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Abstract

In this project we have developed atmospheric measurement capabilities and a suite of
atmospheric modeling and analysis tools that are well suited for verifying emissions of green-
house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the
Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2. This will
allow for the examination of regional-scale transport and distribution of CO2 along with air
pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution
with the goal of leveraging emissions verification efforts for both air quality and climate. We
have developed a bias-enhanced Bayesian inference approach that can remedy the well-known
problem of transport model errors in atmospheric CO2 inversions. We have tested the approach
using data and model outputs from the TransCom3 global CO2 inversion comparison project.
We have also performed two prototyping studies on inversion approaches in the generalized
convection-diffusion context. One of these studies employed Polynomial Chaos Expansion
to accelerate the evaluation of a regional transport model and enable efficient Markov Chain
Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de-
terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty.
These approaches should, in principle, be applicable to realistic atmospheric problems with
moderate adaptation.

We outline a regional greenhouse gas source inference system that integrates (1) two ap-
proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un-
certainty quantification algorithms. We use two different and complementary approaches to
simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model
CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models
share the same WRF assimilated meteorology fields, making it possible to perform a hybrid
simulation, in which the Eulerian model (CMAQ) can be used to compute the initial condi-
tion needed by the Lagrangian model, while the source-receptor relationships for a large state
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vector can be efficiently computed using the Lagrangian model in its backward mode. In ad-
dition, CMAQ has a complete treatment of atmospheric chemistry of a suite of traditional air
pollutants, many of which could help attribute GHGs from different sources. The inference
of emissions sources using atmospheric observations is cast as a Bayesian model calibration
problem, which is solved using a variety of Bayesian techniques, such as the bias-enhanced
Bayesian inference algorithm, which accounts for the intrinsic model deficiency, Polynomial
Chaos Expansion to accelerate model evaluation and Markov Chain Monte Carlo sampling,
and Karhunen-Loève (KL) Expansion to reduce the dimensionality of the state space.

We have established an atmospheric measurement site in Livermore, CA and are collect-
ing continuous measurements of CO2, CH4 and other species that are typically co-emitted
with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs
to different emissions sectors. Automatic calibrations using traceable standards are performed
routinely for the gas-phase measurements. We are also collecting standard meteorological data
at the Livermore site as well as planetary boundary height measurements using a ceilometer.
The location of the measurement site is well suited to sample air transported between the San
Francisco Bay area and the California Central Valley.
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1 Introduction

1.1 Fossil-fuel CO2 Emissions Verification: Challenges and Opportunities

The increase of atmospheric CO2 concentrations, as the largest human-induced climate forcer, is
continuing and accelerating [1]. Reducing anthropogenic emissions is the most effective way to
mitigate the resulting climate change risks. The success of an international collaborative effort
in emissions reduction relies upon accurate information of current emissions in each country and
their change over time [2]. Under the United Nations Framework Convention on Climate Change
(UNFCCC), all countries are required to report annual anthropogenic emissions and removal of
greenhouse gases (GHGs), although developing countries are allowed to report less frequently and
in less detail than Annex I (developed) countries. These self-reported national emissions inven-
tories, however, are known to have uncertainties attributable to the incomplete knowledge of the
numerous emission sources or inaccurate national and state statistical data (e.g., [3, 4]). Emis-
sions verification, which aims at (1) reducing uncertainties in current emissions inventories, and
(2) monitoring and verifying changes in emissions over time [2], has emerged as an urgent need
for decision-making by policy makers and business leaders [5, 6].

From the perspective of the global carbon cycle, our understanding of fossil-fuel emissions is
generally believed to be better than that of natural carbon sources and sinks [1]; there are cur-
rently large gaps of knowledge in the biogeochemistry and physics of the natural carbon cycle [7],
whereas fossil-fuel emissions are largely constrained by relatively well-documented global fuel
consumption data [8]. Nevertheless, our understanding of some important characteristics of fossil-
fuel emissions, such as their spatiotemporal variability, remains elusive [3, 9]. One unique feature
of fossil-fuel emissions is their extremely uneven spatial distribution. A striking example pointed
out by Marland [5] shows that even a tiny amount of uncertainty, i.e., 0.9% as estimated by two
independent sources, in one of the leading emitters like the U.S. is equivalent to total emissions
from a very large group of smaller emitters in the world, i.e., 147 countries out of 195 countries
analyzed. A refined characterization of fossil-fuel emissions in space and time is necessary for
emissions verification, and is also important for better constraining the carbon cycle [10, 11].

A formal approach to the emissions verification problem is inverse modeling, which seeks to
improve existing emissions estimates through assimilating information from atmospheric observa-
tions [2]. In inverse modeling, a source-receptor relationship, i.e., a relationship between concen-
trations at a receptor site and emissions strength from sources, is first established by modeling CO2
fluxes and atmospheric transport. With such a relationship and observations of CO2 concentrations
in the atmosphere, an updated emissions estimate with reduced uncertainties (due to the addition
of observational information) can be obtained using various estimation techniques [12].

Despite the rigor of the theory behind inverse assimilation, inverse modeling of atmospheric
CO2 has long been challenged by (1) the sparseness of observational data (e.g., [13]) and (2) in-
accurate atmospheric transport modeling (e.g., [14]). The majority of CO2 flux-inversion studies
has focused on natural (i.e., terrestrial biosphere and oceans) carbon fluxes, which are believed to
be much more uncertain than fossil-fuel emissions. In turn, inverting for fossil-fuel emissions to
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achieve the objective of emissions verification would be challenged by the well-known signal-to-
noise problem, namely the strong, highly variable, but quite uncertain interference by the biosphere
[2]. As such, emissions verification turns out to be a challenging scientific problem of seeking an
optimized combination of state-of-the-art observational techniques and modeling capabilities to
pinpoint and quantify fossil-fuel emissions signals in the atmosphere. In order to find an effective
and practical observational strategy, a growing number of observations from ground sites (e.g.,
[15, 16]), aircraft (e.g., [17]), and satellites (e.g., [18]) have been examined for their ability to con-
strain fossil-fuel emissions. Proxy techniques using isotopologues (e.g., [19, ?, 2]) and trace-gas
species to isolate fossil-fuel CO2 (e.g., [20, 21, 19, 22]) have also been proposed and investigated.
Nevertheless, these previous observational studies were limited to a small number of locales, and
thus the larger scale representativeness of their findings is not clear. There is apparently an ur-
gent need for better interpreting these emerging observations and optimizing existing observation
networks.

1.2 Inverse Modeling of Atmospheric CO2 Sources and Sinks: A Short Overview

CO2 concentrations measured in the atmosphere yield information about CO2 emissions trends
and can provide constraints on magnitudes and strengths of CO2 sources and sinks in space and
time. Earlier pioneering studies in the 1990s (e.g., [23]) used atmospheric CO2 concentrations and
sea-surface partial pressure of CO2 from global networks to demonstrate a significant discrepancy
between the observed and model simulated hemispheric CO2 gradients. Such a discrepancy re-
vealed a large missing carbon sink over land in the northern hemisphere and motivated extensive
subsequent efforts to further utilize in situ atmospheric observations of CO2 to bound the global
and regional budgets of CO2 e.g., [13]). Whereas in situ networks have been demonstrated to be
too sparse to provide adequate constraints, satellite retrievals of column average mixing ratio of
CO2 (xCO2) that were available in the last decade or so have generated a large pool of novel data
awaiting exploration (e.g., [24, 25, 26, 27])]. Meanwhile, as a result of continuing development of
inverse modeling algorithms and improvement of computational infrastructure, advanced carbon
cycle data assimilation (DA) systems, capable of ingesting huge-volume data from satellites, have
been developed to produce CO2 flux reanalysis products with high spatial and temporal resolution.
In addition, some DA systems also have the capability of constraining control variables in terres-
trial biosphere models (TBMs) using atmospheric observations [28], making it possible to directly
assess the value of atmospheric observations in informing carbon cycle and climate modeling.

Inferring CO2 fluxes at the Earths surface using observed atmospheric concentrations is a clas-
sic ill-conditioned inverse problem. The flux-concentration relation is well-known to be linear,
as can be readily shown in a Lagrangian framework, where atmospheric concentrations (observ-
ables) are Lagrangian line integrals and the fluxes at sources and sinks (unknowns) are integrands
(e.g., [29, 30]). Bayesian methodology provides the most widely adopted framework to formu-
late and solve the atmospheric CO2-flux-inversion-problem, in which an optimal estimate of the
fluxes based on both observed concentrations and prior knowledge of fluxes is sought. Further-
more, most existing CO2-flux-inversion algorithms use a least-squares approach [12], which seeks
to minimize a cost function in the L2-norm consisting of the penalties for prior and observations
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Figure 1. State-of-the-art CO2 surface flux inversion algorithms
and the new Bayesian Probabilistic Inference approach.

weighted by their uncertainties. The least-squares approach is associated with Gaussian assump-
tions in the Bayesian context. The most attractive consequence of the Gaussian assumption and
the least-squares approach to inverse problem is that the solution, consisting of a maximum a pos-
teriori (MAP) estimate of the unknown state vector and a corresponding error covariance matrix,
can be obtained analytically.

Various least-squares-based inversion and DA algorithms, which were previously employed for
numerical weather prediction (NWP), have been adapted for application to atmospheric CO2 data
assimilation. Three popular algorithms that have been used in production mode include Bayesian
synthesis inversion, ensemble Kalman Filter (EnKF), and variational methods rooted in control
theory (e.g., 4D-Var), see Fig. 1.

Bayesian synthesis inversion has been adopted most extensively since the earliest efforts of
CO2 flux inversion. The mathematical formulation and experimental protocol of global-scale
Bayesian synthesis inversion formally account for key properties of CO2 (e.g., long lifetime),
atmospheric transport characteristics, and spatial distributions of observational data and ecosys-
tems [31, 32, 33, 13], and have been well documented, e.g., during the TransCOM project (http:
//transcom.project.asu.edu/). A notable issue regarding Bayesian synthesis inversion is the
effect of aggregation error, which stems from the definition of state vectors representing aggre-
gated fluxes over space and time [34]. Bayesian synthesis inversion is still being employed for
many studies because of its theoretical completeness and convenience for implementation.

Compared to Bayesian synthesis inversion, the other two algorithms, EnKF and 4D-Var, have
not been studied as well in the context of CO2 flux inference. Both EnKF and 4D-Var were pre-
viously used for NWP and were adapted for CO2 flux inference only recently [35, 28]. Some
fundamental differences in the dynamical models driving meteorology and CO2 transport [36, 35]
have led to current efforts to investigate and optimize various technical aspects of these two ap-
proaches to improve their performance and robustness in CO2 flux inference [37]. The EnKF
method assimilates observational data only prior to the time step being analyzed and has a mod-
erate level of statistical completeness attained by sampling from prior space in a Monte Carlo
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setting. The 4D-Var is attractive mostly for the high computational efficiency that makes it ap-
plicable for producing CO2 flux analyses operationally at native model resolution. The 4D-Var
method, however, requires the adjoint of the transport model. 4D-Var has been adopted by the Car-
bon Cycle Data Assimilation System (CCDAS) [28], and it was also adopted to produce NASA
CMS flux products (http://cmsflux.jpl.nasa.gov/AS-SystemArchitecture.aspx). Both
4D-Var and EnKF, while computationally efficient, are statistically incomplete and either rely on
ad hoc measures to evaluate the confidence in results without a formal probabilistic basis or do not
assess the associated uncertainties (Fig. 1).

Uncertainty quantification and propagation is a critical component of useful inverse modeling
of CO2 fluxes, given the typical sparseness of observational constraints and diffusive nature of
atmospheric transport that render the problem under-determined. Although critically important,
it has been a long-standing challenge to fully understand and quantify uncertainties in CO2 flux
inversion. Theories have been established regarding the composition of the error budget and phys-
ical meanings of various types of errors therein [31, 38, 12]. Ideally in the Gaussian least-squares
framework, once the quantitative information of errors in the prior and the model-data mismatch
are obtained, the two error covariance matrices can be filled, and these errors will propagate into
the a posteriori flux covariance matrices. However, this has turned out to be very challenging.
First, it is difficult to quantify these various types of errors. Numerous efforts have been made in
this regard, e.g., to characterize the probability distributions of prior flux errors [39, 40], to mit-
igate the impact of aggregation errors [34], and to quantify model transport errors [41, 42, 43]
and representation errors [44]. Secondly, the size of the covariance matrices is prohibitively large
for high-resolution flux analysis, such as the Carbon Monitoring System (CMS) flux product, so
that it is not feasible to propagate uncertainties in the flux fields at there native resolution, and
certain types of truncation have to be implemented [45]. Finally and probably the most challeng-
ingly, recent evidence suggests that the probability distributions of the errors in the prior and the
likelihood function are not likely to be Gaussian [39, 46, 47], which is in contradiction to the
premises of the least-squares approach and the associated methodology for accounting for errors.
Chevallier et.al. [39, 40] estimated the errors in model predicted fluxes through comparisons with
eddy covariance flux observations, and a distribution with long tail is found which contradicts the
common assumption of Gaussian error. As Ricciuto et.al. [46] argued and confirmed with their
model results, propagation of errors through a highly non-linear terrestrial biosphere model (TBM)
generates non-Gaussian errors in the output. The uncertainties of anthropogenic fluxes of CO2 are
also inherently non-Gaussian given that they are always positive. A common exercise during infer-
ence of biospheric fluxes is to subtract the fossil-fuel CO2 components from the observations [13].
Previous studies have noted marked sensitivity of biospheric fluxes to seasonal and inter-annual
variability [48, 11] and uncertainties [10] in fossil fuel emissions, which highlights the importance
of properly accounting for fossil-fuel emissions uncertainties while inverting for natural fluxes.

To address these issues and challenges, it is desirable to develop an alternative flux-inversion
algorithm that can (1) reduce the high-dimensionality of the state vector and error covariance ma-
trices, and (2) accommodate and propagate uncertainties with non-Gaussian distributions. In the
following, we outline a method to formulate and solve the CO2 flux inversion problem in a fully
Bayesian, probabilistic framework without regularizing assumptions that are not backed by sci-
entific evidence. As detailed in the following sections, the new inversion framework involves two
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components/steps. The first step is to substantially reduce the dimensionality of the prior flux fields
by some means, e.g., Karhunen-Love expansions, through exploiting the correlations in the prior
flux fields in both space and time. Such dimensionality reduction will make it computationally
feasible to employ a probabilistic Bayesian inference method. The parameterization of the flux
fields will form the new state vector that is to be inferred. The solution of the inverse problem,
in the form of full posterior distributions, is obtained via Markov Chain Monte Carlo (MCMC)
sampling.

1.3 Bayesian Inference Theories: Beyond the Gaussian Assumption

A key scientific innovation of this project lies in the employment of a class of Bayesian proba-
bilistic methods. It should be noted that the Gaussian least-squares approach commonly adopted
in inverse problems is usually regarded as a Bayesian approach in the atmospheric science litera-
ture. The Gaussian least-squares approach is, however, a very special case of Bayesian inference
among many others, as will be shown in the following. Before getting into that, we first go over
the general concept of Bayesian inference.

Generally speaking, Bayesian methods are known to be well-suited for dealing with uncertain-
ties arising from different sources: errors due to model assumptions, parametric uncertainties and
experimental errors. They provide convenient means for capturing the state-of-knowledge about
quantities of interest before and after the information provided by data. Furthermore, Bayesian
techniques are very convenient for dealing with nuisance, secondary parameters, i.e., parameters
that are generally unknown and are not of interest. Moreover, Bayesian methods can be generalized
to hierarchical dependencies and allow an elegant approach to solving the problems model com-
parison and model selection. Bayesian methods allow for a formal comparison between various
modeling choices. The key relationship for Bayesian inference is Bayes’ formula

p(f|d) ∝ p(d|f) p(f) (1)

In Eq. (1) the prior probability p(f) and the posterior probability p(f|d) represent degrees of belief
about f before and after the data d are available, respectively. The key concept in Eq. (1) is the
likelihood Ld(f) = p(d|f) that relates the data to the object of inference. The construction of a
justifiable likelihood is the most critical step for obtaining the posterior probability distribution.
The likelihood essentially measures the match between model-produced results and observed data.

In the current context, the object of inference (f in Eq. (1)) is the flux of CO2 from earths surface
(f) and the data are in situ observations of CO2 mixing ratios near the earth’s surface and/or column
average mixing ratios of CO2 retrieved from satellites (d). The observed data vector d= [d1, . . . ,dn]
relates to the flux products via a linear function d = Mf. Because of the imperfect knowledge of
the linear transformation matrix, i.e., sensitivity coefficients, M, as well as measurement errors,
there is an error term ε , such that

d = Mf+ ε (2)

The likelihood construction casts the error term ε as a random vector, or drawn from a random
field, and entails an assumption of its distribution. Assuming ε to be an uncorrelated Gaussian ran-
dom vector is equivalent to the commonly adopted least-squares algorithm assumptions. Together
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with the linearity of the relation in Eq. (1), this leads to analytical representations for either a deter-
ministic least-squares solution that is the best estimate of f, or to a Gaussian posterior distribution
for the values of f. Most commonly, the first, deterministic answer is satisfactory, and the Gaussian
least-squares maximum a posteriori (MAP) solution is obtained analytically, if the following con-
ditions are fulfilled, (1) the relationship between data d and flux f is linear, and (2) both the prior
and the likelihood are Gaussian distributed [12]. While (1) is guaranteed for CO2 flux inversion
using atmospheric observations, there has been mounting evidence suggesting that CO2 fluxes are
non-Gaussian [39, 46, 47], which means that a more general and flexible approach is needed for
the problem. To this end, there have been numerous efforts exploring data assimilations without
explicit Gaussian assumptions on both likelihood/fit and prior/regularization terms [49, 50, 51],
and their applications to atmospheric tracer inversion [52]. These approaches, however, seek only
certain approximations to the true distributions, whereas the approach pursued here is much more
robust and flexible, as it allows the use of the true distributions no matter what their shapes are.

The few applications of Bayesian probabilistic inference in atmospheric chemistry include
quantification of the uncertainties in global mass balance of CH4 [53], and more recently, inver-
sion of cloud-aerosol interactions [54], and inverse modeling of atmospheric transport of bacteria
emissions [55].

1.4 Markov Chain Monte Carlo

Without explicit Gaussian assumptions on priors and likelihoods, the posterior in Eq.(1) is not an-
alytically tractable. Moreover, the numerical estimation of the posterior can be computationally
prohibitive due to the high dimensionality of the object of inference, f. To this end, we will employ
adaptive Markov Chain Monte Carlo (MCMC) sampling approach to efficiently sample from the
posterior distribution of f arriving at a probabilistic representation of the flux field [56, 57]. The
MCMC algorithms essentially march in the space of possible values of f and produce a sample
set that is representative of the posterior distribution. These algorithms are flexible and enable
posterior samples regardless of the degree of non-linearity in the model function. It has very wide
applications for model parameter estimation, and also has been successfully applied for inferring
parameters in the terrestrial biosphere models (TBM) [46], which are highly non-linear and com-
plex. In addition, it also has been used to assess the uncertainties of carbon cycle climate modeling
and their impact on climate projection [58].

