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Executive Sum m ary

M atrix diffusion and adsorption w ithin a rock m atrix  are widely regarded as 
im portant mechanisms for retarding the transport of radionuclides and other solutes 
in fractured rock (e.g., Neretnieks, 1980; Tang et ah, 1981; Maloszewski and Zuber, 
1985; Novakowski and Lapcevic, 1994; Jardine et ah, 1999; Zhou and Xie, 2003; 
Reimus et ah, 2003a,b). W hen rem ediation options are being evaluated for old 
sources of contam ination, where a large fraction of contam inants reside w ithin the 
rock m atrix, slow diffusion out of the m atrix  greatly increases the difficulty and 
tim efram e of rem ediation. E stim ating the rates of solute exchange between fractures 
and the adjacent rock m atrix  is a critical factor in quantifying imm obilization an d /o r 
remobilization of DOE-relevant contam inants w ithin the subsurface. In principle, the 
most rigorous approach to  modeling solute transport w ith fracture-m atrix  interaction 
would be based on local-scale coupled advection-diffusion/dispersion equations for the 
rock m atrix  and in discrete fractures th a t comprise the fracture network (Discrete 
Fracture Network and M atrix approach, hereinafter referred to  as DFNM  approach), 
fully resolving aperture variability in fractures and m atrix  property heterogeneity. 
However, such approaches are com putationally demanding, and thus, many predictive 
models rely upon simplified models. These models typically idealize fracture rock 
masses as a single fracture or system of parallel fractures interacting with slabs of 
porous m atrix  or as a mobile-immobile or m ulti-rate mass transfer system. These 
idealizations provide tractab le  approaches for interpreting tracer tests and predicting 
contam inant mobility, but rely upon a fitted effective m atrix  diffusivity or 
m ass-transfer coefficients. However, because these fitted param eters are based upon 
simplified conceptual models, their effectiveness a t predicting long-term transport 
processes remains uncertain. Evidence of scale dependence of effective m atrix  
diffusion coefficients obtained from tracer tests highlights this point and suggests th a t 
the underlying mechanisms and relationship between rock and fracture properties are 
not fully understood in large complex fracture networks. In this project, we developed 
a high-resolution DEN model of solute transport in fracture networks to  explore and 
quantify the mechanisms th a t control transport in complex fracture networks and how 
these may give rise to  observed scale-dependent m atrix  diffusion coefficients. Results 
dem onstrate th a t small scale heterogeneity in the flow field caused by local aperture 
variability w ithin individual fractures can lead to  long-tailed breakthrough curves 
indicative of m atrix  diffusion, even in the absence of interactions with the fracture 
m atrix. Furtherm ore, the tem poral and spatial scale dependence of these processes 
highlights the inability of short-term  tracer tests to  estim ate transport param eters 
th a t will control long-term fate and transport of contam inants in fractured aquifers.
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1 Introduction

Quantifying the long-term fate of contaminants in fractured rock is a challenging problem 
with implications for nuclear waste storage (Reimus et ah, 2003b; Hodgkinson et ah, 2009) 
and contaminant remediation in fractured aquifers (Dearden et ah, 2013). Breakthrough 
curves from held-scale tracer tests often exhibit early initial arrival times, multiple peaks, 
and long power-law tails (Hoehn et ah, 1998; Becker and Shapiro, 2000; Kurtzm an et ah, 
2007). Such breakthrough curves defy description using the classical advection-dispersion 
equation. Early initial arrival of solute and multiple peaks can be explained by the presence 
of a small number of preferential flow paths. Such flow paths occur within individual 
fractures due to aperture variability and at the network scale due to interconnected, 
high-transmissivity fractures. For conservative (non-sorbing) solutes, long-tailed, 
non-Fickian breakthrough curves are often a ttributed  to the influence of diffusion into the 
porous rock m atrix adjacent to fractures (Maloszewski et ah, 2003; Reimus et ah, 2003a).

