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SUBTASK 2.17 – CO2 STORAGE EFFICIENCY IN DEEP SALINE FORMATIONS 
 
 
ABSTRACT 
 
 As the field of carbon capture and storage (CCS) continues to advance, and large-scale 
implementation of geologic carbon dioxide (CO2) storage progresses, it will be important to 
understand the potential of geologic formations to store meaningful amounts of CO2. Geologic 
CO2 storage in deep saline formations (DSFs) has been suggested as one of the best potential 
methods for reducing anthropogenic CO2 emission to the atmosphere, and as such, updated 
storage resource estimation methods will continue to be an important component for the 
widespread deployment of CCS around the world. While there have been several methodologies 
suggested in the literature, most of these methods are based on a volumetric calculation of the 
pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of 
site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure 
interference between injection locations, and overall formation pressure buildup. These 
volumetric methods may be excellent for comparing the potential between particular formations 
or basins, but they have not been validated through real-world experience or full-formation 
injection simulations. Several studies have also suggested that the dynamic components of 
geologic storage may play the most important role in storing CO2 in DSFs but until now have not 
directly compared CO2 storage resource estimates made with volumetric methodologies to 
estimates made using dynamic CO2 storage methodologies. In this study, two DSFs, in 
geographically separate areas with geologically diverse properties, were evaluated with both 
volumetric and dynamic CO2 storage resource estimation methodologies to compare the results 
and determine the applicability of both approaches.  
  
 In the end, it was determined that the dynamic CO2 storage resource potential is time-
dependent and it asymptotically approaches the volumetric CO2 storage resource potential over 
very long periods of time in the two systems that were evaluated. These results indicate that the 
volumetric assessments can be used as long as the appropriate storage efficiency terms are used 
and it is understood that it will take many wells over very long periods of time to fully realize the 
storage potential of a target formation.  
 
 This subtask was funded through the Energy & Environmental Research Center (EERC)–
U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil 
Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal 
funding was provided by the IEA Greenhouse Gas R&D Programme. 
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SUBTASK 2.17 – CO2 STORAGE EFFICIENCY IN DEEP SALINE FORMATIONS 
 
 
EXECUTIVE SUMMARY 
 
 The goal of this study was to compare the volumetric and dynamic CO2 storage resource 
estimation methodologies used to evaluate the storage potential of deep saline formations 
(DSFs). This comparison was carried out to investigate the applicability of using volumetric 
methods, which typically require less data and time to apply, to estimate the CO2 storage 
resource potential of a given saline formation or saline system. The project goals were 
accomplished by applying both the volumetric and dynamic CO2 storage resource estimation 
methodologies to the open-system upper Minnelusa Formation in the Powder River Basin, 
United States, and a closed-system comprising the Qingshankou and Yaojia Formations in the 
Songliao Basin, China. These two saline systems were selected since they represent an open and 
a closed system, allowing for a better comparison of the volumetric and dynamic approaches. 
The volumetric methodology and open-system storage efficiency terms described in the U.S. 
Department of Energy (DOE) Carbon Sequestration Atlas of the United States and Canada (U.S. 
Department of Energy National Energy Technology Laboratory, 2010, Carbon sequestration 
atlas of the United States and Canada [3rd ed.]) and the closed-system efficiency term described 
by Zhou and others (Zhou, Q., Birkholzer, J.T., Tsang, C.-F., and Rutqvist, J., 2008, A method 
for quick assessment of CO2 storage capacity in closed and semiclosed saline formations: 
International Journal of Greenhouse Gas Control, v. 2, no. 4, p. 626–639) were used to estimate 
the effective CO2 storage resource potential and efficiency in both the upper Minnelusa and 
Qingshankou–Yaojia systems.   
 
 The dynamic CO2 storage resource potential and efficiency values were determined 
through the use of reservoir simulation. In both the volumetric and dynamic approaches, a 
geocellular model was constructed of the entire storage formation and the overlying sealing 
formations. In both the volumetric and dynamic approaches, the same geologic model was used 
so that the assessments made could be compared on a consistent basis. For each system, the 
effective open-system and closed-system storage efficiency terms were calculated so they could 
be compared to the storage efficiency as determined using the dynamic approach. The volumetric 
methodology was applied to the two systems, using both the open-system and closed-system 
efficiencies. This resulted in open-system effective CO2 storage efficiency in the upper 
Minnelusa Formation from 2.9% to 11% and the closed-system effective CO2 storage efficiency 
of 0.54%. In the Qingshankou–Yaojia system, the open-system efficiency was 1.3% to 10%, and 
the closed-system efficiency was 0.21%. This wide range in effective storage efficiency values is 
due to the large amount of uncertainty in both the geologic properties and the flow properties of 
the system. 
 
 As a means of testing whether or not these two storage systems are open, closed, or 
semiclosed, dynamic reservoir simulations were performed on each model. A total of twelve 
simulation cases were run for both the upper Minnelusa and Qingshankou–Yaojia models to 
investigate the effects of trapping mechanisms, geologic uncertainty, boundary conditions, well 
configuration, and injection and extraction strategies. In each simulation run, the entire formation 
extent and overlying formations were included within the models in order to better understand 



 

viii 

the pressure buildup effects. Initially, injection was simulated for 50 years, and then the 
maximum dynamic storage was estimated by running a few cases with continuous injection for 
hundreds or thousands of years until the maximum storage potential was reached. Based on the 
results of these simulations, the upper Minnelusa Formation behaved as an open system with 
dynamic CO2 storage efficiency ranging between 0.55% to 1.7% after 50 years, 2.5% to 7.9% 
after 500 years, and 3.4% to 18% after 2000 years of continuous injection in cases without water 
extraction. These results are in very close agreement with the calculated effective volumetric 
CO2 storage efficiency and indicate that the use of a volumetric methodology would be 
applicable in formations that behave in a truly open manner as long as enough time is given for 
the CO2 to be injected (Table ES-1). However, in the first 50 years of injection, these results are 
on the low side of the volumetric CO2 storage resource potential, which could have implications 
for published CO2 storage estimates made with volumetric methods. In the case of the 
Qingshankou–Yaojia system, the dynamic approach resulted in storage efficiency ranging 
between 0.28% to 0.40% after 50 years, 0.45% to 0.60% after 500 years, and 0.62% to 0.72% 
after 2000 years of continuous injection in cases without water extraction. These results are in 
very close agreement with the calculated closed system efficiency values and indicate that the 
system is closed or semiclosed (Table ES-2). This supports the use of a volumetric approach for 
similar systems, as long as a closed-system storage efficiency is applied.  
 
 This study also investigated the effects of geologic uncertainty, boundary conditions, the 
number and types of wells used, and water extraction techniques on the effective CO2 storage 
efficiency. In both the open-system upper Minnelusa and closed-system Qingshankou–Yaojia 
system, the use of water extraction had the largest effect on CO2 storage potential, increasing the 
storage efficiency by as much as 475% in the Qingshankou–Yaojia system and by approximately 
100% in the upper Minnelusa Formation after 50 years of operation. The other factors did not 
play as significant a role in increasing the storage efficiency, as local pressure buildup reduced 
the rate of injection in the upper Minnelusa Formation and regional pressure buildup was by far 
the limiting factor in the Qingshankou–Yaojia system.  
 

In open-system cases, the dynamic CO2 storage resource potential is time-dependent, and it 
asymptotically approaches the volumetric CO2 storage resource potential over very long periods 
of time (Figure ES-1). This is very similar to other resource industries, namely, mining and the 
oil and gas industries, where CO2 is a resource that can only be fully realized if it is exploited to 
its maximum using advanced technology, notwithstanding time, economics, regulatory, and other 
considerations. In closed systems, the maximum efficiency is reached much more quickly, and 
the results are roughly equivalent to the volumetric results calculated using a closed-system 
storage efficiency term. These results indicate that the volumetric assessments can be used as 
long as an open- or closed-system efficiency term is applied appropriately, with the 
understanding that the effective CO2 storage efficiency of a formation will likely take hundreds 
of wells spaced throughout a formation’s area, and it would likely take decades or possibly 
thousands of years of injection to fully realize the effective CO2 storage resource potential. 
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SUBTASK 2.17 – CO2 STORAGE EFFICIENCY IN DEEP SALINE FORMATIONS 
 
 
INTRODUCTION 
 
 As concern continues to mount over climate change, strategies are being considered to 
reduce anthropogenic carbon dioxide (CO2) emissions. One of the primary methods under 
consideration is CO2 storage in deep saline formations (DSFs); however, the amount of CO2 to 
be stored in order to make a significant reduction in annual emissions is on the order of hundreds 
of millions of tonnes of CO2 a year. As a result, there is concern whether or not sufficient storage 
capacity in these types of formations exists. To increase stakeholder confidence, several methods 
have been developed to estimate the CO2 storage capacity, or CO2 storage resource potential, of 
DSFs, including methods developed by the U.S. Department of Energy (DOE) (2007, 2008, 
2010; Litynski and others, 2010), the Carbon Sequestration Leadership Forum (CSLF) (2005, 
2007, 2008; Bachu and others, 2007; Bradshaw and others, 2007), the IEA Greenhouse Gas 
R&D Programme (IEAGHG) (2009; Gorecki and others, 2009), the U.S. Geological Survey 
(USGS) (Brennan and others, 2010; Blondes and others, 2013), CO2 GeoCapacity (Vangkilde-
Pedersen and others, 2009), Zhou and others (2008), and Szulczewski and others (2012). These 
methods are based on volumetric approaches that do not consider the effect of site-specific 
dynamic factors such as injection rate, injection pattern, timing of injection, and pressure 
interference between injection locations. These methods may be excellent for comparing the 
potential between particular formations or basins, but they lack consistency between methods 
and have not been validated through real-world experience or full-formation injection 
simulations. As such, these methodologies may over- or underestimate the effective storage 
resource potential in DSFs. Numerical simulation is a method that can be used to validate the 
estimate of the effective storage resource potential of DSFs by addressing the effects of multiple 
large-scale CO2 injections. Several studies have investigated the use of numerical simulation for 
determining the dynamic storage capacity of DSFs; however, these studies have not examined 
scenarios of injection into the entire effective reservoir volume but instead have focused on 
looking at pressure interference between injection sites, pressure buildup or relief, and brine 
migration within the same formation (Zhou and Birkholzer, 2011; Birkholzer and Zhou, 2009; 
IEA Greenhouse Gas R&D Programme, 2010; Nicot, 2008). Because of the concerns about the 
validity of the current CO2 storage resource estimation methodologies, the main goal of this 
project is to compare volumetric storage resource estimates with estimates made using numerical 
simulation, referred to as dynamic storage resource. The Energy & Environmental Research 
Center (EERC) used these two approaches to estimate the effective CO2 storage resource and 
efficiency of two deep saline systems, namely, the Minneulsa Formation in the Powder River 
Basin, United States, and the Qingshankou and Yaojia Formations (which act as a single-flow 
unit) in the Songliao Basin, China. The resulting storage resource estimates made with the 
dynamic and volumetric methods will be compared for the two case studies, and conclusions will 
be drawn based on the results of this comparison.  
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BACKGROUND 
 

Saline Formations 
 
 Sedimentary basins exist around the world and consist of thick successional geologic 
formations, often consisting of DSFs. These DSFs offer the greatest potential for storage of 
anthropogenic CO2 because of their large pore volume and spatial distribution. The 
characteristics of DSFs include the following: 1) they exist at a depth where CO2 will reside in a 
dense, supercritical phase, typically at depths greater than 800 meters; 2) they contain formation 
fluids with total dissolved solids (TDS) in excess of the cutoff for protected underground sources 
of drinking water (USDW) (e.g., 10,000 ppm in the United States); and 3) they are overlain by a 
thick, laterally continuous sealing formation with properties that preclude vertical migration of 
the injected CO2.  
 

