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Part 1: Long-term simulation of the GEM 
challenge intervals 
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CRRES mission 
• “Global Radiation Belt Modeling 

Challenge”  
– Organized by NSF/GEM “Radiation 

Belts and Wave Modeling” focus group 

• Training interval 
– Aug. 15th to Oct. 15th ,1990 

• Challenge interval 
– Feb. 1st to Aug. 1st, 1991  

• Published in Tu et al. [JGR 2013] 
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DREAM3D Diffusion Model 

Boundary Conditions needed 
on 6 surfaces 

  α=0    PSD=0 (atmosphere) 
  α=π/2    dPSD/dα=0 

  L=1   PSD=0 (atmosphere) 
  L=Lmax   outer boundary 

  E=Emax   PSD=0 
  E=Emin     seed population     
                  (100 KeV) 
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Diffusion Coefficients 
• Radial diffusion: DLL(Kp)=DLL

M + DLL
E [Brautigam and Albert, 2000] 

 

 
• Pitch angle, momentum, and mixed diffusion: Dαα, Dpp, Dαp 

– Quasi-linear diffusion coefficients, bounce- and drift-averaged, assumed 
field-aligned waves [Summers et al., 2007a,b] 

– Wave and plasma parameters: 
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Dynamic Wave Model 
• Use CRRES PWE data to developed whistler-mode hiss and chorus wave models.  
• Model output: Wave Intensity (L-shell, MLT, Mag. Latitude, and AE* index) 
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• Calculated diffusion coefficients for lower-band chorus at L=4.5 
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Diffusion Coefficients 

AE*<100nT 

100<AE*<300nT 

AE*>300nT 

sec-1 



Model Results: GEM training interval 
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µ=523 MeV/G,  
K=0.03 G1/2Re 

PSD data 

RD only 

RD + Hiss 

RD + Hiss + Chorus 

• Use CRRES data for outer boundary condition at L*=5.5 and initial condition. 
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White curve: Plasmapause location [Carpenter and Anderson, 1992] 



Model Results: GEM training interval 
(a) Standard setups 
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Model Results: GEM training interval 
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Model Results: GEM challenge interval 
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Model Results: GEM challenge interval 
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• Mean Absolute Percentage Error [Kim et al., 2012] 
 
 
 

 

• Generally <30%, on average ~10%  the soundness of our model. 

Quantitative Performance Metrics 
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• Mean Absolute Percentage Error [Kim et al., 2012] 
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• Mean Absolute Percentage Error [Kim et al., 2012] 
 
 
 

 

• Generally <30%, on average ~10%  the soundness of our model. 

Quantitative Performance Metrics 
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di : data; mi: model output  
n: number of data points. 

MAPE vs. time  
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Dst 

AE 

Kp 

1991 
Feb Apr Jun Aug Mar May Jul 

MAPE% 
AE (nT) 
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RD only 7.33 7.62 10.40 

RD+hiss 6.43 7.05 10.27 

RD+hiss+chorus 6.98 6.96 8.20 

MAPE vs. activity 

Red cell: the lowest MAPE of all 3 runs. 
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Conclusions: Long-term simulation 

• The simulation results from our 3D diffusion model on the CRRES era 
suggest: 

– Our model captures the general variations of radiation belt 
electrons, including the dropouts and the enhancements. 

– The overestimations inside the plasmapause can be improved by 
increasing the PA diffusion from hiss waves. 

– But to explain the details dynamics, better DLL and wave models 
are required. 



