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Summary 

In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic 

ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy 

memory function and pilot point concepts, as well as efficient sampling approaches.  

It is critical to accurately estimate soil moisture content and variations in vadose zone studies.  

Many studies have illustrated the promise and value of GPR tomographic data for estimating soil 

moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic 

data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, 

handles non-uniqueness and nonlinearity, and honors time-lapse tomograms collected in a series. To 

address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse 

modeling framework that non-subjectively defines prior probabilities, incorporates information from 

multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric 

permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation 

range. In the inversion framework, MRE is first used to derive prior probability distribution functions 

(pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion.  

The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the 
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sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a 

highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model.  The 

likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a 

Gaussian kernel.  Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the 

previous inversion (as a memory function) with new data. The memory function and pilot point design 

takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion 

framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected 

during a dynamic experiment conducted at the Hanford Site in Richland, WA.  We demonstrate that the 

MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate 

nonlinear models, and produce more detailed and better resolved estimates than straight-ray based 

inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and 

soil moisture content and to monitor their temporal dynamics more accurately. 

 

 

1. Introduction 

The ability to monitor soil moisture in the vadose zone is crucial to meeting many societal needs.  

Agriculture, for instance, relies on current soil moisture data to guide irrigation practices and to predict 

the potential yield of crops (Shaxson & Barber, 2003).  Weather forecasts rely on accurate estimates of 

soil moisture as input to climate models (Ni-Meister, Walker, & Houser, 2005).  Soil moisture 

information is also a key component in predicting natural disasters, such as flooding and slope failure 

(Tohari, Nishigaki, & Komatsu, 2007). Soil moisture is also a key parameter in determining unsaturated 

hydraulic conductivity, which in turn affects solute mobility and contaminant fate and transport within 

the vadose zone (Murdoch, 2000). 
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 Several techniques exist for monitoring soil moisture at a variety of spatial and temporal scales, 

including space-borne sensors, air-borne sensors, wireless sensor networks, and ground-based sensors 

(Vereecken et al., 2008).  Within the class of ground-based sensors, ground penetrating radar (GPR) 

offers the unique advantage over other methods like time domain reflectometry (TDR) or capacitance 

probes by having intermediate spatial support volumes (centimeters to meters) (Vereecken et al., 2008) 

and temporal resolution (e.g., sub-daily), and being minimally invasive.  Although GPR does not 

measure soil moisture directly, signal travel times recorded by GPR are dominantly regulated by 

variations in dielectric permittivity, a parameter controlled by the presence of moisture and related 

through a petrophysical model (Lunt, Hubbard, & Rubin, 2005).  Particularly, tomographic GPR has 

emerged as a solution to long-term monitoring of spatial distribution of soil moisture within the vadose 

zone (Binley, Cassiani, Middleton, & Winship, 2002; Hubbard, Peterson, et al., 1997) and as a means of 

deriving other spatially heterogeneous soil physical properties, such as permeability (Binley et al., 2002; 

J. Chen, Hubbard, & Rubin, 2001; Dubreuil-Boisclair, Gloaguen, Marcotte, & Giroux, 2011; Hubbard, 

Rubin, & Majer, 1997; Hubbard et al., 2001; M. B. Kowalsky et al., 2005; Michael B. Kowalsky, 

Finsterle, & Rubin, 2004) and porosity (Clement & Barrash, 2006), through time-lapse, and/or joint 

inversion (Binley et al., 2002; M. B. Kowalsky et al., 2005; Michael B. Kowalsky et al., 2004). 

The inversion process converting GPR traveltime tomography data to physical properties of 

interest is an area of continued investigation.  Inverted images from tomograms are subject to great 

uncertainty due to non-uniqueness of solutions and variable spatial resolutions. Sine tomographic 

inversion problems tend to be underdetermined, and might have an infinite number of possible solutions, 

regularization (typically smoothing) can be applied to stabilize solutions, but the corresponding 

tomography inversion results tend to exaggerate the size and underestimate the magnitude of anomalies 

in the subsurface, and under-represent the true correlation structure (Day-Lewis, 2004).  The optimum 
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spatial resolution achievable by GPR is limited by survey geometry, measurement error, measurement 

physics, and the parameterization and/or regularization employed in the inversion (Day-Lewis, 2004).  

The variation in resolution within a tomogram makes pixel-specific inference of petrophysical properties 

uncertain. 