1.5 Dimensionality Reduction

The general workflow to achieve a robust flux inversion is the following: we will use existing
observations and expert opinion on fluxes to form a statistical representation of all possible flux
values as a stochastic process, then the reduced-dimensional form of the latter will form the prior
in the Bayesian MCMC context where the parameters of reduced form are being inferred. The
most general description of the flux field (f) is given by its values at a grid of locations, i.e., having
a complete representation of the discretized flux field. However, inferring such a large vector
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(for instance, inferring fluxes at 1 degree x 1 degree resolution for 12 months gives about 105
unknowns) with MCMC can become computationally prohibitive, even if the model M is linear
with respect to the object of inference f. One approach to dimensionality reduction is coarsening by
region. Regardless, whether or not full or coarsened field descriptions, however, this approach does
not properly take into account the information contained in the spatial and temporal correlations
between fluxes. Utilizing such information, both in space and time dimensions, can drastically
reduce the dimensionality and lead to a more flexible description of the flux field. Indeed, given
a single realization, or time series, of the flux field f(x, t) over several periods (i.e. years), one
can construct an effective set of realizations of the field for a duration of a single year. These
realizations will provide a necessary sample set for time-correlation estimation. In space, on the
other hand, one can either utilize flux field realizations available or build a synthetic correlation
measures based on expert information or prior analysis. Next, having the covariance function
C(x, t),(x′, t ′) available, one can solve the discretized version of the eigenvalue problem:

∫
C((x, t),(x′, t ′))φ(x′, t ′)dx′dt ′ = λφ(x, t) (3)

in order to obtain a set of eigenvalue-eigenfunction pairs (λ j,φ j(x, t)) that serve as an optimal basis
for the flux-field expansion [59, 60]

f (x, t) = f0(x, t)+∑
j

√
λ jξ jφ j(x, t) (4)

where f0(x, t) is the mean estimate of the field, and ξ j are the uncertain representation coefficients
with samples available that correspond to prior realizations. The expansion in Eq.(4) is called a
Karhunen-Loève (KL) expansion [59, 60], and for sufficiently fast-decaying eigenvalue structure,
it can provide a considerably lower dimensional representation. This is very similar to Empirical
Orthogonal Function (EOF) method commonly used in the climatology community, which relies
on Singular Value Decomposition (SVD) to obtain an expansion in terms of a finite set of eigen-
functions [61]. But the KL expansion will retain the uncertain representation of the coefficients εi
and will use it as a prior distribution in the full Bayesian setting where the object of inference is
the coefficients ξ j of the KL expansion in Eq.(4). The KL expansion essentially provides a linear
transformation of the basis and the likelihood in the Bayesian formulation with a reduced-order
representation will capture the goodness-of-fit of model values ∑K

j=1
√

λ jξ jφ j(x,t) from observa-
tions di, where K is the dimensionality truncation dictated by the eigenvalue structure, since the
total variance in the flux field is the sum of the eigenvalues. For example, Zhuravlev et al. [62]
successfully represent a spatiotemporal CO2 flux field (2.5 x 2.5 degree spatial resolution, 144 (lon-
gitudes) x 72 (latitudes) x 96 (months)) with 30-40 eigenvalues within a 5 percent representation
error. To reiterate, in the new Bayesian probablistic inference method, we build a spatio-temporal
covariance structure of the flux field based on expert opinion and prior realizations, followed by
dimensionality reduction through a KL expansion. The uncertainties present in the KL expansion
coefficients ξ j will serve as prior distributions for the inference procedure that seeks to obtain
posterior distributions on these coefficients in light of observational data.
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1.6 Attributing Fossil-fuel CO2 using Tracers

The observed CO2 concentration in the atmosphere, expressed either in terms of average mixing
ratio in a column of dry air or in terms of dry air CO2 mixing ratio at a sampling site near the
ground, can be described as follows:

[CO2]OBS = [CO2]BIO +[CO2]FF +[CO2]BB +[CO2]BG (5)

in which the brackets, [], imply dry mixing ratio, [CO2]OBS is the observed CO2 concentration,
[CO2]BIO is the biospheric component not including fire emissions, [CO2]BB is the biomass burn-
ing contribution from natural and anthropogenic sources, and [CO2]BG is CO2 with relatively long
history in the atmosphere sampled by the measurement. Eq. (3) demonstrates that each of the CO2
components on the right-hand-side (RHS) contributes to the observed values, and this equation im-
plies that inferring any of these components requires information about the contributions from each
of the other components. For example, using atmospheric CO2 measurements to infer fluxes of
biosphere-atmosphere exchange has been studied extensively by the carbon-cycle community, and
the first step in almost all these studies is to obtain the [CO2]OBS component by estimating and sub-
tracting [CO2]FF , [CO2]BG and [CO2]BB from [CO2]OBS, based on observations (for example those
of clean background CO2 concentration upwind) and/or model simulations. In practice,[CO2]FF ,
[CO2]BG and [CO2]BB are often regarded as perfectly known quantities to alleviate the technical
difficulty of the problem (e.g., [33]). However, it has been increasingly recognized that the errors
of those companion components can be large and introduce substantial uncertainties to the solution
of the inverted biosphere fluxes [48, 11].

The estimated [CO2]BIO from Eq. (5) will be linked to the biosphere-atmosphere CO2 fluxes
using the source-receptor relationship established by an atmospheric transport model, i.e. Eq.(2) In
practice, M is likely to have large systematic biases [63], because of our imperfect knowledge and
model descriptions of atmospheric transport [14], which limit our confidence in the inverted fluxes
using atmospheric observations based on Eqs. (5) and (2). Likewise, the two challenges described
above, i.e., (a) the lack of constraint for each individual component of CO2 on the RHS of Eq.(5),
and (b) the uncertainty due to transport model errors (errors in k) exist when using atmospheric CO2
observations to infer fossil-fuel CO2 emissions. In particular, estimating [CO2]FF using Eq. (3) is
challenged by the large and uncertain biosphere component [CO2]BIO (e.g., [64]). Addressing these
two challenges is the key to a successful MRV&V system. Using proxy tracers for combustion
emissions provides a powerful approach.

Multiple authors have investigated the use of tracers, such as 14CO2 (e.g., [65]), CO (e.g.,
[21, 66, 15]), SF6 (e.g., [19]), C2Cl4 [22], and a combination of NOy, SO2 and CO [20], to isolate
and constrain concentrations and fluxes of fossil-fuel CO2. The theoretical basis for using these
tracers has been described in the literature [20, 31, 22, 15].

The premise of defining a species Xt as the tracer of the species of interest Xi is the assumption
that the two species have collocated sources and both source strengths (denoted as Xi and Xt for
convenience) are proportional to each other with a ratio of β , i.e.,

Xi = βXt (6)
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One can prove that the measured sequences of dry mixing ratios, [Xi] and [Xt ], at a given loca-
tion will also be proportional to each other with a regression slope of the same β after the linear
transport processes gone through by the two species in the atmosphere, i.e.,

[Xi] = β [Xt ] (7)

In practice, Eqs. (6) and (7) can be used in different ways, depending on what information is
available and how reliable it is. As the key parameter in Eqs. (6) and Eq.(7), β can be derived
from concurrent measurements of [Xi] and [Xt ] by a linear regression based on Eq. (7) , or obtained
from bottom-up emission inventories of Xi and Xt . In the case of inferring fossil-fuel CO2 fluxes,
(CO2FF) using a tracer (XFF ), the tracer concentrations, [XFF ], are often the measured quantity. In
some studies, is obtained using Eq. (4) based on measured [XFF ] and [CO2]FF obtained from Eq.
(1) using [CO2]OBS, [CO2]BG and [CO2]BIO, [CO2]BB, which are measured directly or inferred based
on additional assumptions [20, 19]. In the cases where [CO2]FF can not be obtained independently,
must be derived from bottom-up emission inventories of XFF and fossil-fuel CO2. The object to
infer using the tracer can be either concentrations or emission fluxes of fossil-fuel CO2 [22].

Although it is straightforward to link the tracer species and the species of interest using Eqs. (6-
7), this approach introduces uncertainties related to tracer measurements and the various assump-
tions invoked in the process, especially the assumptions of collocated sources and the value of β .
The key measure of efficiency of a tracer method is the magnitude of the uncertainty that needs to
be smaller than the uncertainty associated with other comparable methods, with or without explicit
usage of other tracers [22, 19, 66]. Therefore, one key objective when using tracers is to quantify
the uncertainty in the inferred fossil-fuel CO2 emissions using our the tracer approach compared
to other tracer approaches and non-tracer approaches (e.g., [67, 18, 68]).
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2 Toward Verifying Fossil Fuel CO2 Emissions with the
Community Multi-scale Air Quality (CMAQ) Model:
Motivation, Model Description and Initial Simulation

2.1 Introduction

Atmospheric Dispersion Theories

Atmospheric dispersion refers to the mathematical description of the behaviors of chemical species
released from various sources into the atmosphere. Although t is very common to use atmospheric
’diffusion’ instead of atmospheric dispersion, it should be noted that dispersion in turbulence is
fundamentally different from ordinary molecular diffusion. Depending on the coordinates used to
study atmospheric flows, the equation for the mass balance of a chemical species i in the atmo-
sphere can be written in two different ways as follows.

Eulerian approach

Let ρi be the concentration of chemical species i, which is expressed as number density (molecules
cm−3), or mass density (kg m−3), it in general holds that

∂ρi

∂ t
=−∇ · (ρiv)+D∇2ρi + si (8)

where si is a local rate (molecules cm−3 s−1 or kg m3 s−1) of local processes such as chem-
istry, emissions, dry/wet deposition; Fadv = ρiv is the advective flux driven by wind velocity v;
Fdiff =−D∇ρi is the molecular diffusion flux; the divergence of mass fluxes ∇F = ∇(Fadv+Fdiff)
measures what flows out of minus flows into the elemental volume of air. Substituting into Eq. (8)
gives

∂ρi

∂ t
=−∇ ·F+ si (9)

An scale analysis reveals that Fadv � Fdiff, i.e. molecular diffusion is negligible compared to
advection for transport scales larger than∼1 cm in the lower atmosphere including the troposphere
and the stratosphere (lower than ∼100 km from the earth’s surface). Therefore, the molecular
diffusive flux Fdiff =−D∇2ρi is safely neglected in these circumstances, thus Eq.(9) becomes

∂ρi

∂ t
=−∇ · (ρiv)+ si (10)

Using number density as the concentration unit, Eq.(8), Eq.(9) and Eq.(10) are Eulerian flux
form continuity equations. Another unit that is often used in atmospheric chemistry to express
chemical concentration is mole fraction or mixing ratio (µi, mol mol−1), defined as the number of
moles of the chemical per mole of air. ρi and µi is related by ρi = µiρa, ρa = ρ1+ρ1+ρ3+ ...+ρn.
By replacing ρi with µi and neglecting the local term s for the air itself in Eq.(10), one can obtain
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its equivalent advective form:
∂ µi

∂ t
=−v ·∇µi +

si

ρa
(11)

In order to solve the above continuity equations, information on the wind velocity v comes
from an atmospheric weather model that solves the Navier-Stokes equation. It is still not practical
to apply these models at a sufficiently small scale to deterministically resolve turbulence, the fine-
scale (∼1 mm spatially and ∼10 Hz temporally) variability of wind velocity. Instead, for meso-
scale (5−102 km) atmospheric problems, v is commonly decomposed into a deterministic mean
component 〈v〉 and a stochastic turbulent component v′:

v = 〈v〉+v′;〈v′〉= 0 (12)

ρi can be decomposed in a similar way:

ρi = 〈ρi〉+ρ ′i ;〈ρ ′i 〉= 0 (13)

It turns out that introducing the random variables into the continuity equation will result in the well-
known closure problem. Compromises and approximations have been made to make the problem
solvable. For instance, the mean advective flux can be decomposed as follows:

〈Fadv〉= 〈ρiv〉= (〈ρi〉+ρ ′i )(〈v〉+v′) = 〈ρ〉〈v〉+ 〈ρ ′i v′〉 (14)

where FM = 〈n〉〈v〉 is the mean advective flux and FT = 〈ρ ′i v′〉 is the turbulent flux. Many current
chemical transport models solve the continuity equation with parameterized turbulent flux based
on the mixing-length theory, which states that the turbulent flux and the mean concentration can be
related in a way that is analogous to molecular diffusion, by introducing the eddy diffusivity K:

〈v′jρ ′i 〉=−K j j
∂ 〈ρi〉
∂x j

, j = 1,2,3 (15)

Lagrangian approach

Transforming the Eulerian advective form continuity equation Eq.(11) by introducing the total
derivative

dµi

dt
=

∂
∂ t

+v ·∇ (16)

gives the the Lagrangian form of continuity equation:

dµi

dt
=

si

ρa
(17)

It should be noted that in Eq.(17), si describes behaviors of a fluid element that moves in space and
time, which is in contrast to the Eulerian framework where the element is fixed in space. Eq.(17)
states that µi remains unchanged if the fluid element only goes through transport (si(x, t) = 0).
Eq.(17) can be integrated along the trajectory of the fluid element:

µi(rB, tB) = µi(rA, tA)+
∫ B

A

si

ρa
dt (18)

23



which states that the mixing ratio of i at the ending location B is the sum of mixing ratio of i at the
starting location A and the change of it along the trajectory from A to B due to local processes, such
as chemistry. However, this is a over-simplified description of transport in a turbulent atmosphere
that may not be very useful, because the trajectory is not likely to be known perfectly because of
the highly variable wind velocity fields. As noted earlier, the turbulent component of wind velocity
v′ is a random variable, therefore it is natural to use a random process to describe the trajectory
of a fluid element as well. The formal Lagrangian continuity equation turns out to serve this need
very well. Here the object of interest is representative fluid particles, of which the location x is the
dependent variable of concern and is a function of time t. We introduce Ψ, the probability density
function (pdf) for a particle’s location at time t:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ψ(x, t)dx = 1 (19)

Two pdfs are introduced first:

1. The transition probability density Q(x, t|x, t) that describes the likelihood of the particle
getting to x at time t from x′ at t ′;

2. The initial probability density Ψ(x, t) that the starting point of the particle was indeed at x′
at t ′.

The probability of having the particle at x at t can be expressed by the product of these two pdfs:

Ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Q(x, t|x′, t ′)Ψ(x′, t ′)dx′ (20)

So far the probability densities have been defined with respect to a single particle. In this
Lagrangian approach, the mean concentration (in unit of mixing ratio, as seen in Eq.(17)) of a
chemical species 〈µi(x, t)〉 at a location x and time t is naturally quantified by counting the number
of particles:

〈µi(x, t)〉=
m

∑
i=1

Ψi(x, t) (21)

The concentration at (x, t) should consist of an initial concentration at (x0, t0) and the concentra-
tion changes during t0→ t (due to chemical decay, emissions input, and deposition to the Earth’s
surface). By expressing the pdf Ψ(x, t) in terms of the initial distribution of µi(x0, t0), and spa-
tiotemporal distribution of sources S(x0, t0) (with the units of mixing ratio per time), and then
substituting these expressions into Eq.(20), one obtains the Lagrangian form of the continuity
equation:

〈µi(x, t)〉=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Qi(x, t|x0, t)µi(x0, t0)dx0 +

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ t

t0
Qi(x, t|x′, t ′)Si(x′, t ′)dx′dt ′

(22)
The key of evaluating Eq.(22) is to obtain the transition probability Q(x, t|x, t). Although the
knowledge of turbulence properties needed for defining Q(x, t|x, t) is in general unavailable, it can
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be approximated by invoking some simplified assumptions, such as the Gaussian distribution of
the turbulent wind component v′.

Eulerian VS. Lagrangian

The two approaches for modeling turbulent dispersion reviewed above have their own advan-
tages and disadvantages. The Eulerian approach will face the closure problem and will intro-
duce numerical diffusion, whereas the Lagrangian approach cannot deal with non-linear chem-
istry. Concerning the source attribution problem for greenhouse gases, chemistry is unimportant
for those long-lived greenhouse gases such as CO2 and CH4. The key requirement for a chemi-
cal transport model in a source attribution system is to establish the source-receptor relationship
efficiently and accurately.

The Role of CMAQ: A State-of-the-Art Eulerian Regional Chemical Transport Model

Global 3-D Eulerian CTMs have been playing a pivotal role in global carbon cycle research. For-
ward modeling analysis and diagnosis have been applied to understand global CO2 distributions
(e.g., [69]) and transport mechanisms (e.g., [70]). As a first step in CO2 flux inversion, global
CTMs have been routinely applied to calculate the concentration-to-flux response functions at nu-
merous sampling sites around the globe (e.g., [13]). In recent years, there has been an emerging
need for resolving finer-scale CO2 transport and variability due to fossil fuel emissions from urban
and point sources in order to refine regional carbon budgets and verify emission estimates. To this
end, a regional CTM is more suitable with much higher spatial and temporal resolutions than most
of current global models, which are often coarser than 1 degree.

Compared to global modeling, high-resolution CO2 modeling on regional scales started rela-
tively recently. Previous efforts have demonstrated the feasibility of regional CO2 modeling and
shown some promising achievements with a high-resolution regional CTM. For instance, [71] cou-
pled WRF with a diagnostic biospheric model, i.e., the Vegetation Photosynthesis and Respiration
Model (VPRM) and demonstrated the ability of the coupled model WRF-VPRM to capture the
observed CO2 features at a coastal site, especially sea breeze transport of CO2 respired from veg-
etation during the previous night. Other regional modeling studies have identified various factors
that can affect CO2 spatiotemporal distributions, such as topography [72], diurnal variations [73]
and spatial heterogeneity [74] of biospheric fluxes, covariance of transport and fluxes [75], etc.
Some key requirements for regional CO2 modeling have also been noted, such as using realistic
initial and lateral boundary conditions [73], considering the long lifetime of CO2 in the atmosphere.
While these regional modeling studies mostly targeted natural areas where biospheric sources and
sinks of CO2 dominate, issues that are of interest for the emission verification problem, such as the
magnitude and spatial extent of fossil fuel signals in atmospheric CO2, were not addressed by these
studies. Jacobson [76, 77] has performed high-resolution CO2 modeling on global-through-urban
nested domains to investigate the impact of local CO2 domes on O3 and particulate matter (PM)
pollution.

Lagrangian particle dispersion models (LPDM) have been widely used in CO2 flux inference
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(e.g., [16] and references therein) on regional to urban scales, because they can conveniently es-
tablish the source-receptor relationship needed for flux inversion. In principle, the two modeling
approaches, i.e., Eulerian and Lagrangin modeling, could be used simultaneously and complement
each other [78].

The Community Multiscale Air Quality (CMAQ) model is a widely-used regional CTM that
was originally developed for atmospheric chemistry and air quality research [79]. Source attribu-
tion of air pollutants has been one of the main applications of CMAQ (e.g., [80, 81]). Capabilities
for forward (i.e., Decoupled Direct Method, or DDM) [82, 83] and adjoint [84] sensitivity analysis
have also been developed with CMAQ. Although there had been no previous effort to simulate
CO2 with CMAQ, the highly modulated model structure facilitates the addition of new chemical
species and modification of their processes in CMAQ. Adding CO2 into CMAQ while retaining
other model species enables simultaneous simulations and examinations of CO2 and a full suite
of traditionally regulated air pollutants. Because there is abundant observational information and
emissions-reduction experience for those air pollutants, it is of interest to explore their utility for
facilitating CO2 source attribution [20].

Goal of This Work

Atmospheric CO2 has unique characteristics (e.g., long atmospheric lifetime, large background
concentration, and strong bidirectional biospheric fluxes) that are distinctly different from other
traditionally modeled chemical pollutants. Therefore, it is important to (1) characterize and under-
stand the variability of CO2 on fine spatial and temporal scales; (2) identify and quantify various
model uncertainties associated with CO2 fluxes, model transport, initial and boundary conditions.

This paper serves as a proof-of-concept for using CMAQ to achieve these goals. Because we
only present model results for a single month, sweeping conclusions drawn from these results are
not possible, considering the significant seasonal variations of CO2. Instead, since this is the first
time using CMAQ to simulate CO2, we focus on introducing the methodology, including input data
and model experiment design, and will try to interpret our results in the context of conventional
understanding and findings from previous studies. The modeling framework here will form the
foundation for more comprehensive investigations of CO2 spatiotemporal variability and modeling
uncertainties in future, which will be achieved by analyzing model stimulations for a longer time
span using more observational data.

