LA-UR-14-21812 Approved for public release; distribution is unlimited. Title: Secure and sustainable energy infrastructure: The case of CO2 capture, utilization, and storage Author(s): Middleton, Richard S. Intended for: Invited talk Issued: 2014-03-18 #### Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. #### **Richard Middleton** Earth and Environmental Sciences Los Alamos National Laboratory **MENU** CCS What? Why? Scale? **SimCCS** Case studies **Storage** **Transport** **Capture** La Fin ## CO₂ Capture, Utilization, and Storage (CCUS) ## (1) Capture capture CO₂ at stationary sources (e.g. power plants, cement works, ammonia, oil refineries) compress CO₂ to super-critical state ## (2) Transport - pipelines are the only feasible transport mode - CO₂ source may be located above geologic reservoir ## (3) Utilization and/or Storage - inject/store CO₂ in geologic reservoirs (e.g. depleted oil fields, deep saline aquifers, unmineable coal seams) - store/sequester CO₂ for 1,000+ years Slide 2 of 45 ## CO₂ Mitigation and CCS ## CO₂ Mitigation: "It's the company, stupid"... **MENU** CCS What? Why? Scale? SimCCS **Case studies** **Storage** **Transport** **Capture** La Fin ## Why CCS? - technology readily available - 40+ year experience with CO₂ capture, transport, storage - immediate and medium-term solution - makes alternative energy sources cost competitive - can be implemented without fundamental restructuring of energy and economy infrastructure - reduce CO₂ footprint of making conventional and nonconventional oil ## **Scale of CCS Infrastructure** #### **MENU** CCS What? Whv? Scale? **SimCCS** **Case studies** **Storage** **Transport** Capture La Fin ## **Meaningful CCS** - stabilization wedge ⇒ abate 1,000 MtC/yr or - 3,670 MtCO₂/yr - U.S. CCS: 920 MtCO₂/yr¹ - manage <u>1,164 MtCO₂/yr²</u> coal: 2,150 MtCO₂/yr³ - 245 coal power plants^{2,3} ## **Comparison:** ## CCS INFRASTRUCTURE MODELING IS CRITICAL (i) where & (ii) how much CO₂ to capture; (iii) where & (iv) how much CO₂ to inject/store; (v) where, (vi) size, & (viii) networking of pipelines; (viii) optimally allocate CO₂ ¹ 25% of world electricity (EIA 2010); ² ~27% energy penalty (Simbeck and MacDonald 2000); ³ eGRID 2007; ⁴ 25°C & 2,000 psi Slide 4 of 45 **MENU** CCS **SimCCS** **Overview** Framework MILP Case studies **Storage** **Transport** **Capture** La Fin ## SimCCS: Scalable Infrastructure Model for CCS #### **DESCRIPTION** #### coupled economic-engineering decisionmaking framework for CCS scientists, stakeholders, and policy makers - understand how CCS technology capture, transport, storage—could and should be deployed on an industrial scale - **SimCCS**^{CAP}: cap-and-trade environment - **SimCCS**^{PRICE}: CO₂ tax - **SimCCS**^{TIME}: infrastructure evolution #### **OPTIMIZATION ENGINE** Cost to purchase land, construct pipeline, CO₂ flow must be less than CO, flow must be more than CO, flow leaving a CO₂ captured at a source must not exceed supply $$(1) \quad x_{ij} - \sum_{d \in D} \max_{max} Q_{ijd}^p y_{ijd} \le 0$$ $$(2) \quad x_{ij} - \sum_{d \in D} \min_{i \neq j} Q_{ijd}^{p} y_{ijd} \ge 0$$ $$\forall i \in I, j \in N_i$$ (3) $$\sum_{j \in N_i} x_{ij} - \sum_{j \in N_i} x_{ji} - a_i + b_i = 0$$ $\forall i$ $$\forall i \in I$$ $$(4) \quad a_i - Q_i^s s_i \le 0$$ $$\forall i \in S$$ $$(5) \quad b_i - Q_i^r r_i \le 0$$ $$\forall i \in R$$ (c) $$\nabla a > T$$ $$\forall j \in R$$ CO₂ stored at a sink to store or sequester $$\forall i \in I, j \in N_i$$ Only one pipeline can be $$\sum_{d \in D} y_{ijd} \le 1$$ $$= \{0, 1\}, \forall i \in I, i \in N, d \in D$$ $\{0,1\} \quad \forall j \in R$ #### **INTERFACE** custom/open-source GIS, network generation, model building #### **POLICY ANALYSIS** Spatial analysis **Economics &** engineering Slide 5 of 45 ## SimCCS: Scalable Infrastructure Model for CCS CCS SimCCS Overview Framework **MILP** Case studies **Storage** **Transport** **Capture** | COSTS | SPATIAL DEPLOYMENT | CO ₂ FLOWS | GENERAL | | | |---------------------------------------|---|---|---|--|--| | Cost to deploy