In fractured rocks, m atrix permeability is often negligible compared to fracture 
permeability (e.g., smaller by several orders of magnitude). This results in a ‘dual porosity’ 
system in which the fractures serve as transport pathways and the m atrix is an immobile 
zone th a t solutes enter and exit by diffusion. Analytical solutions for dual-porosity single 
fractures th a t include advection and longitudinal dispersion within the fracture and 
molecular diffusion in the m atrix provide a means of predicting breakthrough curves (e.g., 
Tang et ah, 1981; Rasmuson and Neretnieks, 1981; Grisak and Pickens, 1981). F itting 
these analytical models to breakthrough curves measured during laboratory studies in 
single fractures results in estimates of m atrix diffusion coefficients (e.g. Callahan et ah, 
2000; Maloszewski and Zuber, 1990; Dai et ah, 2012). A characteristic of these 
breakthrough curves is a power-law tail with a slope of —3/2.

Success with interpreting laboratory experiments using simple analytical models 
motivated the use of these models for interpreting held-scale tracer tests (Zhou et ah, 2007; 
Reimus et ah, 2011). These models also suggest tha t, in fractured systems where m atrix 
diffusion is prevalent, breakthrough curves for solutes with different diffusion coefficients 
should exhibit distinct separation of the tails. Tracer tests using tracers with distinctly 
different molecular diffusion coefficients in fractured saprolite (Jardine et ah, 1999) and 
fractured granite (Reimus et ah, 2003a) both exhibited clear evidence of m atrix diffusion.
A tracer test in a different fractured granite (Becker and Shapiro, 2000) exhibited a 
long-tailed breakthrough curve th a t could be fit well by a single fracture m atrix diffusion 
model, but results showed no significant separation of breakthrough curves for different 
solutes suggesting negligible influence of diffusive processes on the large-scale transport 
behavior.

Zhou et al. (2007) presented calculations of m atrix diffusion coefficients for held-scale 
tracer tests carried out at scales ranging from 10 to 104 meters. Their results show th a t the 
effective m atrix diffusion coefficients required to explain the observations is scale dependent 
and often many orders of magnitude larger than  the molecular diffusion coefficient. These 
results further support the idea th a t the non-Fickian behavior observed in tracer tests in 
fractured systems cannot be completely a ttributed  to m atrix diffusion, and th a t advective

3



processes cannot be ignored.

Park et al. (2003) dem onstrated th a t pressure gradients along the intersections of 
parallel-plate fractures can lead to ’flow cells’ or advective loops within fractures in which 
there is no net pressure gradient across the fracture. These advective loops result in 
increased residence time of a fraction of solute as it travels through the system by 
advection alone. These results suggest a potential mechanism for advection-induced 
non-Fickian transport in fracture networks.

Recent efforts to incorporate both advective and diffusive processes into transport 
models use different approaches for representing multiple interacting continua within the 
fractured system (Wang et ah, 2013). These models represent active fractures, inactive 
fractures (e.g., fractures tha t are connected to the network but with no net advection), and 
the porous m atrix as distinct continua, each with transport properties th a t are 
representative of the respective continuum. However, the models of transport within each 
continuum require param eters to quantify the rates of transport and the rates of exchange 
between interacting continua. Thus, though such models are capable of fitting observed 
data, they do not provide a mechanistic prediction of transport through a complex system 
consisting of multiple interacting continua.

A mechanistic approach, which directly represents advective and diffusive processes over 
a broad hierarchy of length scales provides the ability to explicitly represent the transport 
processes within the fracture network and quantify the relative influence of geometric 
characteristics of a fracture network advective-diffusive transport processes. We use a 
large-scale three-dimensional discrete fracture network to simulate transport through 
fracture networks consisting of thousands of variable-aperture fractures. Because this 
model explicitly represents transport mechanisms over the full range of length scales, it 
requires no fitted mass transfer param eters and provides a means for directly relating the 
behavior of measured breakthrough curves to the details of the fracture network.

