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Executive Summary

This project focuses on uncertainty in streamflow forecasting under climate change conditions. The 

objective is to  develop easy to  use methodologies tha t can be applied across a range o f river basins to 

estimate changes in water availability fo r realistic projections o f climate change. There are three major 

components to  the project:

1) Empirical downscaling of regional climate change projections from  a range of Global Climate 

Models

2) Developing a methodology to  use present day information on the climate controls on the 

parameterizations in streamflow models to  adjust the parameterizations under fu ture  climate 

conditions (a trading-space-for-time approach)

3) Demonstrating a bottom-up approach to  establishing streamflow vulnerabilities to  climate 

change.

The results reinforce the need fo r downscaling o f climate data fo r regional applications, and fu rther 

demonstrates the challenges of using raw GCM data to  make local projections. In addition, it reinforces 

the need to  make projections across a range of global climate models. The project demonstrates the 

potential fo r improving streamflow forecasts by using model parameters tha t are adjusted fo r future 

climate conditions, but suggests tha t even w ith  improved streamflow models and reduced climate 

uncertainty through the use o f downscaled data, there is still large uncertainty is the streamflow 

projections.

The most useful output from the project is the bottom -up vulnerability driven approach to  examining 

possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and 

easy to  apply methodology tha t uses Classification and Regression Trees (CART) to  define the climate 

and environmental parameters space that can produce vulnerabilities in the system, and then feeds in 

the downscaled projections to  determ ine the probability top  transitioning to  a vulnerable sate. 

Vulnerabilities, in this case, are defined by the end user.



1. Goals, Objectives and Accomplishments

The primary goals of the project were to:

1) Downscale Global Climate Model (GCM) data to  produce regional scale climate change 

projections fo r the Susquehanna River Basin.

2) Use the downscaled climate data to  drive a river basin model to  assess potential changes in river 

flow  under likely climate change conditions.

3) Develop a methodology tha t could be easily applied to  other river basins across the country.

The firs t goal was accomplished and resulted in tw o publications:

Ning, L., M. E. Mann, R. G. Crane, T. Wagener, R. Najjar, R. Singh. Probabilistic Projections of 

Anthropogenic Climate Impacts on Precipitation fo r the M id-Atlantic Region o f the United 

States. J. Climate, 25:5273-5291 (2012).

Ning, L., M. E. Mann, R. G. Crane, T. Wagener. Probabilistic Projections o f Climate Change fo r the 

M id-Atlantic Region of the United States—Validation of Precipitation Downscaling During the 

Historical Era. J. Climate, 25:509-526 (2012).

Developing a watershed model to  address the second goal highlighted significant issues w ith  cascading 

uncertainty through the model hierarchy from the GCMs down to  the river basin model. This led to  an 

alternative approach to  predict streamflow under a changing climate utilizing a trading-space-for-time 

approach to  probabilistic continuous streamflow predictions, described in:

Singh,R., K. van Werkhoven, T. Wagener. Hydrological impacts of climate change in gauged and 

ungauged watersheds of the Olifants basin: a trading-space-for-time approach, Hydrological 
Sciences Journal, 59:1, 29-55, DOI: 10.1080/02626667.2013.819431 (2014)

Singh, R., T. Wagener, K. van Werkhoven, M. E. Mann, and R. Crane. A trading-space-for-time

approach to  probabilistic continuous streamflow predictions in a changing climate -  accounting 

fo r changing watershed behavior. Hydrol. Earth Syst. Sci., 15:3591-3603 (2011).