CCS infrastructure | Where to capture and/or release CO ₂ | CO ₂ amount to be captured at each source | Amount of CO₂ cost-
effectively sequestered | | | | Capture, transport, and storage costs | Location of capture-
ready CO ₂ sources | How much CO ₂ should be stored in each reservoir | Scale of CCS
infrastructure | | | | Carbon tax (\$/tonne) | Which reservoirs should inject/store CO ₂ | CO ₂ pipeline capacities | Policy implications | | | | Cap and trade pricing | Dedicated CO ₂ pipeline network | CO ₂ allocation between sources and reservoirs | Tradeoff between capture,
transport, and storage | | | ## SimCCSPRICE: mixed integer-linear program **MENU** **CCS** **SimCCS** Overview Framework MILP **Case studies** **Storage** **Transport** **Capture** La Fin | (a) (b) | | |---|-------------------------| | $ \sum_{i \in S} (F_i^s s_i + V_i^s a_i) + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{j \in N_i} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{i \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} \sum_{c \in I} \sum_{c \in C} \alpha_{ijc}^p p_{ijc} + \sum_{c \in I} I}$ | $\beta_{ijc}^p y_{ijc}$ | | (c) (d) | (1) | | $+ \sum_{j \in R} (F_j^r r_j + F_j^w w_j + V_j^r b_j) + \sum_{i \in S} F^{tax} (Q_i^s - a_i)$ | | Costs: Capture, transport, storage, and tax Subject to: $$x_{ij} \le \sum_{c \in C} p_{ijc} \qquad \forall i \in I, \forall j \in N_i$$ (2) $$Q_c^p y_{ijc} \le p_{ijc} \le Q_c^{p'} y_{ijc} \qquad \forall i \in I, \forall j \in N_i, \forall c \in C$$ (3) $$\sum_{j \in N_i} x_{ij} - \sum_{j \in N_i} x_{ji} = \begin{cases} a_i & \text{if } i \in S \\ -b_i & \text{if } i \in R \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in I$$ (4) $$a_i \le Q_i^s s_i \qquad \forall i \in S, \forall g \in G_i \tag{5}$$ $$b_j \le Q_j^w w_j \qquad \forall j \in R \tag{6}$$ $$w_j \le P_j^w r_j \qquad \forall j \in R \tag{7}$$ $$y_{ijc} \in \{0,1\}$$ $\forall i \in I, \forall j \in N_i, \forall d \in D$ (8) $s_i \in \{0,1\}$ $\forall i \in S, \forall g \in G_i$ $$s_i \in \{0,1\}$$ $\forall i \in S, \forall g \in G_i$ $\forall j \in R$ $$w_i \in \{0,1,2,\dots,n\} \qquad \forall j \in R \qquad -$$ $$x_{ij} \ge 0 \qquad \forall i \in I, \forall j \in N_i$$ $$a_i \ge 0$$ $\forall i \in I$ CO₂ flow Pipeline capacity CO₂ mass balance CO₂ capture CO₂ storage Injection wells Variable definitions and bounds ## **Southern Company (SoCo)** - 10 year business plan and CO₂ emissions strategy - 20 coal-fired plants, 156 MtCO₂/yr emissions - 65 individual boilers → boiler level accuracy - capture costs: \$46-102/tCO₂ (plant) & \$41-166/tCO₂ (boiler) - storage: 3.4 GtCO₂ in 7 sinks, 113 MtCO₂/yr over 30 years - storage costs: \$3.78-8.60/tCO₂ #### **MENU** CCS **SimCCS** #### **Case studies** #### SoCo Ordos Basin Oil sands Dynamicism Storage **Transport** **Capture** ### SoCo: example infrastructure #### **MENU** **CCS** SimCCS #### **Case studies** SoCo **Ordos Basin** Oil sands **Dynamicism** **Storage** **Transport** **Capture** La Fin * Middleton et al. (2012) The cross-scale science of CO₂ capture and storage: from pore scale to regional scale, *Energy & Environmental Science 5*, 7328-7345. ## SoCo: 5 to 110 MtCO₂/yr scenarios **MENU** CCS **SimCCS** **Case studies** SoCo Ordos Basin Oil sands **Dynamicism** Storage **Transport** **Capture** #### **China: Ordos Basin** **MENU** CCS **SimCCS** **Case studies** SoCo **Ordos Basin** Oil sands **Dynamicism** **Storage** **Transport** **Capture** "Global" perspective of Ordos CO₂ emissions Candidate transport network, sources, & sinks - multiple CCS scenarios driven by (a) CO₂ cap and (b) CO₂ emission prices - understand how CO₂ capture, transport, and storage research interacts Infrastructure response (cost & engineering) to a CO₂ tax Geospatial infrastructure comparison for different CO₂ tax rates #### Oil sands: overview **MENU** CCS **SimCCS** #### **Case studies** SoCo Ordos Basin Oil sands **Dynamicism** Storage **Transport** Capture - 22 sources; 39MtCO₂/yr - Surface mining and in situ extraction - CO₂ life cycle analysis - 20 reservoirs - Based on acid gas injection observations - Storage capacities, injection rates, and site-wide economics ^{*} **Middleton and Brandt (2013)** Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing, *Environmental Science & Technology 47*, 1735-1744. #### Oil sands: candidate network **MENU** CCS **SimCCS** **Case studies** SoCo Ordos Basin Oil sands Dynamicism Storage Transport **Capture** La Fin generate candidate network linking sources and sinks > candidate network - A Lake - B First Nation - C River - Transmission line - **E** Road - Pipeline ROW Slide 13 of 45 ## Oil sands: response to uncertainty ## **Impact** **MENU** SimCCS CCS **Case studies** SoCo Ordos Basin Oil sands Dynamicism Storage **Transport** Capture - open new reservoirs - drill and operate new injection wells - construct pipelines along new routes (includes ROW cost) - build duplicate pipelines (enhanced SimCCS model) ^{*} Middleton et al. (2012) Effects of geologic reservoir uncertainty on CO₂ transport and storage infrastructure, International Journal of Greenhouse Gas Control 8, 132-142. ## Uncertainty & system design: risk & economic impact ## **CO₂ Transport & storage** capture rate and costs do not vary best, worst, expected outcomes best: design 6? worst: design 9? interesting: designs 3 & 5? MENU ccs **SimCCS** Case studies SoCo Ordos Basin Oil sands Dynamicism Storage Transport Capture #### SimCCS^{TIME} - spatial optimization framework for CO₂ capture and storage (CCS) infrastructure (capturing, transporting, injecting/storing CO₂) through multiple time periods - deploys CCS networks to meet a CO₂ cap (i.e., cap-and-trade) or in response to a price/tax to emit CO₂ - scientists, stakeholders, policy makers, general public #### Scenario - overbuilds infrastructure (e.g., pipelines, capture) in early periods to achieves long-term economies of scale - CCS costs rise through time as more expensive CO₂ sources are brought online, transport costs fall through increased utilization (Chart A) - minimizes costs across all time periods (Chart B) * Middleton et al. (2012) A dynamic model for optimally phasing in CCS infrastructure, Environmental Modelling & Software 37, 193-205. ## CO₂ injection and storage #### **MENU** CCS **SimCCS** **Case studies** #### **Storage** #### Overview Water Uncertainty Risk CO2-EOR SCO2T **Transport** Capture La Fin - inputs: formation depth, thickness, porosity, permeability, temperature, brine chemistry - computationally-efficient models: based on finephysics mechanistic (or process) models - outputs: injectivity, well spacing storage capacity, and CO₂ plume characteristics - economics: permitting, injection/production wells, pumping, distribution pipelines, pore space rights, monitoring, water treatment... * Middleton et al. (2012) The cross-scale science of CO₂ capture and storage: from pore scale to regional scale, *Energy & Environmental Science 5*, 7328-7345. #### **Extracted water** enhance storage, CO₂ plume management, reduce seismicity risks - function of depth/pressure and temperature - significant impact on engineering and costs #### **MENU** CCS **SimCCS** **Case studies** #### **Storage** Overview #### Water Uncertainty Risk CO2-EOR SCO2T Transport Capture ## CO₂ storage uncertainty/heterogeneity CCS **SimCCS** Case studies #### **Storage** Overview Water #### **Uncertainty** Risk CO2-EOR SCO2T Transport Capture La Fin **UNCERTAINTY**: formation thickness, permeability, and porosity EFFECT: available volume, injectivity, well spacing **IMPACT**: storage capacity, injection-storage cost ### CO₂ risk leakage **MENU** CCS **SimCCS** Case studies Overview Water Uncertainty Risk CO2-EOR SCO2T **Transport** **Capture** La Fin ## **Leakage potential: shallow (SLP) and deep (DLP)**1,2 database of ~460,000 wells in Alberta 12 13 14 15 16 17 18 19 20 Site ID | SCORE DISTRIBUTION | | | | | | | | |--------------------|---------|----------------------------------|------|------|------|--|--| | | | DLP | | | | | | | | | LOW
