27 Program Fuels. Exponentiated Log-transformed Data Averages (Triangles), Reduced Benchmark Model Estimates (Circles), Reduced Benchmark Model Estimates without the $\boldsymbol{T}_{90}{ }^{2}$ Term (Squares). Fuel Mean Estimates Color-Coded Separately for 0, 10\%, 15\%, and 20\% Ethanol Content.


As with the complete Benchmark Model fits in Figs. II.B. 1 and II.B.2, the reduced model fits with and without the $\mathrm{T}_{90}{ }^{2}$ model term provide comparable estimates of the 27 fuel mean emissions and mean log-emissions. For some of the 27 fuels, each of these model fits predicts the mean emissions slightly better than the other model fit. Neither of the two model fits results in estimated means that are consistently closer to the exponentiated averages of the log-emissions (Fig. V.B.1) or the averages of the log-emissions (Fig. V.B.2).

Fig. V.B. 2 Model-Estimated Mean Logarithmically Transformed Bag 1 THC Emissions for the 27 Program Fuels. Log-transformed Data Averages (Triangles), Reduced Benchmark Model Estimates (Circles), Reduced Benchmark Model Estimates without the $T_{90}{ }^{2}$ Term (Squares). Fuel Mean Estimates Color-Coded Separately for 0, 10\%, 15\%, and 20\% Ethanol Content.


## C. Alternative Reduced Model Fits

In Section IV.A (above) emphasis was placed on the difficulty of uniquely identifying a single best model fit for data sets and models as complex as the polynomial ones on which this project is based. In order to document and illustrate the importance of this principle, Appendixes VII through X provide alternative reduced models for composite and bag emissions, respectively. These model fits are from among the 200 model fits for each emission that (a) adhere to the hierarch principle, (b) have the smallest $\mathrm{C}_{\mathrm{p}}$ values, and (c) contain only terms that are statistically significant ( $p<0.10$ ). Up to 25 alternative model fits are tabled. If fewer than 25 alternative models are shown, there were fewer than 25 among the 200 model fits with the smallest $\mathrm{C}_{\mathrm{p}}$ values that adhere to the hierarchy principle and have all model terms statistically significant.

The reduced model fit for Bag 1 THC with the $\mathrm{T}_{90}{ }^{2}$ model term and the fit without the $\mathrm{T}_{90}{ }^{2}$ model term are among the first 5 "best" model fits but neither one is the first one listed. This is because the first one listed has a model term that is not statistically significant. The fit that includes the $\mathrm{T}_{90}{ }^{2}$ term is the second "best" model fit and the one without the $\mathrm{T}_{90}{ }^{2}$ model term is the $5^{\text {th }}$ "best" model fit. However, as demonstrated in the previous section, both of these two model fits are comparable in estimating the 27 fuel means for THC.

The alternative model fits given in Appendices VII through X can be examined to determine if there are specific model fits that contain model terms that are preferable to the reduced model fits given in Appendices V and VI. A basis for preferring one or more of the alternative model fits can be based on well-accepted scientific or engineering principles that relate the model terms to known effects on emissions. Caution should be exercised in assessing any of the alternative models that are selected for any of the models that were fit using Proc LifeReg because of large numbers of zero (nondetectable) measurements. There is no algorithm that accompanies Proc LifeReg that permits the determination of alternative "best" reduced models. In order to provide some indication of the nature of possible alternative model fits, Proc Reg was used to identify the better subsets. This requires that all zero and missing values be deleted from the assessment of alternative reduced model fits since logarithmically transformed emissions are fit. These alternative model fits should be investigated further to determine whether they do provide alternative, equally effective, model fits.

## VI. Discussion and Recommendations

## A. Program Strengths and Limitations

Phase 3 of the EPAct/V2/E89 Program achieved the goal of creating an extensive database of emissions across the 27 program fuels and the 15 program vehicles that were included in the test program. The goals of this project focused on fuels with varying amounts of ethanol and the accompanying four fuel parameters. The variety of fuels evaluated is one of the strengths of this program.

Evaluations of alternative model specifications, the inclusion or exclusion of specific fuels, and the inclusion or exclusion of specific vehicles can be performed. For example, estimated model means for fuels not included in the database can be calculated and compared to program fuel results. The sensitivity of model estimates can be assessed with respect to individual fuel properties and the inclusion or exclusion of individual model terms. The database can be used to investigate fuel property effects on individual vehicles or groups of new, low-emitting Tier 2 vehicles. Conversely, the effects on fuel mean estimates can be assessed relative to the inclusion or exclusion of individual vehicles or groups of vehicles.

The strengths of the program also induce limitations on the conclusions that can be drawn from the statistical modeling and analysis. A major limitation involves the selected vehicles. It is not clear that the Tier 2 vehicles selected for this program were intended to represent a well-defined
fleet of vehicles. To the extent that such a fleet can be defined and these vehicles are representative of that fleet, inferences can be appropriate to the fleet. Absent the definition of a fleet for inferential purposes and substantive documentation that these vehicles are representative of the defined fleet, the conclusions drawn from the statistical modeling and analyses of the program data are relevant only to these 15 vehicles. Moreover, there is substantial statistical evidence that several of the vehicles in this project highly influence the modeling results. This is understandable and expected since the few vehicles in this study are so different in size (e.g., compact cars, trucks, SUVs), engines (e.g., 1.8L I4 to 5.3L V8), technology classes (e.g., all Tier 2 but Bins 4 to 8 ), etc. Since only one vehicle of each selected model is included in the database, it cannot be determined whether any influence of the individual vehicles on the modeling results is due to the individual vehicles or to the model types that they represent.

## B. Recommendations

## 1. Benchmark vs. Reduced Model Fits

A great deal of effort was expended by all the program participants to evaluate reduced models in which the model terms that do not contribute to the overall predictive ability of the fitted models are eliminated. The benefit of doing so is that there is the possibility that reduced models would be simpler to interpret and the effects of individual fuel parameters would be more easily discerned. Appendices V and VI document that these goals are not achieved. Many of the reduced model fits require a large number of terms and model fits show little consistency (apart from that induced by the hierarchy principle) in the terms remaining in the model fits. Finally, with today's computing power there is no major computational advantage to fitting reduced models over fitting the complete Benchmark Model.

Appendix XI contains graphical comparisons of the estimated mean emissions and fuel economy for the 27 program fuels using the Benchmark Model fits (Appendix III) and reduced model fits having the smallest $C_{p}$ values (Appendix V). Graphs are included for each of the modeled emissions and fuel economy for each phase of the LA-92 Unified test cycle. Also included are graphs for the composite (weighted bag) emissions.

In each graph in Appendix XI the averages emissions and fuel economy values are shown as solid green triangles. The averages for the emissions measurements are obtained by exponentiating the averages of the logarithmically transformed emissions. Fuel economy was not transformed; hence, ordinary averages for fuel economy are calculated and graphed. The solid black circles are estimates of the mean emissions for the 27 fuels, estimates obtained from the Benchmark Model fits. The solid blue squares are estimates of the mean emissions for the 27 fuels that are obtained from the respective reduced model fits.

In all of the graphs the estimates from the Benchmark Model fits and from the respective reduced model fits are very similar. This is what one would expect if the reduced models were retaining the predictive ability of the full model. In order to give a clearer sense of the
similarity of the estimated means from the model fits, quadratic curves were fit to the estimated means as a function of the ethanol content, separately for estimated means from the Benchmark Model and those from the respective reduced model fits. In most of the graphs the two curves completely overlap. In the few figures where the curves do not completely overlap, the differences are minor.

It is recommended that the fitted Benchmark Models be used for prediction purposes rather than the various reduced model fits. The Benchmark Model fits all contain any of the model terms that are useful in prediction. Unlike the reduced model fits, the benchmark Model fits do not require individual judgment about which variable selection procedure to use, what criteria to impose on the variable selection procedures, and how decisions regarding competing reduced models are to be made. Using the fitted Benchmark Models also allows consistency in methods across emissions types and bags. This is especially valuable for the censored data model fits using Proc LifeReg, where the computational ability to fit reduced models is severely limited.

The graphs in Appendix XI illustrate only one of many possible summaries of the data and the model fits. Overall trends can be evaluated with respect to changes of the fuel parameters within the constraints of the limits illustrated in Figures I.C. 1 and I.D.1.

## 2. Additional Issues

To the extent that the prevalence of nondetectable emissions are likely to be present in future studies, alternative statistical modeling methods should be investigated. Censored data modeling, as was used in this project, is but one of a number of alternatives that might be needed to satisfactorily model emissions for future generations of vehicles that are expected to have even lower emissions levels than the vehicles included in this project. An investigation of possible alternative modeling methods was beyond the scope of this effort.

Finally, the statistical modeling performed on the emissions in this database clearly indicates that future designs of similar studies should be based on a full quadratic model in the fuel parameters. The results of the modeling performed on this project, whether using the complete Benchmark Model fits or the various reduced model fits, benefitted from combinations of virtually all the model terms that were able to be included in the statistical models. This knowledge is an additional benefit of this project.

## Acknowledgements

The author gratefully acknowledges the financial support from the U.S. Department of Energy Office of Vehicle Technologies through the National Renewable Energy Laboratory under NREL subcontract number LGC-0-40441-01. The formulation of estimation strategies and accommodations of influential data and zero (nondetectable) measurements benefitted greatly from discussions with EPA staff, notably George Hoffman, Rafal Sobotowski, Aron Butler, and James Warila. Additional input from scientists and
engineers who are members of the Coordinating Research Council E-89 Panel is greatly appreciated. Kevin Whitney, Southwest Research Institute provided valuable insight into testing procedures, including the LA-92 time trace data used in Fig. I.A.1. Finally, none of this work would have been possible without the guidance and support of Doug Lawson, National Renewable Energy Laboratory.

## References

R.L. Mason and J.P. Buckingham, "Re-Design of Fuel Matrices for EPAct Program," Southwest Research Institute, 2008.
K. Whitney, "EPAct Fuel Blending," Final Report, NREL Subcontract ACI-8-88612-01 and EPA Contract EP-C-07-028, Southwest Research Institute, September 2010.
K. Whitney, "Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles Phase 3 Final Report," EPA Contract EP-C-07-028 and NREL Subcontracts ACI-8-88613-01, AFT-9-99319-01, AFT-9-99155-01, January 2011.

APPENDICES

## I. Constant Variance and Normal Probability Assessments

Fig. 1. Composite CH 4





Fig. 2. Composite CO


Fig. 3. Composite CO2





Fig. 4. Composite FE


Fig. 5. Composite NMHC


Fig. 6. Composite NMOG


Fig. 7. Composite NOx


Fig. 8. Composite PM


Fig. 9. Composite THC


Fig. 10. Bag 1 CH 4


Fig. 11. Bag 1 CO


Fig. 12. Bag 1 CO 2


Fig. 13. Bag 1 FE


Fig. 14. Bag 1 NMHC


Fig. 15. Bag 1 NMOG


Fig. 16. Bag 1 NOx





Fig. 17. Bag 1 PM


Fig. 18. Bag 1 THC





Fig. 19. Bag 2 CH 4





Fig. 20. Bag 2 CO


Fig. 21. Bag 2 CO 2





Fig. 22. Bag 2 FE


Fig. 23. Bag 2 NMHC


Fig. 24. Bag 2 NMOG





Fig. 25. Bag 2 NOx


Fig. 26. Bag 2 PM


Fig. 27. Bag 2 THC


Fig. 28. Bag 3 CH 4


Fig. 29. Bag 3 CO


Fig. 30. Bag 3 CO2





Fig. 31. Bag 3 FE

c. Measurement Normality

b. Transformed-Measurement Variability



Fig. 32. Bag 3 NMHC


Fig. 33. Bag 3 NMOG


Fig. 34. Bag 3 NOx





Fig. 35. Bag 3 PM


Fig. 36. Bag 3 THC


## II. Identification of Influential Data Values

| TestNumb | Measure | Bag | Fuel | VehCode | Run | Value | Invalue | RStudent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EPA-FFOC-P3-14EP-T1 | NOx | Bag 1 | 14 | FFOC | 8002 | 0.000 | -8.3681 | -4.9631 |
| EPA-FFOC-P3-22-T2 | NOx | Bag 1 | 22 | FFOC | 7343 | 0.000 | -8.3681 | -5.0226 |
| EPA-FFOC-P3-28-T1 | NOx | Bag 1 | 28 | FFOC | 6533 | 0.001 | -7.0728 | -4.0383 |
| EPA-FFOC-P3-30-T2 | NOx | Bag 1 | 30 | FFOC | 6751 | 0.000 | -8.3681 | -5.2339 |
| EPA-TSIE-P3-22-T1 | NOx | Bag 1 | 22 | TSIE | 6277 | 0.001 | -7.0099 | -3.6305 |
| EPA-CIMP-P3-22-T3 | PM | Bag 1 | 22 | CIMP | 8205 | 0.034 | -3.3854 | -4.4472 |
| EPA-FFOC-P3-11-T3 | PM | Bag 1 | 11 | FFOC | 7584 | 0.058 | -2.8415 | -4.4757 |
| EPA-JLIB-P3-16-T1 | PM | Bag 1 | 16 | JLIB | 6247 | 412.589 | 6.0225 | 6.3501 |
| EPA-TCOR-P3-11-T1 | PM | Bag 1 | 11 | TCOR | 8103 | 0.086 | -2.4592 | -3.9674 |
| EPA-TCOR-P3-13-T2 | PM | Bag 1 | 13 | TCOR | 7309 | 0.199 | -1.6164 | -3.5452 |
| EPA-TCOR-P3-28-T2 | PM | Bag 1 | 28 | TCOR | 8059 | 0.083 | -2.4915 | -4.2513 |
| EPA-CCOB-P3-2-T2 | NOx | Bag 2 | 02 | CCOB | 4487 | 0.000 | -9.0654 | -3.5848 |
| EPA-CCOB-P3-3-T1 | NOx | Bag 2 | 03 | CCOB | 6068 | 0.000 | -10.1693 | -4.5424 |
| EPA-CCOB-P3-9-T1 | NOx | Bag 2 | 09 | CCOB | 5599 | 0.000 | -9.4720 | -3.8958 |
| EPA-CCOB-P3-11-T2 | NOx | Bag 2 | 11 | ССОВ | 5323 | 0.000 | -9.0886 | -3.7228 |
| EPA-CCOB-P3-15-T3 | NOx | Bag 2 | 15 | CCOB | 7249 | 0.000 | -9.0789 | -3.6720 |
| EPA-CCOB-P3-20-T1 | NOx | Bag 2 | 20 | CCOB | 6591 | 0.000 | -10.1693 | -4.5969 |
| EPA-CCOB-P3-20-T2 | NOx | Bag 2 | 20 | CCOB | 6599 | 0.000 | -10.1693 | -4.5969 |
| EPA-CCOB-P3-24-T2 | NOx | Bag 2 | 24 | CCOB | 6215 | 0.000 | -9.4605 | -4.0116 |
| EPA-CCOB-P3-25-T1 | NOx | Bag 2 | 25 | ССОВ | 5797 | 0.000 | -10.1693 | -4.8033 |
| EPA-CCOB-P3-26-T1 | NOx | Bag 2 | 26 | CCOB | 5222 | 0.000 | -10.1693 | -4.6923 |
| EPA-CCOB-P3-28-T2 | NOx | Bag 2 | 28 | CCOB | 6114 | 0.000 | -8.7848 | -3.5057 |
| EPA-CCOB-P3-7-T1 | PM | Bag 2 | 07 | CCOB | 4801 | 0.004 | -5.4612 | -3.9928 |
| EPA-FEXP-P3-27-T2 | PM | Bag 2 | 27 | FEXP | 5324 | 110.019 | 4.7007 | 5.7181 |
| EPA-JLIB-P3-2MP-T1 | PM | Bag 2 | 02 | JLIB | 5735 | 21.127 | 3.0506 | 4.2356 |
| EPA-TSIE-P3-14-T1 | PM | Bag 2 | 14 | TSIE | 6936 | 0.005 | -5.3128 | -3.8110 |