The following sections are organized as follows. In the method section, we first explicitly de-
scribe the input data used, highlighting the characteristics (e.g., magnitudes, spatial distributions,
etc.) of different types of CO2 fluxes. Then we describe the design of model sensitivity experi-
ments and the observational data to which the modeling results are compared. In the results and
discussion section, we present modeling results from an initial implementation over the contiguous
U.S. domain in October 2007. We show the characteristics of spatial patterns of CO2 near the sur-
face simulated by the model, and perform model sensitivity experiments to understand the roles of
meteorology, biosphere-atmosphere exchange, and fossil-fuel emissions in shaping the CO2 spatial
distribution. A comparison of CO2 concentrations simulated by the model and observed at six tall-
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tower sites within the NOAA Earth System Research Laboratory network follows, with focus on
one site that is influenced by urban fossil-fuel emissions. Finally, the correlations between model-
simulated CO2 and traditionally regulated air pollutants (i.e., CO, NOx, and SO2) are examined
and their implications for inverse modeling are discussed.

2.2 Methods

CMAQ Configuration and Input Data for CO2 Simulation

For the present study, we used CMAQ Version 5.0 with meteorological inputs from WRF model
(Version 3.1.1). The CMAQ model domain covers the contiguous U.S. and surrounding regions,
and has 36-km spatial resolution and 22 vertical layers from the surface to 50 hPa. The base
configurations of WRF and CMAQ are listed in Table A.1 in the supplemental information. CO2 is
added into CMAQ as an inert chemical species, of which the concentrations are determined by four
types of CO2 fluxes, including (1) bidirectional biosphere-atmosphere exchange, (2) bidirectional
ocean-atmosphere exchange, (3) fossil fuel emissions, and (4) fire emissions, and atmospheric
transport (horizontal and vertical advection and diffusion). The fossil fuel and fire emission fluxes
are taken from existing emission inventories. The atmosphere-biosphere and atmosphere-ocean
bidirectional fluxes are from terrestrial biosphere model outputs. These four types of fluxes are
prescribed in the model in the same manner as the emission fluxes for existing chemical species
in CMAQ. It should be noted that, in principle, the biosphere-atmosphere and ocean-atmosphere
bidirectional fluxes can be simulated in an inline mode by two processes, i.e., emissions and dry
deposition of CO2, as done for ammonia (NH3) and mercury (Hg) in CMAQ [85]. Such modeling
capability with CMAQ for CO2 will be developed in future. In the following, various input data
that are used for CMAQ CO2 simulations in this work are described.

Biosphere-Atmosphere Exchange

The bidirectional biosphere-atmosphere exchange of CO2, Net Ecosystem Exchange (NEE), is
the net flux between the biosphere and atmosphere due to CO2 uptake during vegetation photo-
synthesis and CO2 release during respirations, as well as CO2 releases due to natural and anthro-
pogenic disturbances, such as emissions contributed by fire or conversions in land use if any, which
is specific to the terrestrial biosphere model (TBM) used (e.g., see detailed comparison of structural
differences among TBMs in [86]). NEE simulated by current TBMs is still highly uncertain, which
could be attributed to variations in inputs to the models (e.g., climate forcing and model parame-
ters) and model structure (e.g., the models capability of capturing important processes such as CO2
fertilization, nitrogen limitation, and disturbances). A major endeavor of carbon-cycle research has
involved inter-comparison and evaluations of terrestrial-biosphere models (e.g., [87, 86, 88, 89]),
and no model is obviously superior to others in all aspects. Efforts using atmospheric CO2 ob-
servations to constrain NEE fluxes have increased in recent years. NOAAs CarbonTracker model
[90] is an example of a data-assimilation system that provides optimized biosphere and ocean CO2
fluxes using in situ CO2 observations from a global observation network.

We used three different sets of NEE fluxes as input to CMAQ, including (1) NEE from the
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Carnegie-Ames Stanford Approach (CASA), which are used by CarbonTracker-2011 (CT2011,
http://carbontracker.noaa.gov) as priors (1◦×1◦, 3-hourly), and hereafter denoted by CASA NEE);
(2) CT2011 optimized NEE (1◦×1◦, 3-hourly, hereafter denoted by CT2011 NEE), which repre-
sent an improved estimate based upon CASA NEE, as a result of imposing observational con-
straints; (3) NEE from the Community Land Model (Version 4) with surface and subsurface runoff
parameterizations from the Variable Infiltration Capacity model (CLM4VIC, the baseline global
simulation, i.e., BG1 simulation, [91]) (0.5◦× 0.5◦, 3-hourly, hereafter denoted by CLM4VIC
NEE) following protocols for the North American Carbon Program (NACP) Multi-Scale Synthe-
sis and Terrestrial Model Intercomparison (MsTMIP) project (http://nacp.ornl.gov/MsTMIP.
shtml; [86, 92]). More details of the CLM4VIC BG1 simulation are provided in the supplemen-
tal information. NEE from CT2011 and CASA do not include fire emissions. CLM4VIC NEE
includes fire emissions but the contribution to NEE in October 2007 is small.

Figure 2 shows the monthly mean NEE fluxes from CT2011, CASA, and CLM4VIC over the
model domain in October 2007. During this non-growing (Fall) season, the biosphere acts as a net
source of CO2 in terms of total fluxes over the model domain and the contiguous U.S., as consis-
tently shown by the three sets of NEE (Table 1). A transition from a net source in the north to a net
sink in the south can be seen in both CT2011 (Fig. 2a) and CASA (Fig. 2b). The spatial distribu-
tion of CLM4VIC NEE is distinctly different. Figure 2c shows a dipole structure in the central and
southeastern U.S., and the total flux is only less than a half of the former two CASA-derived NEE
fluxes. We note that such inter-model discrepancies of NEE observed here are not surprising, in
comparison with previous biosphere-model inter-comparison studies (e.g., [87, 88]). Differences
between the CLM4VIC and CASA models include, but are not limited to, land cover and land-use
history, meteorological input data, and resolution of model biogeophysical and biogeochemical
parameterizations and representations. For example, plant phenology is constrained by satellite
observed Normalized Difference Vegetation Index (NDVI) in CASA, but is simulated prognosti-
cally in CLM4VIC. All these differences could contribute to the differences in spatial patterns and
domain total fluxes. Fully understanding such model discrepancies would require a detailed com-
parison of the algorithms and input data used in CASA and CLM4VIC, which is outside the scope
of this work. Instead, such inter-model differences of NEE from these three representative datasets
can be employed as a rough estimate of uncertainties of NEE predicted by current TBMs. The
differences of model-simulated atmospheric CO2 concentrations, as a result of using these three
different NEE inputs, will provide a rough estimate of the CO2 uncertainty caused by uncertainty
in NEE [93, 94]. We note that although only spatial distributions are shown in Fig. 2, uncertainty
of temporal variability of NEE as an important factor has also been taken into account by using
these three NEE inputs.

Fossil fuel, Fire and Ocean Fluxes

Two fossil-fuel emission inventories are used in this work. In the standard model configuration
(Table 2), for model grids within the U.S., we use the Vulcan fossil-fuel emission inventory [9].
The Vulcan inventory is a well-documented high-resolution (10-km grid spacing, hourly temporal
resolution), process driven, and fuel-specific fossil-fuel CO2 emission inventory compiled for the
U.S. In the Vulcan inventory, eight emission sectors are taken into account, i.e., aircraft, cement,
commercial, industrial, nonroad, onroad, residential, and electricity production. Non-road, non-
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Figure 2. Monthly mean NEE for October 2007 from (a)
CT2011, (b) CASA (CT2011 prior), and (c) CLM4VIC-BG1 in
the model domain.
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point, point, and airport emission activity data are taken from the EPA National Emission Inven-
tory (NEI) (for the year of 2002), which is a comprehensive inventory of all criteria air pollutants
(CAPs) and hazardous air pollutants (HAPs) across the United States. Data from the EPA Emission
tracking system/continuous emission monitoring systems (ETS/CEMs) are used for electricity pro-
duction emissions. National Mobile Inventory Model (NMIM) County Database (NCD) data are
used for deriving on-road CO2 emissions. AERO2K data are used for aircraft emissions [95]. Data
for Portland Cement are used for deriving CO2 emissions from cement-production. More detailed
information about the Vulcan inventory can be found by referring to Gurney et.al. [9] and the web-
site of Vulcan project (http://vulcan.project.asu.edu;accessed January 14, 2013). Since the
Vulcan inventory is compiled for the year of 2002 and there is a notable weekday/weekend effect
in the data [16], we shifted the days in Vulcan such that the weekday/weekend patterns match the
dates in 2007. For model grids outside the U.S., where Vulcan does not have values, we used an
emissions inventory for 2007 from the Carbon Dioxide Information Analysis Center (CDIAC), a
widely used global emission inventory (1◦1◦, monthly) in global CO2 modeling [96]. The Vul-
can inventory is based on NEI-2002 and is used here to investigate the advantages of using an
inventory with high spatial and temporal resolution. We note that, in principle, CO2 emissions
can be processed together with other pollutants using an emissions processor, e.g., the Sparse Ma-
trix Operator Kernel Emissions (SMOKE), based on EPAs NEI, in future CO2 regional modeling
studies.

Figure 3 shows the monthly mean fossil fuel emissions from Vulcan and CDIAC inventories
in the model domain. The differences between Vulcan and CDIAC reflect different spatial resolu-
tions, spatial allocation methods, and reference years of the two inventories (2002 for Vulcan and
2007 for CDIAC). The two inventories, although compiled for different years, have similar (within
3%) total emissions in the contiguous U.S. (Table 1), reflecting the small inter-annual variability
of national CO2 emissions in the U.S. in the latest decade [8]. Another key difference between
the two inventories is that Vulcan takes into account temporal variations while CDIAC does not.
A comparison of Fig. 2 and Fig. 3 reveals that NEE shares characteristics with area sources, i.e.,
relatively smooth spatial variability and gradients, whereas fossil-fuel emissions are dominated by
point sources and show large spatial heterogeneity and gradients. By comparing CO2 simulations
using these two emission inventories against observations, we examined the benefit of using a
high-resolution emission inventory like Vulcan.

For fire emissions, GFED (0.5◦× 0.5◦; monthly) inventory (as used in CT2011) is used. Fire
emissions are highly variable in space and time, but are of minor importance compared to fossil-
fuel emissions and to biosphere-atmosphere exchange for the simulation month (Table 1). How-
ever, they are likely to be more important during active fire months and regions. Fire emission
is turned off when CLM4VIC NEE is used, as it already includes fire emissions. The effects
of fire will be examined in future by using different fire emission algorithms such as GFEDv3.1
(0.5◦×0.5◦; 3 hourly; http://www.globalfiredata.org/Data/index.html, accessed January
14, 2013) and SmartFire.

We used CT2011 optimized estimates for ocean fluxes (1◦×1◦; 3 hourly), which are of minor
importance compared to the biospheric and fossil fuel fluxes (Table 1).

CO2 Net Fluxes
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Figure 3. Monthly mean fossil-fuel CO2 emissions for October
2007 from (a) Vulcan and (b) CDIAC in the model domain.

It is instructive to examine the net CO2 fluxes as a result of the sum of all four types of fluxes.
The spatial pattern of the CO2 net flux shown in Fig. 4 retains features from NEE (regional pattern)
and fossil-fuel emissions (scattered hotspots), due to their comparable flux magnitudes in this
month (Figs. 2 and 3). A number of CO2 emission hotspots shown in Vulcan (Fig. 3a) are still
clearly seen in Fig. 4, such as the Los Angeles (LA) Basin and San Francisco Bay Area along the
West Coast, the Houston-Galveston-Brazoria area along the Gulf Coast, and Chicago on the shore
of Lake Michigan. Smaller and weaker emission sources in Fig. 3a, especially those in the eastern
part of the country, do not appear as clearly with the presence of NEE. Neutral (zero) and negative
net fluxes are seen in the southwestern U.S. and the Mexican mainland, with all three sets of NEE,
as a result of negative NEE and small emission fluxes in these areas. When CLM4VIC NEE is
used, negative net fluxes are also observed in central U.S.

The NEE inter-model differences (Fig. 2) lead to different spatial patterns of net fluxes in Fig. 4.
Much smaller difference is found along the West Coast than in the eastern U.S. Figure 4c shows
a large net CO2 sink in the central U.S. and a strong net CO2 source in the southeastern U.S. with
CLM4VIC NEE, which are not seen with NEE from CASA or CT2011. In turn, the fossil-fuel
emission signals in the southeastern U.S. reflected in the net fluxes with CT2011 (Fig. 4a) and
CASA (Fig. 4b) NEE are not seen with CLM4VIC (Fig. 4c). As shown in later sections, such
different net fluxes due to the differences in these three NEE inputs indeed lead to different spatial
patterns of CO2 near the surface simulated by CMAQ. The differences of net fluxes in Fig. 4 can
facilitate understanding the interference by the uncertainty of NEE with the interpretation of CO2
simulations and observations.

Initial and Boundary Conditions

Given its long atmospheric lifetime, CO2 concentrations simulated by a regional model like
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Figure 4. Monthly mean net CO2 fluxes for October 2007 by
adding all four types of fluxes used. Fossil-fuel emissions (Vulcan
inside the U.S. and CDIAC outside), fire emissions (GFED), and
ocean fluxes (CT2011) are the same for the three model configura-
tions, and NEEs are from (a) CT2011 for CMVCT, (b) CASA for
CMVCS, and (c) CLM4VIC-BG1 for CMVLM, respectively.
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CMAQ are expected to be sensitive to model initial conditions (IC) and boundary conditions (BC),
as has been shown by previous studies [73]. Four-dimensional concentration output from CT2011
using optimized NEE and ocean fluxes at 3◦× 2◦ and 3-hourly resolution were used as lateral
and top BC in CMAQ. To minimize the impact of IC uncertainty, we spun up the model for 10
days. An experiment replacing 3-hourly BC with constant BC profiles shows large impact over the
whole domain. The sensitivity of the simulation to IC/BC can be assessed in future work using the
DDM-3D technique with CMAQ [83].

Model Experiments

We performed simultaneous simulations of CO2 and a full suite of default chemical species in
CMAQ for October 2007. Two model experiments were conducted. The first experiment was de-
signed for comparing the roles of different sources/sinks of CO2 in regulating CO2 spatial distribu-
tions by decomposing CO2 into three components, i.e., the background, biosphere, and fossil-fuel
components. Specifically, we defined the region of interest to be the contiguous U.S. The back-
ground component was defined as CO2 concentrations as a result of transport, wild fires, ocean
fluxes over the whole domain, and fossil-fuel emissions outside the U.S. The biosphere (or fossil-
fuel) component was defined to be CO2 due to NEE (or fossil-fuel emissions) within the U.S.
domain in this month. A second model experiment was performed to assess the impact of NEE un-
certainty on simulated CO2 concentrations by comparing model results using three different NEE
inputs.

Configurations of the seven model runs for these experiments are tabulated in Table 2, includ-
ing (1) a standard run (CMVCT) using CT2011 optimized NEE and GFED fire emissions over
the entire domain, CDIAC fossil-fuel emissions outside the U.S. and Vulcan fossil-fuel emissions
within the U.S.; (2) a CDIAC run (CMCCT) that differs from CMVCT by replacing Vulcan emis-
sions with CDIAC emissions within the U.S.; (3) a CASA run (CMVCS) that differs from CMVCT
by replacing CT2011 NEE with CASA NEE; (4) a CLM4VIC run that differs from CMVCT by
replacing CT2011 NEE with CLM4VIC NEE; (5) a background run (CMBG) that differs from
CMVCT by turning off NEE and fossil-fuel fluxes within the U.S.; (6) a biosphere run (CMBIO)
that differs from CMVCT by turning off fossil-fuel emissions within the U.S.; and (7) a fossil-fuel
run (CMFF) that differs from CMVCT by turning off NEE in the U.S. The biosphere component
was obtained by subtracting concentrations in CMBG from CMBIO, and the fossil-fuel component
was obtained by subtracting CMBG from CMFF.

CO2 Observations from NOAA ESRL Tall Towers

As a component of the NOAA ESRL global sampling network, CO2 has been continuously mea-
sured at a network of tall-tower sites across the contiguous U.S. [97]. These in situ near-surface
CO2 data have been extensively used for carbon cycle research, and are assimilated by Carbon-
Tracker (Peters et al., 2007). The majority of the tall-tower sites are located in remote areas with
insignificant influences from local fossil fuel emissions. However, such local fossil-fuel emissions
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of CO2 are of interest to the emission-verification problem. During October 2007, CO2 data are
available from six tall-tower sites in the model domain. Information (location, elevation and sam-
pling altitude) of these sites is given in Table A.2. Five of the six sites are far from fossil emission
sources, and thus the observed CO2 variability is mostly driven by transport and biospheric fluxes.
The Boulder Atmospheric Observatory (BAO) (40.05◦N, 105.00◦W, 300m above ground, 1584
m elevation) is a unique site that frequently receives local emissions from Denver, CO. For this
reason, the data from BAO in this month were not assimilated by CT2011, to avoid an artificial
scaling factor applied to a larger region due to the misrepresentation of local emission impact by
the global model TM5. In this work, we compared model-simulated CO2 with observations from
the six tall tower sites to evaluate the general model performance. In particular, we elaborate on
the comparison for BAO to understand the underlying factors driving the observed variability of
CO2 at such a site that is influenced by fossil fuel emissions from a city.

2.3 Results and Discussion

Spatial Distribution of CO2 Near the Surface Over the Contiguous U.S.

From CarbonTracker to CMAQ

Figure 5 shows the monthly mean spatial distributions of CO2 from CT2011 (Fig. 5a) and
two CMAQ simulations, i.e., CMCCT in Fig. 5b and CMVCT in Fig. 5c. While CMCCT and
CT2011 show similar large-scale patterns in general, large difference between the two (as large
as 15 - 20 ppmv) exists along the western coast of the Mexican mainland. CMCCT uses CT2011
CO2 outputs as initial and boundary conditions, and is driven by the same set of CO2 fluxes as
used by CT2011 (Table 2). Therefore, differences between the results from CMCCT (Fig. 5a) and
CT2011 (Fig. 5b) can be attributed to the differences of model transport in CMAQ and CT2011,
in the following key aspects: (1) assimilated meteorological fields (WRF for CMAQ/CMCCT
versus ECMWF forecast for TM5/CT2011), (2) model resolution (36 km 36 km versus 1◦× 1◦)
and (3) transport representations (CMAQ versus TM5). As expected, higher spatial resolution of
CMCCT allows for resolving fine-scale features that are not seen in CT2011. Further, by replacing
the CDIAC inventory in CMCCT with the Vulcan inventory, which has much higher spatial and
temporal resolutions, CMVCT simulates numerous hotspots and stronger spatial heterogeneity of
CO2, while retaining the synoptic-scale spatial pattern in CMCCT. Overall, Fig. 5 demonstrates
that compared to CT2011, the much-refined descriptions of transport and emissions in CMAQ
allows for more detailed characterization of the spatial distribution of CO2. A spatial map of
CO2 as shown in Fig. 5c can facilitate interpretation of sparse observational data in a regional
context. In the next section, the roles of meteorology, biosphere, and fossil-fuel emissions in
shaping the spatial pattern of CO2 simulated by CMAQ are understood through a decomposition
of these components, focusing on regions within the U.S.