Possibly the most significant accomplishment in terms of assessing water supply potential under 

changing climate conditions, and in terms of developing an easily adaptable model fo r other locations 

(goal 3) was the development o f a bottom -up approach tha t allows water managers to  identify critical 

hydrologic indicator thresholds and to  then to  assess the ir vulnerability to  climate or other 

environmental changes. This approach is described in:

Singh, R., T. Wagener, R. Crane, M.E. Mann, L. Ning. A vulnerability driven approach to  identify 

adverse climate and land use change combinations fo r critical hydrologic indicator thresholds— 

Application to  a watershed in Pennsylvania, USA. Water Resources Research,
DOI: 10.1002/2013WR014988 (2014)



2. Project Activities

2.1 Regional Climate Downscaling
The study employed an empirical downscaling methodology developed by Hewitson and Crane (2006) to  

estimate local precipitation changes from  Global Climate model projections. This approach uses Self- 

Organizing Maps (SOMs) to  characterize the large scale state o f the atmosphere on a daily basis. We 

take 17 reporting stations in Pennsylvania and, fo r each one, establish a 19 element hexagonal grid, 

centered on the station. The grid has a nominal 2° resolution and we remap the National Center fo r 

Climate Prediction (NCEP) 2.5° x 2.5° reanalysis data to  the local grid fo r each station. Data used are u 

and v winds at 10m and 700 hPa, specific and relative hum idity at 850 hPa, the tem perature anomaly at 

10m and the lapse rate from  850 to  500 hPa. These data are used to  produce a separate 11x9 SOM fo r 

each reporting station. In this application, the SOM can be regarded as a non-linear fuzzy clustering 

algorithm tha t assigns every day in the NCEP data set to  one of the 11x9 SOM nodes (for the period 

1979-2007). For each station, we map each day to  its SOM node and then take each day's observed 

precipitation and bin it according to  the SOM mapping. For each station and SOM node we can then 

construct a cumulative probability distribution o f the observed precipitation. For the downscaling, we 

simply map the present day (1961-2000) and fu ture  (2046-2065) GCM data to  the SOMs and fo r each 

station and day, randomly select a precipitation value form  the frequency distribution fo r tha t node.

We used nine GCMs from  the Coupled Climate Intercomparison Project phase 3 (CMIP3) archive fo r the 

tw entie th  century climate w ith  the 20c3m historical greenhouse gas concentrations, and the same nine 

models fo r the mid-21st century simulations using the A2 emissions scenario. The models used are the 

Canadian Centre fo r Climate Modelling and Analysis (CCCma) Coupled General Circulation Model, 

version 3.1 (CGCM3.1); Centre National de Recherches Meteorologiques Coupled Global Climate Model, 

version 3 (CNRM-CM3); Commonwealth Scientific and Industrial Research Organisation, Mark 3.0 (CSIRO 

Mk3.0); Geophysical Fluid Dynamics Laboratory Climate Model, version 2.0 (GFDL CM2.0); Goddard 

Institute fo r Space StudiesModel E-R (GISSER); L'lnstitut Pierre-Simon Laplace Coupled Model, version 4 

(IPSL CM4); Meteorological Institute of the University of Bonn, ECFIO-G Model (MIUBECFIOG); Max 

Planck Institute (MPI) ECFIAM5; and Meteorological Research Institute Coupled General Circulation 

Model, version 2.3.2a (MRI CGCM2.3.2a). The data and descriptions o f the GCMs can be found at the 

WCRP CMIP3 Multi-M odel Data Web site (https://esg.llnl.gov:8443/index.isp). These nine models were 

chosen because they archived the variables needed fo r the SOM mapping at a daily resolution.

The downscaling was very effective at capturing the present day precipitation at each of the stations. 

Figure 1 shows the probability distributions of observed (black) and downscaled (gray) daily 

precipitation over the 17 stations during the period 1079-2005. Overall, the downscaling was shown to 

be effective at capturing the daily variability in precipitation at all stations. Table 1 and Table 2 

demonstrate how much better the downscaled GCM precipitation matches the observations than do the 

raw GCM values. In addition, these tables show tha t the downscaling reduces some of the uncertainty 

in the GCM projections (there is less variability across models w ith the downscaled data than w ith  the 

raw GCM data).
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Figure 1. Probability distributions of observed (black) and downscaled (gray) daily precipitation over the 

17 stations during the period 1079-2005. (From Ning et al., 2012a)

Table 1: Percent absolute errors of downscaled and raw GCM precipitation w ith  respect to 
Observations, averaged across the 17 stations and fo r all months from  1961-2000. (Modified from  Ning 
et al., 2012a)
Model Downscaled 