| TestNumb | Measure | Bag | Fuel | VehCode | Run | Value | Invalue | RStudent |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| EPA-TCOR-P3-27-T2 | NMOG | Bag 3 | 27 | TCOR | 7472 | 0.000 | -10.4987 | -4.6589 |
| EPA-TCOR-P3-31-T2 | NMOG | Bag 3 | 31 | TCOR | 7026 | 0.000 | -10.2435 | -4.4175 |
| EPA-FEXP-P3-10-T1 | PM | Bag 3 | 10 | FEXP | 6281 | 62.231 | 4.1309 | 4.5104 |
| EPA-HCIV-P3-13-T1 | PM | Bag 3 | 13 | HCIV | 5819 | 0.032 | -3.4498 | -4.0248 |
| EPA-JLIB-P3-9-T1 | PM | Bag 3 | 09 | JLIB | 4762 | 0.037 | -3.2942 | -3.6165 |
| EPA-JLIB-P3-15-T2 | PM | Bag 3 | 15 | JLIB | 4730 | 0.036 | -3.3263 | -3.7380 |
| EPA-NALT-P3-22-T1 | PM | Bag 3 | 22 | NALT | 5853 | 0.031 | -3.4666 | -3.8219 |
| EPA-TCAM-P3-14-T2 | PM | Bag 3 | 14 | TCAM | 5605 | 0.031 | -3.4827 | -3.7435 |
| EPA-TCAM-P3-30-T1 | PM | Bag 3 | 30 | TCAM | 6138 | 0.031 | -3.4864 | -4.0290 |
| EPA-FFOC-P3-7-T2 | NOx | Composite | 07 | FFOC | 6507 | 0.001 | -7.1622 | -3.6919 |
| EPA-FFOC-P3-21-T2 | NOx | Composite | 21 | FFOC | 6873 | 0.001 | -6.8407 | -3.5229 |
| EPA-FEXP-P3-27-T2 | PM | Composite | 27 | FEXP | 5324 | 96.813 | 4.5728 | 6.0752 |
| EPA-JLIB-P3-2MP-T1 | PM | Composite | 02 | JLIB | 5735 | 18.561 | 2.9210 | 4.1800 |
| EPA-JLIB-P3-16-T1 | PM | Composite | 16 | JLIB | 6247 | 21.588 | 3.0722 | 4.1733 |
| EPA-JLIB-P3-28-T3 | PM | Composite | 28 | JLIB | 5363 | 0.018 | -4.0306 | -3.8410 |
| EPA-TCOR-P3-13-T2 | PM | Composite | 13 | TCOR | 7309 | 0.010 | -4.5749 | -4.7448 |
| EPA-TCOR-P3-20-T1 | PM | Composite | 20 | TCOR | 8156 | 0.018 | -4.0092 | -3.5089 |
| EPA-TCOR-P3-28-T2 | PM | Composite | 28 | TCOR | 8059 | 0.008 | -4.8085 | -4.6425 |
| EPA-TSIE-P3-24-T1 | PM | Composite | 24 | TSIE | 5491 | 0.005 | -5.2755 | -4.9787 |

## III. Benchmark Model Fits

|  |  |  |  | Composite |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | , | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG |  | PM | THC |
| Intercept | -5.03540 | 6.04550 | -0.64560 | 20.81240 | -3.72380 | -3.64930 | -4.35490 | 0.70961 | 440 |
|  | 08344 | 0.00072 | 0.03311 | 11710 | 0.14370 | 0.14050 | 0.01621 | -0.03520 | 0 |
| $T_{90}$ | 0.01802 | . 000042 | -0.04190 | 0.03955 | 0.04088 | 0.03560 | 0.00584 | 0.16110 | 0.0379 |
| EtOH | 0.07912 | 0.00192 | -0.02842 | -0.35430 | 0.05102 | 0.09173 | 0.06761 | 0.08360 | 3 |
| RVP | -0.01460 | -0.000 | 0.0245 | -0.02939 | -0.04424 | -0.04453 | 0.02697 | -0.08490 | 0.03975 |
| ARO | -0.09512 | 0.0178 | 0.05817 | 0.26750 | 0.09832 | 0.09348 | 0.06656 | 0.26630 | 0.05734 |
| $\mathrm{T}_{50}{ }^{2}$ | 0.03815 | -0.00062 | 0.0422 | 0.00403 | 0.08038 | 0.08048 | 02209 | -0.00820 | 0.07234 |
| $\mathrm{EtOH}^{2}$ | 0.02056 | 0.0004 | 0.0598 | 0.01870 | 0.04028 | 0.03918 | 0.00517 | -0.08320 | . 03598 |
| $\mathrm{T}_{90}{ }^{2}$ | -0.00662 | 0.00061 | 0.007 | 0.07931 | 0.01 | 0.01110 | -0.00627 | 0.11840 | . 0 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.0154 | -0.00042 | 0.02533 | 0.02521 | 0.0449 | 0.04613 | 0.0201 | 0.10230 | 0.03991 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.01609 | -0.00015 | 0.05990 | 0.00052 | 0.03433 | 0.03440 | 0.0078 | -0.12470 | 0.02972 |
| $\mathrm{T}_{50}$ *ARO | 0.02377 | -0.00014 | 0.03226 | -0.01418 | 0.01819 | 0.01693 | 0.06477 | -0.03960 | 0.01778 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.01054 | -0.00024 | 0.02322 | 0.03997 | 0.04108 | 0.03776 | 0.01798 | 0.10390 | 0.03558 |
| $\mathrm{T}_{90}$ *RVP | -0.00483 | 0.00015 | 0.01302 | -0.00422 | -0.01313 | -0.01306 | 0.00326 | -0.03080 | -0.01092 |
| $\mathrm{T}_{90}{ }^{*}$ ARO | 0.01705 | -0.00073 | 0.01892 | 0.01512 | 0.01940 | 0.01917 | -0.01671 | 0.07630 | 0.01952 |
| EtOH*RVP | -0.00236 | -0.00054 | -0.00143 | 0.02143 | -0.00039 | -0.00004 | -0.00152 | -0.03260 | -0.00095 |
| EtOH*ARO | 0.03087 | 0.00036 | 0.03843 | 0.05595 | 0.04110 | 0.03691 | 0.02980 | 0.07010 | 0.03647 |
| RVP*ARO | 0.02407 | -0.0008 | 0.02615 | -0.02246 | 0.03108 | 0.02973 | 0.03497 | -0.04180 | 0.02591 |


|  |  |  |  | Bag 1 |  |  | $\mathrm{NO}_{\mathrm{x}}$ | PM | THC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG |  |  |  |
| Intercept | -3.00660 | 6.55020 | 1.34730 | 12.46640 | -1.03050 | -0.95100 | -3.01760 | 0.65359 | -0.86550 |
|  | 0.10350 | 0.00071 | 0.00518 | 0.07436 | 0.15860 | 0.15580 | -0.03431 | 0.00470 | . 150 |
| T 90 | 0.00916 | 0.00285 | -0.14010 | 0.01159 | 0.02476 | 0.01880 | 0.04186 | 0.34940 | 0.02218 |
| EtOH | 0.09007 | 0.00254 | -0.07493 | -0.20910 | 0.05323 | 0.10150 | 0.01796 | 0.15120 | 0.07684 |
| RVP | -0.02666 | -0.00134 | 0.00877 | -0.00163 | -0.04329 | -0.04388 | -0.04116 | -0.06190 | -0.04 |
| ARO | -0.09546 | 0.01763 | -0.00142 | 0.16460 | 0.11900 | 0.11260 | 0.14510 | 0.43550 | 0.09095 |
| $T_{50}{ }^{2}$ | 0.0618 | -0.0006 | 0.071 | -0.00638 | 0.08998 | 0.09071 | -0.06488 | 0.07900 | 0.08763 |
| $\mathrm{EtOH}^{2}$ | 0.03495 | -0.00038 | 0.08439 | 0.01187 | 0.05323 | 0.05233 | -0.06955 | -0.02130 | 0.05087 |
| $\mathrm{T}_{90}{ }^{2}$ | 0.0062 | 0.00028 | 0.02124 | 0.04858 | 0.01962 | 0.01861 | 0.04167 | 0.11760 | 0.01877 |
| $\mathrm{T}_{50}{ }^{*} \boldsymbol{T}_{90}$ | 0.02086 | 0.00046 | 0.01428 | 0.00459 | 0.04877 | 0.05079 | 0.00627 | 0.03890 | 0.04683 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.03083 | -0.00061 | 0.10830 | -0.00878 | 0.04154 | 0.04144 | -0.10640 | -0.04520 | 0.03988 |
| $\mathrm{T}_{50}$ * ARO | 0.01919 | -0.00076 | 0.04355 | -0.00117 | 0.00899 | 0.00895 | -0.03170 | -0.03400 | 0.01024 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.02494 | 0.00035 | 0.01787 | 0.01454 | 0.04874 | 0.04499 | 0.04282 | 0.10180 | 0.04543 |
| $T_{90}{ }^{*}$ RVP | -0.00623 | 0.00092 | -0.00063 | -0.01220 | -0.01403 | -0.01393 | 0.04624 | -0.05580 | -0.01332 |
| $\mathrm{T}_{90}{ }^{*}$ ARO | 0.02957 | -0.00035 | 0.03690 | 0.00132 | 0.01753 | 0.01753 | -0.04948 | 0.05510 | 0.01955 |
| EtOH*RVP | 0.00523 | -0.00037 | 0.00414 | 0.00943 | 0.00652 | 0.00626 | -0.01820 | 0.01190 | 0.00614 |
| EtOH*ARO | 0.03902 | 0.00018 | 0.05942 | 0.03064 | 0.04111 | 0.03650 | -0.04301 | 0.06820 | 0.03854 |
| RVP**RO | 0.02601 | -0.00122 | 0.04181 | -0.00741 | 0.03405 | 0.03322 | -0.04170 | -0.06020 | 0.03198 |


|  |  |  |  | Bag 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.70760 | 5.98250 | -1.38940 | 22.18230 | -5.71266 | -5.51674 | -4.78630 | -1.30852 | 99 |
| $T_{50}$ | 0.07009 | 0.00063 | 0.05910 | 0.12620 | 0.09240 | 0.07900 | 0.01117 | -0.18650 | 0.06874 |
| $T_{90}$ | 0.02128 | 0.00019 | 0.04389 | 0.04410 | 0.15790 | 0.11470 | 0.00249 | 0.15660 | 708 |
| EtOH | 0.07266 | 0.00173 | 0.04056 | -0.37580 | 0.07730 | 0.07510 | 0.05538 | 0.00190 | 0.06497 |
| RVP | -0.00512 | -0.00067 | 0.04841 | -0.03338 | -0.06540 | -0.05240 | -0.00340 | -0.15880 | -0.04241 |
| ARO | -0.09712 | 0.01792 | 0.10280 | 0.28340 | 0.03750 | 0.03910 | 0.04139 | 0.25220 | -0.02502 |
| $T_{50}{ }^{2}$ | 0.01620 | -0.00064 | 0.01988 | 0.00592 | 0.03570 | 0.05070 | 0.04231 | -0.03150 | 0.02535 |
| $\mathrm{EtOH}^{2}$ | 0.00285 | 0.0005 | 0.04538 | 0.01950 | -0.05190 | -0.02730 | 0.04067 | -0.15900 | -0.01860 |
| $\mathrm{T}_{90}{ }^{2}$ | -0.01878 | 0.0007 | 0.0029 | 0.08296 | 0.01680 | 0.01140 | -0.00454 | . 15190 | 0.00942 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.0112 | -0.0005 | 0.015 | 0.02847 | 0.03620 | 0.0245 | 0.02191 | 0.16000 | 0.00981 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | -0.00263 | -0.0001 | 0289 | 0.00205 | 0.005 | 0.0188 | 0.0491 | -0.14210 | -0.00939 |
| $\mathrm{T}_{50}$ *ARO | 0.02798 | -0.00016 | 0.01856 | -0.01549 | 0.08910 | 0.06250 | 0.03479 | -0.11570 | 0.03548 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | -0.00595 | -0.00033 | -0.0104 | 0.04429 | 0.01150 | 0.00290 | 0.01662 | 0.1097 | -0.0114 |
| $\mathrm{T}_{90}$ *RVP | -0.01029 | 0.00005 | -0.00943 | -0.00263 | -0.00460 | -0.01020 | -0.03421 | -0.01180 | -0.01529 |
| $\mathrm{T}_{90}{ }^{*}$ ARO | 0.00836 | -0.00073 | 0.00294 | 0.01685 | 0.04580 | 0.03430 | -0.00433 | 0.03460 | 0.02007 |
| EtOH*RVP | -0.00824 | -0.00058 | 0.00428 | 0.02384 | -0.03600 | -0.03140 | 0.02423 | -0.02490 | -0.02370 |
| EtOH*ARO | 0.02356 | 0.00044 | 0.02524 | 0.05840 | 0.09300 | 0.06910 | 0.05087 | -0.00780 | 0.04125 |
| RVP ${ }^{*}$ ARO | 0.02280 | -0.00084 | 0.02011 | -0.02456 | -0.03340 | -0.01400 | 0.01298 | -0.10590 | -0.01247 |


|  |  |  |  | Bag 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -4.59680 | 6.29480 | -1.14010 | 16.25390 | -5.98367 | -5.84969 | -5.25399 | -0.35602 | -4.22870 |
| 50 | 0.04566 | 0.00118 | 0.04185 | 0.08507 | 0.06590 | -0.00890 | -0.01040 | -0.03110 | 92 |
| T | 0.01368 | 0.00048 | 0.05095 | 0.02869 | 0.15750 | 0.15500 | 0.08130 | 0.00310 | 0.0439 |
| EtOH | 0.04658 | 0.00287 | -0.06092 | -0.28790 | -0.10720 | -0.01720 | 0.08070 | 0.043 | 0.01983 |
| RVP | 0.01558 | -0.00079 | 0.04303 | -0.01968 | -0.06320 | -0.09920 | 0.19650 | -0.13950 | -0.00457 |
| ARO | -0.10510 | 0.01758 | 0.07019 | 0.21280 | 0.00530 | -0.00460 | 0.05030 | -0.00240 | -0.05995 |
| $\mathrm{T}_{50}{ }^{2}$ | 0.01783 | -0.00033 | 0.00462 | 0.00144 | -0.02420 | -0.04920 | 0.05230 | -0.10230 | . 02588 |
| $\mathrm{EtOH}^{2}$ | 0.00595 | 0.00093 | -0.00347 | 0.01482 | -0.03870 | -0.01120 | -0.02340 | -0.07510 | -0.00134 |
| $\mathrm{T}_{90}{ }^{2}$ | -0.01882 | 0.00008 | -0.02190 | 0.06897 | 0.01610 | 0.03970 | -0.05460 | . 02190 | 0.01066 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | -0.00247 | -0.00018 | 0.00129 | 0.01942 | 0.00970 | 0.02510 | 0.02340 | -0.02410 | 0.00504 |
| $\mathrm{T}_{50}$ *EtOH | -0.01293 | 0.00031 | -0.02114 | -0.00100 | -0.05140 | -0.08240 | 0.06850 | -0.15120 | -0.03099 |
| $\mathrm{T}_{50}{ }^{\text {* }}$ R ${ }^{\text {a }}$ | 0.02923 | 0.00042 | 0.02674 | -0.01146 | -0.03220 | -0.06600 | 0.19310 | -0.01070 | 0.02090 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.00093 | 0.00023 | 0.00556 | 0.02858 | 0.00860 | 0.01950 | 0.03610 | 0.03990 | 0.00495 |
| $\mathrm{T}_{90}{ }^{*}$ RVP | -0.00080 | 0.00037 | 0.00290 | -0.00456 | 0.03060 | 0.04690 | 0.03770 | 0.00020 | -0.00808 |
| $T_{\text {go }}$ * ARO | 0.00506 | -0.00106 | 0.01004 | 0.01722 | -0.02780 | -0.03520 | -0.03780 | 0.08920 | 0.00036 |
| EtOH*RVP | -0.00024 | -0.00038 | -0.00064 | 0.01357 | 0.07610 | 0.07850 | -0.04870 | -0.07420 | 0.01621 |
| EtOH*ARO | 0.02639 | -0.00039 | 0.02470 | 0.05933 | -0.02390 | -0.03360 | 0.05140 | 0.05440 | 0.01739 |
| RVP*ARO | 0.03270 | -0.00078 | 0.03390 | -0.01406 | -0.05230 | -0.08320 | 0.05670 | -0.16310 | 0.03 |