Open, Closed, and Semiclosed Systems 
 
 When a DSF is assessed for storage resource potential, it is important to understand the 
hydrogeology of the system and determine what type of boundary conditions exist. Zhou and 
others (2008) nicely illustrate the various boundary conditions in the concept of open, closed, 
and semiclosed systems (Figure 1). Saline formations typically have a large areal extent and 
often act as open systems; however, there are cases in which they are compartmentalized by 
lateral flow boundaries created by stratigraphic pinch-outs or sealing faults. In these cases, the 
saline formation acts in a closed or semiclosed manner, as suggested by Zhou and others (2008). 
In addition to the lateral boundaries, the properties of the sealing formations are also important, 
as it is possible to displace the in situ fluid out of the DSF and into the cap rock without allowing 
the injected CO2 to migrate out of the formation because of capillary forces (IEA Greenhouse 
Gas R&D Programme, 2010; Cavanagh and Wildgust, 2011). A previous investigation by 
Permedia (IEA Greenhouse Gas R&D Programme, 2010) demonstrated that it is possible to have 
formation seals with permeability at a level where in situ formation fluids can move out of the 
injection formation while retaining the injected CO2 and result in an open or semiopen system, 
even if the formation has lateral boundaries that are closed. The concepts of open, closed, and 
semiclosed systems are important to this study as they directly relate to the pressure buildup and 
fall off, as well as brine movement, that can occur during the course of CO2 injection in DSFs 
and could potentially limit the applicability or usefulness of volumetric storage resource 
estimates.  
 

CO2 Storage Mechanisms in Deep Saline Formations 
 
 Geologic storage of CO2 is accomplished through its injection into permeable formations 
where it is subsequently trapped by several physical and geochemical processes 
(Intergovernmental Panel on Climate Change, 2005). When CO2 is injected, it can be physically 
trapped in structural or stratigraphic closures or as residual gas because of relative permeability 
hysteresis. Geochemically, CO2 can be trapped by adsorption onto organic material or through 
dissolution into the formation brine (solubility trapping), where it can interact with the rock 
matrix and eventually precipitate into stable carbonate minerals (mineral trapping). Injected CO2  
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 On the timescales that are being considered for geologic CO2 storage, it is likely that the 
most important trapping mechanisms for storing CO2 in saline formations will be physical and 
hydrodynamic trapping and, to a lesser extent, solubility trapping. 
 

Volumetric and Dynamic CO2 Storage Resource Estimates 
 
 Volumetric CO2 storage resource estimates are conducted by calculating or estimating the 
pore volume of the storage target (a field, a portion or all of a saline formation, a geologic basin, 
etc.) and then multiplying the volume by an appropriate storage efficiency term (E). The pore 
volume of an area is estimated by multiplying the porosity by the average thickness and total 
area. The efficiency term (E) represents the fraction of the pore volume that CO2 can occupy and 
is affected by boundary conditions, sweep efficiency, heterogeneity, etc. Volumetric estimates do 
not consider things such as number of wells, timing or length of injection, pressure buildup over 
time, or injection rate. 
 
 Dynamic CO2 storage resource estimates are conducted by investigating the effective of 
dynamic variables such as the number of wells, length of injection, rate of injection, and the time 
required to inject a given mass of CO2 into a target storage volume. This is typically 
accomplished by constructing geocellular models of the injection volume and running numerical 
simulations where different scenarios evaluate variables such as number and type of wells, rate 
of injection, length of injection, water extraction, and other optimization techniques. The storage 
efficiency term can be estimated at any time by dividing the mass of CO2 injected by the total 
mass of CO2 that could have been stored if all of the pore space of the target storage volume had 
been filled with CO2. It should be noted that, in a dynamic estimate, the storage efficiency 
changes with time, starting very low and increasing over time, as long as the total storage volume 
remains the same. 
 
 
APPROACH 

 
Methodology Comparison and Selection 

 
 The first effort in this work focused on identifying the existing published methodologies 
for estimating the volumetric “static” CO2 storage resource of DSFs developed in previous work. 
In order to compare the methods on a consistent level, the CO2 storage resource classification 
system developed in the IEAGHG report on CO2 storage efficiency (IEA Greenhouse Gas R&D 
Programme, 2009) was used (Figure 3). This system builds off of the terminology and 
classification systems developed by DOE (2008), CSLF (2007), the Society of Petroleum 
Engineers (SPE) and others (2007), and the Cooperative Research Center for Greenhouse Gas 
Technologies (CO2CRC) (IEA Greenhouse Gas R&D Programme, 2008) and combines them 
into a classification system utilizing a consistent terminology to evaluate a storage estimate in a 
stepwise fashion. Theoretical storage resource is the base of this classification system and 
represents the absolute total pore volume within a rock formation. At this level, the theoretical 
maximum, no restrictions are placed on the formation geology. The characterized storage 
resource is a subset of the theoretical storage resource that considers only the geology with 
properties making it amenable to CO2 storage, e.g., good porosity and permeability. Effective  
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storage resource further refines this estimate by considering the technical limitations that may 
constrain the amount of CO2 that may be stored in a target formation, e.g., injectivity. The 
effective storage resource is the level at which most of the published CO2 storage resource 
estimation methodologies evaluate the CO2 storage in saline formations. In order to further refine 
the effective storage resource, economic limitations are applied, with this level referred to as the 
practical storage capacity. The practical storage capacity estimates for CO2 storage are 
equivalent to a reserve estimate in the oil and gas industry. An important distinction is made 
between storage resources that are viable under current economic conditions (practical) versus 
future economic conditions (contingent). It is acknowledged that, at this time, there is an absence 
of a well-established carbon market to make the estimation of practical storage capacities 
possible; however, it is useful to define such classifications since economic and commercial 
implications could be considered as the industry matures (IEA Greenhouse Gas R&D 
Programme, 2009). 
 
 While the existing storage resource estimation methodologies were evaluated, it was 
important to consider them on a consistent basis. The effective storage resource level of the 
previously described classification system seemed to be the best basis for comparison, as it 
considers both the geologic and technical constraints affecting the CO2 storage potential of a 
given saline formation. The literature examines several methodologies, including those 
developed by the CSLF (Carbon Sequestration Leadership Forum, 2005 and 2007), DOE (U.S. 
Department of Energy, 2008 and 2010), the USGS (Brennan and others, 2010), Szulczewski and 
others (2012), and Zhou and others (2008). It was decided that the methodology utilized in the 
3rd edition of the Carbon Sequestration Atlas of the United States and Canada (U.S. Department 
of Energy, 2008, 2010, 2012) would be utilized since previous work has compared it to the 
CSLF methodology and found it to be equivalent (IEA Greenhouse Gas R&D Programme, 
2009). Additionally, the DOE (2008 and 2010), CSLF (2007), USGS (Brennan and others, 
2010), Szulczewski and others (2012), and Zhou and others (2008) methods have been 
compared, with all resulting in CO2 storage resource potential values on the same order of 
magnitude (U.S. Department of Energy, 2012). As a result, it was determined that the DOE 
method presented in the 2010 Atlas (U.S. Department of Energy, 2010) would adequately 
represent all volumetric CO2 storage resource estimation methodologies. Also, since the closed-
system compressibility method described by Zhou and others (2008) consistently resulted in 
some of the lowest storage resource estimates, it was determined that the closed-system approach 
and resulting coefficients would be used for comparison purposes.  
 

Effective Volumetric CO2 Storage Resource Estimation Methodologies 
 
 The basis for all DSF volumetric CO2 storage resource estimation methodologies is 
essentially the pore volume of the storage target multiplied by some “efficiency” term (E), 
multiplied by the density of the CO2 at reservoir conditions (ߩ஼ைమ), resulting in a CO2 storage 
resource potential defined as the mass of CO2 that could be stored in the target formation (ܯ஼ைమ) 
(Equation 1). The pore volume is typically defined as the total area (At), multiplied by the gross 
thickness (hg), multiplied by the effective porosity (φt), but pore volume was more accurately 
described by the CSLF (2007) by integrating porosity in three dimensions (Equation 2), as 
porosity is a heterogeneous property that typically varies quite widely throughout any formation.   
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஼ைమܯ ൌ ௧ܣ ∗ ݄௚ ∗ ߮௧ ∗ ܧ ∗  ஼ைమ     [Eq. 1]ߩ
 

஼ைమܯ ൌ∭߮௧ ݔ݀ ݕ݀ ݖ݀ ∗ ܧ ∗  ஼ைమ        [Eq. 2]ߩ
 
The efficiency term (E) represents the percentage of the formation’s pore volume that can be 
occupied by CO2 and is represented differently between open and closed systems. In open 
systems, the efficiency term represents the fraction of the geology that is amenable to storage and 
the portion of that pore space that CO2 can occupy by displacing the original formation fluids 
during the course of injection (EE) (Equation 3). The amenable geology is defined as the fraction 
of the total formation volume that has suitable geology for CO2 storage (Egeol) and is a 
multiplicative combination of the net-to-total area (ܧ஺೙/஺೟), the net-to-gross thickness (ܧ௛೙/௛೒), 

and the effective-to-total porosity (ܧఝ೐೑೑/ఝ೟) (Equation 4). Egeol is generally defined as the area 

where there is sufficient formation at a depth where CO2 will remain in the supercritical state, 
typically around 800 meters, and in some jurisdictions, where the salinity of the formation fluids 
is above the TDS cutoff for protected USDW (10,000 ppm in the United States). It also excludes 
intervals in the formation with unsuitable geology for injection. The second factor contained in 
EE, the displacement efficiency (ED), is split into the volumetric displacement efficiency (Evol) 
and the microscopic displacement efficiency (Ed). The volumetric displacement efficiency is the 
combined fraction of the pore volume that can be contacted by CO2 from injection wells and the 
fraction of the net thickness that is contacted by CO2 as a result of the density difference between 
the injected CO2 and the formation fluids. The microscopic displacement efficiency represents 
the fraction of the contacted pore space that can be filled by CO2 and is directly related to the 
irreducible water saturation.  
 