2 C om putational m odel developm ent

To explore the influence of local transport processes on network-scale observations of solute 
transport, we developed a high-resolution model of solute transport in discrete fracture 
networks. The model explicitly represents the small-scale features (i.e., aperture 
variability) and the physics th a t control fluid and solute transport within individual 
fractures within networks consisting of tens of thousands of fractures and thus we call the 
model Variable Aperture Solute Transport - Discrete Fracture Network (VAST-DFN) 
model. This section describes the im portant components of the model and presents 
highlights from our model evaluation process (full details are available in Zafarani (2013)). 
This project focused on two-dimensional networks in which the individual links (or bonds) 
in the network consisted of two-dimensional variable aperture fractures. This resulted in 
three-dimensional flow fields th a t were similar in structure to numerous prior studies in 
simple two-dimensional networks where the bonds were represented as one-dimensional 
connections (e.g., Park et ah, 2001).
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Though our approach is generalizable to more complex network topologies, in this study, 
we used 2D bond percolation networks (Broadbent and Hammersley, 1957) to define 
fracture network connectivity. We first defined a regular lattice of nodes and then connect 
each pair of neighboring nodes with probability Pn. Thus, for P n  =  1 this results in a 
uniform fully connected lattice. The percolation threshold occurs at P n  ~  0.5, which 
means th a t for P n  <  0.5 it is unlikely th a t a connected path  through the network will exist. 
Figure 1 shows two samples of percolation network maps randomly generated by the model.

0 20 4 0 60 60 100 120 0 2 0 40 60 SO 100 120

Figure 1: Samples of bond percolation networks. The size of network is 128 x 128 and P n = 0.52 (right) and 
P n = 0.6 (left) resulting in a maximum of 32768 fractures when P n  = 1.

We then extended the two-dimensional bond percolation networks to three dimensions 
by extruding each bond in the z-direction to create two-dimensional fractures. Each 
fracture includes small-scale aperture variability th a t represents observations of fracture 
apertures in natural fractures (Brown et ah, 1995). Figure 2 shows an example of a 
variable-aperture discrete-fracture network, where the colors represent mean fracture 
aperture in the network-scale image and local aperture variability in the expanded image of 
two intersecting fractures.

Each fracture in the network consists of a synthetic correlated random aperture field 
generated using an approach proposed by Brown (1995). The power spectrum  of aperture 
field is defined as:

C(k) (X ( l  +  A2 |k|2)" <4+"> (1)

where k is the wave number vector, H  is the Hurst exponent, which is typically in the range 
0.5 <  H  <  1, and A is a cutoff length scale. This functional form of £(k) yields a smooth 
transition from the power law behavior (|k| > 1 / / lambda) to the cutoff value (|k| < 1/A), 
which results in elimination of oscillations th a t occur with a abrupt cutoff. This 
characteristic of random field is referred to as well behaved semivariograms, with the cutoff 
value reflecting the length scale above which the two fracture surfaces are well matched.
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Figure 2: Example of a variable aperture discrete fracture network. Each fracture includes aperture vari­
ability as depicted in blown up segment of the network.

\=4Ax A=40Ax

Figure 3: Sample of variable-aperture fractures generated for A=4 and 40, where A is the cutoff length scale 
associated with Eq. 1.

2.1 F low  m od el

Our com putational model explicitly represents preferential flow within each fracture 
induced by aperture variability. Thus, the basic building block for the model is a single 
variable-aperture fracture. These single fractures are then connected at fracture 
intersections such th a t mass and momentum are conserved throughout the fracture 
network. Here we first present the single fracture model and then discuss how these single 
fractures are linked within the discrete fracture network.

Flow through the three-dimensional void space between rough fracture surfaces is 
governed by the Navier-Stokes equations:

p+ u • V u j  =  F -  Vp +  p V 2u (2)

where pis the fluid density, F is the body force vector (per unit mass), p is pressure, is 
the fluid viscosity, and u is the velocity vector. The left-hand-side quantifies the 
acceleration of a fluid parcel along its trajectory and the terms on the right-hand side 
represent the sum of applied body forces, applied pressure gradient, and viscous forces. For
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an  incom pressib le  fluid, m ass conservation  also d ic ta te s  th a t:

V • u =  0 (3)

In subsurface flows, gravity is the acting body force, so F =  g, which can be combined 
with p  by defining P  = p  +  pgz. Furthermore, for low-Reynolds-number flows, typical in 
the subsurface, the acceleration (or inertial) terms can be neglected and the resulting 
steady-state flow equation reduces to the Stokes equation:

V P  =  p V 2u  (4)

For the case of a parallel-plate fracture, pressure gradients across the fracture aperture 
(z-direction) reduce to zero and this equation simplifies to the Reynolds equation or local 
cubic law :

q =  (5)

where q  is the flow rate per unit width through a segment of fracture with aperture b and 
h = P/pg  is the hydraulic head. We apply the local cubic law to calculate flow within 
variable-aperture fractures by assuming th a t (5) holds locally despite variations in b. 
Finally, mass conservation requires that:

V • q  =  0 (6)

Numerous studies over the past two decades have explored the appropriateness of (5) for 
representing flows through variable-aperture fractures (e.g., Zimmerman and Bodvarsson, 
1996; Nicholl et ah, 1999; Yeo and Ge, 2005; Brush and Thomson, 2003). Though aperture
variability induces pressure gradients in the z-direction, Brush and Thomson (2003)
dem onstrated through detailed comparisons with Navier-Stokes based simulations and 
local-cubic-law simulations th a t (5) captures preferential flow patterns and bulk flow rates 
reasonably well if Re  <  1, Re(b) / Xb < 1, and Reab/(b) <  1, where Re = pq_/p, (b) is the 
mean fracture aperture, Ab and Ob are the correlation length and standard deviation of 
aperture variability.

We discretize fractures within a fracture network into square grid blocks with uniform b. 
Applying (5) and (6) to variable aperture fractures requires an approximation for the 
effective aperture between adjacent grid blocks with different aperture. We use the 
harmonic average:

3 2 bfb3i+1^  = wrtp <7)l

Nicholl e t al. (1999) com pared  sim ulations using  a  range  of different ap p rox im ations for 
bi+1 /2  a n d found  th is  schem e resu lted  in  th e  b es t agreem ent be tw een  sim ulations and  
e x perim en ta l observations.
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W ithin individual fractures, boundary conditions can be applied around the edges of the 
fracture. These are typically no-flow (i.e., V h  • n =  0, where n is a unit vector normal to 
the boundary) or constant head boundaries. However, within a fracture network, many 
fractures may not intersect a boundary, but will intersect other fractures within the 
network. To represent fracture intersections, we define a connected line of grid blocks 
within one of the intersecting fractures as intersection grid blocks. These grid blocks are 
then connected to the neighboring grid block within each of the intersecting fractures and 
continuity is enforced by specifying th a t XaLi Ti =  0 where n is the number of fractures 
connected to the intersection grid block (Figure 4). This approach to discretizing the

Figure 4: Simple 4-fracture network with 4-way fracture intersection. In this case the intersection node 
belongs to Fracture 0 (F0) and links are established between each of the neighboring fractures. Intersection 
nodes (red) are connected to the corresponding grid block in each fracture (F0, F I, F2, and F4).

fracture network allows us to define a local coordinate system within each fracture with 
communication between connected fractures only occurring at intersection nodes. Thus, 
this approach is readily parallelized by assigning individual fractures to individual 
com putational processes and establishing communication between processes only at 
intersection grid blocks. Using Message Passing Interface (MIP), we parallelized this 
algorithm following an approach originally proposed by (Detwiler et al., 2006). At the 
fracture-network scale, we impose either constant h or no-flow boundaries and develop a 
system of equations th a t we solve implicitly for h throughout the entire fracture network. 
We then use (5) with the calculated values of h to  calculate q throughout the fracture 
network, which is then used as input to large-scale solute transport simulations.

2.2 S o lu te  T ransport M od el

Transport within fractured rock mass is governed by the three-dimensional 
advection-diffusion equation:

c)c
— +  u • Vc =  D mV 2c (8)
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where c is the solute concentration and D m is the molecular diffusion coefficient. We 
simplify this problem by neglecting advective transport in the rock m atrix such tha t 
advection occurs only through the variable-aperture fractures. Though we do not explicitly 
solve for the three-dimensional velocity field within each fracture, u, a reasonable 
approximation is to assume a parabolic velocity profile between the fracture surfaces, with 
the local average velocity defined as u =  q/6. This assumption is consistent with the 
assumption of negligible z-direction pressure gradients used to develop the flow model and 
is, thus, likely subject to similar constraints. The resulting quasi-three-dimensional velocity 
field is then:

u = | ( l - 4 ^ ) u  (9)

where —6/2 <  z <  6/2.

R ather than  develop an Eulerian discretization of (8), we use a Lagrangian approach 
th a t tracks particles subjected to advective and diffusive displacements within each time 
step as they travel through the interconnected fractures. When a particle enters the rock 
m atrix by diffusion, the residence time in the rock m atrix is described by an appropriate 
probability density function (described below). The particle-tracking approach has two 
prim ary advantages: 1) it does not introduce numerical diffusion, which is a persistent 
challenge with Eulerian solutions to advective processes and 2) it is able to quantify the 
impact of low-velocity, low-probability pathways through the fracture network on solute 
breakthrough curves.