Part 2: Simulation of the October 2012 Van 
Allen Probes event 
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Van Allen Probes 

• Event-specific model inputs 
and boundary conditions 
driven by measurements from 
Van Allen Probes and other 
spacecraft 

• Published in Tu et al. [GRL 
2014] 
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DREAM3D Diffusion Model 

Boundary Conditions needed 
on 6 surfaces 

  α=0    PSD=0 (atmosphere) 
  α=π/2    dPSD/dα=0 

  L=1   PSD=0 (atmosphere) 
  L=Lmax   outer boundary 

  E=Emax   PSD=0 
  E=Emin     seed population     
                  (100 KeV) 
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Van Allen Probes event: October 2012 
Last closed drift shell 
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• Fast dropout 
• Strong enhancement: 

– Reported by Reeves et al. 
[Science, 2013] 



DREAM3D simulation: RB dropout 

• ‘Open’ boundary at Lmax=11 
• Short lifetimes (E-dependent) 

outside LCDS 

Last closed drift shell 

7 

9 

11 

L*
 

TS04 
5 

Oct 6 Oct 7 Oct 8 Oct 9 
2012 

Oct 10 Oct 11 
Dst (nT) -100 

-60 

-20 

20 
3 

L*
 

4 

5 

6 10-5 

10-6 

10-7 

10-8 

10-9 

PSD data: µ=1279 MeV/G K=0.1 G1/2Re 



DREAM3D simulation: RB dropout 
Last closed drift shell 
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 RB dropout reproduced by 

magnetopause shadowing   
+ outward radial diffusion 



DREAM3D simulation: RB enhancement 
Last closed drift shell 
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DREAM3D simulation: RB enhancement 
Last closed drift shell 
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DREAM3D simulation: RB enhancement 
Last closed drift shell 
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DREAM3D simulation: RB enhancement 
Last closed drift shell 
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CRRES-based Statistical model  
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[Tu et al. JGR 2013] 



DREAM3D simulation: RB enhancement 
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• wave amplitude: 10x higher 
than the statistical model 

• Energy diffusion: 100x faster 

[Chen et al. GRL 2013] 
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DREAM3D simulation: RB enhancement 
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DREAM3D simulation: RB enhancement 
• Modeling the enhancement 

– Event-specific chorus waves 
– Realistic seed electrons (100 keV) 
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Emin BND:  
100 keV electron flux 

DREAM3D simulation: RB enhancement 
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• Modeling the enhancement 
– Event-specific chorus waves 
– Realistic seed electrons (100 keV) 
 



DREAM3D simulation: RB enhancement 
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• Modeling the enhancement 
– Event-specific chorus waves 
– Realistic seed electrons (100 keV) 
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DREAM3D simulation: RB enhancement 
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• Modeling the enhancement 
– Event-specific chorus waves 
– Realistic seed electrons (100 keV) 
 



Detail comparison: PSD vs. L profile 
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Detail comparison: PSD vs. L profile 
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Conclusions: Event simulation 
• To simulate the October 2012 event, three new modifications to 

DREAM3D have been implemented, all driven by event-specific 
conditions:  

– Solar-wind driven last closed drift shell: OMNI data 
– Event-specific chorus wave model: NOAA/POES, Van Allen Probes/EMFISIS 
– Data-driven electron seed population: Van Allen Probes/MagEIS 

• Electron dropout during the 1st Dst dip can be explained by outward 
radial diffusion to the compressed last closed drift shell. 

– Though it is not well-reproduced if chorus heating is turned on simultaneously. 

• Strong enhancement during the 2nd Dst dip is well reproduced with 
event-specific chorus waves and electron seed population. 

• The results illustrate the utility of the high-resolution, comprehensive 
set of Van Allen Probes measurements in studying the balance 
between source and loss in the radiation belt. 



New GEM Focus Group (2014-2018): 
• A new GEM/FG on “Quantitative Assessment of Radiation Belt 

Modeling” under the IMS Research Area. 

• Co-chairs: Weichao Tu, Wen Li, Jay Albert, Steve Morley 

• Goals: 
 Bring together the current state-of-the-art models and new physics for the 

acceleration, transport, and loss processes in radiation belts. 

 Develop event-specific and global wave, plasma, and magnetic field 
models to drive these radiation belt models. 

 Combine all these components to achieve a quantitative assessment of 
the relative importance of acceleration, transport, and loss processes in 
radiation belts by validating against contemporary radiation belt 
measurements. 

• ‘RB dropout’ and ‘RB buildup’ challenges invite international participations! 
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