ாܧ ൌ ௚௘௢௟ܧ ∗  ஽     [Eq. 3]ܧ
 

௚௘௢௟ܧ ൌ ஺೙/஺೟ܧ ∗ ௛೙/௛೒ܧ ∗  ఝ೐೑೑/ఝ೟೚೟    [Eq. 4]ܧ

 
஽ܧ ൌ ௩௢௟ܧ ∗  ௗ     [Eq. 5]ܧ

 
In closed systems, the effective storage resource estimate is made by multiplying the total pore 
volume by a compressibility efficiency term (Ecomp).The compressibility efficiency represents the 
fraction of the pore space that is amenable to storage through the compression of the formation 
fluids (cw), dilatation of the pores (cf), and the pressure space created by the difference between 
the final pressure and the initial pressure (ΔP) (Equation 6) (Zhou and others, 2008).  
  

௖௢௠௣ܧ ൌ ∆ܲ ∗ ሺܿ௪ ൅ ௙ܿሻ     [Eq. 6] 
 

Geologic Modeling  
 
 Geologic modeling was used as the basis for comparison of the volumetric and dynamic 
CO2 storage resource estimates and provides a way to compare estimates in an “apples to apples” 
manner. This begins with a literature review of the readily available published and unpublished 
site-specific data for any target formation. The data that can be compiled for targeted formations 
include structure contour maps, isopach maps, facies maps, geophysical well logs, core analysis 
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data, and general geologic interpretations. The most beneficial data in saline formation 
evaluations include maps representing properties for the entire formational extent across the 
given geologic basin. These data are then further conditioned with geophysical well logs from 
the formation that best represent the properties of the formation of study and are used to reduce 
uncertainty in the basin-scale models. Geologic interpretation includes cross sections, 
petrophysical results, and structure tops; these descriptions are used to help guide the model 
development. 
 
 In this study, data from the literature review were compiled into relational databases in 
order to organize, correlate, and export the data in useful formats. Gathered structure and isopach 
maps were digitized using GIS (geographic information system) and exported as grid points 
representing measured depth or thickness. Geophysical logs were categorized according to type 
and assigned to the appropriate well with a spatial location. Structural tops were loaded from 
available sources or picked based on geological interpretation. Core analysis data were imported 
to display histograms for porosity and permeability and their correlative relationship.  
 
 Following site characterization and compilation of geologic properties, a static 3-D 
geologic modeling workflow was performed by building a structural framework; performing 
petrophysical interpretation; performing data analysis; conducting a geostatistical interpolation 
of reservoir properties into a 3-D model; performing uncertainty analysis to create high, mid, and 
low pore volume cases; upscaling for dynamic simulation; and calculating the volumetric CO2 

storage resource potential (Figure 4). 
 
 The structural framework for these models are built containing three main contour surfaces 
that stretch across the entire basin of interest: the top representing the ground surface elevation, 
the structural top of the DSF of interest, and the base of the DSF. This creates two main zones of 
the model: the top representing the cap rock and overburden and the bottom being the reservoir 
of interest. The reservoir is further split into major flow zones as necessary. These zones were 
created by interpolating the grid points derived from structure and isopach maps and were further 
refined by available or picked structural well log tops. 
 
 Petrophysical interpretation is performed using Schlumberger’s Techlog to first develop a 
shale volume model using available gamma ray logs and appropriate cutoff. The calculated shale 
volume is used to construct a facies model utilizing any other available geophysical logs. A 
porosity model is developed and directly correlated to each facies. Crossplots are created to 
examine core analysis data in order to produce a permeability model. This bivariate distribution 
of porosity and permeability is utilized in the model to create a dynamic relationship between 
porosity and permeability that will be utilized during geostatistical modeling. 
 
 The goal of data analysis is to geostatistically determine the vertical and lateral relationship 
among reservoir properties, thus representing the formation’s heterogeneity and honoring the 
spatial correlation of the input data. A vertical variogram helps determine the additional layering 
that was added to each flow zone. The horizontal variogram establishes connectivity between 
control points and creates a directional and spatial model to follow outside of well control.  
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 A 3-D model is constructed by combining the structural framework, petrophysics, and data 
analyses into a geocellular model with the following properties: facies, porosity, and 
permeability. Temperature and pressure are populated in the model for determining fluid 
properties such as CO2 density, viscosity, and dissolution coefficients used in dynamic 
simulation. Additionally, TDS information is used in the dynamic simulation as a parameter for 
fluid properties and can be used in the volumetric model as a way to eliminate portions of the 
geologic formation where TDS values are below the threshold permitted to inject CO2, as well as 
calculating dissolution of CO2. Sequential indicator simulation stochastic modeling is used to 
populate the facies property. This approach honors the proportional input data from the 
petrophysical workflow for each facies and the variograms from the data analysis, which helps to 
optimize the distribution of model properties. Porosity and permeability were distributed by 
Gaussian random function simulation and conditioned to the facies property. The porosity and 
permeability properties are populated using a bivariate distribution established in the 
petrophysical workflow. Each facies has its own statistical set of porosity and permeability 
values. A total pore volume can then be established for each base case model.  
 
 High, mid, and low case pore volume realizations are computed for each model by 
performing uncertainty analysis on the facies property. The facies property was the most 
uncertain reservoir property in both models, and its uncertainty has a large effect on the 
connected volumes and overall pore volume. By randomly varying the good reservoir facies, 
different probabilistic models were produced which resulted in high, mid, and low pore volume 
cases to evaluate the effect on storage coefficients. The high case is a 90th percentile (P90) and 
contains more of the primary storage facies and more pore volume, while the low case is a 10th 
percentile (P10) and has less primary storage facies and less total pore volume. The mid case is 
represented by a 50th percentile (P50) and is similar to the base case realization. In order to 
compare volumetric and dynamic approaches to storage resource potential, the static models are 
prepared for numerical simulation using upscaling methods. Static models are upscaled to reduce 
overall cell count while still honoring the geologic heterogeneity. At this point, the effective 
volumetric storage resource can be calculated for each pore volume model representing the 
formation extent in the basin.  
 

Dynamic Modeling 
 

 Following upscaling and calculation of the effective volumetric CO2 storage resource 
potential, simulation is performed on the same upscaled models to determine the effective 
dynamic CO2 storage resource potential and efficiency. The dynamic simulation workflow is 
conducted by importing and quality-controlling the geologic models, determining injection 
simulation design, exploring boundary conditions, enhancing operational storage capacity, and 
calculating the effective dynamic CO2 storage resource potential and efficiency. Finally, the 
estimates made using the volumetric approach can be compared to those estimated through the 
dynamic simulation (Figure 5). 
 
 Grid sensitivity analysis, numerical tuning, injection rate sensitivity analysis, and dynamic 
simulations are performed using the Computer Modelling Group’s GEM software. To better 
understand the uncertainty in some of the formation properties and to test different operation 
conditions, twelve simulation cases were performed on each case study. The mid case was 
considered the base case model and had initial simulations performed followed by optimization 
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techniques looking into injection simulation design, boundary conditions, and operational storage 
capacity enhancements. High and low cases were also simulated but with minimal optimization 
scenarios.  
 
 Determining the ultimate effective storage resource of a target formation through dynamic 
simulation can be very difficult because of the very large extent and the number of wells that 
would be required to fully utilize the formation’s pore volume. A python script was developed to 
determine the number of wells, well placement and pattern, and perforation intervals selecting 
location based on the best formation properties in the grid. This script allowed control of the 
spacing between wells, as well as the ability to determine which type of well to create, i.e., 
injector, producer, and horizontal wells. The script also calculates the maximum bottomhole 
pressure for each well based on a pressure gradient and the well’s measured depth. In addition, 
the wells are perforated in cells that exceed an injectivity cutoff (permeability multiplied by 
thickness) for each well by summing the injectivity of the well’s individual k-layers. These 
functions allowed the different realizations and operational considerations for each case to be 
populated quickly. 
 
 The simulations allowed for 50 years of continuous CO2 injection followed by 50 years of 
postinjection to access plume movement and pressure transient. Regression functions were fitted 
to the results when plotted versus time to predict ultimate storage capacity for time beyond the 
simulation capabilities. This method was validated by running several of the simulation cases for 
each model until the function asymptote, thus recording maximum effective CO2 storage 
resource potential and efficiency. The effective dynamic CO2 storage resource potential and 
efficiency was then calculated on the high, mid, and low pore volume cases and was compared to 
the volumetric cases for each model.  
 
 
CASE STUDIES 
 

Formation Selection 
 
 Three DSFs were selected for this study, representing different depositional environments 
in different basins that may be considered for future CO2 storage. These three formations 
(represented in two geologic models) cover similarly sized areas but contain different 
depositional environments, geologic properties, and flow properties. The first is the upper 
Minnelusa Formation, Powder River Basin, United States, representing a single flow unit 
consisting of aeolian sand dunes cemented and interspersed with carbonates, both with fair 
storage properties. The second and third formations are the Qingshankou and Yaojia Formations, 
Songliao Basin, China. Although the Qingshankou and Yaojia are separate formations, they act 
as a single flow unit and were modeled as one system representing a stacked storage system 
consisting of deltaic–fluvial deposits with good storage properties separated by lacustrine muds 
with low storage potential (Figure 6). Both study areas are in intermontane basins; however, the 
Qingshankou and Yaojia system does not have areas of discharge and recharge while the 
Minnelusa does. This results in the Minnelusa Formation acting more as an open system, while 
the Qingshankou and Yaojia system is expected to behave in more of a closed or semiclosed 
manner.  
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 The detailed description and development of both geocellular models are included in 
Appendix A. The resulting pore volumes for both the upper Minnelusa and Qingshankou–Yaojia 
systems are included in Tables 1 and 2.  
 