## IV. Benchmark Model Fits Without the $\mathrm{T}_{90^{2}}{ }^{2}$ Model Term

|  |  |  |  | Composite |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.03540 | 6.04550 | -0.64550 | 20.81320 | -3.72370 | -3.64910 | -4.35490 | -0.70825 | -3.44430 |
| $T_{50}$ | 0.07854 | 0.00117 | 0.03861 | 0.17630 | 0.15200 | 0.14870 | 0.01157 | 0.05250 | 0.13770 |
| $T_{90}$ | 0.02037 | 0.00020 | -0.04454 | 0.01138 | 0.03690 | 0.03165 | 0.00807 | 0.11890 | 0.03446 |
| EtOH | 0.07774 | 0.00205 | -0.02687 | -0.33760 | 0.05335 | 0.09404 | 0.06630 | 0.10840 | 0.07480 |
| RVP | -0.01736 | -0.00044 | 0.02766 | 0.00384 | -0.03957 | -0.03990 | 0.02435 | -0.03540 | -0.03561 |
| ARO | -0.09321 | 0.01767 | 0.05603 | 0.24450 | 0.09510 | 0.09028 | 0.06837 | 0.23220 | 0.05448 |
| $T_{50}{ }^{2}$ | 0.03852 | -0.00065 | 0.04181 | -0.00021 | 0.07976 | 0.07986 | 0.02244 | -0.01470 | 0.07179 |
| $\mathrm{EtOH}^{2}$ | 0.02073 | 0.00047 | 0.05966 | 0.01693 | 0.04000 | 0.03890 | 0.00533 | -0.08610 | 0.03574 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.01541 | -0.00041 | 0.02543 | 0.02662 | 0.04505 | 0.04628 | 0.02006 | 0.10370 | 0.04004 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.01572 | -0.00012 | 0.06032 | 0.00498 | 0.03497 | 0.03503 | 0.00744 | -0.11800 | 0.03028 |
| $\mathrm{T}_{50}$ *ARO | 0.02004 | 0.00020 | 0.03644 | 0.03100 | 0.02447 | 0.02316 | 0.06125 | 0.02700 | 0.02336 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.01179 | -0.00036 | 0.02181 | 0.02521 | 0.03897 | 0.03566 | 0.01917 | 0.08150 | 0.03371 |
| $T_{90}{ }^{*} \mathrm{RVP}$ | -0.00577 | 0.00024 | 0.01407 | 0.00707 | -0.01154 | -0.01148 | 0.00237 | -0.01400 | -0.00951 |
| $\mathrm{T}_{90}{ }^{\text {* }}$ ARO | 0.01624 | -0.00066 | 0.01983 | 0.02500 | 0.02076 | 0.02052 | -0.01748 | 0.09060 | 0.02073 |
| EtOH*RVP | -0.00272 | -0.00051 | -0.00103 | 0.02552 | 0.00022 | 0.00056 | -0.00186 | -0.02610 | -0.00041 |
| EtOH*ARO | 0.03043 | 0.00040 | 0.03893 | 0.06176 | 0.04185 | 0.03766 | 0.02938 | 0.07820 | 0.03713 |
| RVP*ARO | 0.02028 | -0.00049 | 0.03041 | 0.02342 | 0.03750 | 0.03609 | 0.03138 | 0.02610 | 0.03160 |


|  |  |  |  | Bag 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\boldsymbol{x}}$ | PM | THC |
| Intercept | -3.00650 | 6.55020 | 1.34760 | 12.46690 | -1.03030 | -0.95080 | -3.01710 | 0.65501 | -0.86530 |
| $T_{50}$ | 0.10810 | 0.00091 | 0.02091 | 0.11070 | 0.17310 | 0.16950 | -0.00344 | 0.09190 | 0.16480 |
| $T_{90}$ | 0.00695 | 0.00275 | -0.14770 | -0.00566 | 0.01778 | 0.01218 | 0.02703 | 0.30760 | 0.01550 |
| EtOH | 0.09137 | 0.00260 | -0.07050 | -0.19880 | 0.05733 | 0.10540 | 0.02666 | 0.17590 | 0.08076 |
| RVP | -0.02406 | -0.00122 | 0.01763 | 0.01872 | -0.03511 | -0.03611 | -0.02377 | -0.01270 | -0.03396 |
| ARO | -0.09725 | 0.01755 | -0.00755 | 0.15050 | 0.11340 | 0.10720 | 0.13310 | 0.40170 | 0.08553 |
| $T_{50}{ }^{2}$ | 0.06151 | -0.00068 | 0.07052 | -0.00897 | 0.08889 | 0.08968 | -0.06719 | 0.07250 | 0.08659 |
| $\mathrm{EtOH}^{2}$ | 0.03479 | -0.00039 | 0.08386 | 0.01079 | 0.05274 | 0.05186 | -0.07060 | -0.02420 | 0.05040 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.02094 | 0.00046 | 0.01456 | 0.00546 | 0.04903 | 0.05103 | 0.00683 | 0.04040 | 0.04708 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.03119 | -0.00060 | 0.10950 | -0.00606 | 0.04265 | 0.04250 | -0.10400 | -0.03850 | 0.04095 |
| $\mathrm{T}_{50}$ *ARO | 0.02268 | -0.00061 | 0.05549 | 0.02650 | 0.02001 | 0.01941 | -0.00828 | 0.03230 | 0.02079 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.02376 | 0.00030 | 0.01386 | 0.00551 | 0.04504 | 0.04147 | 0.03496 | 0.07960 | 0.04189 |
| $T_{90}$ *RVP | -0.00535 | 0.00096 | 0.00238 | -0.00528 | -0.01125 | -0.01130 | 0.05214 | -0.03920 | -0.01066 |
| $T_{90}{ }^{*}$ ARO | 0.03032 | -0.00032 | 0.03949 | 0.00737 | 0.01992 | 0.01980 | -0.04440 | 0.06950 | 0.02184 |
| EtOH*RVP | 0.00557 | -0.00036 | 0.00529 | 0.01194 | 0.00758 | 0.00727 | -0.01594 | 0.01820 | 0.00715 |
| EtOH*ARO | 0.03944 | 0.00020 | 0.06085 | 0.03420 | 0.04243 | 0.03775 | -0.04021 | 0.07630 | 0.03980 |
| RVP*ARO | 0.02957 | -0.00106 | 0.05398 | 0.02069 | 0.04529 | 0.04389 | -0.01782 | 0.00740 | 0.04274 |


|  |  |  |  | Bag 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.70790 | 5.98250 | -1.38940 | 22.18310 | -5.71247 | -5.51659 | -4.78630 | -1.30679 | -4.90980 |
| $T_{50}$ | 0.05617 | 0.00116 | 0.06132 | 0.18820 | 0.10490 | 0.08750 | 0.00781 | -0.07400 | 0.07571 |
| $T_{90}$ | 0.02797 | -0.00007 | 0.04283 | 0.01463 | 0.15190 | 0.11060 | 0.00410 | 0.10260 | 0.07373 |
| EtOH | 0.06874 | 0.00188 | 0.04119 | -0.35820 | 0.08080 | 0.07750 | 0.05443 | 0.03370 | 0.06694 |
| RVP | -0.01296 | -0.00037 | 0.04966 | 0.00138 | -0.05840 | -0.04760 | -0.00529 | -0.09530 | -0.03848 |
| ARO | -0.09170 | 0.01771 | 0.10200 | 0.25930 | 0.03260 | 0.03580 | 0.04270 | 0.20850 | -0.02773 |
| $\mathrm{T}_{50}{ }^{2}$ | 0.01724 | -0.00068 | 0.01971 | 0.00149 | 0.03470 | 0.05000 | 0.04256 | -0.03990 | 0.02482 |
| $\mathrm{EtOH}^{2}$ | 0.00332 | 0.00052 | 0.04531 | 0.01765 | -0.05230 | -0.02760 | 0.04078 | -0.16280 | -0.01884 |
| $\mathrm{T}_{50}{ }^{*} \boldsymbol{T}_{90}$ | 0.01103 | -0.00050 | 0.01515 | 0.02995 | 0.03640 | 0.02470 | 0.02185 | 0.16190 | 0.00994 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | -0.00370 | -0.00011 | 0.02909 | 0.00671 | 0.00630 | 0.01950 | 0.04885 | -0.13350 | -0.00885 |
| $\mathrm{T}_{50}{ }^{*}$ ARO | 0.01743 | 0.00024 | 0.02024 | 0.03176 | 0.09860 | 0.06900 | 0.03224 | -0.03020 | 0.04078 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | -0.00240 | -0.00047 | -0.01096 | 0.02885 | 0.00830 | 0.00080 | 0.01748 | 0.08110 | -0.01320 |
| $T_{90}$ *RVP | -0.01295 | 0.00015 | -0.00901 | 0.00919 | -0.00220 | -0.00860 | -0.03485 | 0.00980 | -0.01396 |
| $\mathrm{T}_{90}{ }^{\text {* }}$ ARO | 0.00607 | -0.00065 | 0.00331 | 0.02719 | 0.04790 | 0.03570 | -0.00488 | 0.05320 | 0.02122 |
| EtOH*RVP | -0.00926 | -0.00054 | 0.00444 | 0.02812 | -0.03510 | -0.03080 | 0.02398 | -0.01670 | -0.02319 |
| EtOH*ARO | 0.02229 | 0.00049 | 0.02545 | 0.06447 | 0.09420 | 0.06990 | 0.05056 | 0.00260 | 0.04188 |
| RVP*ARO | 0.01203 | -0.00043 | 0.02182 | 0.02343 | -0.02370 | -0.00750 | 0.01038 | -0.01880 | -0.00707 |


|  |  |  |  | Bag 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | N | PM | THC |
| Intercept | -4.59700 | 6.29480 | -1.14030 | 16.25450 | -5.98349 | -5.84929 | -5.25460 | -0.35629 | 4.22880 |
| $T_{50}$ | 0.03173 | 0.00123 | 0.02563 | 0.13660 | 0.07790 | 0.02050 | -0.05080 | -0.04730 | 0.04803 |
| $\mathrm{T}_{90}$ | 0.02037 | 0.00046 | 0.05874 | 0.00419 | 0.15170 | 0.14090 | 0.10070 | 0.01090 | 0.04770 |
| EtOH | 0.04265 | 0.00288 | -0.06549 | -0.27340 | -0.10380 | -0.00880 | 0.06930 | -0.04800 | 0.01761 |
| RVP | 0.00773 | -0.00076 | 0.03389 | 0.00922 | -0.05640 | -0.08260 | 0.17370 | -0.14870 | -0.00902 |
| ARO | -0.09965 | 0.01756 | 0.07651 | 0.19280 | 0.00070 | -0.01610 | 0.06610 | 0.00390 | -0.05688 |
| $T_{50}{ }^{2}$ | 0.01888 | -0.00033 | 0.00583 | -0.00224 | -0.02510 | -0.05130 | 0.05530 | -0.10110 | 0.02647 |
| $\mathrm{EtOH}^{2}$ | 0.00642 | 0.00093 | -0.00292 | 0.01328 | -0.03910 | -0.01230 | -0.02200 | -0.07460 | -0.00108 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | -0.00272 | -0.00018 | 0.00100 | 0.02065 | 0.00990 | 0.02570 | 0.02260 | -0.02440 | 0.00490 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | -0.01400 | 0.00031 | -0.02239 | 0.00287 | -0.05050 | -0.08030 | 0.06540 | -0.15240 | -0.03160 |
| $\mathrm{T}_{50}$ *ARO | 0.01866 | 0.00046 | 0.01443 | 0.02782 | -0.02310 | -0.04360 | 0.16240 | -0.02300 | 0.01491 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.00448 | 0.00022 | 0.00969 | 0.01575 | 0.00550 | 0.01190 | 0.04640 | 0.04400 | 0.00696 |
| $T_{90}$ *RVP | -0.00347 | 0.00038 | -0.00020 | 0.00527 | 0.03290 | 0.05250 | 0.03000 | -0.00290 | -0.00959 |
| $\mathrm{T}_{90}{ }^{*}$ ARO | 0.00276 | -0.00106 | 0.00737 | 0.02582 | -0.02580 | -0.03040 | -0.04440 | 0.08660 | -0.00094 |
| EtOH*RVP | -0.00126 | -0.00037 | -0.00183 | 0.01713 | 0.07690 | 0.08060 | -0.05160 | -0.07540 | 0.01564 |
| EtOH*ARO | 0.02512 | -0.00038 | 0.02323 | 0.06438 | -0.02280 | -0.03080 | 0.04770 | 0.05290 | 0.01668 |
| RVP ${ }^{*}$ ARO | 0.02191 | -0.00074 | 0.02135 | 0.02584 | -0.04300 | -0.06030 | 0.02540 | -0.17560 | 0.02932 |