MEDIUM
HIGH
EXTREME | | | | | | | | LOW | 16.2 | 25.8 | 14.5 | 9.11 | | | | SLP | MEDIUM | 3.51 | 9.24 | 7.86 | 3.99 | | | | | HIGH | 1.02 | 2.48 | 1.87 | 0.77 | | | | | EXTREME | 0.65 | 1.24 | 1.32 | 0.41 | | | ² Watson and Bachu (2008) Identification of Wells with High CO₂-Leakage Potential in Mature Oil Fields Developed for CO₂-Enhanced Oil Recovery, SPE Paper #: 112924 ¹ Watson and Bachu (2007) Evaluation of the Potential for Gas and CO₂ Leakage along Wellbores, SPE Paper #: 106817 ## **Coupled CO₂ sequestration/EOR systems** **MENU** CCS **SimCCS** **Case studies** **Storage** Overview Water Uncertainty Risk CO2-EOR SCO2T **Transport** Capture La Fin - framework to coestimate CO₂ storage and oil production - optimize site engineering including WAG ratio and well spacing - formally track uncertainty and parameter importance - economics **Dai, Middleton, et al.** (2014) An integrated framework for optimizing CO₂ sequestration and enhanced oil recovery, *Environmental Science & Technology Letters* 1, 49-54. ## Coupled CO₂ sequestration/EOR systems **CCS** SimCCS **Case studies** #### **Storage** Overview Water Uncertainty Risk #### CO2-EOR SCO2T **Transport** Capture La Fin **Dai, Middleton, et al.** (2013) An integrated framework for optimizing CO₂ sequestration and enhanced oil recovery, *Environmental Science & Technology Letters* 1, 49-54. **MENU** CCS **SimCCS** Case studies Overview Water Uncertainty Risk CO2-FOR SCO2T **Transport** **Capture** La Fin ## SCO₂T (Sequestration of CO₂ Tool) - distributable CO₂ sequestration/EOR framework; VBA+Excel - present/future: CO₂ fracturing for shale gas # **Injectivity** (permeability) **Injectivity** (porosity) # wells (permeability) Plume (permeability) Capacity (porosity Cost (porosity) Slide 23 of 45 1.11E-15 #### **Candidate Network Generation** ## Five step process*: - 1. Generate construction cost surface - 2. Identify potential low-cost paths on cost surface - 3. Extract raw candidate *vector* network - 4. Refine raw candidate network - Network decision model * Middleton et al. (2012) Generating candidate networks for optimization: The CO₂ capture and storage optimization problem, *Computers, Environment and Urban Systems 36*, 18-29. CCS **SimCCS** **Case studies** Storage **Transport** **Overview** Network Pipelines Capture #### **STEP 1:** Weighted Cost Surface #### **MENU** **CCS** **SimCCS** **Case studies** **Storage** **Transport** Overview Network **Pipelines** **Capture** La Fin | 1 | FINAL WEIGHT | | | | | 70 | | |---|--------------|--|--|--|--|----|--| FEATURE | VALUE | |-----------------------|---------| | Waterways | 10 | | Highway | 3 | | Railroad | 3 | | State Parks | 15 | | National Parks | 30 | | Wetlands | 15 | | Urban | 15 | | Slope | 0.1-0.8 | | Base* | 1 | *Natural gas pipelines as analog (MIT 2006) ## **Network literature:** - no quantitative method for generating a candidate network - expert judgment - no retrospective analysis #### **STEP 2:** Low Cost *Raster* Paths **MENU** CCS SimCCS **Case studies** Storage **Transport** Overview Network **Pipelines** Capture #### **STEP 3: Vector Network Extraction** **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** Overview Network **Pipelines** **Capture** La Fin - (a) Raster paths - (b) Identify nodes - (c) Network with duplicates - (d) Raw candidate network Slide 27 of 45 #### **STEP 4:** Raw Network Refinement CCS **SimCCS** **Case studies** Storage **Transport** Overview