 
VOLUMETRIC CO2 STORAGE RESOURCE ESTIMATION 
 
 The completed, upscaled geocellular models were now ready to be utilized to estimate the 
effective storage resource potential of the different model realizations. The total pore volume in 
each model was clipped sequentially to calculate the fraction (Egeol) of the formations that is 
amenable to storage. This was accomplished by first clipping the model to an effective area 
 by removing the areas where CO2 could not be injected because of insufficient depth or (஺೙/஺೟ܧ)
because TDS values fall into the range of protected USDWs. Then a portion of the net thickness 
 was removed by clipping out the nonreservoir facies. Next, using an effective porosity (௛೙/௛೒ܧ)

cutoff (ܧఝ೐೑೑/ఝ೟ ) of 7% for the Minnelusa and 14.5% Qingshankou–Yaojia, the rest of the 

noneffective porosity was removed (Figures 7 and 8). This porosity cutoff was determined by 
performing a detailed connected-volumes analysis. This type of analysis is conducted by creating 
connected-volumes by selecting cutoff values for both porosity and permeability. All cells that 
meet the selected criteria are saved, while all others are made null. The saved cells are then 
viewed in 3-D and compared with the actual injectivity values used during numerical simulation. 
During the connected-volumes analysis, several values were used, both above and below the 
final selected porosity cutoff. From a reservoir flow standpoint, this method is used to eliminate 
poor-quality rock that would have low injectivity because of low flow zones. The porosity 
eliminated is known as micro effective porosity and usually is not interconnected or has low 
permeability. The eliminated pore volume in each system accounts for less than 1% of the total 
 
 
Table 1. Input Parameters Used for Upper Minnelusa Modeling and the Total Calculated 
Pore Volume for the P10, P50, and P90 Upper Minnelusa Formation Models 
Parameter Symbol Unit P10  P50 P90 
Total Area At km2 70,300 70,300 70,300 
Average Formation Thickness hg m  73 73 73 
Average Formation Porosity φtot  0.03 0.03 0.04 
Total Formation Pore Volume VPV km3 153 174 212 
 
 
Table 2. Input Parameters Used for Qingshankou–Yaojia System Modeling and the Total 
Calculated Pore Volume for the P10, P50, and P90 Qingshankou–Yaojia System Models 
Parameter Symbol Unit P10 P50 P90 
Total Area At m2 1.23E+11 1.23E+11 1.23E+11 
Average Formation Thickness hg m 370 370 370 
Average Formation Porosity φtot  0.03 0.06 0.09 
Total Formation Pore Volume VPV km3 742 1290 1810 
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Table 3. Effective Pore Volumes and Ratios for the P10, P50, and P90 Upper Minnelusa 
Models 
Parameter Symbol Unit P10  P50 P90 
Total Pore Volume  VPV km3 153 174 212 
Pore Volume Clipped to Effective Area VPVC km3 130 151 178 
Net-to-Total Area Percentage ܧ஺೙/஺೟  85% 87% 84% 
Pore Volume Clipped to Effective 
  Facies 

 km3 101 127 158 

Net-to-Gross Thickness Percentage ܧ௛೙/௛೒  78% 84% 89% 

Pore Volume Clipped to Effective Porosity 
  Cutoff or Effective Pore Volume 

 km3 60.6 78.7 98.5 

Effective-to-Total Porosity Percentage ܧఝ೐೑೑/ఝ೟  60% 62% 62% 

Effective-to-Total Pore Volume Percentage Egeol  40% 45% 47% 
 
 
 
 
Table 4. Effective Pore Volumes and Ratios for the P10, P50, and P90 Qingshakou–Yaojia 
Models 
Parameter Symbol Unit P10 P50 P90 
Total Pore Volume  VPV km3 742 1290 1810 
Pore Volume Clipped to Effective Area VPVC km3 415 773 1120 
Net-to-Total Area Percentage ܧ஺೙/஺೟  56% 60% 62% 
Pore Volume Clipped to Effective Facies  km3 168 507 818 
Net-to-Gross Thickness Percentage ܧ௛೙/௛೒  40% 66% 73% 

Pore Volume Clipped to Effective Porosity 
  Cutoff or Effective Pore Volume 

 km3 135 422 790 

Effective-to-Total Porosity Percentage ܧఝ೐೑೑/ఝ೟  80% 83% 97% 

Effective-to-Total Pore Volume Percentage Egeol  18% 33% 44% 
 
 
 
 
Table 5. Saline Formation Displacement Efficiency Terms, ED (U.S. Department of Energy, 
2010) 
Lithology  P10 P50 P90 
Clastics 7.4% 14% 24% 
Dolomites 16% 21% 26% 
Limestones 10% 15% 21% 
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Table 6. Effective Storage Efficiency Factors and Resulting Effective Storage Resource for 
the P10, P50, and P90 Upper Minnelusa Models 
Parameter Symbol Unit P10  P50 P90 
Total Pore Volume VPV km3 153 174 212 
Effective-to-Total Pore Volume Ratio Egeol  40% 45% 47% 
Volumetric Displacement Efficiency ED  7.4% 14% 24% 
Effective Storage Efficiency Factor EE  2.9% 6.3% 11% 
Effective Storage Volume  km3 4.48 11 23.7 
Average CO2 Density ρCO2 kg/m3 773* 773* 773* 
Effective CO2 Storage Mass MCO2,E Mt** 3466 8519 18,282 
  * CO2 density was calculated at average reservoir properties of 33.6 MPa and 81°C. 
** Million tonnes. 
 
 
 
Table 7. Effective Storage Efficiency Factors and Resulting Effective Storage Resource for 
the P10, P50, and P90 Qingshakou–Yaojia Models 
Parameter Symbol Unit P10 P50 P90 
Total Pore Volume VPV km3 742 1290 1810 
Effective-to-Total Pore Volume Ratio Egeol  18% 33% 44% 
Volumetric Displacement Efficiency ED  7.4% 14% 24% 
Effective Storage Efficiency Factor EE  1.3% 4.6% 10% 
Effective Storage Volume  km3 10 59.1 190 
Average CO2 Density ρCO2 kg/m3 680* 680* 680* 
Effective CO2 Storage Mass MCO2,E Mt 6792 40,138 128,840 
  * CO2 density was calculated at average reservoir properties of 15 MPa and 48°C. 
 
 
 
Table 8. Closed-System Compressibility Storage Efficiency Factors and Resulting 
Compressibility Storage Resource for the P10, P50, and P90 Upper Minnelusa Models 
Parameter Symbol Unit P10  P50 P90 
Total Pore Volume VPV km3 153 174 212 
Water Compressibility* cw 1/kPa 4.13E-07 4.13E-07 4.13E-07 
Pore Compressibility* cp 1/kPa 5.58E-07 5.58E-07 5.58E-07 
Initial Pressure  P0 kPa 28,032 28,032 28,032 
Maximum Pressure** Pmax kPa 33,638 33,638 33,638 
Percent Pore Volume from  
  Compressibility 

Ecomp  0.54% 0.54% 0.54% 

Compressible Reservoir CO2 Storage  
  Volume 

VCO2,comp km3 .831 .949 1.15 

Average CO2 Density Max ρmax kg/m3 773 773 773 
Compressible Reservoir CO2 Storage  
  Mass 

MCO2,comp Mt 643 733 891 

  * Obtained from Liu and Li (2013), Brady and Lee (1998), and Pitts (2005). 
** Maximum allowable injection pressure was determined by adding 20% to the initial pressure. 
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Table 9. Closed-System Compressibility Storage Efficiency Factors and Resulting 
Compressibility Storage Resource for the P10, P50, and P90 Qingshankou–Yaojia System 
Models 
Parameter Symbol Unit P10  P50 P90 
Total Pore Volume VPV km3 742 1290 1810 
Water Compressibility* cw 1/kPa 3.93E-07 3.93E-07 3.93E-07 
Pore Compressibility* cp 1/kPa 4.50E-07 4.50E-07 4.50E-07 
Initial Pressure  P0 kPa 12,542 12,542 12,542 
Maximum Pressure** Pmax kPa 15,051 15,051 15,051 
Percent Pore Volume from  
  Compressibility 

Ecomp  0.21% 0.21% 0.21% 

Compressible Reservoir CO2 Storage  
  Volume 

VCO2,comp km3 1.57 2.73 3.82 

Average CO2 Density Max ρmax kg/m3 680 680 680 
Compressible Reservoir CO2 Storage  
  Mass 

MCO2,comp Mt 1067 1852 2597 

  * Obtained from Zhao and others (2012), Esken and others (2012), and Zhang and others (2005). 
** Maximum allowable injection pressure was determined by adding 20% to the initial pressure. 
 
 
DYNAMIC EFFECTIVE CO2 STORAGE RESOURCE ESTIMATION  
 
 The results of the volumetric effective CO2 storage resource estimate indicate that if the 
upper Minnelusa Formation acts as an open system, then it should have approximately 3466 to 
18,282 million tonnes of effective CO2 storage resource potential or 2.9% to 11% efficiency. If 
the upper Minnelusa Formation acts as a closed system, then the resulting effective CO2 storage 
resource potential would be approximately 643 to 891 million tonnes of effective CO2 storage 
resource potential or about 0.54% efficiency. Likewise, the results indicate that the  
Qingshankou–Yaojia system should have approximately 6792 to 128,840 million tonnes of 
effective CO2 storage resource potential or 1.3% to 10% efficiency, if it behaves as an open 
system and approximately 1067 to 2597 million tonnes of effective CO2 storage resource 
potential or 0.21% efficiency if it behaves as a closed system. As a means of testing whether or 
not these two storage systems are open, closed, or semiclosed, dynamic reservoir simulations 
were performed on each model. Simulations were performed on the high, mid, and low pore 
volume realizations for each model, followed by simulation runs using optimization techniques. 
A total of twelve simulation cases were run for both the upper Minnelusa and Qingshankou–
Yaojia models to investigate the effects of boundary conditions, well configurations, and 
injection and extraction strategies (Table 10).  
 
 In each simulation run, the entire formation extent within the upscaled geocellular models 
was used in order to better understand the pressure buildup effects. The overlying seals were also 
included in the models and assigned porosity, permeability, etc., from the literature. Initially, 
each case had injection for 50 years, with a 50-year postinjection period to observe pressure 
transient in the formations. The simulation runs were given wells according to the python script 
previously described, which selected the optimal location and perforation for each well  
(Figures 11 and 12). As a result, each geologic model had a different number of wells, well 
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Table 11. Well Density for Both Systems 
  Minnelusa System Qingshankou–Yaojia System 

Cases 

No. of 
Injection 

Wells 

No. of 
Extraction 

Wells 
Area, 
km2 

Density, 
wells/km2 

No. of 
Injection 

Wells 

No. of 
Extraction 

Wells 
Area, 
km2 

Density, 
wells/km2 

Case 1 462 NA 58,632 0.008 462 NA 45,995 0.010 
Case 2 475 NA 58,632 0.008 475 NA 45,995 0.010 
Case 3 492 NA 58,632 0.008 492 NA 45,995 0.011 
Case 4 475 NA 58,632 0.008 475 NA 45,995 0.010 
Case 5 475 NA 58,632 0.008 475 NA 45,995 0.010 
Case 6 238 NA 58,632 0.004 238 NA 45,995 0.005 
Case 7 238 237 58,632 0.008 238 327 45,995 0.012 
Case 8 475 345 58,632 0.014 475 345 45,995 0.018 
Case 9 475 NA 58,632 0.008 475 NA 45,995 0.010 
Case 10 475 345 58,632 0.014 475 345 45,995 0.018 
Case 11 475 345 58,632 0.014 475 345 45,995 0.018 
Case 12 820 NA 58,632 0.014 820 NA 45,995 0.018 
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solubility trapping increasing as a result of the free-phase CO2 contacting more unsaturated 
brine. Solubility trapping may play an important role in the storage resource potential of a target 
formation, especially if it occurs early in the project, decreasing the pressure buildup in the 
formation and increasing the amount of CO2 that can be injected into the target reservoir. The 
effective CO2 storage efficiency values that were developed as a result of this project take into 
account physical, hydrodynamic, solubility, and residual gas trapping. However, because of the 
complex nature of mineral trapping and the unknown factors associated with it, mineral trapping 
was not considered part of this project. As initially expected, the results of injection operations 
indicate that the two systems behave very differently; as such, the discussion of the simulation 
cases will be addressed individually. 
 