## V. Reduced Benchmark Model Fits

|  |  |  |  | Composite |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.03540 | 6.04560 | -0.64540 | 20.81260 | -3.72370 | -3.64920 | -4.35540 | -0.70765 | -3.44430 |
| $T_{50}$ | 0.07343 | 0.00141 | 0.04458 | 0.13790 | 0.14710 | 0.14390 | -0.00464 | 0.00030 | 0.13370 |
| $T_{90}$ | 0.01883 | 0.00004 | -0.04511 | 0.03232 | 0.03719 | 0.03203 |  | 0.14450 | 0.03454 |
| EtOH | 0.07141 | 0.00227 | -0.02066 | -0.34500 | 0.04829 | 0.08899 | 0.05197 | 0.09750 | 0.07065 |
| RVP | -0.01973 | -0.00053 | 0.03009 | -0.01736 | -0.04162 | -0.04191 |  | -0.05980 | -0.03735 |
| ARO | -0.09298 | 0.01790 | 0.05713 | 0.26350 | 0.09426 | 0.08941 | 0.06226 | 0.25900 | 0.05384 |
| $T_{50}{ }^{2}$ | 0.02915 |  | 0.04815 |  | 0.07459 | 0.07470 |  |  | 0.06756 |
| $\mathrm{EtOH}^{2}$ | 0.00795 | 0.00076 | 0.06553 | 0.01924 | 0.03534 | 0.03418 |  | -0.07280 | 0.03203 |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  | 0.06368 |  |  |  | 0.08310 |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.02010 |  | 0.01831 | 0.02936 | 0.05099 | 0.05214 |  | 0.12360 | 0.04504 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ |  |  | 0.06442 |  | 0.03170 | 0.03173 |  | -0.11320 | 0.02768 |
| $\mathrm{T}_{50}$ *ARO | 0.01729 |  | 0.03584 |  | 0.02461 | 0.02349 | 0.02282 |  | 0.02313 |
| $\mathrm{T}_{90}{ }^{\text {* }}$ EtOH | 0.01427 |  | 0.01598 | 0.03699 | 0.04369 | 0.04039 |  | 0.10270 | 0.03753 |
| $T_{90}$ *RVP |  |  |  |  |  |  |  |  |  |
| $T_{90}{ }^{*}$ ARO | 0.01445 | -0.00069 | 0.02102 | 0.01614 | 0.01968 | 0.01950 |  | 0.07160 | 0.01974 |
| EtOH*RVP |  |  |  | 0.02380 |  |  |  |  |  |
| EtOH*ARO | 0.02741 |  | 0.04131 | 0.06244 | 0.03975 | 0.03565 |  | 0.08670 | 0.03526 |
| RVP*ARO | 0.01956 |  | 0.03435 |  | 0.03428 | 0.03287 |  |  | 0.02896 |


|  |  |  |  | Bag 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -3.00670 | 6.55020 | 1.34720 | 12.46650 | -1.03080 | -0.95130 | -3.01640 | 0.65357 | -0.86600 |
| $T_{50}$ | 0.10590 | 0.00235 | 0.02159 | 0.08231 | 0.15730 | 0.15410 | 0.01026 | 0.02850 | 0.12570 |
| $T_{90}$ | 0.00858 | 0.00267 | -0.14690 | 0.00663 | 0.01683 | 0.01124 | 0.02389 | 0.33560 | 0.03021 |
| EtOH | 0.08877 | 0.00371 | -0.06967 | -0.20290 | 0.04439 | 0.09272 | 0.03802 | 0.17220 | 0.05959 |
| RVP | -0.02456 |  | 0.02063 | 0.00317 | -0.04766 | -0.04834 | -0.01417 | -0.03160 | -0.05415 |
| ARO | -0.09816 | 0.01761 | -0.01156 | 0.16290 | 0.11120 | 0.10510 | 0.13360 | 0.42020 | 0.09038 |
| $T_{50}{ }^{2}$ | 0.05882 |  | 0.07222 |  | 0.07769 | 0.07866 | -0.05701 | 0.12470 | 0.07506 |
| $\mathrm{EtOH}^{2}$ | 0.03133 |  | 0.08535 | 0.02017 | 0.04274 | 0.04204 | -0.05981 |  | 0.04171 |
| $T_{90}{ }^{2}$ |  |  |  | 0.04281 |  |  |  | 0.10110 | 0.02856 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.02280 |  |  |  | 0.05224 | 0.05437 |  |  | 0.04939 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.02883 |  | 0.11170 |  | 0.03580 | 0.03576 | -0.09774 |  | 0.03766 |
| $\mathrm{T}_{50}$ *ARO | 0.02585 |  | 0.05859 |  |  |  |  |  |  |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.02655 |  |  |  | 0.05123 | 0.04763 | 0.02544 | 0.06110 | 0.05489 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{RVP}$ |  |  |  | -0.01610 |  |  | 0.04562 | -0.07080 |  |
| $T_{90}$ *ARO | 0.03072 |  | 0.03861 |  | 0.02069 | 0.02049 | -0.04769 |  | 0.01949 |
| EtOH*RVP |  |  |  | 0.01315 |  |  |  |  |  |
| EtOH*ARO | 0.03977 | 0.00087 | 0.06244 | 0.03191 | 0.02594 | 0.02171 | -0.03038 | 0.09300 | 0.02825 |
| RVP*ARO | 0.02791 |  | 0.05370 |  | 0.02820 | 0.02723 |  |  |  |


|  |  |  |  | Bag 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.70760 | 5.98250 | -1.38950 | 22.18250 | -5.71157 | -5.51664 | -4.78820 | -1.31205 | -4.90920 |
| $T_{50}$ | 0.04477 | 0.00166 | 0.02484 | 0.14960 | 0.09700 | 0.08590 |  | -0.00370 | 0.07154 |
| $\boldsymbol{T}_{90}$ | 0.02445 | -0.00027 | 0.04177 | 0.03626 | 0.13590 | 0.10910 | -0.00046 | 0.09530 | 0.06681 |
| EtOH | 0.06076 | 0.00231 |  | -0.36530 | 0.07930 | 0.07300 | 0.04112 | 0.11580 | 0.06814 |
| RVP | -0.02082 |  | 0.02839 | -0.01978 | -0.05330 | -0.04630 | -0.01464 |  | -0.03953 |
| ARO | -0.09211 | 0.01793 | 0.09800 | 0.27910 | 0.03730 | 0.03550 | 0.03534 | 0.19880 | -0.02281 |
| $T_{50}{ }^{2}$ | 0.01398 | -0.00053 |  |  | 0.04160 | 0.04120 |  |  | 0.03054 |
| $\mathrm{EtOH}^{2}$ |  | 0.00080 |  | 0.01903 | -0.04890 | -0.04240 |  |  |  |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  | 0.06595 |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.01374 |  | 0.02177 | 0.03204 | 0.04700 | 0.02930 |  | 0.10590 | 0.02886 |
| $\mathrm{T}_{50}{ }^{\text {* }}$ EtOH |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{50}$ *ARO |  |  |  |  | 0.09200 | 0.07380 |  |  | 0.03386 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ |  |  |  | 0.04033 |  |  |  |  |  |
| $T_{90}{ }^{*}$ RVP | -0.00992 |  |  |  |  |  | -0.04014 |  |  |
| $\mathrm{T}_{90}{ }^{*}$ ARO |  | -0.00064 |  | 0.01820 |  | 0.03270 |  |  |  |
| EtOH*RVP |  |  |  | 0.02631 |  | -0.03130 |  |  |  |
| EtOH*ARO | 0.01047 | 0.00050 |  | 0.06572 | 0.09640 | 0.07180 | 0.02739 |  | 0.04028 |
| RVP*ARO |  |  |  |  |  |  |  |  |  |


|  |  |  |  | Bag 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -4.59780 | 6.29480 | -1.14090 | 16.25400 | -5.98276 | -5.84707 | -5.25543 | -0.35375 | -4.23000 |
| $T_{50}$ | 0.01886 | 0.00188 |  | 0.09820 | 0.13560 | 0.07830 | -0.02240 | -0.04110 | 0.03595 |
| $T_{90}$ | 0.01856 | 0.00027 | 0.05783 | 0.02466 | 0.15460 | 0.14700 | 0.08500 |  | 0.04904 |
| EtOH | 0.03187 | 0.00340 | -0.08151 | -0.28220 | -0.05810 | 0.03410 | 0.08840 | -0.02120 | 0.00788 |
| RVP |  |  | 0.02394 | -0.01161 | -0.03130 | -0.05730 | 0.16920 | -0.12750 | -0.01423 |
| ARO | -0.10040 | 0.01776 | 0.07193 | 0.21000 |  |  | 0.06670 | 0.01860 | -0.06120 |
| $\mathrm{T}_{50}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{EtOH}^{2}$ |  | 0.00094 |  | 0.01580 |  |  |  |  |  |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  | 0.05867 |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ |  |  |  | 0.02268 |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | -0.02007 |  |  |  |  | -0.07290 | 0.06370 | -0.08240 | -0.03125 |
| $\mathrm{T}_{50}$ *ARO |  | 0.00086 |  |  |  |  | 0.08940 |  |  |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ |  |  |  | 0.02737 |  |  |  |  |  |
| $T_{90}{ }^{*}$ RVP |  |  |  |  |  |  |  |  |  |
| $T_{90}{ }^{*}$ ARO |  | -0.00118 |  | 0.01788 |  |  |  |  |  |
| EtOH*RVP |  |  |  | 0.01449 | 0.07730 | 0.07090 |  |  | 0.01666 |
| EtOH*ARO |  |  |  | 0.06443 |  |  |  | 0.08490 |  |
| RVP*ARO |  |  |  |  |  |  |  | -0.10620 |  |

## vi. Reduced Benchmark Model Fits Without the T90 ${ }^{\mathbf{2}}$ Model Term

|  |  |  |  | Composite |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.03540 | 6.04560 | -0.64540 | 20.81330 | -3.72370 | -3.64920 | -4.35540 | -0.70724 | -3.44430 |
| $T_{50}$ | 0.07343 | 0.00141 | 0.04458 | 0.17810 | 0.14710 | 0.14390 | -0.00464 | 0.03440 | 0.13370 |
| $\boldsymbol{T}_{90}$ | 0.01883 | 0.00004 | -0.04511 | 0.01078 | 0.03719 | 0.03203 |  | 0.11460 | 0.03454 |
| EtOH | 0.07141 | 0.00227 | -0.02066 | -0.33630 | 0.04829 | 0.08899 | 0.05197 | 0.09990 | 0.07065 |
| RVP | -0.01973 | -0.00053 | 0.03009 | 0.00469 | -0.04162 | -0.04191 |  | -0.04960 | -0.03735 |
| ARO | -0.09298 | 0.01790 | 0.05713 | 0.24520 | 0.09426 | 0.08941 | 0.06226 | 0.23220 | 0.05384 |
| $T_{50}{ }^{2}$ | 0.02915 |  | 0.04815 |  | 0.07459 | 0.07470 |  |  | 0.06756 |
| $\mathrm{EtOH}^{2}$ | 0.00795 | 0.00076 | 0.06553 | 0.01450 | 0.03534 | 0.03418 |  | -0.06570 | 0.03203 |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.02010 |  | 0.01831 | 0.02357 | 0.05099 | 0.05214 |  | 0.10890 | 0.04504 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ |  |  | 0.06442 |  | 0.03170 | 0.03173 |  | -0.08840 | 0.02768 |
| $\mathrm{T}_{50}{ }^{*}$ ARO | 0.01729 |  | 0.03584 | 0.03066 | 0.02461 | 0.02349 | 0.02282 |  | 0.02313 |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.01427 |  | 0.01598 | 0.02252 | 0.04369 | 0.04039 |  | 0.08460 | 0.03753 |
| $\mathrm{T}_{\text {go }}{ }^{*} \mathrm{RVP}$ |  |  |  |  |  |  |  |  |  |
| $T_{90}{ }^{\text {* }}$ ARO | 0.01445 | -0.00069 | 0.02102 | 0.02527 | 0.01968 | 0.01950 |  | 0.08660 | 0.01974 |
| EtOH*RVP |  |  |  | 0.02552 |  |  |  |  |  |
| EtOH*ARO | 0.02741 |  | 0.04131 | 0.06264 | 0.03975 | 0.03565 |  | 0.05940 | 0.03526 |
| RVP**RO | 0.01956 |  | 0.03435 | 0.02608 | 0.03428 | 0.03287 |  |  | 0.02896 |


|  |  |  |  | Bag 1 |  |  | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG |  |  |  |
| Intercept | -3.00670 | 6.55020 | 1.34720 | 12.46630 | -1.03080 | -0.95130 | -3.01640 | 0.65289 | -0.86580 |
| $T_{50}$ | 0.10590 | 0.00235 | 0.02159 | 0.10840 | 0.15730 | 0.15410 | 0.01026 | 0.10040 | 0.14900 |
| $T_{90}$ | 0.00858 | 0.00267 | -0.14690 |  | 0.01683 | 0.01124 | 0.02389 | 0.30340 | 0.01435 |
| EtOH | 0.08877 | 0.00371 | -0.06967 | -0.19930 | 0.04439 | 0.09272 | 0.03802 | 0.18070 | 0.06793 |
| RVP | -0.02456 |  | 0.02063 | 0.02178 | -0.04766 | -0.04834 | -0.01417 |  | -0.04669 |
| ARO | -0.09816 | 0.01761 | -0.01156 | 0.14780 | 0.11120 | 0.10510 | 0.13360 | 0.37920 | 0.08343 |
| $\mathrm{T}_{50}{ }^{2}$ | 0.05882 |  | 0.07222 |  | 0.07769 | 0.07866 | -0.05701 | 0.08060 | 0.07555 |
| $\mathrm{EtOH}^{2}$ | 0.03133 |  | 0.08535 | 0.01462 | 0.04274 | 0.04204 | -0.05981 |  | 0.04065 |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $T_{50}{ }^{*} T_{90}$ | 0.02280 |  |  |  | 0.05224 | 0.05437 |  |  | 0.05003 |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | 0.02883 |  | 0.11170 |  | 0.03580 | 0.03576 | -0.09774 |  | 0.03426 |
| $\mathrm{T}_{50}{ }^{*}$ ARO | 0.02585 |  | 0.05859 | 0.03946 |  |  |  |  |  |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ | 0.02655 |  |  |  | 0.05123 | 0.04763 | 0.02544 | 0.06470 | 0.04782 |
| $T_{90}{ }^{*} \mathrm{RVP}$ |  |  |  |  |  |  | 0.04562 |  |  |
| $T_{90}{ }^{*}$ ARO | 0.03072 |  | 0.03861 |  | 0.02069 | 0.02049 | -0.04769 | 0.06650 | 0.02260 |
| EtOH*RVP |  |  |  |  |  |  |  |  |  |
| EtOH*ARO | 0.03977 | 0.00087 | 0.06244 | 0.04073 | 0.02594 | 0.02171 | -0.03038 |  | 0.02297 |
| RVP*ARO | 0.02791 |  | 0.05370 | 0.02439 | 0.02820 | 0.02723 |  |  | 0.02552 |