Average M onthly 
Precipitation

Raw Average
M onthly
Precipitation

Downscaled 
Average M onthly 
Number of Rain 
Days

Raw Average 
M onthly Number 
o f Rain Days

CGCM 3.1 2.1 10.5 3.3 101.5
CNRM-CM3 9.4 13.1 5.9 97.4
CSIRO Mk3.0 2.7 18.3 5.6 65.8
GFDL CM2.0 7.0 9.1 5.6 77.6
GISS-ER 19.4 45.0 12.0 47.1
IPSLCM4 5.2 25.1 4.2 79.4
MIUBECHOG 7.7 9.8 3.8 107.3
MPI ECHAM5 3.4 11.5 3.7 42.0
MRI CGCM 2.3.2a 6.7 24.8 5.1 41.7
Mean 7.1 18.6 5.5 73.3



Table 2: Percent absolute errors of downscaled and raw GCM precipitation w ith  respect to  
Observations, averaged across the 9 GCMs and fo r all months from  1961-2000 (Modified from  Ning et 
al., 2012a)
Station Downscaled 

Average M onthly 
Precipitation

Raw Average
M onthly
Precipitation

Downscaled 
Average M onthly 
Number of Rain 
Days

Raw Average 
M onthly Number 
o f Rain Days

Allentown 7.6 17.4 4.6 83.2
Chambersburg 7.5 19.2 4.9 99.0
Franklin 5.5 17.3 7.4 68.1
Greenville 5.1 17.5 2.5 65.0
Harrisburg 4.7 16.8 4.6 83.7
Johnstown 5.0 16.8 8.4 47.6
Montrose 6.6 21.0 7.8 53.3
New Castle 4.1 19.7 3.0 73.5
Palmerton 8.0 18.9 2.8 101.9
Ridgway 4.6 16.7 2.4 55.6
State College 8.8 18.2 6.8 76.0
Stroudsburg 13.0 21.4 8.0 75.3
Towanda 6.9 25.2 5.3 93.7
Uniontown 8.0 18.4 7.3 63.3
Warren 4.4 19.6 2.1 45.5
West Chester 11.5 16.4 7.1 79.5
York 9.0 15.5 7.9 81.9
Mean 7.1 18.6 5.5 73.3

The projected change in rainfall distributions over Pennsylvania are shown in Figure 2. The columns are 

annual, summer and w in ter anomalies; the top row is the downscaled rainfall and the bottom  row is the 

raw GCM projections. It is apparent from  the diagram tha t the GCM data over-estimate the changes 

and there are significant differences in spatial distributions, particularly annually and in w inter. The 

figure shows differences in m m /m onth and the data are averaged across all GCMs. There are, however, 

large differences between models The projected change in rainfall fo r one station (Harrisburg) is shown 

in Table 3. The raw GCM projections show changes between -8.0 mm to  ~25 mm per month while the 

downscaled range is 0.6 mm to  8.7 mm. Again, there is more consistency between models w ith  the 

downscaled precipitation changes, w ith  the downscaling generally projecting a smaller increase than the 

raw GCMs



Table 3: Change in Downscaled and Raw GCM projections o f Precipitation fo r one station (Harrisburg) 
Future (2046-65) minus Present (1961-2000). Modified from  Ning et al., 2012b)
Model Change in 

Downscaled 
Average M onthly 
Precipitation (mm)

Change in Raw 
Average M onthly 
Precipitation (mm)

Change in 
Downscaled 
Average M onthly 
Number of Rain 
Days

Change in Raw 
Average M onthly 
Number of Rain 
Days

CGCM 3.1 8.7 8.7 0.4 -0.2
CNRM-CM3 6.1 10.0 0.2 0.7
CSIRO Mk3.0 2.0 5.7 -0.1 -0.2
GFDL CM2.0 2.3 13.2 0.5 -0.2
GISS-ER 3.1 24.7 0.4 3.26
IPSLCM4 6.6 -7.5 0.0 -1.6
MIUBECHOG 0.6 -8.0 -0.1 -1.4
MPI ECHAM5 6.4 8.1 0.5 0.1
MRI CGCM 2.3.2a 0.8 3.6 -0.3 -0.5
Mean 3.1 6.5 0.2 0.0

2.2 Trading Space for Time in Streamflow Prediction Under Climate Change
A standard approach fo r estimating streamflow under changing climate conditions is to  take a 

hydrologic model developed fo r current conditions using historic data and force the model w ith 

estimates of fu ture  climate change. However, there is a concern tha t the parameterization of the is 

biased toward the climate used to  tra in the model, and that this w ill negatively impact the quality o f the 

fu ture  change projections. This issue was addressed in the present study by adopting a fram ework used 

to  estimate model parameters fo r ungauged river basins.