Time-lapse GPR traveltime tomography datasets are a useful means for observing dynamic 

systems.  Given that changes in soil moisture are hysteretic, it is sensible to capitalize on time-dependent 

correlation between time-lapse datasets.  One useful technique is difference inversion (i.e., (LaBrecque 

& Yang, 2001)) wherein regularization is applied between time-lapse datasets.  Such an approach is 

useful for highlighting changes to a system, but requires a reliable inversion of a background dataset.  

(Kim, Yi, Park, & Kim, 2009) and (Karaoulis et al., 2011) note that the subsurface can be treated as a 

space-time model, wherein the system is changing continuously on both space and time axes.  The 

objective function therefore penalizes for changes in space-time. 

It is widely recognized that quantifying uncertainty is a crucial aspect of inverting geophysical 

data (Cassiani, Strobbia, & Gallotti, 2004; J. Chen et al., 2001; Rubin & Hubbard, 2005; Yeh & 

Simunek, 2002), which cannot be done using deterministic approaches (such as least-square 

optimization).  It has become increasingly common to invert data within a stochastic framework wherein 

parameters are treated in a probabilistic manner, although the approaches still lacks the ability to 

combine multiple data types. One solution is the Bayesian updating framework, where parameters retain 

their probabilistic structure throughout inversion and can be updated quantitatively with the addition of 

new information (for examples, see (J. Chen & Rubin, 2003; X. Chen, Rubin, Ma, & Baldocchi, 2008; 

Copty, Rubin, & Mavk, 1993; Dubreuil-Boisclair et al., 2011; Hou, Rubin, Hoversten, Vasco, & Chen, 

2006; Hou & Rubin, 2005; Hubbard et al., 2001; M. B. Kowalsky et al., 2005; Michael B. Kowalsky et 

al., 2004; Lehikoinen, Huttunen, Finsterle, Kowalsky, & Kaipio, 2010) . 
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Bayesian inversion approaches offer a systematic way to quantitatively describe uncertainty and 

provide parameter estimates that can be conditionally updated when new data becomes available.  

However, the flexibility of Bayesian techniques can also raise concerns.  First, there is the risk of 

subjectivity when defining prior distributions since the inversion hinge upon the choice of prior 

distributions (for an excellent discussion on subjectivity and options for choosing prior distributions, see 

(Berger, 2006)).  Another critical component in Bayesian inversion is the weighting scheme.  Suppose 

we have greater confidence in our data than we do in our prior information, we would seek to bias assign 

higher weights to the new data, for the situation with better instrumentation but lack of information to 

define the priors.  Finally, the freedom of modeling within a Bayesian framework may result in 

excessive computational demand, in that increasing model complexity and number of parameters will 

result in more simulations and longer CPU time per simulation. 

(Hou & Rubin, 2005) employ minimum relative entropy (MRE) within a Bayesian framework as 

a means of non-subjectively selecting prior probability distribution functions (pdfs) in a study estimating 

soil moisture from transient surface GPR, meteorological measurements, and TDR data.  Briefly, MRE 

is a means of automatically updating parameter pdfs that minimizes the entropy between the existing 

pdfs and new constraints placed on that pdfs.  The MRE-derived pdfs allow maximum flexibility in the 

inversion, without sacrificing loss of prior information from the constraints  

(M. B. Kowalsky et al., 2005; Michael B. Kowalsky et al., 2004) used a Bayesian scheme for 

inversion of ground penetrating radar (GPR) tomography data to study infiltration processes occurring 

within the vadose zone.  They developed a maximum a posteriori (MAP) Bayesian approach within a 

pilot point framework to infer dielectric permittivity and (hydraulic) permeability fields from transient 

borehole GPR and borehole saturation measurements.  The method of pilot points uses only select points 
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in tandem with a spatial covariance model to simulate parameter estimates over a refined spatial grid, 

and is an effective way of capturing effects of heterogeneity using a minimum number of parameters. 

In this study, we adopt the MRE-Bayesian approach developed by (Hou & Rubin, 2005) and 

apply it to estimate spatial dielectric permittivity fields in the vadose zone from transient tomographic 

GPR data.  Similarly to (Michael B. Kowalsky et al., 2004), we also incorporate the method of pilot 

points and sequential Gaussian simulation (SGSIM) to produce our dielectric permittivity fields.  