Network **Pipelines** **Capture** La Fin Slide 28 of 45 network #### **STEP 5:** Network Decision Model #### SimCCS: Los Angeles basin example MENU ccs SimCCS **Case studies** Storage **Transport** Overview Network Pipelines Capture La Fin Slide 29 of 45 #### **Candidate Network** | M | EIVU | | |---|------|--| **CCS** **SimCCS** **Case studies** **Storage** **Transport** Overview Network **Pipelines** **Capture** La Fin | | Nodes | Arcs Variables | | Constraints | |--------|---------|----------------|------------|-------------| | Step 1 | 793,861 | 6,354,192 | 69,896,209 | 13,502,287 | | Step 2 | 14,923 | 30,716 | 337,973 | 76,397 | | Step 3 | 1,208 | 548 | 6,125 | 2,346 | | Step 4 | 106 | 320 | 3,617 | 788 | | Step 5 | 69 | 232 | 2,649 | 575 | #### Final candidate network: - remove superfluous arcs/nodes - intractable problems → solvable - larger and more complex models - multiple runs: explore uncertainty and sensitivity Slide 30 of 45 ^{*} Middleton et al. (2012) Generating candidate networks for optimization: The CO₂ capture & storage optimization problem, *Computers, Environment and Urban Systems 36*, 18-29. ## Pipelines: precisely wrong vs. approximately right? CCS **SimCCS** **Case studies** **Storage** #### **Transport** Overview Network Pipelines **Capture** La Fin * Middleton (2013) A new optimization approach to energy network modeling: anthropogenic CO₂ capture coupled with enhanced oil recovery, *International Journal of Energy Research 37*, 1794-1810. ### Pipelines: precisely wrong vs. approximately right? #### **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** Overview Network **Pipelines** **Capture** La Fin #### LINEAR #### DISCRETE | Pipeline | Pipeline | Actual | One piece | | Two pieces | | Three pieces | | |----------|-------------|-------------|-----------|--------|------------|-------|--------------|-------| | diameter | capacity | cost | Estimate | Error | Estimate | Error | Estimate | Error | | (inches) | (MtCO₂/yr) | (\$M/km) | (\$M/km) | (%) | (\$M/km) | (%) | (\$M/km) | (%) | | 4" | 0.19 | 0.28 | 0.48 | 67.63 | 0.31 | 10.00 | 0.29 | 2.47 | | 6" | 0.54 | 0.35 | 0.48 | 37.50 | 0.34 | -2.81 | 0.34 | -3.17 | | 8" | 1.13 | 0.42 | 0.49 | 18.14 | 0.39 | -6.81 | 0.42 | 1.00 | | 12" | 3.25 | 0.56 | 0.54 | -3.42 | 0.57 | 1.74 | 0.56 | -0.01 | | 16" | 6.86 | 0.70 | 0.61 | -12.79 | 0.76 | 8.83 | 0.70 | -0.01 | | 20" | 12.26 | 0.85 | 0.72 | -15.52 | 0.85 | 0.27 | 0.89 | 3.94 | | 24" | 19.69 | 1.02 | 0.87 | -14.35 | 0.98 | -3.37 | 1.01 | -0.73 | | 30" | 35.13 | 1.29 | 1.18 | -8.58 | 1.24 | -3.66 | 1.26 | -2.30 | | 36" | 56.46 | 1.63 | 1.61 | -0.85 | 1.61 | -1.00 | 1.61 | -0.71 | | 42" | 83.95 | 2.05 | 2.17 | 5.90 | 2.08 | 1.61 | 2.07 | 1.04 | | | Average (me | ean) error: | - | 7.37% | - | 0.48% | - | 0.15% | | | Absolute m | ean error: | - | 18.47% | - | 4.01% | - | 1.54% | ^{*} Middleton (2013) A new optimization approach to energy network modeling: anthropogenic CO₂ capture coupled with enhanced oil recovery, *International Journal of Energy Research 37*, 1794-1810. **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** Capture **Variability** Boilers Cost La Fin #### Variable electricity generation #### **Previous studies** - calculate capture costs assuming generic capacity factor - includes our own research #### New research* hourly generation data for 41 natural gas power plants (Ontario, Canada) very heterogeneous electricity profiles generation normalized in the study ^{*} Middleton and Eccles (2013) The complex future of CO₂ capture and storage: Variable electricity generation and fossil fuel power. *Applied Energy* 108, 66-73. Slide 33 of 45 **MENU** CCS **SimCCS** **Storage** **Transport** **Capture** **Variability** **Boilers** Cost La Fin #### Variable generation and CO₂ capture - CO₂ capture profile for the median 1000 MWyr gas plant - emits 3.8 MtCO₂/yr at maximum rate, 90% capture