In this case, we regionalize the climate-dependent streamflow characteristics using 394 U.S. watersheds. 

The methodology then assumes tha t this spatial relationship between streamflow and climate is similar 

to  what we would see at a single location as climate changes. By using these observed streamflow- 

climate relationships across the country and applying them to  a single location as climate changes, we 

are, in effect, trading space fo r tim e in the derivation o f the climate-dependent streamflow parameters 

in the model. The method proceeds by developing a model fo r the current climate at a location, 

projecting ahead the likely climate change, modifying the climate-dependent parameterizations in the 

model by extrapolation from  basins currently under those climate conditions, and then rerunning the 

model fo r the fu ture climate. This recalibration o f the model fo r the new climate is conducted w ith in a 

Bayesian fram ework to  produce ensemble predictions of continuous streamflow. The trading-space-for- 

tim e approach is illustrated in (Figure 3).
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Figure 3. Deriving Probability Distributions o f Streamflow fo r Climate Scenarios. In step 4, t? 

represents the model parameters, Qsi...,N represents the model simulations, S» is the expected value 

o f the signature derived from  the regionalized relationship and Se is the value of the signature fo r the 

parameter 0. (from Singh et al., 2011)

The method was tested using five U.S. watersheds in d ifferent climate regimes. The watersheds are 

described in Table 4 and Figure 4. Fifty years of data from  the 394 watersheds were used in regression 

analysis to  develop relationships fo r the climate-related streamflow characteristics. These were then 

evaluated against the five selected watersheds.

Table 4: Validation Watersheds fo r the Base Period 1958-1968 (Singh et al., 2011)
Watershed Lochsa Lower Androscoggin Escambia Meramec Yampa
State Idaho/M ontan

a
Maine/New Hampshire Alabama/Florida Missouri Colorado

USGSID 13337000 1055500 2375500 7019000 9251000
Size [km 2] 3051 438 9886 9811 8832
Mean Elevation [m] 1584 190 95 279 2364
Climate Regime Energy Limited Energy Limited Even Slightly W ater Ltd W ater Limited
Arid ity Index 0.64 0.86 1.04 1.37 1.81
Precip. as Snow [%] 56.0 29.5 0.42 7.5 48.9
Mean Annual P [mm yr"1] 1314 1018 1407 905 556
Mean Annual Q [mm y r 2] 911 541 525 214 132
Mean Annual PE [mm y r 2] 841 878 1464 1238 1007
M onthly NSE 0.93 0.87 0.85 0.81 0.80
* Nash Sutcliffe Efficiency fo r Base Period (1958-1968)
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Figure 4: The Budyko Curve fo r the 394 watersheds (grey dots). The five study watersheds are 

highlighted and the black curve is a fitted  Schreiber model. AE, PE and P are the long-term actual 

evapotranspiration, potential evapotranspiration, and Precipitation respectively. AE/P is equal to  1 -  

runoff ratio, and PE/P is the arid ity index, (from Singh et. Al., 2011)

Figure 5 shows the validation o f the methodology -  p lotting the ratio of the validation period stream 

flow  to  the base streamflow fo r five validation periods fo r each of the five basins. The most probable 

flow  for Type H and fo r Type C refers to  flow  w ith  model parameters based on the historic record and 

fo r flow  based on model parameters adjusted fo r changing climate, respectively. Figure 5 shows that 

Type C predictions are closer to  th4e observed values as the percentage change in streamflow increases. 