Upper Minnelusa Formation Dynamic Simulation Results 
  
 The results of the simulations after 50 years of injection operations for the upper 
Minnelusa Formation are shown in Table 12. After 50 years of injection, the cases with water 
extraction showed the highest increase in the storage efficiency, although the number of injection 
wells also seems to play an important role, indicating that Case 2 did not have enough wells and 
that local area pressure buildup due to injection may also be an important limiting factor in 
maximizing CO2 storage in the first 50 years of injection.  
 
 At the end of the 50-year injection period, the upper Minnelusa Formation had not reached 
a maximum storage resource potential in any case, as was evident from the nearly linear increase 
in the cumulative storage over time in all of the injection cases (Figures 13a and 13b). To better 
determine the maximum effective CO2 storage resource potential and efficiency in the upper 
Minnelusa Formation, several cases were run for an extended period of time, continuously 
injecting CO2 to determine when the cumulative injection mass plateaued at an effective 
maximum storage. These long simulation runs produced logarithmic functions, with the 
cumulative CO2 mass stored gradually leveling off in the first 1000 years of injection  
(Figure 14). In the rest of the cases without water extraction, the injected volumes were predicted 
by fitting a logarithmic function, to the data and extrapolating the results out to 2000 years 
(Figure 15). It is worth noting that some of the extrapolations likely over- or underestimate the 
long-term storage resource potential, as only 50 years of data was used to make these 
extrapolations. Cases 7, 8,10 and 11 included water extraction and were not extrapolated out 
beyond the simulation data. This was decided because extrapolating cumulative maximum 
storage for these cases was difficult since it is likely that the storage resource potential would 
have continued to increase until CO2 was produced at the extraction wells, causing them to shut 
in. However, it is assumed that the maximum would be higher in the simulation cases with water 
extraction than in cases without extraction, as demonstrated by the first 50 years of data. When 
the storage mass for each case (Table 13) and the accompanying effective CO2 storage efficiency 
(Table 14) are examined over time and compared to the effective storage efficiency values from 
the volumetric assessment, it appears that the upper Minnelusa Formation behaves like an open 
system. After only 50 years of injection into the upper Minnelusa Formation, the dynamic 
effective storage efficiency was over 1% for all cases except for Case 6; however, none of the 
simulation runs had reached a maximum storage, as efficiencies in all of the cases were still  
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Table 15. Qingshankou–Yaojia System Simulations Results after 50 years of Injection 
Operation 

Case 
Injection 

Wells 
Extraction 

Wells 
Mass CO2 Injected, 

Mt E, % 
Change from  

Case 2, % 
1 391 NA* 1402 0.28 −21 
2 432 NA 3067 0.35 0 
3 441 NA 4917 0.40 14 
4 432 NA 2975 0.34 −3 
5 432 NA 3222 0.37 5 
6 216 NA 2578 0.29 −16 
7 216 216 8297 0.95 171 
8 432 395 17,281 1.97 463 
9 432** NA 3158 0.36 3 
10 432** 395 17,487 1.99 470 
11 432** 395** 17,625 2.01 475 
12 827 NA 3312 0.38 8 

  * Not applicable. 
** Indicates horizontal wells. 
 
 
 At the end of the 50-year injection period, the Qingshankou–Yaojia system had not 
reached a maximum storage resource potential in all cases, as is evident from the continued 
increase in the cumulative storage in all of the injection cases, although the rate of increase in the 
cumulative storage amount did begin to decrease by the end of 50 years of injection in most 
cases because of pressure buildup (Figures 17a and 17b). In order to determine the maximum 
effective storage resource in the Qingshankou–Yaojia system, several cases were run for  
2000 years, continuously injecting CO2 to determine when the cumulative injection mass 
plateaued at an effective maximum storage. These long simulation runs produced logarithmic 
functions, with the cumulative CO2 mass stored dropping off quickly after 100 years of injection 
(Figure 18). In the rest of the cases without water extraction, the injected volumes were predicted 
by fitting a logarithmic function to the data and extrapolating the results out to 2000 years 
(Figure 19). Cases 7, 8, 10 and 11 contained water extraction and were not extrapolated out 
beyond the simulation data as it was difficult to make any future extrapolations about the 
cumulative maximum storage; however, it is assumed that the maximum would be much higher 
than cases without extraction, as demonstrated by the first 50 years of data. When the storage 
mass for each case (Table 16) and the accompanying effective CO2 storage efficiency values 
(Table 17) are examined over time and compared to the effective storage efficiency values from 
the volumetric assessment, it appears that the Qingshankou–Yaojia system behaves like a closed 
or semiclosed system. If the formation were an open system, then the effective storage 
coefficients should be approximately 1.3% for the P10 realizations, 4.6% for the P50 
realizations, and 10% for the P90 realizations (Table 7). In all of the simulation cases without 
water extraction, the effective storage efficiency was less than 1% even after 2000 years of 
injection operations, and the increase in the efficiency starts to plateau after the first 100 years 
(Figure 20). 
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DISCUSSION OF SIMULATION RESULTS 
 
 The following sections discuss in detail the various factors affecting dynamic effective 
CO2 storage resource estimates that were investigated in this study. These factors include 
geologic CO2 storage trapping mechanisms, geologic uncertainty and heterogeneity, formation 
boundary conditions, the number and types of wells, and storage optimization through water 
extraction. In addition, these factors and the resulting dynamic effective CO2 storage resource 
potentials were also compared to the volumetric effective CO2 resource potentials, and 
conclusions were drawn based on the comparison. 
 

Trapping Mechanisms 
 
 As previously mentioned, it is expected that different trapping mechanisms will play 
different roles in trapping CO2 in the reservoir throughout the life of the storage project. 
However, in this study, the main concern was with how these trapping mechanisms affect the 
effective CO2 storage resource potential and efficiency. In the simulations previously described, 
physical, hydrodynamic, residual gas, and solubility trapping were utilized to understand the 
effective CO2 storage resource potential of the target formations. Over time, the trapping 
mechanisms lock CO2 in the reservoir and gradually decrease the amount of remaining storage 
potential. This principle holds true for all the mechanisms except solubility trapping. As injected 
CO2 mixes with the native formation waters, a portion of the CO2 dissolves into the water, 
increasing its density, and the CO2 takes up less space when dissolved, thus decreasing the 
formation pressure and allowing more CO2 to be stored in the same area (Ennis-King and 
Paterson, 2005). This dissolution process is a function of not only temperature, pressure, and 
salinity but also the mixing rate of the fluids. In reservoir simulations, the rate of mixing may be 
dependent on the grid size utilized for the simulations, with larger cells overestimating the rate of 
mixing, thus allowing more CO2 to go into solution earlier than is likely to happen in an actual 
injection project. With that said, injection wells were placed throughout each target formation 
based on whether or not the geologic properties were amenable to CO2 injection. As a result, 
most of the injection occurred in areas without a significant local structural or stratigraphic trap, 
allowing the CO2 to be more mobile and potentially contact more of the unsaturated formation 
waters.  
 
 In the upper Minnelusa Formation simulations, the amount of CO2 dissolved in each case 
varied but was less than 25% in all cases after the first 50 years of injection simulation. As 
discussed earlier, this amount may be an overestimation because of the large cells in the 
simulation grid that was used and, if so, may overestimate the total amount of CO2 that could be 
stored in the upper Minnelusa Formation. If the mass of CO2 that was trapped in solution were 
removed from the total mass stored, the resulting dynamic effective CO2 storage efficiencies 
would be reduced (Table 18). The results from the upper Minnelusa Cases 2, 6, and 12 were 
plotted to determine the percentage of CO2 that is dissolved in the formation water over  
500 years of injection (Figure 21). These results indicate that the percentage of CO2 trapped in 
these cases remains roughly constant over this time period. It is also worth noting that the 
percentage of CO2 in solution also correlates well with the number of injection wells used in the 
simulation. Cases 2, 6, and 12 had 475, 238, and 820 injection wells, respectively, and this 
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efficiency calculations, the results would be less and are included in Table 19. Based on the 
simulation results for both the upper Minnelusa and Qingshankou–Yaojia models, it is expected 
that over time the contribution of solution trapping on storage efficiency will increase, 
potentially up to 50% of the effective storage potential after 2000 years of injection. 
 
 It is difficult to determine whether or not the amount of dissolution trapping in these cases 
is reasonable because of the grid size of the models. A very fine-scale model is needed to 
accurately model the convective mixing resulting from the injection of CO2 into a reservoir. It is 
expected that the models used in this project artificially enhance this mixing early, resulting in 
the overestimation of CO2 dissolution in the first 50 years and then a much smaller increase later 
as very little CO2 contacts new grid cells. It was beyond the scope of this project to look 
specifically at the amount of CO2 trapped as a result of dissolution; however, it is recommended 
based on the results of these simulations that the role of CO2 solubility trapping on the effective 
CO2 storage resource potential be investigated on a formation scale with multiple injectors to 
more accurately determine its effect on storage efficiency.  
 

Geologic Uncertainty 
 
 In order to evaluate the effects of geologic uncertainty and of different geologic 
realizations on the effective CO2 storage efficiency, high (P90), mid (P50), and low (P10) pore 
volume cases were generated for both the upper Minnelusa and Qingshankou–Yaojia models. In 
the upper Minnelusa Formation, the variations in the geologic model resulted in the percentage 
of geology amenable to storage (Egeol) ranging from 40% for the P10 to 47% for the P90 model 
realizations. This variability in the geology appears to play a significant role in the overall 
storage efficiency for the upper Minnelusa Formation, as the dynamic CO2 storage efficiency 
ranges from 1.0% (P10) to 1.4% (P90) after 50 years and increases to 3.4% (P10) to 17% (P90) 
after 2000 years (Figure 23). These results indicate that the upper Minnelusa Formation is an 
 
 
Table 19. Qingshankou–Yaojia System Effective Storage Efficiency with and Without 
Dissolution after 50 years of Injection Operation 

Case Mass CO2 Injected, Mt E, % 
Mass CO2 in Solution, 

Mt 
Efficiency (E) Excluding 

CO2 in Solution, % 
1 1402 0.28 324 0.22 
2 3067 0.35 845 0.25 
3 4917 0.40 1428 0.28 
4 2975 0.34 656 0.27 
5 3222 0.37 888 0.27 
6 2578 0.29 524 0.23 
7 8297 0.95 1264 0.81 
8 17,281 1.97 2780 1.65 
9 3158 0.36 722 0.28 
10 17,487 1.99 2835 1.67 
11 17,625 2.01 2891 1.68 
12 3312 0.38 1080 0.26 
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the permeability of the formation seals was in the nanodarcy range then the system would act in 
a closed manner, resulting in pressure-limited, or closed-system, behavior (IEA Greenhouse Gas 
R&D Programme, 2010). 
 