|  |  |  |  | Bag 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -5.70760 | 5.98250 | -1.38950 | 22.18360 | -5.71157 | -5.51664 | -4.78820 | -1.30747 | -4.90920 |
| $T_{50}$ | 0.04477 | 0.00166 | 0.02484 | 0.16750 | 0.09700 | 0.08590 |  | -0.07520 | 0.07154 |
| $T_{90}$ | 0.02445 | -0.00027 | 0.04177 | 0.01110 | 0.13590 | 0.10910 | -0.00046 | 0.09460 | 0.06681 |
| EtOH | 0.06076 | 0.00231 |  | -0.37410 | 0.07930 | 0.07300 | 0.04112 | 0.04030 | 0.06814 |
| RVP | -0.02082 |  | 0.02839 | -0.01562 | -0.05330 | -0.04630 | -0.01464 | -0.07030 | -0.03953 |
| ARO | -0.09211 | 0.01793 | 0.09800 | 0.25810 | 0.03730 | 0.03550 | 0.03534 | 0.19830 | -0.02281 |
| $T_{50}{ }^{2}$ | 0.01398 | -0.00053 |  |  | 0.04160 | 0.04120 |  |  | 0.03054 |
| $\mathrm{EtOH}{ }^{2}$ |  | 0.00080 |  |  | -0.04890 | -0.04240 |  | -0.13480 |  |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ | 0.01374 |  | 0.02177 | 0.02279 | 0.04700 | 0.02930 |  | 0.11550 | 0.02886 |
| $\mathrm{T}_{50}{ }^{\text {* }} \mathrm{EtOH}$ |  |  |  |  |  |  |  | -0.10250 |  |
| $\mathrm{T}_{50}$ *ARO |  |  |  |  | 0.09200 | 0.07380 |  |  | 0.03386 |
| $\mathrm{T}_{90}{ }^{\text {* }}$ EtOH |  |  |  | 0.02651 |  |  |  |  |  |
| $T_{\text {go }}{ }^{*}$ RVP | -0.00992 |  |  |  |  |  | -0.04014 |  |  |
| $\mathrm{T}_{90}{ }^{\text {* }}$ ARO |  | -0.00064 |  | 0.02795 |  | 0.03270 |  |  |  |
| EtOH*RVP |  |  |  | 0.03030 |  | -0.03130 |  |  |  |
| EtOH*ARO | 0.01047 | 0.00050 |  | 0.04230 | 0.09640 | 0.07180 | 0.02739 |  | 0.04028 |
| RVP*ARO |  |  |  |  |  |  |  |  |  |


|  |  |  |  | Bag 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{4}$ | $\mathrm{CO}_{2}$ | CO | FE | NMHC | NMOG | $\mathrm{NO}_{\mathbf{x}}$ | PM | THC |
| Intercept | -4.59780 | 6.29480 | -1.14090 | 16.25490 | -5.98276 | -5.84707 | -5.25543 | -0.35375 | -4.23000 |
| $T_{50}$ | 0.01886 | 0.00188 |  | 0.13190 | 0.13560 | 0.07830 | -0.02240 | -0.04110 | 0.03595 |
| $T_{90}$ | 0.01856 | 0.00027 | 0.05783 | 0.00467 | 0.15460 | 0.14700 | 0.08500 |  | 0.04904 |
| EtOH | 0.03187 | 0.00340 | -0.08151 | -0.27900 | -0.05810 | 0.03410 | 0.08840 | -0.02120 | 0.00788 |
| RVP |  |  | 0.02394 | 0.00963 | -0.03130 | -0.05730 | 0.16920 | -0.12750 | -0.01423 |
| ARO | -0.10040 | 0.01776 | 0.07193 | 0.18630 |  |  | 0.06670 | 0.01860 | -0.06120 |
| $T_{50}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{EtOH}^{2}$ |  | 0.00094 |  |  |  |  |  |  |  |
| $\mathrm{T}_{90}{ }^{2}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{~T}_{90}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{50}{ }^{*} \mathrm{EtOH}$ | -0.02007 |  |  |  |  | -0.07290 | 0.06370 | -0.08240 | -0.03125 |
| $\mathrm{T}_{50}$ *ARO |  | 0.00086 |  | 0.02797 |  |  | 0.08940 |  |  |
| $\mathrm{T}_{90}{ }^{*} \mathrm{EtOH}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{90}{ }^{*}$ RVP |  |  |  |  |  |  |  |  |  |
| T90 *ARO |  | -0.00118 |  | 0.02440 |  |  |  |  |  |
| EtOH*RVP |  |  |  | 0.01449 | 0.07730 | 0.07090 |  |  | 0.01666 |
| EtOH*ARO |  |  |  | 0.06304 |  |  |  | 0.08490 |  |
| RVP*ARO |  |  |  | 0.02284 |  |  |  | -0.10620 |  |

## VII. Composite Reduced Hierarchical Model Fit Terms

## $\mathrm{CH}_{4}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 28.2383 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.8717 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 3 | 29.0245 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 4 | 29.0455 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 5 | 29.8225 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |  |
| 6 | 29.8553 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 7 | 29.9398 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |
| 8 | 30.2011 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9R | T9A | EA | RA |  |  |  |
| 9 | 30.2471 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 10 | 30.3129 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |  |
| 11 | 30.6076 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 12 | 30.6940 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |  |
| 13 | 30.7799 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |
| 14 | 30.9186 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |  |  |
| 15 | 31.2487 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9R | T9A | EA | RA |  |  |  |
| 16 | 31.3395 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 17 | 31.3769 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9R | T9A | EA | RA |  |  |
| 18 | 31.4999 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |
| 19 | 31.5508 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 20 | 31.5552 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 21 | 31.6042 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 22 | 31.6066 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 23 | 31.6083 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 24 | 31.6233 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9R | T9A | EA | RA |  |  |  |  |
| 25 | 31.6737 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9R | T9A | ER | EA | RA |  |  |

## $\mathrm{CO}_{2}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | 23.2801 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |  |
| $\mathbf{2}$ | 23.2943 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |  |
| $\mathbf{3}$ | 23.3760 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9A | ER | EA |  |  |  |  |  |  |  |
| $\mathbf{4}$ | 23.4640 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A | ER | EA |  |  |  |  |  |  |  |  |
| $\mathbf{5}$ | 23.4698 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9R | T9A | ER | RA |  |  |  |  |  |  |
| $\mathbf{6}$ | 23.5333 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |
| $\mathbf{7}$ | 23.5484 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9R | T9A | ER | RA |  |  |  |  |  |  |
| $\mathbf{8}$ | 23.5601 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9A | EA |  |  |  |  |  |  |  |  |
| $\mathbf{9}$ | $23.6007 ~$ | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A | ER |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 0}$ | 23.6068 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| $\mathbf{1 1}$ | 23.6799 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A |  |  |  |  |  |  |  |  |  |  |

$N O_{x}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | 16.3931 | T50 | ETOH | ARO | T5A |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{2}$ | 16.6166 | ETOH | ARO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{3}$ | 17.4336 | T50 | ETOH | RVP | ARO | T5A |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{4}$ | 17.6403 | T50 | ETOH | ARO | T502 | T5A |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5}$ | 17.6647 | T50 | T90 | ETOH | ARO | T5A | T9A |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{6}$ | 17.7712 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{7}$ | 18.0163 | T50 | T90 | ETOH | ARO | T5A |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{8}$ | 18.0177 | T50 | T90 | ETOH | ARO | T5A | T9E |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{9}$ | 18.0277 | T50 | ETOH | ARO | EtOH2 | T5A |  |  |  |  |  |  |  |  |  |  |  |  |

CO

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 28.3254 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 2 | 28.7466 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 3 | 29.0381 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 4 | 29.4118 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | EA | RA |  |  |  |  |  |
| 5 | 30.0170 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 6 | 30.0322 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 7 | 30.0997 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 8 | 30.1535 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9A | EA | RA |  |  |  |  |
| 9 | 30.3086 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |  |
| 10 | 30.3628 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 11 | 30.4810 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 12 | 30.7422 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 13 | 30.9759 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |
| 14 | 31.1716 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA |  |  |
| 15 | 31.2573 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T902 | T5E | T9E | T9A | EA |  |  |  |  |  |  |
| 16 | 31.2747 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9R | T9A | EA | RA |  |  |  |  |
| 17 | 31.3256 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9A | EA | RA |  |  |  |  |
| 18 | 31.3946 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | ER | EA | RA |  |  |  |  |
| 19 | 31.4655 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 20 | 31.5569 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 21 | 31.5877 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 22 | 31.6473 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9R | T9A | EA | RA |  |  |  |
| 23 | 31.9944 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |
| 24 | 32.0000 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |
| 25 | 32.0236 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA |  |  |  |

## VII-3

## FE

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.9008 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |  |
| 2 | 24.9151 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |  |
| 3 | 25.6905 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 4 | 26.1064 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |
| 5 | 26.1804 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | ER | EA |  |  |  |  |  |  |
| 6 | 26.1847 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | ER | EA |  |  |  |  |  |  |
| 7 | 26.2208 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | ER | EA | RA |  |  |  |  |  |
| 8 | 26.2358 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |  |
| 9 | 26.3029 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |  |
| 10 | 26.4475 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 11 | 26.7250 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |
| 12 | 26.7896 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |  |  |
| 13 | 26.7999 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | T9A | ER | EA |  |  |  |  |
| 14 | 26.8470 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 15 | 26.8496 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 16 | 26.8952 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9R | T9A | ER | EA | RA |  |  |  |
| 17 | 26.9153 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | ER | EA |  |  |  |  |  |
| 18 | 26.9730 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | ER | EA | RA |  |  |  |  |  |
| 19 | 27.0935 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | ER | EA | RA |  |  |  |  |
| 20 | 27.2743 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | ER | EA |  |  |  |  |  |
| 21 | 27.6143 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 22 | 27.6238 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 23 | 27.6397 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |
| 24 | 27.7414 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | ER | EA | RA |  |  |  |  |
| 25 | 27.7797 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |  |

NMHC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27.9010 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.5676 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 3 | 28.6069 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 4 | 28.8763 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |
| 5 | 28.9672 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 6 | 29.0490 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 7 | 29.0776 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 8 | 29.1190 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |  |
| 9 | 29.2717 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 10 | 29.4968 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 11 | 29.5118 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |
| 12 | 29.6095 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 13 | 29.6562 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 14 | 29.6709 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 15 | 29.7113 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 16 | 29.9005 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 17 | 30.0019 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 18 | 30.0126 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 19 | 30.0257 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 20 | 30.3521 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 21 | 30.4842 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 22 | 30.5165 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9R | T9A | EA | RA |  |  |  |  |  |
| 23 | 30.5670 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |  |
| 24 | 30.7391 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |
| 25 | 30.8145 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9R | T9A | EA | RA |  |  |  |

NMOG

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27.9154 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.4287 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 3 | 28.5424 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |
| 4 | 28.5728 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 5 | 28.7373 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 6 | 28.9061 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |  |
| 7 | 28.9363 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 8 | 28.9671 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 9 | 29.0844 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 10 | 29.1722 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |
| 11 | 29.2980 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 12 | 29.4652 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 13 | 29.5823 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 14 | 29.5864 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 15 | 29.6404 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 16 | 29.6669 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 17 | 29.9151 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 18 | 30.0000 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 19 | 30.0030 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 20 | 30.0945 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 21 | 30.1525 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9R | T9A | EA | RA |  |  |  |  |  |
| 22 | 30.1556 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 23 | 30.5083 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |  |
| 24 | 30.5120 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | ER | EA | RA |  |  |  |  |  |
| 25 | 30.5687 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |  |

## PM: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.7039 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |
| 2 | 23.0847 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 3 | 23.2776 | T50 | T90 | ETOH | ARO | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |
| 4 | 23.3369 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 5 | 23.4011 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 6 | 23.5737 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |  |  |
| 7 | 23.6459 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |  |
| 8 | 23.6834 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |  |
| 9 | 24.5445 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 10 | 24.7155 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 11 | 24.7513 | T50 | T90 | ETOH | ARO | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |  |  |
| 12 | 24.7779 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |
| 13 | 24.9240 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 14 | 25.0479 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |
| 15 | 25.0658 | T50 | T90 | ETOH | RVP | ARO | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |
| 16 | 25.0815 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |  |
| 17 | 25.1150 | T50 | T90 | ETOH | ARO | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 18 | 25.1187 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |  |
| 19 | 25.1452 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 20 | 25.1841 | T50 | T90 | ETOH | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |
| 21 | 25.2633 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |
| 22 | 25.2995 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 23 | 25.3354 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 24 | 25.3600 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |  |
| 25 | 25.3632 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |

## THC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27.6831 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.2890 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 3 | 28.5555 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 4 | 28.6452 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 5 | 28.8087 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |
| 6 | 28.9472 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |
| 7 | 28.9841 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 8 | 29.0060 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |  |
| 9 | 29.0753 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 10 | 29.1211 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 11 | 29.2177 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 12 | 29.2490 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 13 | 29.4350 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 14 | 29.4966 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 15 | 29.5019 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 16 | 29.5160 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 17 | 29.6234 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 18 | 29.6740 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 19 | 29.6892 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |
| 20 | 29.7485 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 21 | 30.0142 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 22 | 30.2419 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |
| 23 | 30.2853 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 24 | 30.4340 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 25 | 30.5169 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |  |

## VIII. Bag 1 Reduced Hierarchical Model Fit Terms

## $\mathrm{CH}_{4}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27.5786 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.8785 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 3 | 29.0834 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 4 | 29.3359 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 5 | 29.8799 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 6 | 30.3338 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |  |
| 7 | 30.6559 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 8 | 30.6629 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 9 | 30.7075 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |
| 10 | 30.8549 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 11 | 31.2130 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |
| 12 | 31.2204 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 13 | 31.2567 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 14 | 31.2585 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |
| 15 | 31.2723 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 16 | 31.3824 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |  |
| 17 | 31.6348 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 18 | 31.6360 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 19 | 32.0000 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | ER | EA | RA |
| 20 | 32.0470 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |
| 21 | 32.1990 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |
| 22 | 32.2704 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |  |
| 23 | 32.4279 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |
| 24 | 32.7000 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |  |
| 25 | 32.7109 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ETOH | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |

CO

| Obs | $\mathbf{C p}$ | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 25.7012 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | EA | RA |  |  |  |  |  |
| 2 | 26.9336 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9A | EA | RA |  |  |  |  |
| 3 | 27.0540 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 4 | 27.4055 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | ER | EA | RA |  |  |  |  |
| 5 | 27.4902 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9A | EA | RA |  |  |  |  |
| 6 | 27.5427 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 7 | 27.5520 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9R | T9A | EA | RA |  |  |  |  |
| 8 | 27.9537 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 9 | 28.1728 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 10 | 28.5162 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9R | T9A | EA | RA |  |  |  |
| 11 | 28.5295 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9E | T9A | EA |  |  |  |  |  |
| 12 | 28.6664 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T5A | T9A | ER | EA | RA |  |  |  |

$N O_{x}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | 25.8471 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T9E | T9R | T9A | EA |  |  |  |  |  |
| $\mathbf{2}$ | 26.7494 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T9R | T9A | EA |  |  |  |  |  |  |
| $\mathbf{3}$ | 26.8198 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |

FE

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.1315 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9E | T9R | ER | EA |  |  |  |  |  |  |
| 2 | 21.2959 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9R | ER | EA |  |  |  |  |  |  |  |
| 3 | 22.1469 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9E | T9R | EA |  |  |  |  |  |  |  |
| 4 | 22.5756 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9E | T9R | EA | RA |  |  |  |  |  |  |
| 5 | 22.6215 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9E | T9R | ER | EA | RA |  |  |  |  |  |
| 6 | 22.8798 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5E | T9E | T9R | ER | EA |  |  |  |  |  |
| 7 | 22.9105 | T50 | T90 | ETOH | ARO | EtOH2 | T902 | T5A | T9E | EA |  |  |  |  |  |  |  |  |
| 8 | 22.9273 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9R | ER | EA |  |  |  |  |  |
| 9 | 22.9409 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5A | T9E | T9R | ER | EA |  |  |  |  |  |
| 10 | 22.9507 | T50 | T90 | ETOH | ARO | EtOH2 | T902 | T9E | EA |  |  |  |  |  |  |  |  |  |
| 11 | 22.9610 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5A | T9E | T9R | EA |  |  |  |  |  |  |
| 12 | 22.9818 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9R | ER | EA |  |  |  |  |  |  |
| 13 | 23.0717 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9E | T9R | T9A | ER | EA |  |  |  |  |  |
| 14 | 23.1187 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T9E | T9R | ER | EA |  |  |  |  |  |
| 15 | 23.1780 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5E | T9R | ER | EA |  |  |  |  |  |  |
| 16 | 23.2088 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5A | T9R | ER | EA |  |  |  |  |  |  |