However, in our work, we treat each pilot point as a distinct Bayesian parameter defined by a unique 

MRE prior pdf and subsequent memory functions.  Our target parameters for inversion are dielectric 

permittivity at several locations throughout the study area and the spatial correlation range. We 

demonstrate our method by applying it to a static synthetic example and a time-lapse field example, the 

latter collected at the Hanford nuclear site in Richland, WA. 

 

2. GPR Background 

Tomographic GPR is a borehole-based geophysical technique.  It involves transmitting an 

electromagnetic (EM) pulse from a source in one borehole and recording the arrival of EM energy at a 

receiver position in a separate borehole. The source and receiver vertical locations are varied to collect a 

suite of data of signal arrival times and magnitude for various source-receiver pairs.   

Inversion of the first arrival times of the EM energy is used to estimate the velocity and the 

dielectric permittivity (𝜖) distribution between the boreholes.  For convenience, the relative dielectric 

permittivity (𝜖𝑟) is used, which is simply the dielectric permittivity normalized by the speed of light in a 

vacuum (𝑐 = 0.3 m/ns).  At the high frequencies typically used for GPR (~50-1000MHz) and in low-

loss environments (non-magnetic, low electrical conductivity), the dielectric constant (𝜖𝑟) of a soil can 

be related to EM velocity (v) by: 
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𝜖𝑟 ≈ �

𝑐
𝑣
�
2

, 
(1) 

(Davis & Annan, 1989).  It is clear that to estimate dielectric permittivity, information regarding the EM 

velocity structure between the boreholes is needed.  Since we are interested in the spatial variation in 

EM velocity, we discretize the study area into n grid blocks with velocities v1 … vn, and relate these 

velocities to travel time data through a forward model (G) that describes the propagation path (distance) 

travelled by the EM energy.  The solution takes the form of an inversion problem:  

 𝐆(𝐯) = 𝐭,                                                      (2) 

where 𝐯 is a vector of the velocities of the grid blocks, and 𝐭 represents the vector of measured travel 

times.   

GPR forward models generally fall into two categories: (1) full-waveform methods (for example, 

(Casper & Kung, 1996; Michael B. Kowalsky, Dietrich, Teutsch, & Rubin, 2001; Vasco, Peterson, & 

Lee, 1997)) and (2) ray-based methods (i.e., (Cai & Mcmechan, 1995; Peterson, 2001; Zhang, Rector, & 

Hoversten, 2005)).  Full waveform methods compute solutions to Maxwell’s equations, and offer 

thorough information on EM energy propagation.  In a ray-based inversion approach, the total travel 

time from a source to a receiver is discretely represented as: 

 𝑡 = ∑ 𝑙𝑖
𝑣𝑖

𝑛
𝑖=1 ,                                                     (3) 

where li is the distance travelled by the ray through the ith grid block.  If straight-ray paths are assumed, 

the forward model matrix G is a ray-path matrix containing the lengths of the rays through each grid 

block for each measurement and the inversion problem becomes linear.  Typically, solutions to model 

parameters (the grid blocks) are in terms of slowness, and can be computed via iterative reconstruction 

techniques (i.e.,  the algebraic reconstruction techniques (ART) (Peterson, Paulsson, & McEvilly, 1985; 

Peterson, 2001) or the simultaneous iterative reconstruction technique (SIRT) (Dines & Lytle, 1979).  

The straight ray approach is limited to situations with little variation in EM velocity (e.g., less than 10% 
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EM velocity variation (Day-Lewis, 2005), so curved-ray methods that account for ray-bending 

phenomena may be used in situations where significant heterogeneity is expected. The curved-ray 

method allows a GPR ray to follow physically realistic trajectories; the traveltimes along direct, 

reflected, refracted, and transmitted raypaths are computed and compared until the first arrival is found 

(Zhang et al., 2005) 

 

3. Methodology 

The complete inversion process consists of a pre-inversion step, an initial ‘static’ inversion, and 

subsequent time-lapse inversions when time-lapse data is available (Figure 1).  The process is described 

in the following sections. 

 

3.1. Pre-inversion 

The pre-inversion process is designed to provide initial estimates for expected values (i.e., prior 

means) of the model parameters.  This is achieved through a linear inversion of the data. 

A ray-path matrix (G) is constructed analytically assuming straight ray paths, and the SIRT 

method is used to produce an initial estimate of the dielectric permittivity distribution within the study 

area.  These estimates of dielectric permittivity represent weighted averages of the true permittivity 

(Day-Lewis, 2005). 