Each three-dimensional particle displacement step is calculated as:

A x =  u A t  +  w ^ 2 D mA t  (10)

where w  is a three-dimensional vector of random numbers drawn from a Gaussian 
probability density function with zero mean and unit variance. We use bilinear 
interpolation to estimate local velocities between grid-block faces.

2.2.1 T ransport w ith in  fractures

Adaptive time stepping ensures th a t particles do not experience large velocity gradients 
during any single displacement. Velocity gradients occur in the fracture plane due to 
aperture variability and across the fracture aperture due to the imposed parabolic velocity 
profile. Thus, two criteria are needed to determine each time step, one th a t limits the 
displacement across the fracture aperture to a small fraction of the fracture aperture and 
one th a t limits displacements in the x-y  plane to a fraction of a grid block.

Reimus and James (2002) noted th a t by defining a constraint on diffusive time steps, 
many diffusive displacements may be arbitrarily small. They thus developed a time-domain
approach th a t rather specifies a fixed displacement and then selects the corresponding time
step from a probability density function (pdf) of travel times. They simplified the resulting 
series solution by developing an empirical relationship for the resulting pdf. We apply this
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approach by defining a maximum ^-displacement of 0.056, which results in a diffusive time 
step of:

. (0.056)2
A td =  0.376-

D r,
■ exp[0.787 • w] ( 11 )

where w  is a zero-mean, unit-variance, normally-distributed random number.

We then select a maximum displacement in the x  — y plane of 0.5Ax, where A x  is the 
grid spacing, which results in an advective time step of:

AL
u

0.5Ax
( 12 )

The time step for each displacement is then selected as m in(A L, AL)-

The transport model outlined to this point provides a means for tracking particles 
through individual rough-walled fractures and has been dem onstrated to capture 
fracture-scale transport processes reasonably well (e.g., Detwiler et ah, 2000). However, 
simulating transport through a fracture network requires an approach for routing particles 
through fracture intersections. Previous efforts to simulate transport through fracture 
intersections have assumed either complete mixing within the fracture intersection (Smith 
and Schwartz, 1984) or stream  tube routing (Endo et ah, 1984; Hull et ah, 1987). In the 
case of complete mixing, the intersection acts as a mixer such th a t all fluid leaving the 
intersection has the same solute concentration, whereas stream  tube routing assumes zero 
mixing within the intersection and assigns mass fluxes leaving the intersection as 
corresponding weighted averages of the incoming fluxes. High-resolution simulations using 
direct solutions to the Stokes equations through idealized fracture intersections (Mourzenko 
et ah, 2002) show th a t the mixing th a t occurs within the fracture intersections is 
dependent upon the Peclet number (Pe = q /D m). The amount of mixing ranges from 
complete mixing in the diffusive limit (Pe —>• 0) to stream tube routing (Pe —>• oc).

Qy/Qx= 025

T lm e-D om ain ap p ro ach

^  0 .5

Q jQ x=2.t

Qy/Qx=l-(
QJQ X=4-L

10 1
Peclet Number (Pe)

Figure 5: Mixing ratio at fracture intersections for Pe  ranging from the diffusive limit (left side) to  the 
advective limit (right side). Our newly proposed time-domain random walk approach accurately represents 
the Pe-dependent behavior observed in our high-resolution, Navier-Stokes-based benchmark simulations.

In order to represent the range of intersection mixing observed in these studies in our 
network-scale solute transport model, we developed an efficient approach for routing
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particles through each intersection th a t does not require explicit calculation of the velocity 
held within the fracture intersection (Zafarani and Detwiler, 2013). The model uses a 
time-domain random walk approach and idealized representations of the velocity held 
within the fracture intersection to determine the path  of particles through a fracture 
intersection in a single step. We evaluated the intersection mixing model by comparing 
simulation results to high-resolution mechanistic simulations in which we solved the Stokes 
equations for different intersection geometries and transported particles through the 
intersection. Calculated mixing ratios, M r =  for 10-2 <  Pe  <  104 exhibit excellent 
agreement over the entire range indicating the robustness of our new intersection transport 
model (Figure 5).