From these data, it appears tha t historical calibration w ill be better if the climate change is small, but 

tha t the changed parameters w ill improve performance as the degree o f climate change increases.
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Figure 5: Validation Plot Showing the Ratio of Validation Period Streamflow (Qv) to  Base Period 

Streamflow (Qb) fo r the Five Study Wartersheds. Watersheds are sorted by increasing aridity index 

[(a) Lochsa, (b) Lower Androscoggin, (c) Escambia, (d) Meramec, (e) Yampa], Validation periods are 1: 

1948-58, 2; 1958-68, 3:1968-78, 4: 1978-88, 5: 1988-96. Dashed and continuous lines show the 90% 

prediction lim its fo r historical conditioning and conditioning based on changing climate respectively.

These five watersheds were then tested w ith  synthetic climate scenarios generated by increasing mean 

temperatures up to  8°C and changing mean precipitation between -30% and +40% of the ir historic 

conditions. The results indicated that, fo r the most part, watersheds were more sensitive to  rainfall 

than tem perature and tha t Type C projections are more sensitive to  changes in climate. The fu rthe r the 

fu ture  scenarios depart from the historical period, the greater is the difference between the tw o 

projections. Also significant is tha t the Type H projections are a linear function o f the change in climate, 

whereas increasingly non-linear responses are seen in the Type C projections as watersheds get drier.

2.3 A Vulnerability Approach to Identifying Adverse Climate and Land Use Change Combinations
The climate downscaling provides more reliable information at the regional scale and, to  some degree, 

reduces the uncertainty in precipitation projections obtained from  the suite of GCMs used. By 

employing a trading-space-for-time approach to  parameterizing streamflow models, we also produce 

models that may be more representative of local conditions under climate change. However, there is 

still considerable uncertainty transferred through the model hierarchy. This uncertainty makes the 

streamflow projections more problematic fo r water managers and decision makers. To address this 

issue, we take a bottom  up approach tha t firs t establishes the vulnerabilities in the system, and then 

looks to  see what degree of climate and land use change is necessary to  exceed those levels, and then



interrogates the climate downscaling data to  determ ine how likely it is tha t the watershed w ill 

experience tha t degree of change.

The approach uses Classification and Regression Trees (CART) to  establish the combinations of climate 

and land use change that lead to  vulnerability, and those tha t do not. We begin w ith a feasible space of 

climate and land use changes. In this case, land use is represented in the analysis as the fraction of 

deep-rooted vegetation in the watershed. In an operational application, we would then ask the relevant 

stakeholders to  provide the ir definition o f vulnerable ranges o f streamflow indicators. In this case we 

apply the method to  a Pennsylvania watershed using nine ecological and water resources related 

streamflow indicators and group the results into one o f seven categories depending on the number of 

standard deviations the indicator is away from  the historical mean :

Class 1 -  Historical range:

Class 2 -  Slightly higher than historical range 

Class 3 -  M uch higher than historical range 

Class 4 - Slightly low er than historical range 

Class 5 -  M uch low er than historical range  

Class 6 -  Extrem ely high ranges 

Class 7 -  Extrem ely low  ranges

l> 2o  <Value<p+2 o 

p+4o< Va I ue< p+8o  

p+8o< Va I ue< p+12o  

|a-4o<Value<|a-8o  

l> 8 o < V a lu e < |> 12 a  

|a+12a<Value  

V a lu e< |> 12o

The follow ing description of the CART methodology and the hydrologic model used is extracted from  

Singh et al. (2014). Using N climates and P parameter combinations, we derive NxP values o f hydrologic 

indicators of interest by driving the hydrologic model w ith  these combinations and assign them to  the ir 

specific class. Next, we use the classification and regression tree (CART) to  relate the climate and land 

use changes to  the d ifferent classes of the streamflow indicator. CART is a binary recursive partitioning 

algorithm tha t divides the input space of multiple variables into sub-spaces, w ith  each sub space related 

to  a particular class o f output variable [Breiman et al., 1984], At each stage, the tree partitions the space 

based on maximum gain in information. Thus, through CART analysis, we can assess the critical changes 

in land use and climate required to  push the streamflow indicators into d ifferent regimes (represented 

by the indicator classes).