NMHC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 28.3075 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.6953 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 3 | 28.7304 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 4 | 28.7646 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 5 | 28.9563 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 6 | 29.0626 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA | RA |  |  |  |  |
| 7 | 29.4553 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 8 | 29.6316 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 9 | 29.7192 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |
| 10 | 29.7758 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 11 | 29.7861 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | EA | RA |  |  |  |  |  |
| 12 | 29.7986 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | EA | RA |  |  |  |
| 13 | 29.8070 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 14 | 29.8433 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 15 | 29.8719 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA |  |  |  |  |  |
| 16 | 30.1167 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 17 | 30.1337 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 18 | 30.1470 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | ER | EA | RA |  |  |  |
| 19 | 30.1864 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |
| 20 | 30.2365 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 21 | 30.4036 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 22 | 30.4839 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |  |
| 23 | 30.5377 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 24 | 30.5454 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |
| 25 | 30.6387 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |

## NMOG

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 28.2764 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.4653 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 3 | 28.6012 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 4 | 28.7333 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 5 | 28.7990 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 6 | 29.0584 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA | RA |  |  |  |  |
| 7 | 29.3052 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 8 | 29.5543 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 9 | 29.6404 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 10 | 29.6914 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 11 | 29.7205 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |
| 12 | 29.7384 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA |  |  |  |  |  |
| 13 | 29.7509 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 14 | 29.7955 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | EA | RA |  |  |  |
| 15 | 29.8153 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | EA | RA |  |  |  |  |  |
| 16 | 29.9394 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 17 | 29.9458 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 18 | 30.1435 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 19 | 30.1737 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |
| 20 | 30.1813 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | ER | EA | RA |  |  |  |
| 21 | 30.1871 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |
| 22 | 30.3128 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |  |
| 23 | 30.3774 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 24 | 30.4121 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 25 | 30.4723 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |

PM: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.6881 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 2 | 24.7475 | T50 | T90 | ETOH | RVP | ARO | T502 | T9E | T9A | ER | EA |  |  |  |  |  |  |  |
| 3 | 24.8349 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 4 | 25.3069 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 5 | 25.4082 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 6 | 25.7259 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 7 | 25.7468 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 8 | 25.8498 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 9 | 25.8552 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 10 | 25.8584 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 11 | 25.8868 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 12 | 25.9505 | T50 | T90 | ETOH | RVP | ARO | T502 | T9E | T9R | T9A | ER | EA |  |  |  |  |  |  |
| 13 | 25.9640 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 14 | 25.9984 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |  |
| 15 | 26.0108 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 16 | 26.1271 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 17 | 26.3602 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 18 | 26.4217 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |  |
| 19 | 26.4389 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 20 | 26.4582 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 21 | 26.5044 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 22 | 26.5430 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 23 | 26.5684 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9E | T9A | ER | EA | RA |  |  |  |  |  |
| 24 | 26.6552 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T9E | T9R | T9A | ER | EA |  |  |  |  |  |
| 25 | 26.6686 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T9E | T9A | ER | EA | RA |  |  |  |  |  |

THC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 28.4415 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |
| 2 | 28.7327 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | EA |  |  |  |  |
| 3 | 28.7453 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |  |
| 4 | 28.8715 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |
| 5 | 29.0256 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | EA | RA |  |  |  |  |
| 6 | 29.7177 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 7 | 29.7719 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA | RA |  |  |
| 8 | 29.8206 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |
| 9 | 29.8290 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |
| 10 | 29.8337 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | EA |  |  |  |
| 11 | 29.8594 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |  |
| 12 | 30.1383 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | EA | RA |  |  |  |
| 13 | 30.2392 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA | RA |  |  |  |  |
| 14 | 30.2581 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |
| 15 | 30.2694 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |
| 16 | 30.3964 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9R | T9A | EA | RA |  |
| 17 | 30.4794 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |
| 18 | 30.5245 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 19 | 30.6663 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |
| 20 | 30.7060 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T5E | T9E | EA |  |  |  |  |  |
| 21 | 30.7453 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T9E | T9R | T9A | ER | EA | RA |  |  |
| 22 | 30.7584 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9E | T9A | EA | RA |  |  |  |  |
| 23 | 30.8415 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |
| 24 | 30.8637 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |
| 25 | 30.8953 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |

## IX. Bag 2 Reduced Hierarchical Model Fit Terms

$\mathrm{CO}_{2}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 22.8792 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |  |
| 2 | 23.0357 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 3 | 23.0445 | T50 | ETOH | RVP | ARO | T502 | EtOH2 | ER | RA |  |  |  |  |  |  |  |  |  |
| 4 | 23.2388 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9A | ER | EA |  |  |  |  |  |  |  |
| 5 | 23.2681 | T50 | ETOH | RVP | ARO | T502 | EtOH2 | ER | EA |  |  |  |  |  |  |  |  |  |
| 6 | 23.3017 | T50 | ETOH | ARO | T502 | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 23.4052 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9A | ER | EA | RA |  |  |  |  |  |  |  |
| 8 | 23.4598 | T50 | ETOH | RVP | ARO | T502 | T5E | ER | RA |  |  |  |  |  |  |  |  |  |
| 9 | 23.5398 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T9A | EA |  |  |  |  |  |  |  |  |
| 10 | 23.5629 | T50 | ETOH | RVP | ARO | T502 | EtOH2 | ER | EA | RA |  |  |  |  |  |  |  |  |
| 11 | 23.5861 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |
| 12 | 23.5900 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 13 | 23.6892 | T50 | т90 | ETOH | ARO | T502 | EtOH2 | T9A |  |  |  |  |  |  |  |  |  |  |
| 14 | 23.6949 | T50 | ЕТОН | RVP | ARO | T502 | EtOH2 | ER |  |  |  |  |  |  |  |  |  |  |
| 15 | 23.7367 | T50 | ETOH | RVP | ARO | EtOH2 | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 16 | 23.7428 | T50 | т90 | ETOH | RVP | ARO | EtOH2 | T9A | EA |  |  |  |  |  |  |  |  |  |
| 17 | 23.8076 | T50 | ETOH | RVP | ARO | T502 | ER | RA |  |  |  |  |  |  |  |  |  |  |
| 18 | 23.8254 | T50 | ETOH | RVP | ARO | T502 | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 19 | 23.8451 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9A | ER | EA |  |  |  |  |  |  |  |
| 20 | 23.8475 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A | ER | EA |  |  |  |  |  |  |  |  |

$N O_{x}$

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathbf{1}$ | 17.1524 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{2}$ | 17.7111 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |  |

CO

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.0533 | T50 | T90 | RVP | ARO | T59 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 15.0314 | T50 | T90 | RVP | ARO |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 15.2662 | T50 | T90 | ETOH | RVP | ARO | T59 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 15.3346 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 |  |  |  |  |  |  |  |  |  |  |
| 5 | 15.9672 | T50 | T90 | RVP | ARO | T502 | T59 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 15.9695 | T50 | T90 | RVP | ARO | T902 | T59 |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 16.0017 | T50 | T90 | RVP | ARO | T59 | T9R |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 16.0225 | T50 | T90 | RVP | ARO | T59 | RA |  |  |  |  |  |  |  |  |  |  |  |
| 9 | 16.0424 | T50 | T90 | RVP | ARO | T59 | T9A |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 16.0529 | T50 | T90 | RVP | ARO | T59 | T5A |  |  |  |  |  |  |  |  |  |  |  |
| 11 | 16.1445 | T50 | T90 | ETOH | RVP | ARO | EtOH2 |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 16.2884 | T50 | T90 | ETOH | RVP | ARO |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 16.5404 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9E |  |  |  |  |  |  |  |  |  |  |
| 14 | 16.5894 | T50 | T90 | ETOH | RVP | ARO | T9E |  |  |  |  |  |  |  |  |  |  |  |
| 15 | 16.6823 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E |  |  |  |  |  |  |  |  |  |
| 16 | 16.7256 | T50 | T90 | RVP | ARO | RA |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 | 16.9503 | T50 | T90 | RVP | ARO | T9R |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 16.9590 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | EA |  |  |  |  |  |  |  |  |  |
| 19 | 16.9635 | T50 | T90 | RVP | ARO | T502 |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 16.9649 | T50 | T90 | RVP | ARO | T902 |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | 16.9937 | T50 | T90 | RVP | ARO | T9A |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 | 17.0120 | T50 | T90 | RVP | ARO | T5A |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 | 17.0213 | T50 | T90 | ETOH | RVP | ARO | T59 | EA |  |  |  |  |  |  |  |  |  |  |
| 24 | 17.0642 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 |  |  |  |  |  |  |  |  |  |
| 25 | 17.0863 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 |  |  |  |  |  |  |  |  |  |  |

FE

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.9257 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |  |
| 2 | 24.9710 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |  |
| 3 | 25.3374 | T50 | T90 | ЕТОН | RVP | ARO | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |  |
| 4 | 25.8883 | T50 | T90 | ЕТОН | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |
| 5 | 25.9441 | T50 | T90 | ЕТОН | RVP | ARO | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |  |  |
| 6 | 25.9505 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |  |
| 7 | 25.9725 | T50 | T90 | ЕTOH | RVP | ARO | T902 | T59 | T5E | T9E | ER | EA |  |  |  |  |  |  |
| 8 | 26.2099 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |  |
| 9 | 26.3059 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | ER | EA |  |  |  |  |  |  |
| 10 | 26.3776 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | ER | EA | RA |  |  |  |  |  |
| 11 | 26.4627 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 12 | 26.6400 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | T9A | ER | EA | RA |  |  |  |
| 13 | 26.7321 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T59 | T9E | ER | EA |  |  |  |  |  |
| 14 | 26.7661 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | ER | EA | RA |  |  |  |  |  |
| 15 | 26.8504 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | T9A | ER | EA |  |  |  |  |
| 16 | 26.8971 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5E | T9E | T9A | ER | EA | RA |  |  |  |
| 17 | 26.9256 | T50 | T90 | ЕТОН | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 18 | 26.9628 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T9E | T9R | T9A | ER | EA | RA |  |  |  |
| 19 | 27.1382 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T59 | T5A | T9E | ER | EA | RA |  |  |  |  |
| 20 | 27.1461 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 21 | 27.2264 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5A | T9E | T9A | ER | EA | RA |  |  |  |  |
| 22 | 27.3049 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |
| 23 | 27.3364 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 24 | 27.3364 | T50 | T90 | ЕТОН | RVP | ARO | T502 | T902 | T59 | T5E | T9E | T9A | ER | EA |  |  |  |  |
| 25 | 27.3377 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T5E | T5A | T9E | T9A | ER | EA | RA |  |  |  |

NMHC: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.9559 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 2 | 22.1020 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 3 | 22.3290 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9A | ER | EA |  |  |  |  |  |  |  |
| 4 | 22.7652 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |
| 5 | 22.8738 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9R | T9A | ER | EA |  |  |  |  |  |
| 6 | 22.9228 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | T9A | ER | EA |  |  |  |  |  |  |
| 7 | 22.9681 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9R | T9A | ER | EA |  |  |  |  |  |
| 8 | 23.0711 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 9 | 23.1727 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 10 | 23.3769 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9A | EA |  |  |  |  |  |  |  |
| 11 | 23.5078 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9A | EA |  |  |  |  |  |  |  |  |
| 12 | 23.5280 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9A | EA |  |  |  |  |  |  |
| 13 | 23.5382 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9A | EA |  |  |  |  |  |  |
| 14 | 23.5612 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9A | EA |  |  |  |  |  |  |  |
| 15 | 23.7601 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | ER | EA |  |  |  |  |  |  |  |
| 16 | 23.8151 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9A | EA |  |  |  |  |  |  |  |
| 17 | 23.8247 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 18 | 23.8856 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | T9A | EA |  |  |  |  |  |  |  |
| 19 | 23.8980 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9A | ER | EA | RA |  |  |  |  |  |
| 20 | 23.9211 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 21 | 23.9516 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | EA |  |  |  |  |  |  |  |  |
| 22 | 23.9556 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5A | T9A | ER | EA |  |  |  |  |  |
| 23 | 24.0373 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | ER | EA |  |  |  |  |  |  |  |  |
| 24 | 24.0661 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 25 | 24.0698 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9A | ER | EA | RA |  |  |  |  |  |

NMOG: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 22.5079 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 2 | 22.8665 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 3 | 23.0350 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9R | T9A | ER | EA |  |  |  |  |  |
| 4 | 23.1281 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 5 | 23.2341 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |
| 6 | 23.7124 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9R | T9A | ER | EA |  |  |  |  |  |
| 7 | 24.3019 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 8 | 24.3170 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 9 | 24.3300 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9R | T9A | ER | EA |  |  |  |  |
| 10 | 24.4346 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9A | EA |  |  |  |  |  |  |
| 11 | 24.4974 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9A | ER | EA | RA |  |  |  |  |  |
| 12 | 24.5013 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 13 | 24.6395 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | ER | EA |  |  |  |  |  |  |
| 14 | 24.6649 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 15 | 24.6710 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 16 | 24.7058 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | ER | EA |  |  |  |  |  |  |  |
| 17 | 24.7162 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A | ER | EA |  |  |  |  |  |  |  |
| 18 | 24.7315 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9A | ER | EA |  |  |  |  |  |  |  |
| 19 | 24.7339 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9R | T9A | ER | EA |  |  |  |  |
| 20 | 24.7812 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T5E | T5A | T9R | T9A | ER | EA |  |  |  |  |
| 21 | 24.8409 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5E | T5A | T9A | ER | EA |  |  |  |  |
| 22 | 24.8487 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9A | ER | EA | RA |  |  |  |  |  |
| 23 | 24.8543 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T902 | T5A | T9A | ER | EA |  |  |  |  |  |
| 24 | 24.9003 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | ER | EA |  |  |  |  |  |  |
| 25 | 24.9456 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9A | EA |  |  |  |  |  |  |