 In the simulation cases for both the upper Minnelusa and Qingshankou–Yaojia systems, 
the “actual” boundary conditions were defined by constructing the geocellular model to cover the 
entire formational extent, including areas too shallow to inject CO2; areas of discharge, recharge, 
and outcrops; and all of the overlying sealing formations to the surface. The overlying seals were 
assigned realistic porosity, permeability, and relative permeability values based on these 
formation types found in the literature. Next, constant pressure boundaries were assigned to the 
surface, as well as recharge, discharge, and outcrop areas. The lateral edges of the formations 
that terminated because of stratigraphic traps (e.g., pinch-outs or low-permeability rock) and 
structural traps (e.g., sealing faults) were assigned no-flow boundaries. The inclusion of these 
additional areas outside of those typically considered for injection in the model made it possible 
to assess whether the systems are open, closed, or semiclosed. The “open” boundary conditions 
were defined by taking the same model conditions described in the actual boundary conditions 
and adding infinite acting boundary conditions to all lateral edges of the formation—including 
those terminating deep in the subsurface and those that would otherwise be closed because of 
sealing faults or other features. In the reservoir simulation software, this was accomplished by 
assigning the same properties of the edge grid blocks out into an infinite system. A major 
limitation of this approach is that if the edge grid blocks have very low permeability and 
porosity, then the influence of even an infinite acting aquifer may be minimized. “Closed” 
boundaries were assigned the same as the actual boundary conditions except for assigning 
permeability to the overlying formations 100 times lower than the actual conditions case. This 
has the limitation that, if the permeability in the overlying seals was already in the nanodarcy 
range, the results would not look significantly different than the actual boundary conditions 
scenario, with both acting as closed systems. 
 
 For the upper Minnelusa simulation results, Cases 2 (actual boundaries), 4 (closed 
boundaries), and 5 (open boundaries) were used to evaluate whether or not the assigned 
boundary conditions affected the dynamic storage efficiency. During the first 50 years of 
injection, very little difference was seen between the effective storage efficiency, with results 
from all three cases between 1.22% and 1.28%; however, when the cases were predicted out to 
2000 years, the results diverged, with efficiencies for the open (Case 5), actual (Case 2), and 
closed (Case 4) of 18%, 11%, and 7.2%, respectively (Figure 25). In none of the cases did the 
system behave as a closed system, with all cases acting as an open system to varying degrees. 
This is likely due to the strong influence that the recharge, discharge, and outcrop areas have in 
this particular case at relieving formation pressure. In addition, the permeability of the overlying 
seals in the actual and open boundary conditions cases increased the storage efficiency in the 
actual and open scenarios by 53% and 147%, respectively, illustrating the important role that the 
formation seals can play in influencing storage efficiency, even in open systems. 
 
 In the Qingshankou–Yaojia cases, changing the boundary conditions did little to affect the 
resulting storage efficiency after 50 and 2000 years. After 50 years of injection, the 
Qingshankou–Yaojia system’s boundary condition cases had effective storage efficiencies 
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Table 21. Qingshankou–Yaojia System, Case 2 Injection Well Statistics after 50 years of 
Injection  
Cumulative CO2 
Injection per 
Well Greater 
Than, Mt 

Average Annual CO2 
Injection per Well 

Greater Than, tonnes 
Number 
of Wells 

% of 
Wells 

Cumulative 
Total CO2 

Injected Mt 

% of 
Total 
CO2 

Stored 
40 800,000 10 2 532 17 

20 400,000 38 9 1287 42 

10 200,000 92 21 2053 67 

5 100,000 171 40 2612 85 

2 40,000 277 64 2955 96 

1 20,000 329 76 3030 99 
 
 
boundary conditions or well interference. Other cumulative CO2 injection cutoffs are listed in 
Tables 20 and 21 with the accompanying statistics. This analysis of the injection well statistics 
also illustrates that adding more wells may not help increase the storage efficiency; however, it 
may allow for the maximum storage potential to be reached more quickly. 
 

Water Extraction Storage Optimization 
 
 The use of water extraction has been suggested as a way to increase the storage resource 
potential and efficiency in DSFs. The increase in the values for storage resource was found to be 
strongly influenced by the type of system, with closed systems resulting in the greatest benefit 
and open systems that are limited by local area pressure buildup benefiting from water extraction 
to a lesser extent (IEA Greenhouse Gas R&D Programme, 2012). These conclusions are also 
supported by the results from this study, as the closed Qingshankou–Yaojia system experienced a 
171% increase in the storage efficiency using an equal number of wells with and without water 
extraction, where one case used all of the wells as injectors (Case 2) and the other case used half 
of the wells as injectors and the other half as water extractors (Case 7) (Table 22). 
 
 
Table 22. Qingshankou–Yaojia System Simulations Results after 50 years of Injection 
Operation with and Without Water Extraction 

Case 
Injection 

Wells 
Extraction 

Wells 
Mass CO2  

Injected, Mt* E, % 
Change from  

Case 2, % 
2 432 NA* 3067 0.35 0 
7 216 216 8297 0.95 171 
8 432 395 17,281 1.97 463 
10 432** 395 17,487 1.99 470 
11 432** 395** 17,625 2.01 475 
12 827 NA 3312 0.38 8 

  * Not applicable. 

** Indicates horizontal wells. 
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 The impact of water extraction was even more profound if more injectors and water 
extractors were used, increasing storage efficiency by more than 450% from the base case 
without water extraction. It is also worth noting that the use of horizontal injectors and extractors 
had little impact on increasing the storage efficiency in the Qingshankou–Yaojia system, likely 
because the overall reservoir was pressured up and the vertical wells were able to reduce the 
pressure in the formations almost as well as the horizontal extractors. 
 
 The effect of water extraction on the open-system upper Minnelusa Formation was lower 
than in the Qingshankou–Yaojia system, although water extraction did increase the storage 
efficiency over the cases without water extraction when sufficient wells were utilized. In 
addition, the use of water extraction increased the storage efficiency by approximately 100% 
over the base case (Case 2) in the upper Minnelusa Formation (Table 23).  
 
 Based on the results of dynamic storage assessment of both the closed-system 
Qingshankou–Yaojia system and the open-system upper Minnelusa Formation, water extraction 
has a large potential to optimize the effective CO2 storage resource of a target DSF. Although 
this study did not address what would be done with the formation water once it was extracted, it 
is likely that extracted water would have to be reinjected into another permeable formation. This 
could result in simply moving the problem to another area, not to mention the increased costs of 
handling the extracted waters. That being said, there may be options for beneficial use of the 
extracted waters, creating an opportunity rather than creating another challenge (IEA Greenhouse 
Gas R&D Programme, 2012). 
 

Dynamic Versus Volumetric CO2 Storage Assessments 
 
 CO2 storage efficiency is a dynamic process that changes over time as CO2 is injected into 
a formation. When injection begins, the efficiency starts low, rises quickly, and then levels off to 
a maximum in much the same way as oil recovery changes in an oil field through time. Also 
similar to oil recovery is the fact that additional optimization operations can be implemented to 
1) increase the rate at which storage efficiency increases or 2) increase the maximum storage 
efficiency. Some of these operations include the use of water extractors to decrease pressure 
  
 
Table 23. Upper Minnelusa Simulation Results after 50 years of Injection Operation with 
and Without Water Extraction 

Case 
Injection 

Wells 
Extraction 

Wells 
Mass CO2  

Injected, Mt E, % 
Change from  

Case 2, % 
2 475 NA* 1674 1.24 0 
7 238 237 1177 0.88 –30 
8 475 345 3238 2.41 93 
10 475** 345 3238 2.41 93 
11 475** 345** 3774 2.81 125 
12 820 NA 2250 1.67 34 

  * Not applicable. 

** Indicates horizontal wells. 
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buildup, increasing the maximum efficiency, and the use of different well designs or additional 
wells to speed up the rate at which CO2 is stored. All of these concepts can be captured and 
estimated through a dynamic storage assessment process; however, they are very 
computationally and time-intensive.  
 
 With these concepts in mind, it is difficult to directly compare the dynamic and volumetric 
storage assessment methodologies unless the dynamic effective CO2 storage efficiency is 
compared to the volumetric effective CO2 storage efficiency when it approaches or reaches a 
maximum value. In this study, we ran the dynamic simulations first for 50 years, calculated the 
storage efficiency, and determined that neither formation had reached a maximum potential as 
efficiency was still increasing. The simulations were then run or extrapolated out to 2000 years 
of injection to determine whether or not the storage efficiency would level off and reach a 
plateau, at which time a maximum dynamic effective CO2 storage efficiency would be reached. 
Based on the simulation results for the upper Minnelusa Formation, the system behaves in an 
open fashion, with dynamic CO2 storage efficiency ranging from 0.55% to 1.7% after 50 years, 
2.5% to 7.9% after 500 years, and 3.4% to 18% after 2000 years of continuous injection in cases 
without water extraction. The dynamic results become roughly equivalent to the volumetric 
efficiency values after about 500 years, indicating that the volumetric efficiency values could be 
used if enough time were given for CO2 to be injected (Table 24). In the Qingshankou–Yaojia 
system, the dynamic efficiency varied from 0.28% to 0.40% after 50 years, 0.45% to 0.60% after 
500 years, and 0.62% to 0.72% after 2000 years of continuous injection in cases without water 
extraction. These results are in close agreement with the calculated closed-system efficiency 
values and indicate that the system is closed or semiclosed (Table 25). This supports the use of a 
volumetric approach for similar systems, as long as closed-system storage efficiency values are 
applied. 
 

In open-system cases, the dynamic CO2 storage resource potential is time-dependent, and it 
asymptotically approaches the volumetric CO2 storage resource potential over very long periods 
of time (Figure 29). This is very similar to other resource industries, namely, mining and the oil 
and gas industries, where CO2 is a resource that can only be fully realized if it is exploited to its 
maximum, using advanced technology, notwithstanding time, economics, regulatory, and other 
considerations.  In closed systems, the maximum efficiency is reached much more quickly, and 
the results are roughly equivalent to the volumetric results calculated using a closed-system 
storage efficiency term. These results indicate that the volumetric assessments can be used as 
long as an open- or closed-system efficiency term is applied appropriately, with the 
understanding that the effective CO2 storage efficiency of a formation would likely take 
hundreds of wells spaced throughout a formation’s area, and it would likely take decades or, 
possibly, thousands of years of injection to fully realize the effective CO2 storage resource 
potential. 
 

Applicability and Limitations 
 
 The methods described in this report are valid for estimating the effective volumetric and 
dynamic CO2 storage resource potential and efficiency for entire DSFs in sedimentary basins. 
The volumetric and dynamic storage efficiency values in this study were developed for entire 
geologic formations and were not designed for estimating the storage efficiency of a single  
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injection well or project. Because this study focused on determining the effective CO2 storage 
efficiency for an entire formation and not a single injection location, the displacement efficiency 
terms (ED) could not be broken down into the individual components. The value for the 
percentage of the amenable geology (Egeol) could be quantified; however, this will be very site-
specific, as geologic formations occur with different extents, depths, thicknesses, and properties. 
As such, at minimum, a quick assessment should be made to determine the fraction of the pore 
volume that is amenable to storage before the displacement efficiency terms are applied when the 
volumetric efficiency and resource potential of a formation are estimated.  
 