Given initial estimates of the dielectric permittivity parameters, we are able to construct a 

variogram, from which we can estimate the correlation range, the distance beyond which dielectric 

permittivity is no longer correlated (Hengl, 2009).  Due to the smearing effects of the SIRT inversion, 

we observe that this range likely overestimates the true value (Day-Lewis, 2004; Hubbard, Rubin, & 
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Majer, 1999).  In our inversion study, we include the correlation range as an unknown and assign an 

upper bound corresponding to the diagonal length of the field, and a lower bound of 0, indicative of no 

correlation between the points. We do not assign a standard deviation to the range parameter. 

 

3.2. Inversion: static case 

In order to reduce the number of unknowns and make the inverse problem less ill-posed, we 

choose to invert dielectric permittivity at selected point locations and the associated spatial correlation 

range.   

The prior pdfs for these parameters are derived using MRE method with given prior information, 

which includes physical lower and upper bounds, and statistical moments (mean, standard deviation). 

We use the SIRT inverted values as the prior mean values, and assign loose upper and lower bounds 

(e.g., ±4 from the mean values).  These are loose bounds, considering that in general they represent a 

minimum 0.17 range in moisture content, according to Topp’s petrophysical model (Topp, Davis, & 

Annan, 1980).  Given that we have a reasonable confidence in the SIRT inversion, we opt to also impose 

a standard deviation of 2.   

To construct the initial pdfs of dielectric constant values, we use the MRE algorithm originally 

developed by (Woodbury, 2004).  Given a mean (𝜇), standard deviation (𝜎), and upper (U) and lower 

bounds (L), MRE selects a truncated normal distribution to represent the pilot point parameter pdfs:  

 
𝑝(𝑥) = �  1

𝐶
𝑒−𝛾(𝑥+ 𝛽

2𝛾)2  if 𝐿 ≤ 𝑥 ≤ 𝑈

  0 otherwise
,                       (4) 

where p(x) represents the probability of any given value of x occurring. The coefficient 𝛽,  𝛾, and C are 

determined by the constraints 𝜇, 𝜎, L and U. For a complete derivation of these solutions, see (Hou & 
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Rubin, 2005). Lacking a standard deviation, MRE selects a truncated exponential distribution for the 

parameter of correlation range: 

 
𝑝(𝑥) = �  

𝛽𝑒−𝛽𝑥

𝑒−𝛽𝐿−𝑒−𝛽𝑈
 if 0 ≤ 𝐿 ≤ 𝑥 ≤ 𝑈

  0 otherwise
,                        (5) 

Similarly, the coefficient 𝛽 is determined by the constraints 𝜇, L and U. 

Now that each parameter is represented by a pdf, we are able to sample values from these 

distributions for numerical evaluations.  Sampling technique is an important choice in our inversion, as 

the success of a numerical approach hinges upon evaluating all possibilities defined by the model space.  

Given a large number of dimensions (npar = 49, in our case), systematic sampling techniques such as by 

Simpson’s rule are not sufficient (Tarantola, 2005).  Therefore, we turn to quasi-Monte Carlo (QMC) 

techniques, which incorporate deterministic sequences to guarantee good dispersion between sample 

points (Caflisch, 2008). 

QMC requires a choice regarding input of a low-discrepancy sequence.  It is widely 

acknowledged that Sobol sequences (Sobol, 1967) perform well for problems of greater than six 

dimensions, and avoid degradation effects observed in many other low-discrepancy sequences 

(Atanassov et al., 2010; Sobol & Shukhman, 2007; Wang & Sloan, 2008). 

Therefore, we use a Sobol sequence to initialize our QMC sampling procedure, and produce 

adequate number of sample sets (q ~ 106) for numerical evaluation.  Each sample set (m) contains 

discrete values for each of the dielectric constant pilot points, and a value for the range parameter.  For 

each of the q sample sets, we estimate the prior mean, standard deviation, and correlation range.  To 

generate a dielectric permittivity field, we discretize the study field into elements of equal area.  Using 

the GSLIB sequential Gaussian simulation package SGSIM (Deutsch & Journel, 1997), we simulate 
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spatially correlated dielectric permittivity values throughout the study region.  These values are 

converted to EM velocity at each pixel through Equation (1). 