Decomposition of background, biosphere and fossil-fuel components of CO2

Figure 6 shows the background, biosphere, and fossil-fuel components of CO2 simulated by
CMAQ, using the methods described in Table 2. First, without biospheric and fossil fuel fluxes in-
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Figure 5. Monthly mean CO2 concentrations near the surface in
October 2007 simulated by (a) CT2011, (b) CMCCT using NEE
from CT2011 and fossil-fuel emissions from CDIAC for the entire
domain, and (c) CMVCT using NEE from CT2011, and fossil-
fuel emissions from CDIAC and Vulcan for model grids outside
and inside the U. S., respectively.
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side the contiguous U.S., CMAQ simulates a relatively uniform background CO2 of 380-383 ppmv
over most places in the country in October 2007, with discernable gradients in the northeastern and
western U.S. In Fig. 6b, the biosphere, as a net source (positive NEE) of CO2 in this month, is re-
sponsible for prevalent CO2 enhancement in the U.S. on top of the background in Fig. 6a. Weaker
CO2 enhancement is seen in the southwest due to lower NEE fluxes, and depletion of CO2 (up to
more than 4 ppmv) occurs in the central Texas and, to a lesser degree, in the LA Basin. In com-
parison, the fossil-fuel component in Fig. 6c exhibits a slightly different spatial pattern from the
biosphere component. Numerous domes of CO2 (> 16 ppmv) form near large emission sources (as
shown in Fig. 3a). Dispersion of CO2 from these domes and those scatter smaller emission sources
creates a 2-4 ppmv of CO2 superimposed on the background. Comparing Figs. 6b and 6c sug-
gests that (1) in areas far away from large fossil-fuel emission sources, the biosphere component
is similar to or even higher than the fossil fuel component, and (2) the biosphere component in the
majority of cities cannot be regarded as negligible, with possible exception of some urban areas,
e.g., the LA Basin in October 2007. The decomposition of biosphere and fossil-fuel components
also facilitates the interpretation of CO2 distribution shown in Fig. 5c. For example, Fig. 6b clearly
shows that NEE is the main contributor to the high CO2 in central Pennsylvania. It is important
to note that, the biosphere CO2 component is expected to vary significantly over different seasons,
and thus its contribution to atmospheric CO2 is expected to change with seasons as well.

Sensitivity of CO2 Spatial Distribution to Uncertainty in NEE

All the results discussed above are from simulations using CT2011 NEE as input. In this sec-
tion, we examine the impact of uncertainty of NEE on the spatial patterns of CO2. Figure 7 com-
pares monthly mean spatial distributions of CO2 near the surface simulated by CMVCT, CMVCS,
and CMVLM, which use the same fossil-fuel emission input but different NEE (Table 2). A com-
parison among Figs. 7a-7c reveals considerable model discrepancies as a result of differences in
NEE inputs, consistent with a recent inverse modeling study using synthetic data at a few tower
sites over the contiguous U.S. [93]. The regional mean concentration of CO2 is lower in CMVLM
(Fig. 7c) than in the other two models, consistent with its overall lower NEE (Table 1). CO2
domes in the southeastern U.S. shown in CMVCT (Fig.7a) diminish in both CMVCS and CMVLM
(Fig. 7b and Fig. 7c). In contrast, CO2 concentrations along the West Coast do not vary much with
different NEE inputs, implying less severe interference by NEE uncertainty. Such regionally var-
ied situations imply that conclusions drawn from studies at one locale (e.g., in the LA Basin) need
to be reexamined when looking at another locale (e.g., Washington D. C. or Atlanta). The uncer-
tainty of NEE as reflected by inter-model differences has been found to depend on seasons (e.g.
[93]). Therefore, the conclusions drawn here from one month of simulation cannot be seen as
representative for all seasons. More comprehensive model comparisons for all seasons using NEE
outputs from a larger group of TBMs are needed in future to better understand the issue of NEE
uncertainty and biospheric interference.

Comparison with Tall-Tower Measurements

In this section, we examine the model results against observations at the six NOAA ESRL tall-
tower sites listed in Table A.2, to evaluate and understand CMAQ-simulated temporal variations
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Figure 6. (a) Background, (b) biosphere, and (c) fossil-fuel com-
ponents of CO2 near the surface over the contiguous U.S. in Octo-
ber 2007 simulated by CMAQ. The background CO2 component is
simulated by the background run (CMBG) with fossil-fuel emis-
sions and NEE fluxes turned off within the U.S.; The biosphere
CO2 component is calculated by subtracting CO2 simulated by the
background run (CMBG) from that by the biosphere run (CM-
BIO), for which fossil-fuel emissions are turned off within the
U.S.; Fossil-fuel CO2 component is calculated by subtracting CO2
simulated by the background run CMBG from that by the fossil-
fuel run (CMFF), in which NEE is turned off within the U.S.
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Figure 7. Monthly mean CO2 concentrations near the surface
simulated for October 2007 by (a) CMVCT that uses Vulcan fossil-
fuel emissions and CT2011 NEE, (b) CMVCS that uses Vulcan
fossil-fuel emissions and CASA NEE, and (c) CMVLM that uses
Vulcan fossil-fuel emissions and CLM4VIC-BG1 NEE. For model
grids outside the U.S., Vulcan has no values and CDIAC emissions
are used instead.
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of CO2. Figures A.1 through A.6 show the CO2 time series and mean diurnal profiles from CMAQ
and CT2011 simulations, compared to their compartments from observations at the six sites. One
needs to bear in mind that CT2011 has perturbed NEE fluxes to match CO2 observations at five
of the six sites (except for BAO). In general, CMAQ models using CASA-derived NEE fluxes
(CMCCT, CMVCT, and CMVCS) show better performance than the model using VLM4VIC NEE
(CMVLM). Compared to CT2011, CMAQ models using CASA-derived NEE can simulate better
monthly mean concentrations (as suggested by the reduced mean biases) and resolve more high-
frequency variability (as suggested by the closer-to-unity ratios of standard deviations) at most of
the sites. However, these CMAQ models do not always show higher correlations with observations
or lower RMSE than CT2011, suggesting that switching to new transport and fluxes at higher res-
olution also introduces more model-data mismatches. The mean diurnal profiles in Figs. A.1-A.6
show that almost all the CMAQ models have a low bias at night through early morning compared
to observation. Possible reasons include but are not restricted to errors in model transport in the
boundary layer and emission temporal profiles.

As mentioned earlier, BAO is unique and of higher interest compared to other five sites be-
cause (1) it receives fresh fossil fuel emissions from Denver, and (2) the observations were not
assimilated by CT2011 in this month. It can be seen from Fig. A.1 that all the CMAQ models
show improved performance than CT2011 in reproducing the 3-hourly observed CO2 concentra-
tions at BAO. CT2011-simulated CO2 roughly tracks the observed background (lowest observed
level) and shows negligible diurnal variability, possibly due to the smoothed local topography with
the coarse grid of TM5 (the global model used for CT2011) and diluted emissions in CDIAC near
BAO. CMAQ-simulated diurnal profiles are in general stronger than CT2011, but also vary with
different NEE and/or fossil fuel emissions. The standard model (CMVCT) with CT2011 optimized
NEE and Vulcan fossil-fuel emissions shows the best agreement with observation in terms of both
3-hourly and mean diurnal variability, but also has a low bias in early morning, as found for all
other CMAQ models at all sites. CMCCT, which uses the same fluxes as CT2011 but higher-
resolution meteorology, simulates a slightly stronger diurnal variability than CT2011. Using the
hourly-varying Vulcan emissions (CMVCT, CMVCS, and CMVLM), which resolve the morning
rush-hour emission peak, helps to capture the observed morning peak around 8:00 am. By switch-
ing to different NEE inputs, CMVCS and CMVLM simulate lower CO2 concentrations in general
than CMVCT. These results suggest that both time-varying emissions and biospheric fluxes are
important drivers of the 3-hourly and diurnal variability of CO2 at BAO. The importance of time-
varying emissions was recently demonstrated by a recent modeling study, which shows that diurnal
and weekly variations of emissions could result in up to 8 ppmv of perturbations of CO2 near the
surface [11].

It is very important to understand the causes for the model-data mismatch to guide subsequent
inverse modeling. Since inverse modeling essentially seeks to match observations by perturbing
selected model fluxes, an incorrect attribution of the model-data mismatch would directly lead to
erroneous inversion results (e.g., [71]). For instance, attributing the early-morning low bias to
errors in fossil fuel emissions, or NEE, or model transport would lead to drastically different con-
clusions (i.e., scaling up emissions in the first versus no scaling in the latter two). Indeed, our
model results illustrate that emission verification is confounded by factors that affect CO2 con-
centrations simultaneously with emissions, such as transport and biospheric fluxes. Alternatively,
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fossil-fuel emissions could be isolated using certain tracer or proxy techniques.

Spatial Correlations between CO2 and Traditionally Regulated Pollutants

Another question that can be conveniently addressed with CMAQ is the feasibility of using tra-
ditionally regulated air pollutants, such as CO, NOx and SO2, to provide constraints for fossil
fuel CO2 (e.g., [20]). For these traditionally regulated air pollutants, there are abundant long-
term ground-based and satellite monitoring data that contain valuable information about historical
trends and spatial patterns of emissions. Effective and economical strategies for emission verifica-
tion are urgently needed to ensure the success of near-term emission reductions [16, 2]. It is thus
worthwhile to consider approaches that (1) take full advantage of currently available observational
networks and experiences in air pollutant emission monitoring and reduction, and (2) combine
state-of-the-art atmospheric transport and emission modeling techniques. It has been shown re-
cently that concurrent measurements of CO2, CO, NOy and SO2 can be used to derive a top-down
estimate of CO2 emissions from a city (e.g. [20]). The emission trend of CO2 over China was
recently inferred from satellite NO2 columns [98]. CO:CO2 correlation slopes from aircraft obser-
vations during TRACE-P were used for understanding model-data mismatches and constraining
emission fluxes [99].

Figure 9 compares the CMAQ-simulated monthly mean spatial patterns of CO2, SO2, NOx
and CO. Fossil-fuel combustion is the largest source for all four compounds, although emission
factors for their common source sectors are different, and each of them has its unique sources and
sinks. In terms of spatial distribution, CO2 correlates better with NOx (R=0.63) and CO (R=0.61)
than with SO2 (R=0.38). These correlations of concentrations are slightly better than the corre-
lations of emissions of these compounds (R=0.43 for CO2:NOx, R=0.4 for CO2:CO and R=0.24
for CO2:SO2), implying that similar emission sources and transport processes both contribute to
the similar spatial patterns observed in Fig. 9. We note that using emissions of CO2 and tracer
species for different years and regridding the Vulcan inventory to the model resolution might have
degraded the correlations between CO2 and the three pollutants. A consistent processing procedure
for emissions of CO2 and its tracers is necessary for future studies. CO2 hotspots (e.g., the CO2
hotspot in central Pennsylvania and the broad high CO2 region in the central and northern U. S.)
arising primarily from biospheric fluxes can be readily identified with the assistance of the three
tracers that are mainly emitted in urban areas (with the possible exception of Electricity Generating
Units which can be located in rural areas). A quantitative understanding of such correlations and
their utility to CO2 emission inference needs to be attained by taking into account (1) emission
factors and activities for each individual source (e.g., [21, 98]), and (2) model simulated transport
([100]) and model errors [66]. The tracer correlation problem has been studied extensively in the
stratosphere (e.g., [101, 102]). Modeling and observations need to be combined to in future work
to better understand the characteristics of tracer correlations in the troposphere. Correlations on
different dimensions, e.g., a 1-dimensional (1-D) temporal correlation from a single ground site
(e.g., [103]), a 2-D spatial correlation shown in Fig. 8, or a 4-D spatiotemporal correlation from
aircraft measurements (e.g., [20, 21]) convey different physical meanings and should be examined
and used carefully. Incorporating CO2 into a Positive Matrix Factorization (PMF) analysis with
multiple tracers (possibly including both gaseous species and PM2.5 components) could also be
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considered to aid the tracking of CO2 from different sources. Another possible direction is to
explore a joint CO2:tracer flux inversion [66] that makes use of the correlation of model errors
between CO2 and a tracer.
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Figure 8. Monthly mean diurnal profiles of CO2 in October 2007
observed at Boulder Atmospheric Observatory (BAO) (TOWER)
and simulated by CT2011 and CMAQ with different configura-
tions. CMCCT uses CDIAC fossil-fuel emissions and CT2011
NEE; CMVCT uses Vulcan fossil-fuel emissions and CT2011
NEE; CMVCS uses Vulcan fossil-fuel emissions and CASA NEE;
and CMVLM uses Vulcan fossil-fuel emissions and CLM4VIC
NEE. For model grids outside the U.S., Vulcan has no values and
CDIAC is used instead.

2.4 Summary

In this work, we have described the motivation and methods for simulating CO2 with CMAQ, and
have presented initial modeling results for the contiguous U.S. in October 2007 to examine the
potential of using CMAQ to characterize CO2 spatial and temporal variability.

• By decomposing CMAQ-simulated CO2 into background, biosphere, and fossil-fuel com-
ponents, we have found that biospheric fluxes and fossil-fuel emissions are comparably im-
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Figure 9. Monthly mean concentrations of (a) CO2, (b) NOx, (c)
CO and (d) SO2 near the surface simulated by CMAQ for October
2007. SO2 is simulated by CMVCT, which uses Vulcan fossil-fuel
emissions in the U.S. and CT2011 NEE.
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portant in shaping spatial distributions CO2 near the surface over the contiguous U.S. during
October 2007, with each of them showing its unique characteristics.

• By using three different sets of NEE as inputs, we have shown that the uncertainty of NEE
estimates has considerable impact on model-simulated atmospheric CO2 concentrations near
the surface, a finding that is consistent with previous studies (e.g., [93]). While only three
sets of NEE inputs from two different TBMs are used here, more different TBM outputs
from model inter-comparison projects, e.g., the ongoing MsTMIP project, will be used in
future work to comprehensively address the issue of NEE uncertainty.

• By comparing the model results with observations from six tall-tower sites in the NOAA
ESRL network, we have evaluated the model-simulated 3-hourly and diurnal temporal vari-
ability of CO2. In particular, at BAO near Denver, CO, the model using the Vulcan emissions
and CT2011 NEE shows the best performance in matching the observed mean diurnal profile,
although with a low bias in the early morning. Using different NEE inputs would degrade the
model-data agreement. More work is needed to better understand the model-data mismatch
to inform subsequent inverse modeling.

• The model-simulated spatial pattern of CO2 near the surface shows varying degrees of cor-
relations with NOx, CO and SO2, as a result of their similar emission sources and common
transport processes. Future work will explore the utility of these tracers for constraining
fossil-fuel CO2 emissions.

Findings from this work serve as a proof-of-concept and suggest that a regional CTM such as
CMAQ has the potential to facilitate interpretation of CO2 observations and emission verification.
Future work will improve CMAQ CO2 simulations in the following aspects: (1) increasing the
model spatial resolution to better resolve urban and point sources; (2) processing gridded CO2
emissions using SMOKE; (3) developing inline simulation of bidirectional biospheric fluxes; and
(4) comprehensively evaluating the model performance using observations from ground networks,
aircrafts, and satellites for all seasons of a year. Other greenhouse gases can also be studied using
CMAQ in a similar manner to that shown here.

45



3 Bias-Enhanced Bayesian Inference of Atmospheric Trace
Gas Sources and Sinks

3.1 Introduction

Inverse modeling is a formal approach to derive ‘top-down’ estimates of trace gas fluxes at Earth’s
surface using atmospheric concentration measurements. The main input-output relationship is the
chemical transport model used to establish the relationship between measured atmospheric concen-
trations and strengths of sources and sinks at the surface. For the case of nonreactive constituents
such as CO2, which will be the focus of this study, the relationship is linear by virtue of the nature
of atmospheric transport. The inverse problem is challenged by potential non-Gaussian structure
of the measurement errors, as well as by the errors due to simplifying assumptions in the transport
models, i.e. the structural error. Both data and model errors, if not properly characterized or quan-
tified, will bias the inferred strengths of the sources and sinks away from their true values. The
inverse problem may also be severely ill-conditioned because of the lack of data compared to a a
potentially high number of sources/sinks.

In the literature, the CO2 flux inversion problem has been commonly formulated to minimize
the following objective function based on the least-squares criterion[104]:

J =
1
2
(d−Rs)T C−1

d (d−Rs)+
1
2
(s− s0)

T C−1
s (s− s0) (23)

in which s is the vector of fluxes to be estimated, s0 is a vector of prior estimate of fluxes that are
usually output from a terrestrial biosphere model (TBM), r is the matrix of linear concentration-
flux response functions established by a deterministic transport model, d is the vector of observed
concentrations, Cd and Cs are error covariance matrices for the model-data misfit and the prior
fluxes, respectively. Eq. (23) is appealing because an analytical solution of the minimization prob-
lem

s = argmin
s

J (24)

exists, allowing for efficient computation even when there are large number of fluxes to be de-
termined, i.e. for high-dimensional problems. Various CO2 flux inversion schemes have been
developed based on the objective function (23). For instance, Bayesian synthesis inversion [105]
and Ensemble Kalman Filter (EnKF) [106] use the analytical solution of Eq (23); the 4D-Var
method finds the minimum of J iteratively [107]; geostatistical inversion minimizes a modified ob-
jective function slightly different from Eq. (23) by not explicitly imposing the prior flux constraint
s0 [108].

From a statistical inversion point of view, the least-squares criterion is well known to be tied
with the assumption that both model-data misfit and the prior fluxes are Gaussian [109]. As com-
monly seen in other applications, the least-squares criterion is adopted to solve the source inversion
problem mainly for its convenience, whereas the justification of the underlying Gaussian assump-
tion has not been well investigated [110]. Among the very few existing studies, [111] showed
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evidence of non-Gaussian prior flux error distribution. Nor does information exist for the prob-
ability distribution functions (PDFs) of the model-data mismatch, the lack of robustness of the
least-squares criterion for being sensitive to outliers [109] actually makes it not the best justified
choice of statistical estimator to describe model-data mismatch in CO2 flux inversion [105]. There
is a clear need for a robust statistical mechanism of inversion that is independent of unjustified
Gaussian assumptions. The second major motivation for this study is to build a statistical inversion
framework that appropriately treats the model errors, i.e. the errors associated with the linearized
transport model structural deficiencies. Indeed, the estimated fluxes may be strongly biased be-
cause of the fact that the model is imperfect. Most, if not all, studies of transport model inversion
have inherently assumed that the model itself is a perfect representation of reality. This assumption
may lead to biased estimates of the fluxes that try to compensate for the model deficiencies. More-
over, with increasing volume of observations the biased estimates will have smaller uncertainties
around the wrong values. We will develop a strategy of inversion that handles the uncertainties
associated with such errors. Having said that, the role of transport model uncertainty has been
investigated by many studies in the literature, however most of the techniques that deal with model
errors stem from ad-hoc assumptions and problem-specific adjustments. As a representative exam-
ple, the TransCom3 Experiment studied the sensitivity of Bayesian synthesis inversions to transport
process differences using 16 different transport models and model variants under the same input
data and protocol [112, 113] with iterative, ad-hoc adjustments to the assumed data covariance
structure to ensure different models lead to reasonably similar outcomes.

In this work, we revisit the TransCom3 Experiment using Bayesian inference to assess the
impact of statistical assumptions on inversion solutions of CO2 sources and sinks.

3.2 TransCom3 Inversion Formalism

The Level 1 control inversion in the TransCom3 Experiment seeks to solve for 5-yr mean aggre-
gated biosphere and ocean fluxes over M = 22 regions using 5-yr mean observations at N = 77
sites around the world.