rate - efficiency of capture equipment changes with capacity - economic model: includes CO₂ tax and "make-up" electricity ## Optimize CO₂ capture infrastructure capacity ## Cost of CO₂ avoided **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** **Capture** **Variability** Boilers Cost La Fin (1) fixed, fixed O&M, and variable O&M costs; (2) CO₂ tax; (3) make-up electricity; (4) transport & storage · optimal: when total annual costs are minimized Slide 35 of 45 ... **MENU** CCS **SimCCS** Case studies **Storage** **Transport** **Capture** Variability **Boilers** Cost La Fin #### Impact on transportation and storage ## **Efficiency of transport and storage** - variable electricity = variable CO₂ rate throughout each day - transport & storage infrastructure utilization rates - under-utilized infrastructure is much more costly - onsite temporary storage **MENU** ## Importance of CO₂ transport and storage ## CO₂ transport and storage - often considered less important that capture, due to costs - likely a critical factor for estimating CCS costs and policy - should be considered endogenously #### **Retrofitting coal-fired power plants** ## **Economics and engineering** site-specific data for 1347 boilers (536 plants), including coal type, <u>delivered</u>-coal cost, heat rate, hourly CO₂ and electricity, etc. detailed economic and engineering for 400 coal-fired boilers using IECM Gibson Generating Station, Indiana (2011) **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** **Capture** Variability Boilers Cost ## **Geography: delivered coal costs** **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** **Capture** Variability Boilers Cost Figure 1: Cost (shading) and total heat(height) of delivered (A) bituminous and (B) subbituminous coal. Parts A and B use the same scales. Costs range from \$1.35/GJ (light shading—lowa) to \$4.34/GJ (dark shading—Georgia). States without sufficient reported costs in Form EIA923 are not shaded. Amount of delivered heat ranges from 0 TJ (no extrusion) to 1,134,373 TJ (1.1 million TJ—Illinois). ## Impact of CO₂ emissions **Comparison:** post-retrofit electricity costs should be compared to pre-retrofit cist WITH CO_2 emissions price **Chart:** CO_2 tax = \$75/t CO_2 **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** **Capture** Variability Boilers Cost ## CO₂ capture and avoided costs - CO₂ emissions price = \$100/tCO₂ - plants that do not capture CO₂ at this price are omitted - marginal cost of CO₂ avoided dictates capture decision #### **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** #### **Capture** Variability Boilers Cost ## Impact of CO₂ emissions price vary emissions price from \$50-150/tCO₂ CCS **SimCCS** **Case studies** **Storage** **Transport** #### Capture Variability Boilers Cost ## Response to a price on carbon - tend to capture none or most/all of their capturable CO₂ - relatively small variations in daily profile ### Coal-fired boilers and hourly electricity generation #### **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** #### **Capture** Variability Boilers Cost - ten hypothetical generation profiles - based on Gibson Generating Station - simple sine wave - generation profile drives how much CO₂ the coal-fired plant will capture - replicates capture performance of natural gas plants #### Take home message #### **CCUS** **MENU** CCS **SimCCS** **Case studies** **Storage** **Transport** **Capture** La Fin Take home - significant potential for CO₂ emissions reduction - requires comprehensive understanding of CO₂ capturetransport-storage/utilization individually and together ## Multidisciplinary approach combination of engineering (civil/environmental/chemical), economics, policy, decision optimization, etc. #### **SimCCS** - flexible energy infrastructure approach - can and has been applied to wind energy, hydrogen economy, biofuels, shale gas, etc.