Modeling of GPR first arrival times is accomplished through the method developed by (Zhang et al., 

2005), which uses a curved-ray (eikonal solver) to compute EM first-arrival travel times (Tcal) from the 

modeled dielectric permittivity field. 

The modeled first arrival times are compared to the observational data (Tobs) to compute 

residuals for each source-receiver pair.  As each parameter set is processed, the standard deviation 

associated with each source-receiver pair (rstd) is updated by Welford’s method (Welford, 1962). 

After all parameter sets have been compared with the data, the residuals are normalized by their 

standard deviations.  The normalized residuals are assumed to following standard normal distribution; 

therefore, the likelihood functions take the form of normal distributions. The likelihood function for 

each parameter set mj is given by: 

 

𝐿�𝒎𝑗� = exp

⎣
⎢
⎢
⎢
⎡

∑ −
�
�𝑇𝑜𝑏𝑠𝑖−𝑇𝑐𝑎𝑙𝑖�𝒎𝑗��

𝑟𝑠𝑡𝑑𝑖
�

2

2
𝑛𝑚𝑒𝑎𝑠
𝑖=1

⎦
⎥
⎥
⎥
⎤

.                                      (6) 

The posterior pdf is the product of the likelihood function in Equation 6 and the prior pdfs in 

Equations 4 or 5, expressed as weights (w) for each parameter set. Given the weights, the posterior mean 

(𝜇𝑝𝑜𝑠𝑡) and standard deviation (𝜎𝑝𝑜𝑠𝑡) of each parameter set are updated. We divide the full range for 

each parameter into 100 bins (nbins = 100) and the posterior probability at each bin is calculated using the 

Gaussian kernel: 

 
𝑝(𝑥𝑏𝑖𝑛)𝑝𝑜𝑠𝑡~ ∑ 𝑤𝑖

1
2𝜋𝜎𝑝𝑜𝑠𝑡2

𝑒
−

(𝑥𝑏𝑖𝑛−𝑥𝑖)
2

2𝜎𝑝𝑜𝑠𝑡2 ,𝑞
𝑖=1                                        (7) 
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3.3. Inversion: time-lapse data 

Our purpose now is to monitor temporal variations in the dielectric permittivity field, but in order 

to take the advantage of temporal continuity,  it is desired to use inversion results from previous stages 

as the new prior pdfs (actually intermediate estimates),  which can be called ‘memory functions’ 

(Equation 7).  To be able to capture temporal variation, it is reasonable to reset the bounds according to 

the updated means and standard deviations. We choose to reset the new bounds to the mean values ±2 

standard deviations, the latter being a measure of spread of the distribution.  Further, we limit the 

extension of these bounds beyond a global maximum and minimum, ranging from 3 to 25 for the pilot 

point dielectric constant values and 0.25 m to 15 m for the range parameter.  This approach allows 

distributions to shift with time, which is reasonable given the time-lapse nature of the experiment; the 

distributions also serve as memory functions to honor spatial-temporal correlations of the state variables.  

We also have updated SIRT inversion results available.  To combine these two input data on the model 

parameters, we transform the SIRT estimates into MRE pdfs but assign bounds corresponding to their 

global maxima and minima to guarantee compatibility with the Bayesian estimates.  The SIRT-derived 

pdfs are considered to be independent from the corresponding Bayesian posterior pdfs, and are 

combined following the multiplicative law of joint probability.  The joint probabilities of the SIRT-

derived pdfs and the Bayesian estimates provide intermediate pdfs (memory functions) that act as the 

starting point (new prior probability) for the subsequent inversion.  
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Figure 1: Flowchart showing the major steps in the MRE-Bayesian inversion process used in this report. 
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4. Synthetic Experiment 

4.1. Forward modeling  

The study area is 4 m width by 15 m depth (see figure 2).  We consider 30 equally spaced source 

locations, and for each source location, data is collected at 30 evenly spaced receiver locations for a total 

of 900 observations (nobs = 900), stored in a matrix Tobs. We added two percent random noise to the 

traveltime observations as measurement errors. 
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Figure 2: Geometry for the synthetic experiment.  A tomographic GPR survey takes place between two 

parallel borehole with a separation of 4 m and depth of 15 m (a).  For a given source location, each 

receiver location records the first arrival of EM energy (b).  Tomography provides 2-dimensional 

coverage of the study area (c). 