Following the notations used by [114] and [113], let D(xi) be the steady state concentration
of CO2 observed at the ith site xi = (xi,yi,zi). A decomposition of D(xi) based on mass balance,
assuming no measurement errors for simplicity, gives

D(xi) = DFF(xi)+DBB(xi)+
M

∑
j=1

D j(xi), (25)

in which DFF(xi) and DBB(xi) are the fraction of CO2 concentration resulting from fossil-fuel CO2
emissions and annually balanced net ecosystem exchange (NEE) fluxes, respectively; D j(xi), the
so-called response function, represents the concentration due to the net flux from the jth region
and is obtained from

D j(xi) = s jr j(xi) (26)

wherein r j(xi) is the basis function that represents CO2 concentration at the ith site, xi, caused by
unit CO2 flux from the jth region, s j.
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The basis functions evaluated at the locations of interest form the response matrix Ri j = r j(xi),
and Eq. (25) can now be written as

d = Rs, (27)

where the ‘effective’ observations d are obtained by removing the ’background’ CO2 concentra-
tions di = D(xi)−DFF(xi)−DBB(xi). In the TransCom3 Experiment, the background quantity
DFF(xi)+DBB(xi) is pre-calculated using transport simulations and is considered a known quan-
tity.

The inversion task - and the main focus of our studies - now becomes finding s given a mea-
surement vector d. This is a linear problem as the right-hand-side is linear with respect to the
object of inference s. While there are various methods to solve for s, e.g., see [114], we will argue
for Bayesian techniques and employ Bayesian inference framework that is well suited for handling
problems with various sources of errors, and is able to seamlessly incorporate prior information
with the available measurement data [115].

3.3 Bayesian Inference

Bayesian machinery relies on the Bayes’ formula, which in this context reads as

p(s|d)︸ ︷︷ ︸
posterior

∝ p(d|s)︸ ︷︷ ︸
likelihood

p(s)︸︷︷︸
prior

(28)

Here the set of all measurements d = (d1, . . . ,dM) is considered data, and the fluxes for all regions,
s = (s1, . . . ,sN) are the object of inference in Bayesian formulation.

Bayes’ formula (28) relates the prior probability distribution p(s) of the fluxes to the posterior
one, in light of data, using the likelihood function

L(s) = p(d|s), (29)

which is a measure of the goodness-of-fit of the observed data to the model predictions stemming
from the value s.

While generally the exact computation of the posterior distribution is challenging for high-
dimensional (i.e. for large N) problems, one often relies on Markov chain Monte Carlo algorithms
to sample from the posterior distribution. With both prior and likelihood functions in place, we
then employ adaptive MCMC (AMCMC) [57] algorithm in order to sample values of s accord-
ing to the posterior distribution p(s|d). Three commonly used summaries of the posterior dis-
tribution are the mean smean, standard deviation sstd and the maximum a posteriori (MAP) value
sMAP = argmaxs p(s|d). Often, when only the latter is of interest, one can proceed to posterior
maximization via standard optimization methods, without invoking MCMC.

The likelihood function construction is the key step in Bayesian methods. It is intended to
incorporate probabilistic representations of all sources of discrepancies between observed data and
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the proposed model. The simplest, and most typical formulation relies on explicitly assuming
statistical structure for the discrepancy vector

εd = d−Rs. (30)

The most common scenario is to assume εd is a multivariate normal random variable with van-
ishing mean, i.e. no measurement bias, and data covariance matrix Cd. This almost necessarily
implies that model deficiencies are not captured and the only source of discrepancy is the mea-
surement error. In fact, often the data covariance matrix Cd is taken to be a diagonal one as the
measurements are expected to have uncorrelated errors.

Furthermore, the Gaussian assumption is also typical for the prior distribution of the fluxes,
since studies often report a mean value and a standard deviation for each flux. Note that, the so-
called uninformative prior that is uniform over a wide range of possibilities can be thought of as
a Gaussian in the limit of large variance. Such Gaussian assumptions for both the likelihood and
the prior lead to analytical formulae for the posterior distribution and help avoiding the use of
potentially expensive sampling-based methods, such as MCMC.

3.4 Analytical Solution for Gaussian case

Consider Gaussian prior p(s) with mean s0 and covariance Cs as well as a Gaussian additive data
error term with zero mean and covariance Cd, leading to prior and likelihood formulae,

p(s) = ((2π)n|Cs|)−1/2 exp[−1
2
(s− s0)

T C−1
s (s− s0)]

L(s) = p(d|s) = ((2π)n|Cd|)−1/2 exp[−1
2
(d−Rs)T C−1

d (d−Rs)]
(31)

With these Gaussian assumptions, the posterior p(s|d) can be proven to be Gaussian, too

p(s|d) = ((2π)n|Cp|)−1/2 exp[−1
2
(s− sMAP)

T C−1
p (s− sMAP)] (32)

with mean sMAP and covariance Cp given by

sMAP = s0 +CpRT C−1
d (d−Rs0) (33)

and
Cp = (RT C−1

d R+C−1
s )−1 (34)

Since the posterior is Gaussian, the mean and the maximum a posteriori (MAP) estimates
coincide. Furthermore, the MAP estimate sMAP is the classical least-squares solution with cost
function (23), since the latter is an additive constant away from the negative logarithm of the
posterior.
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3.5 Implications of Gaussian Data Error Assumption

The key assumption in the results described above is that of Gaussianity of the discrepancy between
observational data and model’s response. While this allows analytical posterior calculations, we
will challenge this assumption below by producing synthetic data with a different noise character-
istics. Specifically, let us produce synthetic data with a true response matrix Rtrue and true flux
strue as

d = Rtruestrue + εd + ed︸ ︷︷ ︸
total obs. error ηd

(35)

where εd obeys the same i.i.d. Gaussian character with vanishing mean and standard devia-
tion σ = 0.1, while there is another observational error term ed that we will assume follows
an i.i.d. exponential distribution with mean β = 2. The total error ηd now follows the so-
called Exponentially-modified Gaussian (EMG) distribution with a probability density function
f (x; µ,σ ,β ) = 1

2β exp
[

2µ+σ2/β−2x
2β

]
erfc

[
µ+σ2/β−x√

2σ

]
, where erfc(z) = 2√

π
∫+∞

z e−t2
dt is the com-

plimentary error function. The probability density functions of both the Gaussian only and the
EMG error term are illustrated in Figure 10.

Now we compare two scenarios of inferring s from the relation d = Rtrues+ηd: one with the
classical, Gaussian likelihood function with analytically tractable posterior, and the other with the
EMG likelihood that the synthetic data is generated with, albeit having to resort to MCMC and
optimization routines to find the MAP values for the fluxes s and its posterior density. Figure 11
illustrates a result of this comparison for data amount M = 100 and the number of inferred fluxes
N = 22. It compares the true flux strue to the MAP values stemming from the two scenarios sG

MAP
and sEMG

MAP . Clearly, using more appropriate likelihood function improves the accuracy of the result-
ing fluxes. Furthermore, we note that the accuracy of the resulting fluxes depends on the amount
of information, i.e. the amount of data observations M. Figure 12 illustrates this effect. Namely, it
compares the two likelihood scenarios and extract the committed error in the fluxes with respect to
increasing amount of data, i.e. increasing M. Again, the more appropriate, skewed EMG likelihood
is more accurate.

3.6 Bayesian Formulation Accounting for Model Error

The linearized model R is generally an approximation of the true relationship between the fluxes
and the observations. The conventional formulation from Eq. (30) does not take this model error
into account. This leads to a few concerns regarding flux estimation and further predictions based
on those. First of all, the estimated fluxes will be somewhat biased trying to compensate for the
structural deficiencies of the model, i.e. the model error induced by the linear approximation of
the true relationship. Moreover, increasing the amount of observations will not help. It will reduce
the posterior density towards a delta-function centered near a single, best flux vector s, under the
wrong assumption that the model is perfectly replicating the truth. This flux vector will be biased
away from the true vector as the model error has not been accounted for. Thus, not only the mean
flux is incorrect, but also the estimated posterior uncertainty does not reflect the true uncertainty
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Figure 10. The probability density functions of Gaussian and
the associated EMG variables. The parameters are set to µ = 0,
σ = 0.1 and β = 2.
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Figure 11. Comparison of the true fluxes with the best values
inferred using a) Gaussian likelihood and analytical formula, and
b) EMG likelihood and optimization algorithm.
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Figure 12. Convergence of the average error norm, over 100
replica runs, of the MAP value of fluxes, as the amount of data
M, grows. Two scenarios are compared, a) Gaussian likelihood
and analytical formula, and b) EMG likelihood and optimization
algorithm.

associated with the found mean flux. This will subsequently lead to predictions that are wrong
both in terms of mean and in terms of the uncertainty around it.

We strive to formulate an inverse problem where the resulting uncertainties take into account
both the model bias and data errors. We would like to build-in uncertainties in the result that do
not vanish when the amount of observations increases or the observational error vanishes. In order
to do so, we cast the flux vector as a random vector, i.e. allow variability in input parameters that
will lead to output variability consistent with observations. For simplicity, and in order to restrict
the number of unknown parameters, we assume independent Gaussian distributions for each flux,
i.e.

si = µi +σiξi, for i = 1, . . . ,N, (36)

where ξi are standard normal random variables. In a vector form, this can be written as

s = µ + Iσξ , (37)

where I is the N×N identity matrix. Within a Bayesian formulation, the objects of inference now
are the pairs of vectors µ = (µ1, . . . ,µN) and σ = (σ1, . . . ,σN). The Bayes formula in this case
reads

p(µ,σ |d) ∝ p(d|µ,σ)p(µ,σ). (38)

The likelihood function Ld(µ,σ) = p(d|µ,σ) now measures the probability of obtaining the spe-
cific data set d given the probabilistic flux description defined as independent-component Gaussian
vector with mean µ and standard deviations σ . One can write the relation between observations
and the model as

d = Rs+ εd, (39)

where the measurement error εd is assumed to be a multivariate normal with vanishing mean
and diagonal covariance matrix Cd indicating independence of its components. With the MVN
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characterization of the fluxes s from Eq. (37), this implies

d = Rµ +Rσξ + εd, and d∼MVN(Rµ,RσσT RT +Cd︸ ︷︷ ︸
G

), (40)

where ξ is a vector of i.i.d. standard normal variables, leading to a likelihood function

Ld(µ,σ) = p(d|µ,σ) = (2π)−
N
2 det(G)−

1
2 exp

[
−1

2
(d−Rµ)T G−1 (d−Rµ)

]
(41)

Note that when there is no data noise, i.e. Cd = 0, the M×M covariance matrix G has a rank at
most N, which is typically smaller than M, since one expects to have more observations than flux
sources that are being sought for. Indeed, if there is no data noise, generally there can not be a set
of N values s that lead to an exact match of M > N values d = Rs. Therefore, for vanishing or
small enough data noise, the likelihood (41) is degenerate. Only if there is large enough data noise
characterized by the matrix Cd, the covariance G has full rank and can be inverted.

One can draw parallels with the formulation of the Kennedy-O’Hagan approach [116], where
the model error δm is explicitly written as a Gaussian with a known, usually square-exponential
covariance with respect to the underlying spatial distance measure. That is

d = Rµ + δ︸︷︷︸
Eξ

+εd, (42)

and (EET )i j = Aexp
(
−(xi− x j)/l2), for a predefined correlation length l and variance magnitude

A, while the underlying spatial locations x correspond to the observations d. In our case, instead of
building an explicit spatially correlated Gaussian model error term, we force the spatial correlations
to be consistent with the model itself by embedding the variability of the fluxes in the model and
obtaining E = Rσ .

In order to avoid the likelihood degeneracy, one can generally resort to Approximate Bayesian
Computation (ABC) which employs likelihoods that are based on matching moments or other
statistics of the data d and the model predictions Rs [117, 118]. In this work, we will employ
marginalized likelihood, which is essentially an approximation to the full likelihood (41) by re-
placing the covariance matrix G by its diagonal approximation G̃ = diag(G)I. The likelihood
function then is written as

L̃d(µ,σ) = (2π)−
N
2 det(G̃)−

1
2 exp

[
−1

2
(d−Rµ)T G̃−1 (d−Rµ)

]
, (43)

and it constrains each observation to the marginal distribution of the model prediction indepen-
dently.

The prior function can be split into independent components

p(µ,σ) =
N

∏
i=1

p(µi)p(σi) (44)
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We have used uninformative, uniform priors for the means p(µi) = const, and Jeffrey’s priors [119]
for the standard deviations p(σi) ∝ 1/σi. In practice, we employ logσi to enforce positivity of the
standard deviation, and the Jeffrey’s prior is equivalent to a uniform prior on the logarithm, i.e.
p(logσi) = const.

While one should ideally proceed with sampling from the posterior using MCMC methods,
here we will mainly focus on the best estimates of µ and σ , i.e. we search the values that maximize
the posterior distribution using Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm. The calibration problem is effectively reformulated as a density estimation problem,
since the object of interest are the mean µ and the variance σ of the cast multivariate density of the
flux vector s. For details of such reformulation of calibration in order to properly take into account
model errors, see [120].

Numerical tests

Consider synthetic generation of data from ‘true’ fluxes and a ‘true’ M×N response matrix Rtrue
with small measurement noise εd, in order to focus solely on the model error, leading to

d = Rtruestrue + εd (45)

Now, we infer fluxes s using a response matrix R that is generally biased, i.e. R 6= Rtrue, and
we seek s such that

d≈ Rs. (46)

Clearly no matter how much data is used, this will lead to the best estimate of s that is biased, i.e.
s 6= strue, in order to compensate for inadequacy of the response matrix. Indeed, Figure 13 illustrates
a case with N = 77 data points and M = 22 flux sources. We have randomly selected a ‘correct’
response matrix Rtrue and inferred the fluxes s with both the correct matrix Rtrue and a slightly
perturbed, ‘wrong’ one R. The posterior width is very small, together with the data measurement
error magnitude, leading to very small errorbars in both the inferred model predictions and the
inferred flux values. This confirms the deficiency of the conventional inference approach out lied
above. That is, the prediction errorbars are misleadingly small, and the posterior errorbars can be
made small with large enough amount of data, thus failing to handle the clearly-present modeling
bias.

On the other hand, with the proposed density estimation reformulation, we cast the flux vec-
tor s as a random quantity, and infer its component-wise means µ and standard deviations σ . In
this work, we focused on the MAP estimates of these quantities, µMAP and σMAP. As Figure 14
demonstrates, the standard deviations σMAP do not vanish irrespective of the amount of data, there-
fore leading to estimates of fluxes with errorbars that are consistent with the true, unknown flux
values. This in turn leads to prediction uncertainties that are not negligible and are consistent with
the observational data.

Let us now turn to the TransCom3 study. We will generally investigate 14 models summarized
in [13], i.e. 14 different response matrices R. These M×N matrix-models are summarized in
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Figure 13. Results of conventional Bayesian inference with
Gaussian likelihoods and priors. Two inference scenarios are stud-
ied: one with the ‘correct’ response matrix, and the other with
a biased one. On the left plot, synthetically generated observa-
tional data is shown together with the predictions from two infer-
ence tests. If one uses the correct response matrix, the predictions
perfectly match the data, while the wrong model leads to biased
predictions with small errorbars that are not consistent with the
commited error. On the right plot, the fluxes are shown in both
scenarios. Again, the inferred fluxes are biased away from the true
ones, if one uses the perturbed model for the inference.

Figure 15. The observational CO2 concentration data is collected at M = 77 sites, and the goal is
to infer fluxes at N = 22 selected regions. The observed data, depending on the location latitude,
is illustrated in Figure 16. For the density-estimation formulation, we have used flat priors for
µ , and somewhat informative, lognormal priors for components of σ . The parameters of the
lognormal prior were chosen to enforce mean of 1.0 and mode of 0.5 approximately reflecting
the expected discrepancy that we would commit in inferring the fluxes. As Figures 17 and 18
illustrate, the conventional inference approach leads to strongly varying flux values from model
to model. Moreover, the posterior errorbars, mainly reflecting the amount of data, fail to cover
the model-to-model variability. On the other hand, the density estimation method introduced here,
allows more uniform results across all the models. In fact, the relatively ‘flat’ mean fluxes for most
of the ocean regions simply indicate the fact that the observations do not constrain well the flux
values in these locations of interest. This is a considerably more robust result compared to the
results from Gaussian methodology that tend to overfit and compensate for model deficiencies by
driving the flux values away from truth or from prior knowledge.
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Figure 14. The same scenario as in Figure 13, only with the
proposed density-estimation framework. The inferred MAP values
for the standard deviations lead to consistent errorbars in both flux
estimation and concentration predictions.

3.7 Summary

In this section, we have discussed challenges associated with the conventional Bayesian inference
strategy for inferring sources and sinks in linear transport models given measurements of CO2
concentrations. We have focused on challenges associated with a) data bias, and b) model bias. In
particular, we demonstrated that for non-Gaussian, biased measurement errors the usual Gaussian
likelihood may lead to biased results, and one should be careful in choosing an appropriate likeli-
hood function. Having said that, the Gaussian likelihood construction allows efficient, analytical
computations of the posterior distributions, while for non-conventional likelihoods one almost al-
ways needs to resort to MCMC or optimization algorithms. Furthermore, we have demonstrated
that the conventional Bayesian methodology does not properly address the model errors, i.e. the
biases that stem from models being imperfect or inadequate. In order to alleviate this issue, we
introduced a reformulated inverse problem that is one of density estimation. We demonstrated
how inferred values are biased and overfit in order to accommodate model errors, in a synthetic
case. Finally, we used 14 different models from the TransCom3 experiment and demonstrated how
the conventional inference approach leads to strong model-to-model variability for the inferred
fluxes, while our proposed density estimation approach results in robust answers with quantified
uncertainties that are associated with model errors.
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Figure 15. Matrices corresponding to the 14 linear response
models under consideration.
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Figure 17. Illustration of the posterior fluxes in the land regions
inferred by two methods, using 14 different models. The prior flux
and its standard deviation is also depicted.
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Figure 18. Illustration of the posterior fluxes in the ocean regions
inferred by two methods, using 14 different models. The prior flux
and its standard deviation is also depicted.
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4 Source Inversion using Regional Transport Models and
Passive Scalar Transport

4.1 Simulations using the Weather Research and Forecasting Model

The Weather Research and Forecasting (WRF) model simulated wind fields for a period of seven
days, starting on Oct. 22, 2010 at 12:00am. The simulation includes 3 nested mesh levels. Figure
19 shows the topology of the computational domain. The coarsest mesh has 151 computational
cells in the East-West direction and 201 North-South, and covers most of the Norh-American
continent. The intermediate and finest mesh have 151× 199 grid cells each and are centered on
OK and KS. The lower left corner of the intermediate mesh correspond to cell (52,68) in the coarse
grid, while the fine mesh is anchored at the same cell number in the intermediate grid. We used a

Figure 19. Topology of the nested grids centered around OK and
KS.

refinement factor of 3 between successive mesh blocks, starting a cell size of 30km in the coarse
mesh and continuing with 10km and 3.33km for the intermediate and fine mesh cells, respectively.

The simulation was set up to output intermediate solution files every hour, and restart files
every 24h at 12:00am. Figures 20 and 21. Show 2D velocity vectors at a height of 10m. This data
is directly available in the WRF netcdf output file.
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4.2 Passive Scalar Transport

The 2D velocity at a height of 10m, with components U10 and V10 in the East-West and North-
South directions, respectively, is extracted from the WRF output files and then used to drive the
advection-diffusion of a passive scalar field, modeled as

∂c
∂ t

+(u · c) = D∇2c+Sx(x)St(t) (47)

Here c is the concentration of a generic scalar, u is the velocity vector, D is the scalar diffusivity
and Sx and St are functions that control the spatial and temporal profiles for scalar sources that will
be placed in the computational domain.

Eq. 47 is discretized on a computational grid that corresponds to the finest mesh in the WRF
simulations. The spatial derivatives are computed using a second-order upwind scheme, while the
time advancement is done using a second-order TVD Runge-Kutta scheme [121]. The velocity
field is linearly interpolated in time to generate velocity values for each time step. Spatial interpo-
lation is not necessary since the computational mesh coincides with the WRF grid.