2.2.2 T ransport w ith in  th e  rock m atrix

Diffusive particle displacements perpendicular to the fracture plane occasionally result in 
particles intersecting the fracture surface. At each of these events, the probability th a t the 
particle enters the fracture m atrix is given by:

p _  f i V D m e  o)
r  m a t r i x  p p —  . , p p .   V1 0 /

V Pm  T (y y  D me

where D me is the effective diffusion coefficient in the rock m atrix and (f) is the rock porosity. 
Once a particle enters the matrix, it is necessary to calculate both the time spent in the 
m atrix before reentering the fracture and the displacement, A x  of the particle in the x-y  
plane of the fracture. To calculate the residence time within the rock m atrix we 
approximate the fracture surface as a plane and select the first arrival time at the plane 
from the probability density function:

A z2
A  + —  °  0  41L-*bm a tm x  o V-1"*/

—L )  p7e W

where A zQ is the distance into the m atrix from the fracture surface, or the endpoint of the 
previous displacement of magnitude Az, which is given by:

a / D m e  (A t A t fr a c tu r e )  r \

AZ" = ' /  D P A t   ( l5 )

where A t f racture is the portion of the previous time step spent in the fracture. The location 
at which the particle reenters the fracture can then be drawn from a probability density 
function representing the two-dimensional diffusion equation:

A x  — W\ J  2 A t m a tr ix  (16)

where w  is a vector of zero-mean, unit-variance random numbers.
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3 Sum m ary o f m ajor resu lts

We carried out param etric studies in large-scale fracture networks to explore the influence 
on network-scale transport behavior of: i) aperture variability within individual fractures; 
ii) configuration of solute injection; and iii) measurement scale. Following is a summary of 
key findings from these studies.

We selected network properties to reflect the held-scale tracer tests reported by (e.g., 
Zhou et ah, 2007) and used small-scale aperture variability consistent with measurements 
of Brown (1995). We used values of percolation number, P n , ranging from the percolation 
threshold to a uniform lattice. We generated correlated random aperture fields with 
H  =  0.8, b =  3 x 10-4 (m), cutoff lengths of A= 4A;r and 40A and standard deviation of 
a  =  6.0 x 10-5 (m). In each case we also considered the case of uniform fractures (a =  0) 
to directly assess the effect of small-scale aperture variability on network-scale transport 
processes. Simulations proceeded for a to tal time of 50 years.

In addition, we tested two source configurations: (1) point source injection and (2) 
uniform concentration in the inflow boundary fractures. These conditions represent 
idealizations of a localized tracer test in which solute is introduced into a single fracture 
and release of a contam inant over a larger area, which is an idealization of a typical 
contam inant source zone. For the point source injection we initialized particles in a single 
fracture and flux weighted their locations across the width of the fracture to represent a 
uniform concentration. We chose the fracture for injection to coincide with flux-weighted 
middle of the inlet boundary of the fracture network, so th a t injected particles are 
hydraulically equidistant from the two no flow boundaries located on top and bottom  of 
the network (Figure 6).

Inactive (Dead-end) Secondary
Segments r l o o p s ' ^

Pn=0.5 Pn=0.6 Pn=0.8

Figure 6: Cross-sections of fracture networks at different values of Pn. The color scale represents the 
mean flow velocity through each fracture on a logarithmic scale. Gray regions indicate fractures th a t are 
hydraulically connected to the boundaries but have a mean velocity of zero.

The distribution of flow rates exhibited a strong dependence on the connectivity of the
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network (Figure 6). Purple regions indicate preferential pathways through the network 
where mean velocities are significantly larger than  in the remainder of the fractures in the 
network. These fractures lie on pathways th a t are hydraulically well connected to the 
constant-head boundaries on the left and right of each network. For P n  =  0.8 the purple 
fractures are largely aligned with the mean flow direction (left to right), but as P n  
decreases, the preferential pathways become more tortuous. In addition, the secondary flow 
loops (light blue regions) become longer an more circuitous; at large P n  the secondary 
loops largely connect adjacent fractures where there is a small local gradient perpendicular 
to the regional gradient. W hen P n  decreases, the secondary loops largely connect to two 
different locations along one preferential pathway, where flow is driven through the 
secondary pathway (which is much longer than  the preferential pathway) by the same local 
gradient. The gray regions indicate fractures tha t are hydraulically connected to the 
boundaries, but have a net flow of zero. In many studies of transport through fracture 
networks, such connected but inactive fractures are removed from the network to improve 
computational efficiency. Indeed in a two-dimensional fracture network this is reasonable 
because there is no driving force for flow through these dead-end fractures.