 

4.2. Results of the synthetic study 

 The prior MRE pdfs and Bayesian posterior pdfs for dielectric permittivity pilot points are 

plotted in Figures 3a and b, respectively, in correspondence to their relative location within the 

tomogram.  When compared to their prior pdfs, most of the distributions have shifted more or less away 

from the prior values.  This is not surprising since the SIRT-derived means are averaged representations 

of the true values of dielectric constant at the pilot point locations.  Thus, our inversion approach 

provides improved resolution of extreme values and local anomalies, and thus makes the best use of 

available data.   

 To demonstrate this, Figure 4 shows the true dielectric constant values side by side with SIRT-

derived estimates and a Gaussian simulation of the posterior mean values.  We observe that the SIRT 

inversion provides a ‘smeared’ image of the study area, and that although higher and lower zones are 

generally captured, their values consistently under- or over-estimate the corresponding true values. 

Thus, these zones are not well resolved, and the range of values gives a false impression of the true field 

variations.  The Gaussian simulated image, on the other hand, mimics the heterogeneity of the true 

image quite well, and the range of observed values more closely reflects reality than the SIRT image.  

However, we note that the edges of the field are much less reliable.  This is consistent with the sparse 

sampling domain of tomographic GPR near the edges of the field. 
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Figure 3: (a-b) are the MRE defined prior pdfs, and (c-d) are the Bayesian updated pdfs.  Note 

particularly the update of the range parameter, which now displays a clear mode of about 6. 
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Figure 4: (a) The true relative dielectric permittivity values used in the synthetic study.  (b) The SIRT 

estimated values, and (c) A sequential Gaussian simulation of the posterior Bayesian estimates. 

Although the SIRT inversion reproduces smeared, general features, it lacks to focus of the simulated 

values at right.  Additionally, the simulated values depict a range of dielectric constant values close to 

reality. 
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Another advantage we observe is the quantitative handling of non-uniqueness, or the notion that 

many velocity fields that could produce similar data.  Although the inversion will produce one particular 

set of parameters that most closely matches the data, this set may still deviate from the true values.  

Instead of seeking a single best parameter set, which in fact does not usually exist due to non-uniqueness 

issue and noise in the observations, we use likelihood functions as a weighting system to assign proper 

weights to each parameter set to allow for all possibilities in a reasonable way. 

 

 
5. Field Experiment   

5.1. Site description 

Our data comes from a time-lapse desiccation monitoring experiment at the BC Cribs site, 

located south of the Hanford 200 area in the Columbia River Basin in Richland, Washington.  The site 

lies above a thick (~ 100 m) vadose zone dominated by sands and gravels, but interspersed with thin, 

fine-grained layers (Rucker & Fink, 2007).  Tomographic GPR and neutron probe data are collected 

from several of these wells over 4 campaigns dating October 2010 to February 2011, consisting of 1013 

measurements each.  Beginning at date November 22, 2010 a well in the vicinity of the radar boreholes 

was used to inject dry nitrogen gas into the soil and a down gradient well was used to extract fluids. The 

injection-extraction was performed in an effort to test the efficacy of relying on desiccation procedures 

to remove moisture from the soil, which can potentially decrease the downward mobility of 

contaminants of concern at the site toward the groundwater (Oostrom, Wietsma, Dane, Truex, & Ward, 

2009). 
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5.2. Inversion 

Inversion of the first BC Cribs dataset (October 19, 2010) utilizes the same process as the 

synthetic experiment (static case).  Inversion of the second (December 2, 2010), third (December 16, 

2010), and fourth (February 3, 2011) dataset utilize the time-lapse framework outlined in section 3.4. 

 

5.3. Results of the field study 

Figure 5 depicts the MRE-derived prior pdfs and the Bayesian posterior pdfs from the October 

19, 2011 dataset.  Again, we observe a shift in the posterior pdfs toward extreme values, suggesting that 

the numerical modeling is compensating for the averaging effect produced by the SIRT inversion.  The 

pdf of the parameter correlation range shifts toward higher values, indicating an extended correlation 

range is more likely compared to the initial image from SIRT inversion.  

 Turning to the subsequent December 2, 2010 dataset, we see that the SIRT inversion again 

favors relatively low values for the range pdf (Figure 6).  The joint probability of the previous Bayesian 

posterior and the current MRE-derived prior (Figure 6, center bottom) represents the combined 

probability of both inversion results.  The updated pdfs of the dielectric permittivity pilot points are all 

shifted more or less toward extreme values, in reflection of these two sources of information (Figure 6, 

center top).   