Setup of Scalar Sources and Sensors

The spatial profile component Sx(x) of the source allowed to have the scalar emitted from one
particular locations in the computational domain. The results presented in this report correspond
to a singular scalar source located in cell # (70,20). The time profile St(t) consists of a sequence
of periodic puffs shown in Fig. 22. The amplitude A0 of the puffs is assumed to be known since
the scalar concentrations depend linearly on this value. The duration, s1, and the interval between
them, s2, are the unkown parameters which will be inferred based on concentration measurements
at select sensor locations.

Figure 22 shows instantanous scalar concentration contour plots for a simulation with s1 = s2 =
3.6h. The source location is shown with a filled black circle. The filled squares show the locations
of the numerical “sensors” that record the concentration values as a function of time.

Figure 24 shows time histories of scalar concentrations measured at the sensor locations shown
with black squares in Fig. 23, numbered 1 through 4 starting from the leftmost location. The
signal is highly nonlinear due to the shifting patterns in the windfield.

4.3 Bayesian Inference of the Source Characteristics

Bayes formula
p(~s|D) ∝ LD(~s)p(~s) (48)

relates the prior distribution p(~s) of source para-meters ~s to the posterior p(~s|D), where the data
D is the set of measurements at various sites around the source.
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The likelihood LD(~s) accounts for the discrepancy between the data D and the model f (~s).

LD(~s) ∝ exp

(
−

N

∑
i=1

( f (~s)−~yi)
2

2σ2

)
(49)

Here N is the number of measurement sites, f (~s) are pollutant concentrations at the measure-
ment site i computed using a transport model of choice (e.g., WRF+scalar transport), and~yi are the
experimental values. The standard deviation σ includes both the instrument error as well as any
model discrepancy error (initial and boundary conditions, sub-grid models, numerical approxima-
tions) introduced by f .

Given the likelihood LD(~s) and the prior p(~s), we then draw samples from the posterior distri-
bution p(~s|D) via Markov Chain Monte Carlo (MCMC) sampling. MCMC is a class of techniques
that allows sampling from a posterior distribution by constructing a Markov Chain that has the
posterior as its stationary distribution [57].

Surrogate Model Construction

The computational expense of the WRF and scalar transport simulations, typically associated with
a large number of MCMC samples, will be circumvented by employing surrogate models, which
are used instead of the forward model f (s) in the MCMC.

For this study the surrogate models are based on polynomial chaos (PC) expansions [122, 123]
and are used to represent quantities of interest, e.g., scalar concentration at specific locations, as
functions of source and model parameterizations.

In order to use PC representations we interpret input parameters~s as random variables, which
can be represented via their cumulative distribution function (CDF) F(·), such that, with ξi ∼
Uniform[−1,1], we have:

si = F−1
si

(
ξi +1

2

)
, for i = 1,2, . . . . (50)

The forward model output for the scalar dispersion given by f (·) can be represented as a PC
expansion:

f (~s) = Z ≈
K

∑
k=0

ZkΨk(ξ ) (51)

Ψk(·) are standard Legendre polynomials of independent, random variables ξ , orthogonal w.r.t.
uniform pdf pξ (ξ ), i.e.,

〈Ψi(ξ )Ψ j(ξ )〉 ≡
∫

Ψi(ξ )Ψ j(ξ )pξ (ξ )dξ = δi j〈Ψi(ξ )2〉 (52)

The coefficients Zk are computed by Galerkin (orthogonal) projection

Zk =
〈 f (~s(ξ ))Ψk(ξ )〉
〈Ψ2

k(ξ )〉
(53)
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Here, the projection integrals are computed by quadrature

〈 f (~s(ξ ))Ψk(ξ )〉=
Nquad

∑
l=1

wl f (~s(ξl))Ψk(ξl) (54)

Figures 25 and 26 show comparisons between model values and surrogate model values corre-
sponding to sensors #1 and #3. In this study the “model” is the cumulative scalar concentrations
obtained by integrating in time the time series values shown in Fig. 24. The surrogate model val-
ues, computed using eq. 51 are based on 7-th order polynomials using Legendre basis functions.
The polynomial coefficients were constructed by quadrature (eq. 54) using 11 quadrature points
per dimension for a total of 121 simulations. The surrogate models show a maximum discrepancy
of about 4% compared to results from full model simulations.

Results

We considered two synthetic source scenarios. For scenario A the source parameters were set to
(s1,s2) = (0.082,0.075), while for B the values were set to (s1,s2) = (0.062,0.082). Here the
time values were normalized with respect to the total measurement time of 48h. To generate the
data we ran the transport model for these sets of parameters, recorded the concentrations at the 4
sensor locations and then perturbed the values with multiplicative Gaussian noise to simulate the
measurement error.

yi,meas = yi,model(1+N(0,σ)) (55)

For both scenarios we used σ = 0.1.

Figures 27 and 28 compare the inference results for the two scenarios. For this particular setup
the MCMC sampling of the posterior distributions for the source parameters can be compared with
analytical solutions since the problem is two-dimensional only.

In both cases the joint PDF obtained through MCMC sampling agrees well with the analytical
values. In the first scenario the inference process detected a multi-modal distribution with one
of the modes centered around the “truth”. For this scenario the information available from the
measurements is not sufficient to pin-point the source characteristics. In the second scenario the
joint PDF is centered around the expected values.
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Figure 20. Sample 2D velocity fields at a height of 10m. The
contour line correspond to the velocity magnitude, changing from
blue for small values to red for a magnitude of 15m/s. The frames,
left to right and top to bottom, correspond to 2h increments starting
on 10/22/2010 at 12:00am GMT.
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Figure 21. Sample 2D velocity fields at a height of 10m. The
contour line correspond to the velocity magnitude, changing from
blue for small values to red for a magnitude of 15m/s. The frames,
left to right and top to bottom, correspond to two hour increments
continuing from Fig. 20.

66



S(t)

time

s1 s2A0

Figure 22. Time profile function St(t) showing a sequence of
periodic puffs.
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Figure 23. Contour plots of scalar concentrations corresponding
to a simulation with s1 = s2 = 3.6h. The frames, left to right and
top to bottom, correspond to 8h increments starting 8h from the
beginning of the simulatin.
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Figure 24. Time histories of scalar concentrations measured at
the sensor locations shown in Fig. 23.

Figure 25. Sensor 1 data as a function of the source parameters
s1 and s2. The left frame shows transport model data, the middle
corresponds to the surrogate model, and the right frame show the
discrepancy between the two.
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Figure 26. Sensor 3 data as a function of the source parameters
s1 and s2. The left frame shows transport model data, the middle
corresponds to the surrogate model, and the right frame show the
discrepancy between the two.
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Figure 27. Inference of source parameters for Scenario A. Left
frame shows the MCMC samples, the middle frame shows the
posterior density of (s1,s2) based on these samples, and the right
frame shows the analytical solution.
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Figure 28. Inference of source parameters for Scenario B. Left
frame shows the MCMC samples, the middle frame shows the
posterior density of (s1,s2) based on these samples, and the right
frame shows the analytical solution.
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5 Inversion Under Uncertainty for Trace-Gases using
Convection-Diffusion-Reaction

5.1 Introduction

The characterization of trace-gas sources is important to help control pollutants in the atmosphere.
Carbon-dioxide is one of several species that has been linked to the increase of average global
temperatures and understanding the overall dynamics of these trace-gases depends on knowing
the spatial distribution and magnitudes of carbon-dioxide fluxes. Exact characterizations could for
instance support a Green House Gas Information System (GHGIS), which would be responsible
for monitoring and managing the overall production of greenhouse gases. The determination of
locations and characters of sources is complicated by multiple factors: the multiple spatial dis-
tributions, extreme sparsity of the measurements, temporal variations, uncertainty of natural CO2
source and sinks, and the many uncertainties associated with data and model parameters (in par-
ticular the velocity field that needs to be calculated from atmospheric/weather models). In this
work, we investigate two critical aspects of this inversion. First we explore an efficient inversion
under uncertainty scheme that leverages concepts from stochastic optimization. We account for
uncertainties assosicated with the velocity fields. Second, we investigate the inversion of trace gas
source terms by considering multiple trace gase measurements.

The inversion of source terms motivates a large optimization problem in which the goal is to
reconcile the differences between sparse observations and numerical predictions of convection-
diffusion-reaction dynamics by manipulating magnitudes of source terms as target inversion pa-
rameters. To eventually develop methodolgies that can reconstruct source terms in sufficient detail,
many inversion variables need to be considered, potentially at every computational discretization
point. Black box approaches in which gradients of the objective function are determined through
finite difference methods or local interrogation (non-gradient based) methods quickly become com-
putationally intractable in addition to suffereing from quality issues as a result of for instance se-
lecting an appropriate finite difference step. To address both the computational expense and the
accuracy of the gradient, adjoint-based sensitivities need to be implemented. This however poses
several implementation challenges associated with parallelism and stabilized finite element dis-
cretization. Furthermore, first order optimization methods, such as steepest descent and non-linear
conjugate gradient (CG), are not efficient and potentially not sufficently accurate. Second order
approaches, such as Newton and Quasi-Newton methods, may be reqruied, which may introduce
additional implementation challenges.

The determination of accurate trace-gas dynamics in atmospheric flows introduces uncertain-
ties ranging from inaccurate velocity fields at fine spatial scales to the variability of the temporal
signals for both anthropogenic and biological source terms. Efficient methods must be considered
to manage uncertainties without compromising our ability to invert for large number of source
terms while managing stochastic model parameters.

In this work, we first present a large scale optimization approach that leverages adjoint-based
sensitivities. Our optimization methods are implemented in a separate package, called Rapid Op-
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timization Library (ROL) within the Trilinos framework, which features a range of algorithms
including first and second order methods, line search and trust region globalization, and the ability
to accomodate inexact gradient and objective function evaluations. The finite element approach
is used to discretize convection-diffusion-reaction physics. For high Peclet numbers, a Stabilized
Upwind Petrov Galerkin (SUPG) stabilization method is implemented in both the forward and
adjoint operators. The Jacobians in the forward simulator are calculated with automatic differen-
tiation through C++ template overloading. Parallelization is achieved through the Epetra package
in Trilinos. We leverage concepts from stochastic optimization to manage model uncertainties and
strive to derive robust solutions. A “risk measure” is introduced in the objective function and then
discretized with collocation methods. Although a range of risk measures can be considered, we
limit our approach to several popular ones and to risk measures that can be easily mapped from
the financial to the engineering world. In particular we consider an expected value and a coher-
ent value at risk, which are related to risk-neutral and probabilty-of-failure measures, respectively.
This approach was first developed in an optimal control problem, and although one might prefer
a stochastic inverse solution, the formulation is identical and extends to inverse solution with the
computational advantages of the large scale deterministic methods.

Mathematical Formulation

This section describes the optimization problem that we solve in inferring for model parameters
from data, and derives the formula by which the gradient of the objective function is calculated.
Several types of risk measures are described, and the reasoning for choosing one is explained.

Optimization problem formulation

The physics of the test cases are described by the convection-diffusion-reaction equations for two
species with concentration states φ1 and φ2, denoted together by φ̄ . Although our target is to
invert for source terms f , we also consider inversion of the diffusion coefficients µ . Among other
unknowns in the model, the velocity field~v(ζ ) is one of the more important sources of uncertainty.
We do not try to infer it but instead assume a stochastic description is available where the velocity
term is a function of a random variables ζ with an appropriate distribution. Our mathematical
formulation for the inverse problem is given as follows:

min
d

J (φ ,d) = σ
[

1
2

∫

T

∫

Ω

(
φ̄ −φ?

)2 δ (x− x∗, t− t∗)dΩdt− β
2

∫

Ω
‖d‖2

]

where φ solves F(φ ,d) =
∂φ
∂ t
−∇ ·µ(x))∇φ)+~v(ζ ) ·∇φ − r(φ)− f (x) = 0,

σ is the risk measure, β is the Tikhonov regularization parameter, which controls the magnitude
of the penalty term and depends on the quantity and quality of data. σ is the risk measure, and
in the case of a risk-neutral measure, it can be replaced with an expected value. The optimization
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parameter vector d can be either µ or f . To solve this optimization problem, a trust-region method
is used, with the use of a truncated conjugate-gradient method to solve the trust-region subproblem;
the gradient required by this method is calculated using an adjoint approach, described in [124].

The gradient can be calculated by differentiating the objective function and making use of the
chain rule:

DJ

Dd
=

∂J

∂φ
∂φ
∂d

+
∂J

∂d
.

Since φ and d are constrained by F(φ ,d) = 0, the direct sensitivity matrix can be expressed as

∂φ
∂d

=−∂F
∂φ

−1 ∂F
∂d

,

which when placed in the gradient equation gives

DJ

Dd
=−∂J

∂φ
∂F
∂φ

−1 ∂F
∂d

+
∂J

∂d
.

To avoid solving for the direct sensitivity matrix, which for nφ states requires solving a linear
system with Jacobian ∂F

∂φ for each of the nφ columns of ∂F
∂d , we reorder the calculation:

DJ

Dd
=−∂F

∂φ

−T ∂J

∂φ
∂F
∂d

+
∂J

∂d
.

where an adjoint solution arises:

∂F
∂φ

T

λ =
∂J

∂φ

T

.

The gradient can then be calculated:

DJ

Dd
=−λ

∂F
∂d

+
∂J

∂d
.

Risk Measures

The motivation for augmenting the objective function with a risk measure is to account for some
model based uncertainty in an attempt to provide a robust solution. The risk measure is a concept
from stochastic optimization and often applied to the management of financial portfolios. The risk
measure allows for a mechanism to achieve a range of objectives given the unknown future of the
economy. For uncertain market conditions a bank may use risk measures to decide how much
currency to keep in reserve, or a business may use them to decide how much to produce.
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Generally, a risk measure is a mapping from a set of random variables to the real numbers. In
actual applications the risk measure is applied to a probability distribution of losses. Given a loss
distribution, the measure should encapsulate the risk associated with it. The choice of risk measures
depends on what is considered risky; perhaps a risky investment is one with great variation in its
possible returns, or perhaps it is one with very great loss expected in the worst case scenarios. In
the case of inverse problems we consider, the “loss” as the observational mismatch combined with
the regularization terms.

Risk measures from the financial world are not all easily mapped to engineering applications
but there are a few common ones that can be described in the context of engineering targets,
including expected value, standard deviation or variance, and Conditional Value-at-Risk (CVaR),
The expected value risk measure for function of a random variable f (X), where X has probability
distribution ρ(X), is

σEV ( f (X)) = E[ f (X)] =
∫ ∞

−∞
f (X)ρ(X)dX .

In finance, the expected value is considered “risk-neutral”; a decision maker who is risk neutral
cares only about the expected returns or losses. In engineering, the expected value is used when
creating a design that is robust to uncertainties[125] and has a favorable mean response. In our
context, the loss distribution would correspond to a distribution of penalized errors, composed
from observation mismatch and regularization penalties; to minimize the expected loss would be
to find a parameter estimate that is robust to uncertainties in the model form.

If neutral to risk is not desired, one might use the standard deviation and variance risk measures,
which are defined

σSD( f (X)) = E[ f (X)]+w p

√∫ ∞

−∞
| f (X)−E[ f (X)]|p ρ(X)dX ,

σV ( f (X)) = E[ f (X)]+w
∫ ∞

−∞
| f (X)−E[ f (X)]|p ρ(X)dX ,

where usually p= 2. These risk measures are used with the assumption that the higher the variance
of a variable, such as a portfolio, the more risky. Semideviation and semivariance risk measures,
defined by

σSemiD( f (X)) = E[ f (X)]+w p

√∫ ∞

−∞
(max{0, f (X)−E[ f (X)]})p ρ(X)dX ,

σSemiV ( f (X)) = E[ f (X)]+w
∫ ∞

−∞
(max{0, f (X)−E[ f (X)]})p ρ(X)dX ,

can be used if only deviation towards the worse side (in the definition above, the more positive
side) of the mean is considered risky. For a portfolio, these risk measures might represent a trade-
off between expected returns and the risk one associates with the uncertainty in these returns; in
engineering, they might represent a tradeoff between expected performance and uncertainty in the
performance that can actually be achieved. The choice of weighting, however, reflects one’s own
personal aversion to variability.
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If one is instead concerned about worst-case scenarios, then one might use the CVaR risk
meansure. For a chosen confidence level 0 ≤ α ≤ 1 and continuous distribution ρ(X), the CVaR
risk measure is defined by

σCVaR( f (X),α) =
1

1−α

∫ ∞

Qα
f (X)ρ(X)dX ,

where Qα = sup{x ∈ R|P(X ≤ x) ≤ α} is the α-quantile. The CVaR risk measure represents the
expected loss in the worst 100(1−α)% of the distribution, and as a mean is less sensitive to sam-
pling error than the quantile risk measure Qα by itself.[126] The CVaR risk measure is related to
that used in reliability-based design formulations, in which one wishes to minimize the probability
of exceeding a certain threshold. When there is less of a clear line between an acceptable outcome
and catastrophic failure, the CVaR risk measure can be used instead to minimize the expected
outcome of the worst-case scenarios. What value of α is chosen to represent the most extreme
outcomes is again a matter of one’s personal degree of aversion to this risk.

In this study, the expected value risk measure is chosen to obtain a parameter estimate that is
robust to uncertainties in the model form and least dependent on any personal preference for or
against risk.

5.2 Implementation

To solve the optimization problem, we use a trust-region method; the trust-region subproblem is
solved using the truncated conjugate-gradient method. Each of the source coefficient parameters
is bounded above and below to prevent the sources from becoming sinks and to keep the concen-
tration states from becoming so large that the forward solve does not converge. The risk measure
is evaluated by sampling the three-dimensional stochastic space using a seven-point sparse grid
generated from the Gauss-Hermite quadrature rule.

The forward model PDE is solved using a Galerkin finite element method, with backwards
Euler for timestepping and a Newton method to solve the nonlinear system at each timestep. Since
a convection-dominated problem solved by the standard Galerkin finite element method can pro-
duce eroneous oscillatory solutions if the Peclet number is too high, the streamline upwind Petrov
Galerkin (SUPG) method is used to stabilize the solution. For weight function w, the local residual
for the weak form of the convection-diffusion-reaction problem is

R =
∂φ
∂ t

+µ∇φ ·∇w+(~v ·∇φ)w− r(φ)w− f w.

With SUPG stabilization, the local residual becomes

R =
∂φ
∂ t

+µ∇φ ·∇w+(~v ·∇φ)w− r(φ)w− f w+ τ(~v ·∇φ − f )(~v ·∇w),

where

τ =

(
C1k
h2 +

C2‖~v‖
h

)−1
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and h is the size of the element with C1 = 4.0 and C2 = 2.0. The stabilized problem is no longer
adjoint consistent, so taking the adjoint (transpose) of the discretized forward system (discretize-
then-optimize) is no longer equivalent to discretizing the continuous adjoint system (optimize-
then-discretize)[127]. The discretize-then-optimize approach was selected for ease of implemen-
tation and ultimately the optimization requires the discrete form of the adjoint.

5.3 Numerical Results

This section presents numerical experimentation results to demonstrate our algorithmic approach.
We first consider the deterministic inverse problem when data are available from many sensors, for
progressively more complex inferences, then add uncertainty to the model and reduce the number
of sensors.

We start by presenting estimation results for diffusivity and source parameters, individually and
simultaneously, for a linear convection-diffusion model with data from numerous sensors are given.
In these cases, the data is sufficiently informative to accurately recover the true parameter values.
The simultaneous estimation of diffusivity and source parameters is repeated for a nonlinear two-
species convection-diffusion-reaction model, with data about either one or both species available.
For this more complex physics, having a large amoung of data about just one species is not quite
enough to recover all the source terms; this can be remedied by adding data about the second
species.