In three-dimensional fracture networks, aperture variability within individual fractures 
leads to local pressure gradients along fracture intersections. The result is tha t, even 
though the net flow through the fracture may be zero, the possibility for advection in and 
out of these no-flow regions exists. Figure 7 demonstrates this through an enlargement of 
the intersection of two fractures on the preferential flow path  [1], a secondary fracture [2], 
and a dead-end fracture [3].

[3]

Figure 7: An example simulation highlighting key transport mechanisms in a variable-aperture fracture 
network. The figure shows fracture aperture (left) and flux with particle trajectories (right) and highlights 
three distinct transport regimes in the network: (1) Network-scale preferential flow paths; (2) Secondary 
loops that consist of connected fractures with non-zero flow; and (3) Dead-end fractures tha t are hydraulically 
connected to  the boundaries on one end and thus have zero net flow. Advective loops in the are disconnected 
fracture caused by pressure gradients along the fracture intersection entrain particles into these dead-end 
fractures.
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In the dead-end fracture [3], there is a sequence of advective loops th a t decrease in 
magnitude as the source and sink of the respective loops become further apart. Thus, these 
loops provide a localized scale-dependent mechanism for causing solute to enter and 
’no-flow’ fractures as can be seen by the white lines highlighting particle trajectories. 
Furthermore, because the velocities in these dead-end fractures are typically orders of 
magnitude less than  those in the preferential and secondary fractures, diffusion contributes 
more significantly to transport than  it does in the higher velocity flow paths.

Transport of particles into dead-end fractures leads to a significant increase in residence 
time for a fraction of the particles. Figure 8 shows breakthrough curves measured at the 
right-side boundary for particles released as a point source on the left-side boundary for 
networks consisting of fractures with different amounts of aperture variability. For

P =0.i

P = 0 .6 0

P = 0 .5 2

t

T im e(sec )

Figure 8: Breakthrough curves for four different network realizations. For each network realization, the 
network was populated with three different types of fractures: i) parallel-plate; ii) variable aperture with 
A =  4Ax; and iii) variable aperture with A =  40Ax.

networks consisting of parallel-plate fractures, pressure gradients along fracture 
intersections are nonexistent such th a t the results are identical to what would be predicted 
for a two-dimensional network. For the network with P n  =  0.8, the parallel-plate network 
results in near-Fickian behavior, while increasing aperture variability for the same network 
geometries leads to a significant increase in tailing. The breakthrough-curve tails exhibit 
slopes of about -3/2 as expected for the case of transport through fractures with m atrix 
diffusion, but for these simulations D me =  0 and (p = 0 so there is no interaction with the
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rock matrix. Thus, these results show th a t simply adding local aperture variability causes 
the transition away from a Fickian dispersion process. As the fracture networks become 
more sparse, the influence of aperture variability on the breakthrough curves becomes less 
significant and inter-realization variability increases, but the long-time behavior is 
consistent, in th a t the breakthrough-curve tails have a similar slope to th a t observed for 
the variable-aperture P n  =  0.8 networks.

Figure 9: Trajectory of particles through networks with different values of P n. The color scale reflects the 
relative number of particles tha t passed through each fracture in the network. The left-hand column used a 
point source injection of the particles and the right-hand column used a uniform flux-weighted source along 
the left-hand boundary through the same network. During these simulations, breakthrough curves were 
recorded at multiple distances from the source (Figure 10).