The hydrologic model structure used in this study is adapted from  the top-down modeling fram ework by 

Bai et al., [2009] and Farmer e t al. [2003], The model has a lumped parsimonious model structure, w ith 

daily resolution o f inputs and output streamflow. The model comprises of a snow module followed by a 

soil moisture accounting module and a routing module. There is possibility fo r recharge from  the 

saturated soil store to  the deeper groundwater store. The soil moisture accounting module splits the soil 

into tw o layers -  unsaturated and saturated stores. The soil depth is modeled using a multiple bucket 

scheme based on the ten-bucket Xinanjiang-model distribution [Zhao et al., 1980; Son and Sivapalan, 

2007; Bai et al., 2009], The multiple buckets are filled and spilled in a parallel configuration. 

Evapotranspiration is estimated by dividing the catchment surface into bare soil and deep-rooted 

vegetation covered areas. The soil profile is divided into unsaturated and saturated zone. ET from 

saturated zone is proportional to  the potential evaporation and soil moisture content. The saturated



zone evaporation is modeled similarly fo r both bare soil and vegetation covered fractions. The main 

difference in ET arises in the unsaturated soil store. In the unsaturated zone, the fraction of watershed 

covered by bare soils evaporates at a rate tha t is proportional to  the soil water content and to  the 

potential evaporation. In the case o f vegetation-covered soils, transpiration from  the unsaturated stores 

is controlled by field capacity parameter, if the soil moisture content is greater than field capacity, 

transpiration occurs at potential rate. The basic form ulation is adapted from  Bai et al. [2009], w ith 

modifications fo r including phenology and leaf area index from  Sawicz e t al. [2013], The growing 

behavior o f vegetation, efficiency of water extraction from  the soil, and variable canopy interception are 

included in the model to  represent phenology in three ways. Above 10°C, water extraction by vegetation 

is considered unimpeded and is set at its maximum capacity. Below -5°C, water extraction efficiency is 

considered to  have stopped so there is no evapotranspiration. Between these tw o ranges, a linear 

relationship between extraction efficiency and tem perature is assumed. The canopy interception is 

modeled as maximum canopy interception during summer months and a minimum during w inter 

months. A sinusoidal function is used to  describe the canopy interception fo r periods between summer 

and w inter.

The approach is tested on the Lower Juniata at Newport PA (Figure 6). 10000 random parameter sets

at

i i i i i i i i i

Area: 8686 Km2

Figure 6: The Study Area on the Lower Juniata in Pennsylvania (Singh et al., 2014). The streamflow 

guage is located at Newport, PA.

are generated from  a-priori ranges fo r the nine indicator parameters described in Table 5. 1948-1958 is

Lower Juniata 
Newport, PA

I
80 Km

High 958 m 

Low 111 m



used as the climatological base period and climate change scenarios are generated from  -50% to  +505 

precipitation change (in 10% steps) and fo r tem perature changes o f 0°C -  8°C in 1 degree steps. The 

hydrologic model is, therefore, driven w ith  10,000 parameter combinations and 99 climates, resulting in 

990,000 values fo r each of the streamflow indicators fo r use in the CART analysis. As one example, 

Figure 7 shows the resulting classification tree fo r flood frequency w ith  fixed land use but changing 

climate. Each node in the tree is a logical expression. If the expression is true  we fo llow  the left branch, 

if not true we fo llow  the right. In this manner we eventually reach a term inal node (leaf) showing the 

indicator class that

Table 5: Definition of the Hydrologic Indicators Used in the Study (based on Olden and Poff, 
2003).