We then consider the case where there is uncertainty in the model, and a simultaneous estima-
tion of diffusivity and source parameters for a nonlinear two-species convection-diffusion-reaction
model is again performed, for different levels of uncertainty; more uncertainty in the model re-
sulted in parameter estimates that deviated further from the truth values. Lastly, source parameters
are estimated given data from sparse sensors; it is shown that adding data about one species can
help estimate the source terms of the other.

In all these cases, the computational domain is Ω = [0,1]× [0,1] with zero intial conditions,
discretized by 40× 40 elements with linear nodal bases. To avoid an inversion crime, data is
generated from a finer mesh 80×80 and then contaminated with Gaussian white noise.

Deterministic Convection-Diffusion

In this section, results are given for the estimation of various parameters given numerous sensors
and a convection-diffusion model

∂φ
∂ t
−∇ · (µ∇φ)+~v ·∇φ = f

for a single species φ . The species is allowed to evolve over 32 timesteps from t0 = 0.0 to t f =
1.0 with homogeneous Dirichlet boundary conditions imposed along the top and bottom of the
domain. Data is obtained from 64 sensors and placed in a square grid throughout the domain,
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(a) with stabilization (b) without stabilization

Figure 29. Final state, with and without SUPG

taking measurements every ∆t = 0.1875. Since data were available from a large number of sensors
at frequent measurements, it was qualitatively decided that regularization was unecessary for the
estimation of a handful of parameters in this case with linear physics.

Diffusivity Coefficient Inversion

As an initial phase, data from 64 sensors is used to estimate just a single parameter: a constant
diffusivity coefficient µ . The known source f is described by

f = 10exp(−10((x−0.25)2 +(y−0.25)2)).

The known velocity~v = (u,v) is an irrotational vortex described by

u =−1000(y−0.5), v = 1000(x−0.5).

For the given velocity field and element size, and the range of diffusivity coefficients considered,
the Peclet number is high enough to warrent the use of a stabilization method to avoid oscillations
in the simulated concentration field, as shown in Figure 29.

To avoid an inversion crime, Gaussian white noise with standard deviation σ = 10−3 is added
to the data. Although there is a large amount of data available for the estimation of a single
parameter, the standard deviation of the noise is only an order of magnitude smaller than the pure
measurements, and it would be expected that this relatively high noise level would interfere with
what should otherwise be a very accurate estimate of the parameter. This expectation is borne out
in the resulting parameter estimate which, as shown in Table 3, is much closer to the truth than the
initial guess but not as close as might be expected from such a large amount of data.
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Initial guess Estimated Truth
2.0 0.9826992 1.0

Table 3. Estimated diffusivity coefficient - convection-diffusion,
no model uncertainty

Source Inversion

Next we consider a case where more parameters need to be estimated from the same number of
data points; although the resulting optimization problem is simpler than the previous in that it is
convex quadratic it is more complex because it is more inversion parameters.

In this case, the diffusivity k = 1 is known and the parameters ~C are to be estimated from an
algebraic parameterization of the source terms:

f = C1 exp(−20((x−0.15)2 +(y−0.85)2))+C2 exp(−20((x−0.5)2 +(y−0.85)2))

+C3 exp(−20((x−0.85)2 +(y−0.85)2))+C4 exp(−20((x−0.15)2 +(y−0.5)2))

+C5 exp(−20((x−0.5)2 +(y−0.5)2))+C6 exp(−20((x−0.85)2 +(y−0.5)2))

+C7 exp(−20((x−0.15)2 +(y−0.15)2))+C8 exp(−20((x−0.5)2 +(y−0.15)2))

+C9 exp(−20((x−0.85)2 +(y−0.15)2)).

The known velocity~v = (u,v) is an irrotational vortex described by

u =−42(y−0.5), v = 42(x−0.5).

Again, Gaussian white noise with standard deviation σ = 10−3 is added to the data, and the es-
timated source terms are shown in Table 4 and Figure 30. As in the previous case, the estimated
parameters are much closer to the truth than the initial guesses were, but the noise level in the data
limited the accuracy of the parameter inversion.

Simultaneous Source and Diffusivity Inversion

Here we consider an inference problem that combines the difficulties of the nonlinear optimality
conditions of the first case with the larger parameter space of the second. Neither the diffusivity
nor the source strengths are known. The diffusivity field is modeled as piecewise constant, with the
first four parameters representing the diffusivty in four quadrants of the domain. The remaining
five parameters describe the source term

f = C5 exp(−20((x−0.5)2 +(y−0.75)2))+C6 exp(−20((x−0.75)2 +(y−0.75)2))

+C7 exp(−20((x−0.5)2 +(y−0.5)2))+C8 exp(−20((x−0.75)2 +(y−0.5)2))

+C9 exp(−20((x−0.25)2 +(y−0.25)2)).

78



Parameter Initial guess Estimated Truth
C1 2.0 0.9164218 1.0
C2 2.0 0.9727920 1.0
C3 2.0 0.9596691 1.0
C4 2.0 1.037823 1.0
C5 2.0 1.014904 1.0
C6 2.0 1.037821 1.0
C7 2.0 0.9596682 1.0
C8 2.0 0.9727950 1.0
C9 2.0 0.9164226 1.0

Table 4. Estimated source coefficients - convection-diffusion, no
model uncertainty

The velocity field is the same as in the previous case. The standard deviation of the Gaussian white
noise added to the data is reduced to σ = 10−4, and the estimated parameters are shown in Table
5. Compared to the previous case, the accuracy of the inferred parameters is improved, reflecting
the reduced noise level in the data.

Parameter Initial guess Estimated Truth
C1 2.0 1.000415 1.0
C2 2.0 0.9965526 1.0
C3 2.0 1.002004 1.0
C4 2.0 0.9990992 1.0
C5 2.0 0.9859356 1.0
C6 2.0 1.008036 1.0
C7 2.0 1.007769 1.0
C8 2.0 0.9917184 1.0
C9 2.0 0.9968621 1.0

Table 5. Estimated parameters - convection-diffusion, no model
uncertainty

5.4 Deterministic Convection-Diffusion-Reaction

In this case, diffusivity and source coefficients are again simultaneously estimated, but with a
nonlinear two-species convection-diffusion-reaction model. The state equations are

∂φ1

∂ t
−∇ · (µ∇φ1)+~v ·∇φ1 = αφ2 + f1
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Figure 30. True and inferred sources - convection-diffusion, no
model uncertainty

∂φ2

∂ t
−∇ · (µ∇φ2)+~v ·∇φ2 = αφ1 + f2

where φ1 and φ2 are the concentration states of the two species and α = 1.0 is the reaction coef-
ficient. The model is run from t0 = 0.0 to t f = 1.0 in 32 timesteps, and homogeneous Dirichlet
boundary conditions are imposed along the top and bottom of the domain. There are nine parame-
ters to estimate, the first being the constant diffusivity and the rest describing the source terms

f1 = C2 exp(−20((x−0.2)2 +(y−0.8)2))+C3 exp(−20((x−0.4)2 +(y−0.8)2))

+C4 exp(−20((x−0.6)2 +(y−0.8)2))+C5 exp(−20((x−0.8)2 +(y−0.8)2))

f2 = +C6 exp(−20((x−0.2)2 +(y−0.2)2))+C7 exp(−20((x−0.4)2 +(y−0.2)2))

+C8 exp(−20((x−0.6)2 +(y−0.2)2))+C9 exp(−20((x−0.8)2 +(y−0.2)2)).

The known velocity~v = (u,v) is an irrotational vortex described by

u =−42(y−0.5), v = 42(x−0.5),

and since the diffusivity varies as the parameters space is explored, SUPG stabilization is used to
avoid possible oscillations. Data contaminated with Gaussian white noise with standard deviation
σ = 10−3 is taken from 64 sensors every ∆t = 0.1875. The estimated parameters are shown in
Table 6 and the estimated source terms are shown in Figure 31.

The data is sufficient to obtain close estimates of the diffusivity and source parameters for
the first species, and although data of only the first species is available, the interaction of the
two species through the reaction term, along with the large number of sensors, allows for a close
estimate of two of the four source parameters for the second species as well. Of course, if each
sensor could provide data for both species, the parameter estimate is much improved.
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(b) inferred f1 with only φ1 data

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) inferred f1 with φ1 and φ2 data
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(e) inferred f2 with only φ1 data
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(f) inferred f2 with φ1 and φ2 data

Figure 31. True and inferred sources - convection-diffusion-
reaction, no model uncertainty
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Parameter
Initial Data from Data from

Truth
guess φ1 only φ1 and φ2

C1 2.0 1.001678 0.9952705 1.0
C2 2.0 1.014302 1.035935 1.0
C3 2.0 1.002739 0.9887638 1.0
C4 2.0 0.9935702 0.9863631 1.0
C5 2.0 1.014242 1.038581 1.0
C6 2.0 1.359563 1.038581 1.0
C7 2.0 1.022204 0.9863532 1.0
C8 2.0 0.8746213 0.9887834 1.0
C9 2.0 1.097095 1.035925 1.0

Table 6. Estimated parameters - convection-diffusion-reaction,
no model uncertainty

5.5 Convection-Diffusion-Reaction with model uncertainty

In this section, uncertainty is added to the convection-diffusion-reaction model and the traditional
deterministic objective function augmented with the expected value risk measure. First, a simul-
taneous estimation of diffusivity and source paramaters is performed with data from numerous
sensors available and in the presence of different degrees of uncertainty. Then a case is examined
in which source parameters are estimated given sparse sensors.

Numerous Sensors

The optimization problem can be formulated by:

min
d

J (φ ,d) = E
[

1
2

∫

T

∫

Ω

(
φ̄ −φ?

)2 δ (x− x∗, t− t∗)dΩdt− β
2

∫

Ω
‖d‖2

]

where φ solves:

∂φ1

∂ t
−∇ · (µ∇φ1)+~v ·∇φ1 = αφ 2

1 + f1

∂φ2

∂ t
−∇ · (µ∇φ2)+~v ·∇φ2 = αφ 2

1 + f2

with α = 1.0; the reaction term is based on the reaction rate r = k[NO2]
2 of the reaction

CO(g)+NO2(g)→CO2(g)+NO(g),
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with φ1 = [NO2] and φ2 = [CO]. The same timesteps and boundary conditions are used as in the
previous case. There are three parameters to estimate, the first being the constant diffusivity and
the other two describing the source terms for the first and second species, respectively:

f1 =C2 exp(−20((x−0.3)2 +(y−0.5)2))

f2 =C3 exp(−20((x−0.7)2 +(y−0.5)2)).

The velocity field~v = (u,v) is again an irrotational vortex, but there is uncertainty in its magnitude
described by

u =−20ζ (y−0.5), v = 20ζ (x−0.5),

where ζ ∼N (1,σ2
ζ ) and the mean was used to generate the data. Data with Gaussian white noise

with standard deviation σ = 10−4 is available from 36 sensors taking measurements of both species
every ∆t = 0.1875, so no regularization is used. As in the previous case, since the diffusivity
varies as the parameters space is explored, stabilization is used to avoid possible oscillations. The
stochastic space was sampled using a sparse grid built form the Gauss-Hermite quadrature rules.

The parameter estimates obtained in the presence of an uncertain velocity field are shown in
Table 7, for σζ = 0.005 and σζ = 0.5. The data is sufficient to obtain a good estimate the parameter
values when the velocity field is known, but as the uncertainty in the velocity field increases, the
estimates increasingly deviate from the truth, as would be expected.

Parameter Initial guess σζ = 0.5 σζ = 0.005 Truth
C1 2.0 1.1582 1.02741 1.0
C2 2.0 1.4644 1.33455 1.3
C3 2.0 1.8022 1.63228 1.6

Table 7. Estimated parameters - convection-diffusion-reaction
with model uncertainty

Sparse Sensors

The physics of interest are described by the convection-diffusion-reaction equations for two species
since the diffusivity varies as the parameters space is explored.

∂φ1

∂ t
−∇ · (k∇φ1)+~v ·∇φ1 =

α
2

φ 2
1 φ2 + f1

∂φ2

∂ t
−∇ · (k∇φ2)+~v ·∇φ2 = αφ 2

1 φ2 + f2
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where φ1 and φ2 are the concentration states of the two species, k = 0.01 is the diffusivity coef-
ficient, and α = 2.0 is the reaction coefficient. The reaction term is based on the reaction rate
r = α[NO]2[Cl2] of the reaction

Cl2(g)+2NO(g)→ 2NOCl(g),

with φ1 = [NO] and φ2 = [Cl2]. Nitric oxide is a byproduct of combustion in the presence of
nitrogen, which is the main component of air, and chlorine gas has commercial and industrial
applications as a disinfectant and for water treatment.

The species concentrations are allowed to evolve over 32 timesteps from t0 = 0.0 to t f = 1.0
with natural boundary conditions. In this simple test case, we assume that we know the locations of
the sources producing species 1, but wish to invert for their magnitudes; the source f1 is described
by

f1 = C1 exp(−20((x−0.1)2 +(y−0.6)2))

+C2 exp(−20((x−0.25)2 +(y−0.7)2))

+C3 exp(−20((x−0.5)2 +(y−0.8)2))

+C4 exp(−20((x−0.7)2 +(y−0.85)2))

+C5 exp(−20((x−0.8)2 +(y−0.9)2)),

where ~C = (C1,C2,C3,C4,C5) are the parameters we try to estimate from the data. The source f2
also has a known location, but its magnitude is treated as an uncertainty in the model form rather
than a parameter:

f2 = ζ3 exp(−10((x−0.6)2 +(y−0.4)2)),

where ζ3 ∼N (1,(0.01)2) is a random variable. The velocity field~v = (u,v),

u = 1.0+ζ1
y2− (x+0.5)2

y2 +(x+0.5)2 −ζ2
y2− (x−1.5)2

y2 +(x−1.5)2

v =−ζ1
y2− (x+0.5)2

y2 +(x+0.5)2 +ζ2
y2− (x−1.5)2

y2 +(x−1.5)2 ,

is also a source of uncertainty in the model form, with ζ1,ζ2 ∼N (1,(0.1)2). The “true” values of
these random variables that are used to produce synthetic data are ζ ? = (1.05,1.05,1.05); the true
source coefficients are C? = (1.0,1.2,1.4,1.2,1.0). The data is perturbed by normally distributed
white noise with standard deviation σ = 10−4. The true sources and velocity field are shown in
Figure 32.

The data comes from two sensors placed at (0.3,0.2) and (0.3,0.7), one near the sources and
one at a location that the first species was expected to be convected through, based on the mean
velocity field; each sensor took measurements of φ1 every ∆t = 0.1875. Given the sparse sensors,
Tikhonov regularization with β = 10−4 is used. The resulting estimated source coefficients are
compared with that obtained if additional data is available from a sensor at (0.75,0.25), taking
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Figure 32. True sources and velocity field

Parameter
Initial 2 φ1 sensors 2 φ1 sensors 2 φ1 sensors

Truth
guess 0 φ2 sensors 1 φ2 sensor 3 φ2 sensors

C1 3.0 0.966013 0.990649 0.992926 1.0
C2 3.0 1.31042 1.22505 1.22334 1.2
C3 3.0 1.01494 1.27215 1.23333 1.4
C4 3.0 0.065891 0.276508 0.93828 1.2
C5 3.0 0.00815815 0.111768 0.700139 1.0

Table 8. Estimated source coefficients

measurements of φ2 at the same timesteps; this additional sensor is located near the center of f2
and thus where φ2 was expected to be high.

The estimated source coefficient parameters are summarized in Table 8. Using only the mea-
surements of φ1 from two sensors gives an estimate of f1 shown in Figure 33(a). The two sensors
are only able to provide enough information for a fair estimate of the source components they are
closest to; the ones further away are mostly informed by the regularization term. Using measure-
ments of φ2 from an additional sensor provides information on the state and thus source of the
first species, improving the estimates of the source coefficients. The improved source estimate is
shown in Figure 33(b). Including data from two more sensors of φ2 at (0.65,0.3) and (0.85,0.2),
also located near the center of f2 and thus where φ2 is expected to be higher and the reaction term
larger, further improves the source estimate, shown in Figure 33(c).

5.6 Conclusions

We present the efficient solution of a parameter estimation problem that is robust to model uncer-
tainties, taking advantage of stochastic optimization algorithms. Both the inversion of diffusivity

85



 

 

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

(a) two φ1 sensors (white)

 

 

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

(b) two φ1 sensors (white) and one φ2
sensor (green)

 

 

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

(c) two φ1 sensors (white) and three
φ2 sensors (green)

Figure 33. Inferred source - convection-diffusion-reaction, with
model uncertainty

and source coefficients are investigated for numerous and sparse sensors, utilizing Thikonov regu-
larization for the latter. Convection-diffusion-reaction physics with SUPG stabilization is used to
evaluate the use of two reacting species in the presence of uncertainty in the velocity field. It is
shown that additional information from another trace-gas species improves the reconstruction of
the other trace-gas source term coefficient. Furthermore, robust inversion solutions are obtained in
the face of incertainty, expoiting an expected value in the objective function to reflect a risk neutral
measure.
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6 Experimental Setup for GHG Observations

A mobile atmospheric monitoring facility (the ATML) has been deployed in Livermore, CA (Lon:
-121.71◦, Lat: 37.67◦), where observations of various greenhouse gases, related gas phase tracers,
and meteorological parameters have been ongoing since May of 2013. The primary measurements
of interest are CO2 and CH4, measured by a Picarro CO2/CH4/H2O analyzer (Picarro, Model
1301), which has been operational virtually without interruption since May 2013. In support of
these observations, a standard suite of meteorological measurements have been ongoing, a Vaisala
ceilometer (CL51) has been measuring aerosol backscatter vertical profiles to determine mixing
layer depth, and an Ecotech air quality analyzer has been measuring trace gases related to air qual-
ity and combustion emissions: CO, O3, SO2, and NOx. Most recently, a proton transfer reaction
mass spectrometer, PTR-MS, (Ionicon Analytik, PTR-QMS-HS) was deployed during the months
of May and June, 2014 to measure a number of different volatile organic compounds in the at-
mosphere. NOx The Picarro analyzer samples air from an inlet that extends to 27 m a.g.l. up a
tower that is adjacent to the ATML. Air is continuously pumped through the inlet lines at a rate
of 20 liters per minute and sub-sampled at approximately 0.4 SLPM into the Picarro ring down
cavity. Prior to entering the Picarro, the air passes through a Nafion dryer (Perma Pure Corp.)
that removes water vapor, thereby minimizing the impact of a water interference on the absorption
lines of CO2 and CH4. Automated calibrations of the Picarro CO2 and CH4 signals have been con-
ducted daily (every 23 hours) since late January 2014 and have indicated that the measurements
are very stable over this time period (discussed in detail below). The calibrations are performed
using whole air samples from pressurized cylinders that are referenced to the internationally recog-
nized NOAA/WMO scales for both CO2 and CH4. Three different whole air samples with varying
CH4 and CO2 concentrations are used to define a calibration slope and intercept, which is then
applied to bias-correct the raw data. Water vapor (for CO2 and CH4) and isotopic corrections (for
CO2 only) are applied to the data, post-calibration, according to Chen et.al. [128] and Nara et.al.
[129].

Figure 34 shows the deviation from the mean bias correction for each calibration performed
through June 26, 2014, providing an indication of the stability of the measurements. The bias is
defined as the resulting correction applied to a 400 ppm CO2 sample and a 1.97 ppm CH4 sample
based on a given calibration slope and intercept of a three point linear regression. The variability
in the bias can provide an indication of the pre-calibration precision of the measurements. The
shaded areas in the figure show the 1σ (dark grey) and 2σ (light grey) standard deviations in the
measured bias from the mean for the ensemble of calibrations. For CO2 the 1σ stability is 0.031
ppm and for CH4 it is 0.23 ppb. There are trends apparent in the bias, however, especially for CH4,
which declines relatively sharply during the month of May 2014, underscoring the importance of
performing regular calibrations to catch such drifts in instrument performance and to minimize as
much as possible the uncertainty due to instrumental drifts.