## PM: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 17.5056 | T50 | T90 | ETOH | ARO | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |  |  |
| 2 | 18.8699 | T50 | T90 | ETOH | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 3 | 19.1181 | T50 | T90 | ETOH | RVP | ARO | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 4 | 19.2033 | T50 | T90 | ETOH | ARO | T59 | T5A | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 5 | 19.2736 | T50 | T90 | ETOH | ARO | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 6 | 19.3382 | T50 | T90 | ETOH | ARO | EtOH2 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 7 | 19.3714 | T50 | T90 | ETOH | ARO | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |  |
| 8 | 20.1544 | T50 | T90 | ETOH | ARO | EtOH2 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |
| 9 | 20.1832 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 10 | 20.2219 | T50 | T90 | ETOH | ARO | T59 | T9A | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 20.2442 | T50 | T90 | ETOH | RVP | ARO | T59 | T9E | T9A | EA | RA |  |  |  |  |  |  |  |
| 12 | 20.3697 | T50 | T90 | ETOH | RVP | ARO | T59 | T9E | T9R | T9A | EA |  |  |  |  |  |  |  |
| 13 | 20.4889 | T50 | T90 | ETOH | ARO | T502 | T59 | T5A | T9E | T9A | EA |  |  |  |  |  |  |  |
| 14 | 20.7677 | T50 | T90 | ETOH | ARO | T502 | EtOH2 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 15 | 20.8221 | T50 | T90 | ETOH | RVP | ARO | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |
| 16 | 20.8462 | T50 | T90 | ETOH | ARO | T502 | T59 | T5E | T9E | T9A | EA |  |  |  |  |  |  |  |
| 17 | 20.8488 | T50 | T90 | ETOH | ARO | T502 | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 18 | 20.8863 | T50 | T90 | ETOH | ARO | T59 | T9E | EA |  |  |  |  |  |  |  |  |  |  |
| 19 | 20.9035 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |
| 20 | 20.9233 | T50 | T90 | ETOH | ARO | T59 | T9E | T9A |  |  |  |  |  |  |  |  |  |  |
| 21 | 20.9572 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9E | T9R | T9A | EA |  |  |  |  |  |  |
| 22 | 20.9817 | T50 | T90 | ETOH | ARO | EtOH2 | T59 | T5A | T9E | T9A | EA |  |  |  |  |  |  |  |
| 23 | 21.0162 | T50 | T90 | ETOH | ARO | T59 | T5E | T5A | T9E | T9A | EA |  |  |  |  |  |  |  |
| 24 | 21.0254 | T50 | T90 | ETOH | RVP | ARO | T59 | T5A | T9E | T9A | EA |  |  |  |  |  |  |  |
| 25 | 21.0257 | T50 | T90 | ETOH | RVP | ARO | T902 | T59 | T9E | T9A | EA |  |  |  |  |  |  |  |

THC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 22.9157 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |  |
| 2 | 23.2944 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9R | T9A | ER | EA |  |  |  |  |  |
| 3 | 23.6089 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | ER | EA |  |  |  |  |  |  |  |
| 4 | 23.6850 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | EA |  |  |  |  |  |  |  |  |
| 5 | 23.7357 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9A | EA |  |  |  |  |  |  |  |
| 6 | 23.8603 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9A | ER | EA |  |  |  |  |  |  |
| 7 | 23.8918 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9R | ER | EA |  |  |  |  |  |  |
| 8 | 23.9209 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | ER | EA |  |  |  |  |  |  |  |
| 9 | 23.9254 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | T9A | ER | EA |  |  |  |  |  |  |
| 10 | 23.9300 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9A | ER | EA |  |  |  |  |  |  |  |
| 11 | 23.9370 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |
| 12 | 23.9587 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9R | EA |  |  |  |  |  |  |  |
| 13 | 24.0551 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9R | T9A | ER | EA |  |  |  |  |  |
| 14 | 24.1535 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | T9R | T9A | EA |  |  |  |  |  |  |
| 15 | 24.3964 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9E | EA |  |  |  |  |  |  |  |  |
| 16 | 24.5585 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | T9A | ER | EA |  |  |  |  |  |
| 17 | 24.5921 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T9A | ER | RA |  |  |  |  |  |  |  |  |
| 18 | 24.6349 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T5A | T9A | ER | EA |  |  |  |  |  |
| 19 | 24.6658 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | EA |  |  |  |  |  |  |  |
| 20 | 24.6894 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T59 | T5A | ER | EA |  |  |  |  |  |  |
| 21 | 24.6978 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T5A | T9E | T9R | T9A | ER | EA |  |  |  |  |
| 22 | 24.7551 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9E | ER | EA |  |  |  |  |  |  |
| 23 | 24.8489 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5A | T9A | ER | EA | RA |  |  |  |  |  |
| 24 | 24.8495 | T50 | T90 | ETOH | RVP | ARO | T502 | T9E | T9R | EA |  |  |  |  |  |  |  |  |
| 25 | 24.8613 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T5A | T9A | ER | EA |  |  |  |  |  |

## X. Bag 3 Reduced Hierarchical Model Fit Terms

|  |  |  |  |  |  |  |  | $\mathrm{CH}_{4}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ЕТОН | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |


| $\mathrm{CO}_{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ЕТОН | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ETOH | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |

CO

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ETOH | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |


| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ЕТОН | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ЕТОН | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |

$\mathrm{NO}_{x}:$ Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |  |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | 18.4442 | T50 | T90 | ETOH | RVP | ARO | T5A |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{2}$ | 18.6377 | T50 | T90 | ETOH | RVP | ARO | T5A | T9A |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{3}$ | 18.6694 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{4}$ | 18.8605 | T50 | T90 | ETOH | RVP | ARO | T5E | T5A |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5}$ | 19.0192 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{6}$ | 19.2799 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5A |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{7}$ | 19.2862 | T50 | T90 | ETOH | RVP | ARO | T5A | T9E |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{8}$ | 19.3238 | T50 | T90 | ETOH | RVP | ARO | T5E | T5A | T9A |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{9}$ | 19.3277 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 0}$ | 19.3377 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T5A |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 1}$ | 19.4545 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5A | T9A |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 2}$ | 19.4752 | T50 | T90 | ETOH | RVP | ARO | T5A | T9A | RA |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 3}$ | 19.5250 | T90 | ETOH | RVP | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 4}$ | 19.5438 | T90 | ETOH | RVP | ARO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## PM: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | 17.9004 | T90 | ETOH | ARO | T902 | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{2}$ | 18.9160 | T50 | T90 | ETOH | ARO | T902 | T9A | EA |  |  |  |  |  |  |  |  |  |  |

NMHC: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.4747 | T50 | T90 | ETOH | RVP | ARO | T502 | T9R |  |  |  |  |  |  |  |  |  |  |
| 2 | 17.1075 | T50 | T90 | ETOH | RVP | ARO | T5E | T9R |  |  |  |  |  |  |  |  |  |  |
| 3 | 17.1122 | T50 | T90 | ETOH | RVP | ARO | T502 | T9E | T9R |  |  |  |  |  |  |  |  |  |
| 4 | 17.1780 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T9R |  |  |  |  |  |  |  |  |  |
| 5 | 17.2314 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9R |  |  |  |  |  |  |  |  |  |
| 6 | 17.4329 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T9R |  |  |  |  |  |  |  |  |  |
| 7 | 17.4869 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T9R |  |  |  |  |  |  |  |  |  |
| 8 | 17.6616 | T50 | T90 | ETOH | RVP | ARO | T5E | T9E | T9R |  |  |  |  |  |  |  |  |  |
| 9 | 17.7916 | T50 | T90 | ETOH | RVP | ARO | T502 | T5E | T9E | T9R |  |  |  |  |  |  |  |  |
| 10 | 17.8919 | T50 | T90 | ETOH | RVP | ARO | T902 | T5E | T9R |  |  |  |  |  |  |  |  |  |
| 11 | 17.9280 | T50 | T90 | ETOH | RVP | ARO | T502 | T59 | T5E | T9R |  |  |  |  |  |  |  |  |
| 12 | 18.0122 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T5E | T9E | T9R |  |  |  |  |  |  |  |  |
| 13 | 18.0729 | T50 | T90 | ETOH | RVP | ARO | T502 | EtOH2 | T9R |  |  |  |  |  |  |  |  |  |
| 14 | 18.0871 | T50 | T90 | ETOH | RVP | ARO | T59 | T5E | T9R |  |  |  |  |  |  |  |  |  |
| 15 | 18.0908 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1693 | T50 | T90 | ETOH | RVP | ARO | T502 | T9R | T9A |  |  |  |  |  |  |  |  |  |
| 17 | 18.3060 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T59 | T9R |  |  |  |  |  |  |  |  |
| 18 | 18.3264 | T50 | T90 | ETOH | RVP | ARO | T502 | T9R | ER |  |  |  |  |  |  |  |  |  |
| 19 | 18.4050 | T50 | T90 | ETOH | ARO | T902 | T5A |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.4259 | T50 | T90 | ETOH | RVP | ARO | T502 | T9R | RA |  |  |  |  |  |  |  |  |  |
| 21 | 18.4538 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T902 | T5E | T9R |  |  |  |  |  |  |  |  |
| 22 | 18.4581 | T50 | T90 | ETOH | RVP | ARO | T502 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 23 | 18.4731 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R |  |  |  |  |  |  |  |  |  |
| 24 | 18.4889 | T50 | T90 | ETOH | RVP | ARO | T502 | T902 | T9E | T9R |  |  |  |  |  |  |  |  |
| 25 | 18.5660 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | T59 | T5E | T9R |  |  |  |  |  |  |  |  |

NMOG: Zeros Deleted

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ETOH | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |

THC

| Obs | Cp | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.4670 | T50 | T90 | ETOH | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.6309 | T50 | T90 | ETOH | RVP | ARO | EA |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 16.7138 | T50 | T90 | ETOH | RVP | ARO | T5A | RA |  |  |  |  |  |  |  |  |  |  |
| 4 | 16.8887 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | RA |  |  |  |  |  |  |  |  |  |
| 5 | 17.0677 | T50 | T90 | ETOH | RVP | ARO | T9R | EA |  |  |  |  |  |  |  |  |  |  |
| 6 | 17.3938 | T50 | T90 | ETOH | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 17.5859 | T50 | T90 | ETOH | RVP | ARO | T9R | EA | RA |  |  |  |  |  |  |  |  |  |
| 8 | 17.5964 | T50 | T90 | ETOH | RVP | ARO | EA | RA |  |  |  |  |  |  |  |  |  |  |
| 9 | 17.7166 | T50 | T90 | ETOH | RVP | ARO | ER | EA |  |  |  |  |  |  |  |  |  |  |
| 10 | 17.7376 | T50 | T90 | ETOH | RVP | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |
| 11 | 17.7468 | T50 | T90 | ETOH | RVP | ARO | EtOH2 | EA |  |  |  |  |  |  |  |  |  |  |
| 12 | 17.8306 | T50 | T90 | ETOH | ARO | T5E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 13 | 17.9423 | T50 | T90 | ETOH | RVP | ARO | T9R | RA |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0882 | T50 | T90 | ETOH | RVP | ARO | T502 | T5A | T9R | RA |  |  |  |  |  |  |  |  |
| 15 | 18.1076 | T50 | T90 | ETOH | ARO | T9A | EA |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 18.1319 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA |  |  |  |  |  |  |  |  |  |
| 17 | 18.1321 | T50 | T90 | ETOH | ARO | T9E | EA |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 18.1384 | T50 | T90 | ETOH | RVP | ARO | T902 | T9R |  |  |  |  |  |  |  |  |  |  |
| 19 | 18.1428 | T50 | T90 | ETOH | ARO | T902 | EA |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 18.1565 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | EA | RA |  |  |  |  |  |  |  |  |
| 21 | 18.1767 | T50 | T90 | ETOH | RVP | ARO | T9R | ER | RA |  |  |  |  |  |  |  |  |  |
| 22 | 18.1816 | T50 | T90 | ETOH | RVP | ARO | T5A | ER | RA |  |  |  |  |  |  |  |  |  |
| 23 | 18.1861 | T50 | T90 | ETOH | RVP | ARO | T5A | T9R | ER | RA |  |  |  |  |  |  |  |  |
| 24 | 18.2492 | T50 | T90 | ETOH | RVP | ARO | T59 | T9R | EA |  |  |  |  |  |  |  |  |  |
| 25 | 18.2852 | T50 | T90 | ETOH | RVP | ARO | ER | EA | RA |  |  |  |  |  |  |  |  |  |

## XI. Benchmark and Reduced Model Fit Estimates of Mean Emissions for the Program Fuels

Fig. 1. Quadratic Fit to Model Estimated Mean Composite CH4 Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 2. Quadratic Fit to Model Estimated Mean Composite CO Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 3. Quadratic Fit to Model Estimated Mean Composite CO2 Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 4. Quadratic Fit to Model Estimated Mean Composite FE Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 5. Quadratic Fit to Model Estimated Mean Composite NOx Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 6. Quadratic Fit to Model Estimated Mean Composite PM Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 7. Quadratic Fit to Model Estimated Mean Composite THC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 8. Quadratic Fit to Model Estimated Mean Composite NMHC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 9. Quadratic Fit to Model Estimated Mean Composite NMOG Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 10. Quadratic Fit to Model Estimated Mean Bag 1 CH 4 Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles), Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 11. Quadratic Fit to Model Estimated Mean Bag 1 CO Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 12. Quadratic Fit to Model Estimated Mean Bag 1 CO 2 Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 13. Quadratic Fit to Model Estimated Mean Bag 1 FE Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles), Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 14. Quadratic Fit to Model Estimated Mean Bag 1 NOx Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles), Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 15. Quadratic Fit to Model Estimated Mean Bag 1 PM Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 16. Quadratic Fit to Model Estimated Mean Bag 1 THC Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 17. Quadratic Fit to Model Estimated Mean Bag 1 NMHC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 18. Quadratic Fit to Model Estimated Mean Bag 1 NMOG Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 19. Quadratic Fit to Model Estimated Mean Bag 2 CH 4 Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 20. Quadratic Fit to Model Estimated Mean Bag 2 CO Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 21. Quadratic Fit to Model Estimated Mean Bag 2 CO 2 Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 22. Quadratic Fit to Model Estimated Mean Bag 2 FE Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 23. Quadratic Fit to Model Estimated Mean Bag 2 NOx Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles), Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 24. Quadratic Fit to Model Estimated Mean Bag 2 PM Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 25. Quadratic Fit to Model Estimated Mean Bag 2 THC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 26. Quadratic Fit to Model Estimated Mean Bag 2 NMHC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 27. Quadratic Fit to Model Estimated Mean Bag 2 NMOG Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 28. Quadratic Fit to Model Estimated Mean Bag 3 CH 4 Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 29. Quadratic Fit to Model Estimated Mean Bag 3 CO Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 30. Quadratic Fit to Model Estimated Mean Bag 3 CO2 Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 31. Quadratic Fit to Model Estimated Mean Bag 3 FE Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 32. Quadratic Fit to Model Estimated Mean Bag 3 NOx Emissions. 27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 33. Quadratic Fit to Model Estimated Mean Bag 3 PM Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 34. Quadratic Fit to Model Estimated Mean Bag 3 THC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 35. Quadratic Fit to Model Estimated Mean Bag 3 NMHC Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


Fig. 36. Quadratic Fit to Model Estimated Mean Bag 3 NMOG Emissions.
27 Program Fuels: Exponentiated Data Log-Averages (Green Triangles),
Benchmark Model Estimates (Black Circles and Curve),Reduced Model Estimates (Blue Squares and Curve).


## Addendum:

Responses to EPA Comments on the 5/3/2011 Draft Report

## Addendum Responses to Comments on Draft Final Report

Comments were received from some of the program participants on a draft final report dated $5 / 3 / 2011$. All of the comments are appreciated. In some instances, notably the comments from EPA, concerns were raised about portions of the report. Some of these concerns are important and require responses so that an understanding of the intent or a clarification of misperceptions can inform a better understanding of the results and conclusions. The comments received from EPA are shown below in boldface and italics. Responses to those comments are in plain text font.

## Comments from EPA Staff on Dick Gunst's Draft Final Report, dated May 3, 2011, entitled: Statistical Analysis of Emissions Data Collected in Phase 3 of the EPAct/V2/E-89 Program

## General Comments

The report includes multiple statements regarding the representativeness and applicability of the vehicle sample, fuel matrix and models fit to the Phase 3 dataset (executive summary; I.A (page 2), I.B (page 2), I.D (page 4)). While it is reasonable and appropriate to raise questions and issues with respect to the representativeness of the vehicles and fuels, as well as the interpretation and application of the data, the statements contained in the report are presented definitively, despite the fact that they not the subject of and do not derive from the analyses presented in the report. Given the author's lack of involvement in or knowledge of the vehicle selection process (through no fault of his own), which is outside the scope of this report, drawing such broad and definitive conclusions is not appropriate in this document.