Hydrologic
Indicator

Category Definition Units

Mean annual 
runoff

Magnitude Mean annual flow (normalized by catchment 
area)

mm/year

Minimum April 
flow

Magnitude- high Mean minimum monthly flow for April across 
time period of study

mm/day

Maximum 
August flow

Magnitude-low Mean maximum monthly flow for August 
across time period o f study

mm/day

Low flow pulse 
count

Frequency -  low Number o f annual occurrences during which 
the magnitude o f flow remains below a lower 
threshold. Hydrologic pulses are defined as 

those periods within a year in which the flow 
drops below 25th percentile o f all daily values 

for the time period

[-]

Flood frequency Frequency -  high Same as above where high pulse is defined as 
3 times the median daily flow

[-]

Low flow pulse 
duration

Duration -  low Mean duration of low flow pulses defined 
above

[days]

High flow pulse 
duration

Duration -  high Mean duration o f high flow pulses with high 
flow cutoff at 75th percentile o f the daily flows 

o f the entire record

[days]

Seasonal 
predictability of 

non-flooding

Timing of 
change

Maximum proportion the year (number of 
days/365) during which no floods have ever 

occurred over the period o f record. Floods are 
defined as flow values greater than or equal to 
flows with 60% exceedance probability (1.67 

year return interval)

[-]

Reversals Rate o f change Number o f negative and positive changes in 
water conditions from one day to the next

[-]

results from the combination o f d ifferent logical expressions. In this case, the primary control fo r this 

indicator is precipitation, shown as the ratio o f mean annual precipitation in the fu ture  to  tha t o f the 

present (Pratio), followed by the recession coefficient (Ass) tha t describes the recession from  the



subsurface soil moisture source. The th ird  control is the maximum height o f soil moisture storage (Sb). 

This indicates tha t the frequency of high floods depends firs t on the watershed climate, followed by its 

ability to  release water from the subsurface and the amount o f water tha t can be stored in the 

subsurface. The diagram also shows the probabilities associated w ith  the seven classes. Figure 7b also 

denotes the d ifferent pathways tha t lead to  vulnerability of the indicator by solid black lines. Following 

the le ft branch of the classification tree, we find tha t if mean annual precipitation changes remain w ith in 

-5% to  15% of the historical value, the most likely values of flood frequency are Class 1, i.e., the indicator 

remains w ith in historical variability. On the other hand as precipitation rises beyond 15% of its historical 

value, model parameters emerge as significant controls on the classes fo r the indicator. If precipitation 

increases, both the amount of increase and other watershed properties w ill govern the fu ture values for 

flood frequency. On the other hand, if precipitation decreases, precipitation itself w ill be the dominating 

control on this indicator.
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Figure 7: Class Assignments fo r Flood Frequency Indicator fo r class widths o f 4c  (b) and 6c (c).



Figure 8 shows one example fo r how this approach compares to  more traditional top-down modeling 

where (a) shows the projected downscaled fu ture precipitation and tem perature from  the nine d ifferent 

GCMs. (c) shows the projected runoff based on a hydrologic model driven by the downscaled climate
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Figure 8: Comparison w ith  Downscaled Climate Change Projections, (a) shows the downscaled 

projections w ith Pratio expressed as the ratio of mean annual precipitation fo r (2090-2100) 

projections to  mean annual rainfall fo r 1990-2000 and AT is the difference in mean annual 

temperatures between the same tim e periods, (b) is the classification tree fo r mean annual runoff 

w ith the heavy black lines representing streamflow obtained by navigating the tree using the 

downscaled projections from  (a), (c) shows the streamflow projections obtained from  a 

traditional top  down approach, driving the hydrologic model from  the downscaled climate data 

w ith the model parameters fixed at the ir historically calibrated values.

data, and where the ranges reflect the variability in the downscaled projections and the uncertainty in 

the hydrologic model, (b) shows a CART decision tree generated through the 990,000 realizations of the 

hydrologic model driven by the range o f climate and land use change scenarios and fo r a range of 

hydrologic parameterizations. Again, the bar graphs at the end o f each pathway show probabilities of 

the parameter (i.e. mean annual runoff) ending in one o f five vulnerability classes. C l is similar to



present, while C2/C3 and C4/C5 are increasingly vulnerable (wetter and drier, respectively). The dark 

black line shows the pathway followed based on the climate downscaling. The analysis indicates that 

while there are lots of pathways to  vulnerability, none are likely given the projected climate change.

The conclusions from  the CART analysis are potentia lly much more useful to  a decision maker than is the 

wide range in potential fu ture streamflows derived from  the more traditional top-down, hierarchical 

modeling approach.
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