The mean bias during the 5 months when calibrations were performed was applied across the
full data set (May 2013 to June 2014). Unless significant instrumental drifts occurred prior to
January 2014, the variability in the instrument bias provides limits on the uncertainty resulting
from the lack of calibrations for the first 8 months of the data period, which are small relative to
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Figure 34. Deviation from the mean bias correction for each
calibration performed through June 26, 2014, for (a) CO2 and (b)
CH4.
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other likely sources of uncertainty, such as pressure broadening, isotope corrections, and water
corrections [128, 129, 130]. For example, prior to the inclusion of the Nafion drier (late December,
2013), the water vapor concentrations typically ranged from 0.5-1.5%, where uncertainties in the
H2O correction translate to uncertainties of 0.05 ppm and 0.5 ppb for CO2 and CH4, respectively
[128]. As calibrations continue to be processed the instrumental drift will continue to be evaluated
to provide better constraints on the uncertainty for data collected before calibrations commenced.

The time series for all CO2 and CH4 data collected through late June 2014 are shown in Fig. 35
as hourly averages. The CO2 time series shows significant variability due to local emissions on
top of a seasonally varying hemispheric background characterized by uptake during the summer
and release during the winter. CH4 also shows strong variability due to local sources on top of a
seasonally varying background that is influenced primarily by a summertime photochemical sink.
The seasonal variation of CH4 is similar in phase to CO2 but different in amplitude. Our interest
is in the interpretation of the variability due to local emissions and uptake of these two gases,
therefore it is useful to express the CO2 and CH4 mole fractions as excess values (∆CO2 and
∆CH4) where the observations from a clean air background site are subtracted. In this case we use
observations from aircraft flying in the free troposphere over Trinidad Head, CA, thereby removing
variability in the data set due to hemispheric scale processes so that we may focus on interpreting
the impact of local processes on the observations.

A significant portion of the variability in ∆CO2 and ∆CH4 is due to boundary layer dynamics
operating on diurnal, synoptic, and seasonal scales. During so-called stable boundary layer con-
ditions, typical at nighttime and during the winter months, mixing is weak because of minimal
convective heating at the surface, and the observations are more sensitive to local emissions. On
the other hand, during the daytime and the summer months, surface heating results in strong con-
vective mixing and deeper boundary layers, and concentrations are lower for equivalent emission
rates. The seasonality of this effect can be seen in the time series of CO2 and CH4, both of which
exhibit much higher variability on average during the winter months than during the summer, more
so than would be expected from shifts in the background concentrations alone. It can also be seen
on diurnal scales, as shown in Fig. 36, which shows the diurnal averages for the entire data set
for both ∆CO2 and ∆CH4. On average, concentrations are higher during the nighttime and early
morning hours than during the afternoons, and this effect is expected because of stronger con-
vective mixing during the daytime. Synoptic scale processes are harder to discern, however, and
this results in day-to-day and week-to-week variability in the mixing dynamics that is much more
difficult to predict. This motivates the use of our ceilometer observations to provide real-time in-
formation about mixing layer dynamics from vertical profiles of aerosol backscatter. Fig. 37 shows
an example of the aerosol backscatter for a typical summertime day and the inferred mixing layer
depth that is calculated from an algorithm that identifies sharp gradients in aerosol backscatter
as a function of altitude. Mixing layer depth can also be simulated using the Weather Research
and Forecasting model, and the ceilometer observations provide an observational constraint for the
model. Knowledge of the mixing layer height allows us to appropriately analyze the CO2 and CH4
data set and discern variability due to mixing dynamics from variability due to changes in local
emissions.

Another useful strategy for interpreting variability in the observations to provide information
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Figure 35. Concentrations time series for (a) CO2 and (b) CH4
data collected through late June 2014.
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Figure 36. Diurnal averages for the entire data set for both ∆CO2
and ∆CH4.

Figure 37. An example of the aerosol backscatter for a typical
summertime day and the inferred mixing layer depth.
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on local emission sources is to study tracer-tracer relationships between CO2 and CH4 and other
trace gases of interest, such as CO, NOx, and VOCs. This approach tends to minimize the impact
of changing mixing dynamics because the tracers are subject to the same physical processes in the
atmosphere. Thus, the ratio of two different tracers will be driven primarily by changes in the type
of emissions sampled rather than mixing. For example, CO and NOx are both primarily emitted by
on-road vehicles, with some contribution from off-road vehicles. CO is emitted in larger amounts
by gasoline vehicles while NOx is emitted more so from diesel vehicles. CO2, of course, is emitted
significantly from on-road and off-road vehicles, but also from a wide range of other combustion
sectors (utility generation, residential and commercial heating, etc). The behavior of CO and NOx,
relative to CO2, should reflect the differences in timing of on-road vehicle traffic, with respect to
the other combustion sources that emit CO2. It is instructive, therefore, to examine the diurnal
behavior of CO and NOx in Fig. 38 along with that of CO2 in Fig. 35. In contrast to the CO2
and CH4 plots, the CO and NOx data used in the diurnal profile is from October-November 2013
only, so there may be some seasonal variability that is not reflected in these data. Nevertheless,
the diurnal behavior for CO and NOx is qualitatively different from that of CO2, and the opposite
of what would be expected by a constant emissions source and a diurnally varying mixing layer
height. In contrast to CO2 and CH4, CO and NOx are higher in concentration on average during
the daytime hours, peaking during the morning and evening rush hours, indicating that the timing
of on-road emission sources is a strong factor in driving the variability of these tracers, and that
boundary layer dynamics have less of an impact. The primary CH4 and CO2 sources in the region,
therefore, appear to be decoupled from traffic patterns, suggesting that the transportation sector
is not the primary component of the sources contributing to both gases. As an extension of this
analysis, the PTR-MS measurements will allow for analogous studies of a whole suite of VOC
tracers in a multi-variable regression analysis to fingerprint more specific sources of CO2 and
CH4.

Figure 38. Diurnal behavior of CO and NOx from October-
November 2013.
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The sampling infrastructure developed as part of this project has enabled multiple collabora-
tions with other institutions interested in the general area of greenhouse gas attribution studies,
and who can bring a wide variety of tools to approach the problem. One such collaboration with
Lawrence Livermore National Lab and University of California at Merced is ongoing and brings
analysis and modeling capabilities in radiocarbon in CO2 (14CO2) and carbonyl sulfide (COS)
in order to partition the observed CO2 mole fraction into its fossil and biospheric components.
Another collaboration involves a statewide effort lead by researchers at Imperial College Lon-
don/Scripps Institute of Oceanography in which our Livermore site is part of a network of towers
across California where an identical set of observations are being made, including CO, CO2, CH4,
and 14CO2. The goal of this study is to provide improvements to emissions inventories in CA for
fossil CO2 and CH4 using the observations within an inversion framework.
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7 Conclusion

In this project, we have developed atmospheric measurement capabilities and a suite of atmo-
spheric modeling and analysis tools that are ready to be used for verifying emissions of greenhouse
gases (GHGs) on an urban-through-regional scale.

• We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to
simulate atmospheric CO2. This will allow for the examination of regional-scale transport
and distribution of CO2 along with those traditionally studied air pollutants at relatively high
spatial and temporal resolution, with the goal of leveraging emissions verification efforts for
air quality and climate.

• We have developed a bias-enhanced Bayesian inference approach that can remedy the well-
known problem of transport model errors in atmospheric CO2 inversions. We have tested the
approach using the well-documented data and model outputs from the TransCom3 global
CO2 inversion comparison project.

• We have also performed two prototyping studies on inversion approaches in the general-
ized convection-diffusion context. One of these approaches explored the use of Polynomial
Chaos Expansion in accelerating the evaluation of a regional transport model to enable ef-
ficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The
other approach aims at a deterministic inversion of convection-diffusion-reaction system at
the presence of uncertainty. These approaches should in principle be applied to realistic
atmospheric problems with moderate adaptation.

• We outline a regional greenhouse gas source inference system. As shown in Figure 39, the
system integrates (1) two approaches of atmospheric dispersion simulation and (2) a class
of Bayesian inference and uncertainty quantification algorithms. We use two different and
in principle complementary approaches to simulate atmospheric dispersion. Specifically, a
Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model -
FLEXPART-WRF are used. These two models share the same WRF assimilated meteorol-
ogy fields, making it possible to perform a hybrid simulation, in which the Eulerian model
(CMAQ) can be used to compute the initial condition needed by the Lagrangian model, while
the source-receptor relationships for a large state vector can be efficiently computed using
the Lagrangian model in its backward mode. In addition, CMAQ has a complete treatment
of atmospheric chemistry of a suite of traditional air pollutants, many of which could help at-
tribute GHGs from different sources. The inference of emissions sources using atmospheric
observations is casted as a Bayesian model calibration problem, which is solved using a class
of Bayesian inference techniques, such as the bias-enhanced Bayesian inference algorithm
that account for the intrinsic model deficiency, Polynomial Chaos Expansion to accelerate
model evaluation and Markov Chain Monte Carlo sampling, and Karhunen-Loève (KL) Ex-
pansion to reduce the dimensionality of the state space.

• We have established an atmospheric measurement site in Livermore, CA and are collect-
ing continuous measurements of CO2, CH4 and other species that are typically co-emitted
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with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs to
different emissions sectors. Automatic calibrations using traceable standards are performed
routinely for the gas-phase measurements. We are also collecting standard meteorologi-
cal data at the Livermore site as well as planetary boundary height measurements using a
ceilometer. The location of the measurement site is well suited to sample air transported
between the San Francisco Bay area and the California Central Valley.
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Introduction

Atmospheric Dispersion Theories

Atmospheric dispersion refers to the mathematical description of the behaviors of chemical
species released from various sources into the atmosphere. Although t is very common to use
atmospheric ’diffusion’ instead of atmospheric dispersion, it should be noted that dispersion in
turbulence is fundamentally different from ordinary molecular diffusion. Depending on the coor-
dinates used to study atmospheric flows, the equation for the mass balance of a chemical species i
in the atmosphere can be written in two different ways as follows.

Eulerian approach

Let ri be the concentration of chemical species i, which is expressed as number density (molecules
cm�3), or mass density (kg m�3), it in general holds that

∂ri

∂ t
= �— · (riv)+D—2ri + si (17)

where si is a local rate (molecules cm�3 s�1 or kg m3 s�1) of local processes such as chem-
istry, emissions, dry/wet deposition; Fadv = riv is the advective flux driven by wind velocity v;
Fdiff =�D—ri is the molecular diffusion flux; the divergence of mass fluxes —F = —(Fadv +Fdiff)
measures what flows out of minus flows into the elemental volume of air. Substituting into Eq. (??)
gives

∂ri

∂ t
= �— ·F+ si (18)

An scale analysis reveals that Fadv � Fdiff, i.e. molecular diffusion is negligible compared to
advection for transport scales larger than ⇠1 cm in the lower atmosphere including the troposphere
and the stratosphere (lower than ⇠100 km from the earth’s surface). Therefore, the molecular
diffusive flux Fdiff = �D—2ri is safely neglected in these circumstances, thus Eq.(??) becomes

∂ri

∂ t
= �— · (riv)+ si (19)

Using number density as concentration unit, Eq.(??), Eq.(??) and Eq.(??) are Eulerian flux
form continuity equations. Another unit that is often used in atmospheric chemistry to express
chemical concentration is mole fraction or mixing ratio (µi, mol mol�1), defined as the number of
moles of the chemical per mole of air. ri and µi is related by ri = µira, ra = r1 +r1 +r3 + ...+rn.
By replacing ri with µi and neglecting the local term s for the air itself in Eq.(??), one can obtain
its equivalent advective form:

∂ µi

∂ t
= �v ·—µi +

si

ra
(20)
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as chemistry. However, this is a over-simplified description of transport in a turbulent atmosphere
that may not be very useful, because the trajectory is not likely to be known perfectly due to the
highly variable wind velocity fields. As noted earlier, the turbulent component of wind velocity
v0 is a random variable, therefore it is natural to use a random process to describe the trajectory
of a fluid element as well. The formal Lagrangian continuity equation turns out to serve this need
very well. Here the object of interest is representative fluid particles, of which the location x is the
dependent variable of concern and is a function of time t. We introduce Y, the probability density
function (pdf) for a particle’s location at time t:

Z •

�•

Z •

�•

Z •

�•
Y(x, t)dx = 1 (28)

Two pdfs are introduced first:

1. The transition probability density Q(x, t|x, t) that describes the likelihood of the particle
getting to x at time t from x0 at t 0;

2. The initial probability density Y(x, t) that the starting point of the particle was indeed at x0
at t 0.

The probability of having the particle at x at t can be expressed by the product of these two pdfs:

Y(x, t) =
Z •

�•

Z •

�•

Z •

�•
Q(x, t|x0, t 0)Y(x0, t 0)dx0 (29)

So far the probability densities have been defined with respect to a single particle. In this
Lagrangian approach, the mean concentration (in unit of mixing ratio, as seen in Eq.(??)) of a
chemical species hµi(x, t)i at a location x and time t is naturally quantified by counting the number
of particles:

hµi(x, t)i =
m

Â
i=1

Yi(x, t) (30)

The concentration at (x, t) should consist of an initial concentration at (x0, t0) and the concentra-
tion changes during t0 ! t (due to chemical decay, emissions input, and deposition to the Earth’s
surface). By expressing the pdf Y(x, t) in terms of initial distribution of µi(x0, t0), and spatiotem-
poral distribution of sources S(x0, t0) (with the unit of mixing ratio per time), and then substituting
these expressions into Eq.(??), one obtains the Lagrangian form of the continuity equation:

hµi(x, t)i =
Z •

�•

Z •

�•

Z •

�•
Qi(x, t|x0, t)µi(x0, t0)dx0 +

Z •

�•

Z •

�•

Z •

�•

Z t

t0
Qi(x, t|x0, t 0)Si(x0, t 0)dx0dt 0

(31)
The key of evaluating Eq.(??) is to obtain the transition probability Q(x, t|x, t). Although the
knowledge of turbulence properties needed for defining Q(x, t|x, t) is in general unavailable, it can
be approximated by invoking some simplified assumptions, such as the Gaussian distribution of
the turbulent wind component v0.

Eulerian VS. Lagrangian
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The two approaches of molding turbulent dispersion reviewed above have their own advantages
and disadvantages. The Eulerian approach will face the closure problem and will introduce nu-
merical diffusion, whereas the Lagrangian approach cannot deal with non-linear chemistry. Con-
cerning the source attribution problem for greenhouse gases, chemistry is unimportant for those
long-lived greenhouse gases such as CO2 and CH4. The key requirement for a chemical transport
model in a source attribution system is to establish the source-receptor relationship efficiently and
accurately. To this end, it turns out that the Lagrangian approach has its unique properties that
makes it attractive.

Measurement Equation and its Inverse

The goal is to interpret continuous measurements of averaged mixing ratios hµi(x, t)i (t =
[t1, t2, t3, ..., tn]) of species i at a sampling site x (x = [x1,x2,x3],x1 = longitude,x2 = latitude,x3 =
altitude). Following the Lagrangian approach, each successive measurement at tr consists of
an initial concentration at t0, which is described in the first part of the RHS of Eq.(31), and a
summation of source emissions during t0 ! t j, which is the second part of RHS of Eq.(31). It is
useful to discretize Eq.(31) as follows:

hµi(x, tr)im =
1
N Â

i jk
(32)

Bayesian Inference

Bayes’ Theorem

p(s|d)| {z }
posterior

µ p(d|s)| {z }
likelihood

p(s)|{z}
prior

(33)

Here the set of all measurements d = (d1, . . . ,dM) is considered data, and the fluxes for all
regions, s = (s1, . . . ,sN) play the role of the model in Bayesian formulation.

Bayes’ formula (33) relates the prior probability distribution p(s) of the fluxes to the posterior
one, in light of data, using the likelihood function

L(s) = p(d|s). (34)

Assignment of Prior

Assignment of Likelihood

The Posterior

48

sa

sp

The two approaches of molding turbulent dispersion reviewed above have their own advantages
and disadvantages. The Eulerian approach will face the closure problem and will introduce nu-
merical diffusion, whereas the Lagrangian approach cannot deal with non-linear chemistry. Con-
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Here the set of all measurements d = (d1, . . . ,dM) is considered data, and the fluxes for all
regions, s = (s1, . . . ,sN) play the role of the model in Bayesian formulation.

Bayes’ formula (33) relates the prior probability distribution p(s) of the fluxes to the posterior
one, in light of data, using the likelihood function

L(s) = p(d|s). (34)
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Figure 39. Schematic of the Regional GHGs Source Inference
System
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A Detailed Descriptions of NEE From the Community Land
Model (CLM4VIC) Simulation

Under MsTMIP, CLM4VIC was configured and run following the protocol described in [86], with
driver datasets provided by MsTMIP as described by Wei et al. [92]. The CLM4VIC-based NEE
used in this study was from the baseline global simulation (i.e., BG1 simulation), in which the
model was driven by a 110 year (1901 - 2010) atmospheric forcing dataset, with annual variations
in atmospheric nitrogen deposition, CO2 concentration, and land-use change. The carbon-nitrogen
biogeochemistry in the model was turned on, allowing for simulating vegetation dynamics in re-
sponse to a changing environment, including prognostic estimates of emissions due to wild fires
under appropriate environmental conditions. For a detailed description of the configuration and
model setup of CLM4VIC simulations from MsTMIP, interested readers are referred to Huntzinger
et al. [86].
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Figure A.1. Hourly time series and average diurnal cycle of
CO2 observed and simulated at BAO. For the time series, model
root mean square error (RMSE), correlation coefficient (R), model
mean bias (meanmodel meanobservation), and ratio of standard
deviations (stddevmodel/stddevobservation) are shown for both
CMAQ and CT2011 after aggregating CMAQ hourly outputs to
3-hourly time series (to match the time resolution of CT2011).
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Figure A.2. Same as Fig. A.1, but for WKT.
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Figure A.3. Same as Fig. A.1, but for WGC.
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Figure A.4. Same as Fig. A.1, but for WBI.
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Figure A.5. Same as Fig. A.1, but for LEF.
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Figure A.6. Same as Fig. A.1, but for AMT.
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Table A.1. Configurations of WRF and CMAQ

WRF
Microphysics Morrison
Cumulus Kain-Fritsch
Surface Pleim-Xiu
Radiation RRTMG
(longwave and shortwave)
Others vertical velocity damping; 6th-order diffusion

For more details in the WRF simulation, including model
setup and evaluation against observations, see the SEMAP
project report for WRF
http://sesarm.aer.com/static/pages/v0.9/
SESARM-Final-Report-20111219.pdf

CMAQ
Gas phase chemistry Carbon Bond 05 (CB05) with updated toluene chemistry
Aerosols 5th-generation modal CMAQ aerosol model (AERO5)
Cloud Asymmetric Convective Method (ACM)
Vertical diffusion ACM2
Horizontal diffusion multiscale scheme based on local wind deformation
Vertical advection WRF
Horizontal advection Yamo
Dry deposition In-line for non-CO2 species

Emissions

Anthropogenic emissions: SESARM regional inventory
(2007) for SESARM states; NEI 2005 v5 for
non-SESARM states
Fire: SESARM regional inventory and Blue Sky inventory
for non-SESARM states
Biogenic: BEIS3
For more details, see the SouthEastern Modeling, Analysis
and Planning (SEMAP) modeling protocol
http://airqualitymodeling.org/semapwiki/index.
php?title=SEMAP_Modeling_Protocol; accessed
January 14, 2013
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