 If an assessment is made using the dynamic approach, it will be important to include the 
entire extent of the formation and overlying seals. This will be necessary to adequately model 
whether or not the system is open or closed and to what extent, as a formation is only truly open 
if the in situ fluids can be displaced out of the formation at a rate equal to the target injection 
rate.  
 
 Simulations of injection operations on entire formations are very computationally intensive 
and require very large grids, with millions of cells. This is further complicated by the inclusion 
of the overlying formations. To run these simulations in a time frame that is reasonable, very 
large cells need to be used to reduce the computational time, even with the most sophisticated 
computer hardware and software. The grid cell sizes used in this study were on the order of 
hundreds to thousands of meters in size horizontally and sometimes tens of meters in thickness. 
As a result, some of the processes that occur in a CO2 storage project may not have been 
captured adequately. Since the goal of this project was to determine the storage efficiency of an 
entire DSF, the displacement efficiency of individual injection wells, the size of individual CO2 
plumes, and the rate that CO2 dissolved into the formation waters may not have been adequately 
captured.  
 
 The simulations used to determine the dynamic CO2 storage efficiency in this study 
utilized hundreds of injection wells, placed miles apart, in optimal locations with respect to both 
the geology and spacing. As in oil and gas exploration, many wells would be drilled in areas that 
did not have optimal geology for injection that would have to be plugged and abandoned, and the 
planned spacing and storage efficiency optimization would take a basinwide management 
strategy for implementation. Similar practices are utilized on oil and gas exploration and 
production, such as well spacing requirements and unitized fields. Neither of these issues is 
insurmountable and both are worth consideration, but both were outside the scope for this 
project.    
 
 
FUTURE WORK 
 
 This study compared the volumetric and dynamic effective CO2 storage resource 
estimation methodologies on two formations. While the results of this study are very illustrative, 
it may be worthwhile to investigate additional formations to determine whether these results hold 
true for a wider cross section of geologic conditions and depositional environments. In fact, the 
EERC is currently investigating the effective CO2 storage resource potential of several additional 
formations across a wide range of depositional environments for DOE. That study is focused on 
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improving the methodologies used to estimate the effective CO2 storage resource potential and 
will likely build from the results of this study.  
 
 Solubility trapping may also need to be investigated more in the future, as it may play an 
important role in geologic storage of CO2. However, there are concerns in this study as to 
whether or not the physics of the solubility trapping process are adequately captured by the 
gridding used in this study.  
 
 
CONCLUSIONS 
 
 In order to compare volumetric and dynamic resource estimation methodologies, it was 
first important to evaluate and compare the volumetric methods in the literature. As a result of 
this comparison, it was determined that all of the volumetric CO2 storage resource methodologies 
resulted in roughly equivalent values for the effective storage resource of a DSF. In addition, 
most of these methodologies use the same base equation where the mass of CO2 that can be 
stored in a DSF is equal to the pore volume of the DSF multiplied by a CO2 storage efficiency 
term. As such, it was determined that the method and storage efficiency terms used in the DOE 
Carbon Sequestration Atlas of the United States and Canada (U.S. Department of Energy, 2010) 
would be used for the basis of this comparison since the storage efficiency terms had already 
been thoroughly developed for both open and closed systems. In addition, an approach was also 
presented that goes through a method to determine the effective pore volume (the pore volume 
amenable to CO2 storage) and a way to apply the effective CO2 storage efficiency to estimate the 
effective CO2 storage resource potential of a target DSF. 
 
 The dynamic CO2 storage resource potential and efficiency was determined through the 
use of reservoir simulation. In both the volumetric and dynamic approaches, a geocellular model 
was constructed of the entire storage formation and the overlying sealing formations all the way 
to the surface. In both the volumetric and dynamic CO2 storage approaches, the same geologic 
model was used so that the assessments made could be compared on a consistent basis. For the 
purposes of this study, three DSFs were selected in different geographic regions, with different 
geologic conditions, to try to determine the validity of the volumetric estimates and the level of 
agreement between the volumetric and dynamic approaches.  
 
 The open-system upper Minnelusa Formation in the Powder River Basin, United States, 
and the closed Qingshankou–Yaojia system in the Songliao Basin, China, were used in this 
evaluation. These DSFs were selected to determine whether or not the open-system DOE storage 
efficiency or the closed-system efficiency proposed by Zhou and others (2008) was applicable 
for either formation. In both models, the effective open-system and closed-system storage 
efficiency terms were determined so they could be compared to the storage efficiency as 
determined through the dynamic approach. As determined through the volumetric method, the 
open-system effective CO2 storage efficiency in the upper Minnelusa Formation was 2.9% to 
11%, and the closed-system effective CO2 storage efficiency was 0.54%. In the Qingshankou–
Yaojia system, the open-system efficiency was 1.3% to 10%, and the closed-system efficiency 
was 0.21%.  
 



 

54 

 As a means of testing whether or not these two storage systems are open, closed, or 
semiclosed, dynamic reservoir simulations were performed on each model. A total of twelve 
simulation cases were run for both the upper Minnelusa and Qingshankou–Yaojia models to 
investigate the effects of trapping mechanisms, geologic uncertainty, boundary conditions, well 
configuration, and injection and extraction strategies. In each simulation run, the entire formation 
extent within the models was used in order to better understand the pressure buildup effects. The 
overlying seals were also included in the models and assigned porosity, permeability, etc., from 
the literature. Initially injection was simulated for 50 years, and then the maximum dynamic 
storage was estimated running a few cases with continuous injection for hundreds or thousands 
of years until the maximum storage potential was reached. Based on the results of these 
simulations, the upper Minnelusa Formation behaved as an open system with maximum dynamic 
CO2 storage efficiencies ranging from 0.55% to 1.67% after 50 years, 2.48% to 7.85% after  
500 years, and 3.38% to 17.74% after 2000 years of continuous injection in cases without water 
extraction. These results are in very close agreement with the effective volumetric CO2 storage 
efficiency (2.9% to 11%) and indicate that the use of a volumetric methodology would be 
applicable in formations that behave in a truly open manner as long as time is considered. In the 
case of the Qingshankou–Yaojia system, the dynamic approach resulted in storage efficiencies 
between 0.62% and 0.72%, indicating that the system is closed or semiclosed. This also indicates 
that the use of an open-system volumetric efficiency term is not appropriate and a closed-system 
efficiency term should be applied if the volumetric methodology is being utilized. 
 
 In addition to comparing the dynamic CO2 storage resource estimation methodology to the 
volumetric approach, this study also investigated the effects of trapping mechanisms, geologic 
uncertainty, boundary conditions, the number and types of wells used, and water extraction 
techniques on the effective CO2 storage efficiency. In the open-system upper Minnelusa 
Formation, geologic uncertainty and heterogeneity and the use of water extraction had the 
biggest effect on the effective CO2 storage efficiency, with the number and type of wells not 
playing as important a role, especially in the long-injection scenarios. In the closed 
Qingshankou–Yaojia system, the use of water extraction increased the storage efficiency by as 
much as 475% during a 50-year injection scenario. The other factors did not play much of a role 
in increasing the storage efficiency, as pressure buildup in the formation was by far the limiting 
factor on the effective CO2 storage efficiency. 
 
 Trapping mechanisms are likely to play different roles in storing CO2 in a formation 
throughout the life of the storage project. However, in this study, the main concern was with how 
these trapping mechanisms affect the effective CO2 storage efficiency. In the simulations 
previously described, physical, hydrodynamic, residual gas, and solubility trapping were utilized 
to understand the effective CO2 storage efficiency of a target formation. Over time, the trapping 
mechanisms lock CO2 in the reservoir and gradually decrease the amount of remaining storage 
potential. This principle holds true for all of the mechanisms except solubility trapping. As 
injected CO2 mixes with the native formation waters, a portion of the CO2 dissolves, taking up 
less space in the reservoir and increasing the storage efficiency by decreasing formation pressure 
and allowing more CO2 to be stored in the same pore volume. This study indicated that, in both 
formations evaluated, anywhere from 15% to 33% of the injected CO2 could end up in solution 
in the first 50 years of injection, and this percentage could further increase to 16% to 41% after 
2000 years.  
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 Geologic uncertainty and geologic heterogeneity played an important role in the upper 
Minnelusa Formation but not in the Qingshankou–Yaojia system. In the upper Minnelusa, 
geologic uncertainty resulted in efficiencies from 3.4% to 17% in the P10 and P90 realizations, 
respectively, illustrating that heterogeneity and different model realizations can greatly influence 
the way that the injected CO2 displaces the formation water. It is believed that, because the 
Qingshankou–Yaojia system acted as a closed system, pressure buildup was the limiting factor, 
resulting in little to no difference between geologic cases.  
 
 This study also investigated the effects of optimization techniques, such as the number and 
types of wells used, and water extraction techniques on the effective CO2 storage efficiency. In 
the open-system upper Minnelusa Formation, the use of water extraction had the biggest effect 
on the effective CO2 storage efficiency, with the number and type of wells not playing as 
important a role, especially in the long injection scenarios. In the closed Qingshankou–Yaojia 
system, the use of water extraction increased the storage efficiency by as much as 475% during a 
50-year injection scenario. The other factors did not play much of a role in increasing the storage 
efficiency, as pressure buildup in the formation was by far the limiting factor on the effective 
CO2 storage efficiency. 
 
 In conclusion, the dynamic CO2 storage resource potential is time-dependent, and it 
asymptotically approaches the volumetric CO2 storage resource potential over very long periods 
of time, especially in open systems. This is very similar to other resource industries, namely, 
mining and the oil and gas industries, where CO2 is a resource that can only be fully realized if it 
is exploited to its maximum, using advanced technology, notwithstanding time, economics, 
regulations, and other considerations.  In closed systems, the maximum efficiency is reached 
much more quickly, and the results are roughly equivalent to the volumetric results calculated 
using a closed-system storage efficiency term. These results indicate that the volumetric 
assessments can be used as long as an open- or closed-system efficiency term is applied 
appropriately, with the understanding that the effective CO2 storage efficiency of a formation 
will likely take hundreds of wells spaced throughout a formation’s area, and it would likely take 
decades or possibly thousands of years of injection to fully realize the effective CO2 storage 
resource potential.  
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CASE STUDIES: GEOCELLULAR MODEL CONSTRUCTION 
 
 
UPPER MINNELUSA FORMATION GEOCELLULAR MODEL CONSTRUCTION 
 
 The upper Minnelusa Formation in the Powder River Basin, United States, representing a 
deep saline formation (DSF) consisting of a single flow unit with open boundaries, was selected 
as a case study. The intermontane Powder River Basin is bounded by the Big Horn Mountain 
Range and Casper Arch to the west, Laramie Mountains and Hartville Uplift to the south, Black 
Hills Uplift to the east, and Miles City Arch to the north. In addition to the basin being bounded 
in several areas by these mountain ranges, large areas are also open to meteoric recharge and 
subsurface discharge, particularly in the eastern portion of the formation near the Black Hills 
Uplift. These recharge and discharge areas indicate that the formation is an open system. 
Formation thickness and the percentage of carbonates increase to the south where gradual 
subsidence of the Lusk Embayment occurred (Fryberger, 1984). The model’s structural 
framework consists of two main zones: one representing the cap rock and overburden and one 
for the upper Minnelusa Formation (Figure A-1). The structure top of the upper Minnelusa was 
built using maps from Foster (1958), publicly available and picked log tops, and geostatistical 
interpolation (Figure A-2). The middle Minnelusa member is the base of the model created from 
the isopach map of Foster (1958) and controlled by additional formation top picks of the middle 
Minnelusa from the geophysical log data (Figure A-3).  
 