These statements are global, vague, and misrepresent the conclusions drawn in the report. It is entirely appropriate and the professional responsibility of an independent statistical consultant to identify limitations of a data base that necessarily result in limitations in the conclusions that can be drawn from analyses of the data base. This is a fundamental obligation of a professional statistician to his client, in this case NREL.

The gratuitous last statement is irrelevant. The author's not having been involved in the selection of vehicles does not affect in any way conclusions about the vehicles that are present in the data base. There is no dispute that the characteristics of those vehicles that are stated in the report are factual. What appears to be in dispute is the ability to generalize conclusions drawn from this data base to other vehicles. Absent any additional information about representativeness, the conclusions from these analyses must be limited to these 15 vehicles. No inference is made by the author about representativeness beyond the characteristics of the Phase 3 data base. The inferences drawn and the cautionary limitations imposed on these inference are the subject of and do derive from analyses performed on the Phase 3 data.

It is EPA's and other interested parties' burden to document and defend the extrapolation of the results of this work beyond the 15 vehicles included in this data base. The author
recognizes this and fully expects that EPA and other parties will do so. He cannot generalize the conclusions based on this data base alone - and neither should any other interested party.

The recommendation that the benchmark model (containing all possible terms) be used for emission predictions (versus any reduced model) can be taken to assume that terms are meaningful until proven otherwise, rather than the reverse, and does not address potential issues such as overfitting to artifacts in the Phase 3 dataset. Further, it does not allow for application of physical science in selection of models for application, as mentioned elsewhere in the report, nor for follow-up analyses such as verification of candidate models against independent data.

Reasons for recommending the use of the Benchmark Model are stated in the report. There is no prohibition from using any reduced model for specific purposes or if relevant scientific or engineering knowledge indicates that a reduced model is more appropriate than the Benchmark Model. This is clearly stated in the report. The author, at several program meetings and in conference calls, requested that such knowledge be articulated so that informed judgments could be made on relevant reduced models. No such guidance was provided. Moreover, months of debates took place about which reduced models were "best" based solely on statistical criteria. The issue in this modeling is that polynomial model terms are being fit: 12 of the 17 model terms are functions of the five fuel parameters. It should be expected that the selection of a unique "best" model would be fraught with difficulties if selection is based solely on statistical analyses of the data.

The author never assumed or stated that all the model terms were "meaningful until proven otherwise." On the other hand, he does not concur that overfitting is worse. The author demonstrated in several ways the comparability of the complete Benchmark Model with reduced models using the Phase 3 data, the only data available to him to do so. He had no "independent data" with which to compare Benchmark and reduced model fits. To the extent that such analyses can demonstrate a clear benefit to using reduced models, reduced models should be used. Clear preference for reduced model fits cannot be made from the Phase 3 data alone. The recommendation to use the Benchmark model is exactly that, a recommendation. It remains the author's recommendation from an analysis of the Phase 3 data.

## Specific Comments

## Executive Summary

o In this section and/or the Introduction, it would be helpful to put this report into the context of the broader EPAct process, including additional analyses by EPA, NREL and CRC, including evaluation of past studies, validation using independent datasets and ongoing emission measurements, such as Phases 4 and 5 of the EPAct program.

The author of this report was contracted to model and analyze the Phase 3 data. He is not involved with any analyses being conducted by EPA or CRC. He is not involved with evaluating past studies or validation using independent data sets.

## Section I

o Section I.D. The third paragraph covers issues with the dataset that have been resolved within the project group. Discussion of the treatment of zeros and missing values is obviously relevant to the statistical analysis but might be better placed in Section III.

The cited paragraph has been removed since the data base was updated following the circulation of the draft report.

Section II
o Section II.B.2, Paragraph 2. The vehicles selected for inclusion do represent a small fraction of all makes and models, but do represent a majority of vehicle sales in their model year. The point that vehicles represent random effects would apply even if the sample were larger.

No comment or action is required.

## Section IV

o Section IV.A. We grant that the outcome of a model selection process is not "best" in any absolute sense, but only contingent upon the experimental design, the sample used, and the assumptions and criteria used to define and conduct the process. Readers familiar with statistical analysis can appreciate these points. Nonetheless, for uninitiated readers, characterizing the search for a "best fit" as "fallacious" tends to give the strong impression that the statistical analyses are essentially irrelevant and that selection of a "best model" can therefore be pretty much subjective or arbitrary Based on these considerations, we suggest the consideration of a more neutral term to characterize the model selection, such as "Challenge," rather than "Fallacy."

This point is well taken. The title of this section is changed as suggested.
o Section IV.A. More generally, can we not ask whether fitting of thousands of subsets is actually superior to backwards elimination, which does arrive at a single "best fit," contingent on the operational definition used. Again, this result is not an "absolute best," but does greatly narrow the field of candidates requiring additional evaluation in terms of the physical science, which is a very difficult and intensive process.

Yes, we can definitively state that the identification of better subsets using best subset algorithms is superior to backward elimination. This has been documented since the late 1970s in numerous peer-reviewed statistics journal articles and in textbooks. Backward elimination might produce one of the better subsets but there is no guarantee that it will do so. It is true that best subset algorithms can provide hundreds or thousands of better subsets - and that is the issue with identifying reduced model fits. Nevertheless, all the better reduced models are identified. The difficulty is which one(s) to choose for further evaluation.
$o$ Section IV.A. Models developed independently by the author and EPA using different procedures produced similar or identical reduced models for several pollutants. This point might bear mentioning.

EPA has not concluded its modeling or presented its final model fits. These might change before it does so. A comment like this would be speculative prior to EPA releasing its final results.
o Section IV.A. 131,072 reduced models are possible, but only a very small fraction deserve serious consideration, due to hierarchy and other considerations, as noted later in the report.

No comment or action are required.
o Section IV.A. This discussion does not allow for the possibility that the benchmark model could reflect overfitting of the data due to artifacts of the program design or measurement errors in the data.

Artifacts of the design or measurement errors in the data do not, as implied here and elsewhere, solely affect the Benchmark Model. All reduced models would be suspect for the same reasons. Design issues or problems with the data base do not render reduced models preferable to the Benchmark Model.
o Section IV.A. (last bullet). This discussion could to make it clearer that such scientific or engineering judgment is not reflected in this report - and then Section VI.B could highlight it as work to be done by others before implementing emission models.

It is clear from the detailed documentation provided in this report that scientific or engineering knowledge, apart from statistical science, was not used in the model selection process. The author is not going to speculate what work other parties might conduct before implementing emissions models.
o Section IV.B.1, second to last paragraph. Doesn't setting the benchmark fit as the standard by which all reduced fits are evaluated depend on an a priori assumption that all terms in the benchmark are meaningful until proven otherwise? It is not clear that the physical science would support such an assumption, at least not for all terms for all emissions and bags. The list of terms chosen during design of the fuel matrix is a composite of all terms thought to have an effect on any of several pollutants of interest.

The recurring use of the phrase "meaningful until proven otherwise" begs a serious and questionable assertion and hides a very relevant issue. It begs the assertion that reduced models are preferable unless the Benchmark Model can be shown to only contain "meaningful" terms. This implies that reduced model fits do so. The Benchmark Model is the basis for all reduced model fits. If the Benchmark Model does not contain all possible meaningful model terms then neither do any of the reduced model fits. To the extent that relevant science and engineering knowledge is able to specify "meaningful" model terms, those terms are in the Benchmark Model. To the extent that science and engineering cannot do so, the Benchmark Model has not eliminated any of the possible ones. The same cannot be asserted for reduced model fits.

A second comment on the "meaningfulness" of the Benchmark Model terms relates to the fact that the true underlying nonlinear function of the emissions models is unknown. Each emission might be a different nonlinear function of the five fuel parameters. The forms of these functions are not known. The Benchmark Model is the closest Taylor Series approximation to those nonlinear functions that is available using this data set. Reduced models are further approximations using fewer of the Taylor Series model terms. To the extent that there is a clear delineation between the "meaningful" and "non-meaningful" model terms, the reduced model fits are entirely appropriate. The difficulty is that there is no such clear delineation using the Phase 3 data alone.

The hidden, relevant question occurs in the absence of such scientific or engineering knowledge. This cost of using the Benchmark Model is that some of the model terms might not be statistically significant. The inclusion of any such model terms increases the variability of the predictions but it does not incur bias in the predictions assuming, as is necessary in all model fits, that all the relevant terms are included in the Benchmark Model. Based on the fuel design that selected the 27 fuels and the desire to use only polynomial functions of the fuel terms in the various models, the Benchmark Model contains all the possible relevant model terms.

Reduced model fits might reduce the variability of model predictions by eliminating model terms that are not statistically significant. In doing so they risk biasing predictions if the variable selection process eliminates terms that are needed for accurate prediction of the fuel effects. Reduced model fits cannot guarantee that no bias is incurred because of the model terms selected.

These latter comments do not negate the importance of reduced model fits. On the contrary, the author routinely recommends the fitting of reduced models - but not in the modeling of the Phase 3 data.

- The difficulty with the reduced model fitting and the cause of so much concern over selecting the final reduced model fits is that these model fits have polynomial model terms. Polynomial model fits are well known to produce great difficulties when one is attempting to identify one model fit as the best according to any criteria.
- The Benchmark Model does not contain 17 distinct model terms. Of the 17 model terms, 12 are functions of the 5 fuel properties, the linear terms in the model. It is very difficult to uniquely characterize which of the 17 model terms best predicts each emission because the deletion of some model terms will have their predictive ability compensated for by other model terms that contain the same fuel parameters.
- The relationship between increasing EtOH and decreasing $\mathrm{T}_{50}$ that is shown in Fig. I.D. 1 suggests that there may be some model fits where these two terms can approximately substitute for one another, rendering unique selection of one reduced model even more difficult.
- "Meaningful until proven otherwise" does not, in this case, refer to distinct model terms. It refers to which of the polynomial representations of the 5 fuel properties a scientist or engineer would choose to include. A case in point is the $\mathrm{T}_{90}{ }^{2}$ model term. When the original fuel matrix design was formulated, 5 fuels were to be included precisely because some program participants wished to estimate the effects of this model term (Mason, R.L. and Buckingham, J.P. (2008). "Re-Design of Fuel Matrices for EPAct Program," Southwest Research Institute.). This desire reflects the great difficulty of knowing beforehand the exact characterization of linear, quadratic, and cross-product terms in these 5 fuel properties.

The report documents the difficulty in selecting a single reduced model fit that can be stated to be preferable to all other reduced model fits. What the above argument does is add to the relevance of the full Benchmark Model. It is far more relevant than the EPA comments permit and is not only relevant if all model terms are "meaningful until proven otherwise."

## Section V <br> o Section V.B. For clarity, it could be helpful to use the term "Bag" instead of "Phase", when referring to the LA92 cycle, to avoid confusion between phases (bags) of the cycle, as opposed to Phases of the EPAct program.

No objection; changes were made.
o Section V.B. If the reduced models give very similar fits to the benchmark model, can it be argued that advantage is not gained by retaining additional terms? (Same question arises when looking at the plots illustrating effects of removing the T90-squared termcan it not be equally reasonable to exclude T90-squared?).

This question has been answered in several ways above, notably in the response to the comments on Section IV.B.1.
o Section V.B. It is interesting to note that the model for composite NOx with the lowest Cp contains four terms, whereas the corresponding lowest-criterion models for Bags 1, 2 and 3 contained 12, 6 and 6 terms, respectively. This outcome may be an example of a situation where measurement variability or other artifacts in the results may lead to inclusion of additional terms. Such cases suggest the importance of thinking carefully about inclusion of multiple terms that may not prove to be robust or meaningful.

This comment contributes to my recommendation for using the Benchmark Model. First, the example cited relies solely on statistical methods to select the "best" model, the one with the smallest $\mathrm{C}_{\mathrm{p}}$ value. The author has argued repeatedly that there is no single "best" model fit. Nevertheless, choice of a reduced model requires selection from among the many better model fits. Selecting the ones with the smallest $C_{p}$ value is but one of many possible choices that ignores both robustness and whether the terms are "meaningful."

Second, if one desires robustness in the selection of model terms, the example used is the antithesis of robust. The Bag 1 fit contains 12 model terms with some $\mathrm{T}_{50}$ and some $\mathrm{T}_{90}$ terms, the Bag 2 fit contains only 6 terms with all $\mathrm{T}_{50}$ terms eliminated, and the Bag 3 fit also contains 6 model terms with all $\mathrm{T}_{90}$ terms eliminated. There is no robustness in the selection of the model terms either in terms of the number of terms or the specific terms selected.

## Section VI

o Section VI.A, paragraph 3. The mention of influential vehicles seems to refer to analyses beyond those presented in the report, i.e., additional analysis by George Hoffman. In terms of interpretation, we suggest that it is at least as likely that the influence observed could be attributed to measurement issues with the influential vehicles per se, as to any of the vehicle or model characteristics listed.

The discussion of influential vehicles did not rely on any analyses performed by EPA staff. The author conducted numerous investigations of influential vehicle effects. Those results were not included in this report because the author does not recommend eliminating any of the influential vehicles bases on an analysis of the data in the Phase 3 data base alone. Identification of influential vehicles must be separated from determining the cause(s) of the influence. The Phase 3 data base does not include the type of information stated in this comment that might allow a cause to be identified and, subsequently, any decision on an accommodation of the influential vehicles other than inclusion in the modeling and analyses.
o Section VI.B. 1 (5th para). Aside from the issue of censoring, it is not clear that backwards elimination is inherently deficient in relation to comparison of multiple fits. Besides being commonly used in experimental work, backwards elimination has the advantage of allowing goodness-of-fit tests for the removal of specific parameter(s), which are not possible when comparing multiple values of criteria such as Cp or BIC.

The deficiencies of backward elimination relative to best subset fits are well known. This was addressed above. It is not clear to what "goodness of fit" refers since these methods are ordinarily used to assess model assumptions, not the removal of parameters from a model.
o Section VI.B.1. The discussion in this section appears to show a strong preference for retaining all terms that may be meaningful, at the risk of retaining additional terms that may not be robust or meaningful. While this stance is not unreasonable, it is not clear that it is necessarily normative in relation to a stance that prefers to retain terms shown to be meaningful and robust, even at some risk of dropping terms that may be meaningful. Paragraph 5 underscores the point by making an unqualified recommendation that the benchmark models be used for prediction over any reduced model. However, it is not clear (especially to an uninitiated reader) how this recommendation squares with the previous statement in IV.A (page 19) that "it is far preferable to use scientific or engineering knowledge to select from among the better fitting models one or more model fits that are consistent with accepted knowledge ...", which appears to recommend use of one or more reduced models. It would be helpful to the reader if the discussion balanced these two recommendations and clarified how they relate to each other. Finally, when models are published, it is important to note that the inclusion (or exclusion) of model terms is taken as an interpretation of the physical science, to the effect that parameters included in the model not only exist but are also meaningful and important, and vice versa for excluded parameters. In addition to the generation of predictions as such, model selection inevitably takes on an interpretive or "symbolic" role.

All of these comments are addressed above.
o Section VI.B.2. This section could include discussion of areas for further investigation to tie this report into ongoing work to be presented in reports released by other participants in the EPAct program.

This work relates solely to the modeling and analysis of the Phase 3 data. To comment on how this work relates to any other work on this project or to work undertaken by other participants would be speculative on the part of the author.