The length scale at which travel times are recorded and the type of source both 
influence interpretation of measured breakthrough curves. Figure 9 shows particle 
trajectories through a set of fracture networks with different values of Pn. For the case of 
P n  =  0.8 the tracer plume appears fairly uniform as one might expect from a Fickian 
dispersion process. Flowever, as noted above, due to local aperture variability, the resulting
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breakthrough curves are non-Fickian. As P n  and the connectivity of the network 
decreases, the tracer plume becomes more irregular and focused through a smaller number 
of preferential flow paths. In addition, particles are increasingly exposed to regions 
identified as secondary loops and dead-end fractures (Figure 6). The resulting 
breakthrough curves exhibit scale dependence and, to a lesser extent, a dependence upon 
the type of boundary condition (Figure 10). At short length scales, the breakthrough 
curves exhibit multiple peaks at early time and a -3/2 slope characteristic of m atrix 
diffusion. However, as the distance from the source plane increases, the initial peaks in the 
breakthrough curves become smoother because particles have the opportunity to sample 
more fractures with a broader range of mean velocities. In addition, in all cases, at larger 
scales, the power-law slope of the breakthrough-curve tails increases. This effect is more 
pronounced for the point source simulations.

a  = 6 E -0 5 ,  A = 4, P e  = 1

T im e (sec) T im e (sec)

Figure 10: Breakthrough curve results for a network with P=0.52 are shown for distances from source 
(D.F.S) ranging from 2 to 128 meters. Solid line indicates slope 3/2 (log-log scale), which is suggested as 
indicator of matrix diffusion in fracture networks. Point source injection results in closer distances from 
source shows slopes close to —3/2. Results of uniform injection (left) and point source injection (right) show 
key differences in slope in small scale, while In larger scales their slope converges to the same value.
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4 C onclusions

During this project, we developed and tested a model of variable-aperture solute transport 
in discrete fracture networks (VAST-DFN). The model is parallelized to allow direct 
simulation of small-scale transport processes in fracture networks consisting of O(105) 
fractures spanning 100s of meters. The model includes diffusion into the rock matrix, but 
our results to date have focused on the transport processes occurring within the fractures. 
In addition, we developed a new particle-tracking-based approach for simulating solute 
transport through fracture intersections. The model predicts the Pe-dependent nature of 
transport through intersections without the need for high-resolution calculation of the 
velocity held within the fracture intersections. This allows a rigorous representation of 
fracture intersections in large-scale fracture networks where high-resolution calculation of 
the velocity fields within each intersection is not computationally feasible.

We used simulations in a series of large-scale fracture networks with characteristics 
(length scale, fracture connectivity, aperture variability) representative of previously 
reported held-scale tracer tests (Zhou et ah, 2007) to explore the mechanisms responsible 
for observations of scale dependence of param eters h tted  during tracer tests. Our results 
show tha t small-scale aperture variability can lead to enhanced tailing of breakthrough 
curves even in the absence of m atrix diffusion. These results provide a mechanistic 
explanation for the observed scale dependence of h tted  effective m atrix diffusion coefficient 
and highlight the importance of developing upscaled models th a t effectively represent the 
mechanisms th a t lead to long-tailed breakthrough curves: (i) diffusion in and out of the 
rock matrix; (ii) advection-driven transport in and out of dead-end fractures; and (iii) 
advective transport within secondary how channels.

Though the simulations carried out during this project involved somewhat idealized 
fracture networks, we still observed the scale-dependent, non-Fickian dispersion commonly 
observed in held-scale data. Thus, these simulations present an im portant step towards 
developing a mechanistic basis for upscaled models of solute transport in large-scale 
fracture networks. However, the ability to represent a broad range of network topologies is 
clearly necessary to fully realize the connection between the mechanisms controlling 
transport through fracture networks and held-scale observations. An outstanding question 
is the role of fracture intersections in transport processes. Our three-dimensional networks, 
generated by extruding a two-dimensional network in the third dimension, result in 
regional pressure gradients th a t are always perpendicular to the fracture intersections. In 
the other limit, in which pressure gradients are parallel to fracture intersections, the 
inhuence of fracture intersections will be quite different as the intersections will become 
localized preferential how paths. Our modeling approach provides a mechanistic approach 
to explore the inhuence of this transition in more complex network geometries.

This project was part of a collaboration with the University of Colorado, Boulder where 
they developed robust upscaled models of solute transport through single fractures. During 
this project, we began integrating their upscaled model into our discrete fracture network 
model. Using the upscaled approach, it is unnecessary to explicitly represent 
three-dimensional transport within each fracture, which greatly enhances the
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computational efficiency of the model with no measurable degradation in the accuracy of 
the simulation results. As a result, this upscaled approach promises to allow held-scale 
simulations in discrete fracture networks at a fraction of the computational run times 
required for our high-resolution model.
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