 The December 16, 2010 and February 3, 2011 inversion results are shown in (Figures 7 and 8).  

We note similar trends in the pdf updating procedure for these datasets as with for the October 19, 2010 

and December 2, 2010 datasets, although the shifts in the distributions from the intermediate joint pdfs 

to the Bayesian posteriors appears less pronounced.  This may result from the greater peakedness of the 

later distributions.  Although the distributions still, for the most part, have reasonable ranges from which 
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to draw samples for numerical simulation, the associated probabilities for values near the bounds are 

extremely small.  Although this approach allows for quantification of uncertainty, it cannot, at least at 

present, fully quantify the full relevance of a previous time-lapse inversion result to the current dataset.  

Therefore, concurrent with (Hou & Rubin, 2005), we stress the value in maintaining relatively relaxed 

constraints on parameter pdfs. 

 We choose realizations of the dielectric permittivity field from posterior estimates and plot the 

difference images from the Oct 19 baseline, as shown in Figure 9.  The mean values for each image are -

0.62, -0.29, and -1.2 respectively, the decreases in dielectric permittivity indicates an overall drying of 

the soil from baseline, in agreement with the desiccation experiment goal. More significantly, these 

images depict high-resolution heterogeneity and anomalous structure in dielectric permittivity field. 
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Figure 5: Prior (red, a-b) and posterior (blue, c-d) pdfs from the October 19, 2010 dataset.  Note the 

shift in distributions toward more extreme values. 
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Figure 6: Prior (red, a-b), intermediate (orange, c-d)), and posterior (blue, e-f) pdfs from the December 

2, 2010 dataset.  The intermediate pdfs represent information from the previous Bayesian inversion, as 

well as updated information from a SIRT inversion of the current dataset. 
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Figure 7: Inversion results for the December 16, 2010 dataset.  (a) and (b) (red) are the MRE-derived 

prior pdfs, (c) and (d) (orange) are the intermediate pdfs reflecting the joint probability of the prior pdfs 

and the posterior pdfs from the previous time-lapse Bayesian inversion. 
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Figure 8: Inversion results for the February 3, 2011 tomography dataset. 
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Figure 9: Sequential Gaussian simulations of dielectric constant produced from the Bayesian posterior 

modes from each time-lapse inversion.  Image (a) (October 19, 2010) is the baseline image.  (b) and (c) 

are difference images, representing the change in dielectric constant from the baseline values. 
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6. Conclusions 

In this report, we demonstrate a novel approach to invert tomographic GPR data for dielectric 

permittivity estimation. It integrates the concepts of entropy, Bayesian updating, efficient sampling, pilot 

point, and geostatistics. There are several advanced features in the inversion approach:  1) it enables 

quantification of input and output uncertainty in the form of pdfs; 2) it permits fusion of multiple data 

types or data collected at different times and assigns proper weights using likelihood functions; 3) it 

takes advantage of potential spatial correlation in the subsurface state variables by introducing the 

concept of pilot points, thus reducing the number of parameters to be estimated; 4) it allows us to benefit 

from temporal correlation/continuity through a memory function, by updating pdfs with observations 

while quantitatively conditioning on the inverse results using dataset from previous stage. The approach 

can be easily adapted to a variety of inversion problems, providing a physically-based forward model 

exists. 

The approach also has some limitations. For example, we adopt MRE to avoid the subjectivity in 

defining parameter priors; there is nevertheless no completely objective approach in assessing the 

relative value of various data with different quality, different resolution, and/or different amount of 

observations. Inevitably we also face the challenge of obtaining reliable natural normalization of the 

observations, and dealing with the prior incompatibility issues. The accuracy of inverse results can also 

be affected if strong side reflectors exist outside the 2D inversion domain. 

A number of possibilities exist to further refine our inversion process.  For example, a future 

effort could involve inverting for changes in dielectric permittivity field instead of estimating the 

permittivity image directly. Such an approach would require that the baseline estimates were well 

characterized with adequate resolution, but would enhance our ability to observe small-scale changes in 

dielectric permittivity. Another consideration is to introduce additional geostatistical parameters. This is 
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particularly true for the Hanford datasets, where we expect relative strong spatial anisotropy (e.g., 

layering). 
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