 The upper Minnelusa has a cyclic facies pattern of subtidal, sabkha, supratidal, and dune 
deposits. This pattern results in clean sandstones and low-porosity dolomites that are fairly 
continuous across the region. A petrophysical analysis was performed on the geophysical logs 
that were calibrated to core data to create a facies and porosity log for the selected 31 wells 
across the Powder River Basin. The resulting facies log displays the cyclic regressive and 
transgressive cycles of the upper Minnelusa and breaks the model into two distinct facies: 
aeolian sandstones and carbonates (Figure A-4). Resulting porosity logs were quality-checked 
with core analysis measurements to ensure agreement. Each facies has its own set of porosity 
data (Table A-1) that were crossplotted versus permeability to develop a bivariate relationship 
(Figure A-5). A formation trend of 35° north was set in the data analysis, along with vertical and 
horizontal variograms. 
 
 The sequential indicator simulation (SIS) stochastic modeling algorithm was used to 
distribute the facies into the structural framework, creating a geocellular facies property. 
Resulting facies proportions were 42% carbonates and 58% sand for the base case model. The 
porosity property was conditioned to the facies property and distributed using the statistical 
values in Table A-1. The permeability property was distributed according to the bivariate 
relationship established during petrophysical analysis (Figure A-6). Pressure, temperature, and 
total dissolved solids (TDS) vary significantly across the basin because of extremely shallow and 
deep formation depths and, as a result, were carefully added to the model to ensure an accurate 
representation of these properties. A hydrostatic pressure gradient of 9.8 MPa/km was used since 
reported gradients from drill stem tests ranged from 8.5 to 10.6 MPa/km (Wyoming Oil and Gas  
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QINGSHANKOU–YAOJIA SYSTEM GEOCELLULAR MODEL CONSTRUCTION 
 

 The Qingshankou and Yaojia Formations in the Songliao Basin, China, representing two 
interconnected DSFs acting as a single flow unit with closed boundaries, was selected as the 
other case study. The intermontane Songliao Basin is bounded by the Greater Khingan, Lesser 
Khingan, and Changbai Mountains. The target formations are completely surrounded by 
mountains, which were uplifted after deposition of the Qingshankou and Yaojia Formations, 
creating a closed system that is compartmentalized by sealing faults. The model’s structural 
framework consisted of two main zones: one representing the cap rock and overburden and one 
for the Qingshankou–Yaojia system (Figure A-8). The structure top of the Qingshankou was 
built using maps from Li (1995), a digital elevation model (DEM), and an isopach map (Xin and 
Wang, 2004) to determine the model base (Figure A-9). The combined total thickness for the 
Qingshankou–Yaojia system varies from 60 meters on the flanks to over 700 meters in the center 
of the basin (Figure A-10). However, the Qingshankou is typically thicker than the Yaojia, with 
individual maximum thicknesses of ~320 and ~200 meters, respectively. The formation zones 
were further divided into depositional flow zones based on deltaic sand isopachs from Li and 
others (1982). The structural framework of the model resulted in nine zones, including a fluvial 
deltaic and lacustrine zone for the Qingshankou 1, 2, and 3 and the Yaojia 1, 2, and 3 and a cap 
rock zone. Zones were broken into layers after a data analysis was completed on vertical core 
porosity data to determine the vertical variogram. 

 
 The Qingshankou–Yaojia system is composed of a cyclic facies pattern of fluvial, deltaic, 
and lacustrine deposits. This pattern results in high-porosity sandstones that are 
compartmentalized by low-porosity lacustrine shales. This pattern repeats itself throughout the 
Qingshankou–Yaojia succession, creating a stacked storage system. The structural framework 
divided each formation member into fluvial–deltaic and lacustrine zones. In turn, this allowed for 
each zone to have a separate facies calculation. Lacustrine zones consisting of low-porosity and 
permeability mudstones act as regional baffles, while the topmost lacustrine zone is a widespread 
cap rock. The fluvial–deltaic complexes act as a good storage reservoir with high-porosity 
arkosic sandstones (Asia–Pacific Economic Cooperation, 2005). The facies model in the fluvial–
deltaic system was given heterogeneity utilizing a gamma ray log from Well F64 in Wu and 
others (2009). Calculating shale volume allowed for heterogeneity in the model and for shaley or 
silty nonreservoir fluvial deltaic facies such as lake advancements or associated flood plain 
facies. Because of limited data to conduct a petrophysical analysis, porosity and permeability 
data and their bivariate relationship were determined from Ryder and others (2003). These data 
list details on the porosity and permeability of 81 producing fields in the Songliao Basin, 63 of 
which are part of the Qingshakou–Yaojiapetroleum system (Figure A-11). Statistics for each 
formation were compiled and supplemented with additional data from Bohacs (2012). The 
supplemented data helped determine histogram and crossplot end points and normal scores for 
the data for distribution. Mean values for each reservoir are listed in Table A-3. Data analysis on 
horizontal variograms was determined from reported quartz content from core analysis and 
average log data. Vertical variograms were determined from core porosity data. 

 
 



 

Figure A
Songliao

 
 

A-8. North-s
o Basin, Chi

south and ea
ina, showing

st-west cros
g the two ma

A-8 

 
s sections of

ain zones in t
f the Qingsh
the model (v

hankou–Yaoj
vertical exag

 

 

jia system in
ggeration = 2

n the 
25×). 



 

Fi
 
 
 

Figure 

 
 
 

gure A-9. In

A-10. Interp

nterpreted str

preted isopac
isopa

ructure top o

ch map of th
ach map from

A-9 

 
of the Qingsh

 
he Qingshako
m Xin and W

hankou Form

ou–Yaojia sy
Wang (2004)

 

mation from 

 

ystem using
). 

Li (1995). 

g a DEM andd an 



 

 
Fi

 
 
 
Table A
Facies i
Reservo
Mean Po
Mean Pe
Porosity

 
 
 
 
 
 

igure A-11. P

A-3. Reporte
in the Qings
oir 
orosity 
ermeability 
y (standard d

Porosity–per

ed Statistica
shakou–Yao

deviation) 

rmeability cr

al Porosity a
ojia Format

A-10 

rossplots for

and Permea
tions 

r the Qingsh

ability Valu

Shaertu
22.5
227
5.7

 

hankou–Yaoj

es for Fluvi

u Putaoh
21.8
111 
5.8 

jia system. 

ial–Deltaic 

hua Gaota
8 22.9

131
5.7

aizi 
9 
1 
7 



 

 Th
volume 
distribute
(Figure A
deviation
suppleme
Porosity 
from the 
has poro
Permeab
(2003). P
gradient.
pressure 
Jilin oil 
respectiv
TDS me
(2220 m)
 
 An
low pore
the amou
was reca
calculate
simulatio
shown in
 
 

Figure A

e facies pro
calculation 

ed using Ga
A-12). Poro

n in each zo
ented from 
data for the
literature re

osity measur
ility was dis
Pressure, tem
 The Near 
and tempera
field. Grad

vely. Althoug
asurement i
) (Near Zero

n uncertainty
 volume cas

unt of uncert
alculated by 
d pore volu

on (Figure A
n Table A-4. 

A-12. Porosi

perty was d
and variog

aussian rand
osity in the
one. Data en
Bohacs (20
 nonreservo
eview; howe
rements with
stributed util
mperature, a
Zero Emiss

ature gradien
dients are 0
gh a TDS g
n the reserv

o Emission C

y analysis wa
ses. The facie
tainty in the
shifting the 

ume was the
A-13). The in

ity and perm

distributed in
gram ranges
dom function

 model wa
nd points for
12) and giv
ir fluvial–de
ever, an ana
h a minimu
lizing the biv
and TDS pr
sion Coal (N
nts for the Q
0.0376°C/m 
gradient is n
voir (43.7g/L
Coal, 2007).

as performed
es parameter

e model, the 
sand/shale c
n ranked, in

nput paramet

meability dist

A-11 

nto the mode
s. The poro
n simulation
as distributed
r porosity in
en a minim
eltaic facies 
alog lacustrin
um and max
variate relat
roperties we
NZEC) Wor
Qingshankou

and 11.6 M
not defined, 
L) and the m

d on the base
r was selecte
shale volum
cutoff within
n which high
ters and tota

tributed throu
model. 

el using SIS
osity and p
n and condit
d with a d

n the fluvial–
mum and ma

and lacustri
ne shale from
ximum of 0
tionship mod
ere distribut
rk Packages
u Formation 
MPa/km for
one was de

maximum m

e case mode
ed for uncer

me calculatio
n one standa
h, mid, and 
al pore volum

ughout the Q

S in order to
ermeability 
tioned to the

different me
–deltaic rese

aximum of 5
ine facies we
m the Ordo
.4% and 1.5
dified from R
ted using a 
s Reports (2
from unpub
r temperatu
etermined us

measured dep

el to determin
rtainty analy
on in the flu
ard deviation
low cases w

mes (high, m

Qingshankou

o honor the 
properties 

e facies pro
ean and stan
ervoir facies
5.0% and 34
ere not iden
s Basin of C
5% (Zou, 2
Ryder and o
depth-depen

2007) determ
lished data i

ure and pres
sing a maxi
pth in the m

ne high, mid
sis. To deter

uvial–deltaic
n of the log
were selecte
mid, and low

u–Yaojia sys

shale 
were 

operty 
ndard 
s was 
4.8%. 

ntified 
China 
2012). 
others 
ndent 

mined 
in the 
ssure, 
imum 
model 

d, and 
rmine 
zone 

g. The 
ed for 
w) are 

stem 



 

Figure 
 
 
Table A
Total C
Models 
Paramet
Total Ar
Average
Average
Total Fo

 
 
 Lik
cell size 
cells in t
geologic 
performe
represent
 
 
REFERE
 
Asia Pac

basin
Proje

 
Bohacs, 

integr
Lake 
Numm
Asso

 

A-13. High,

A-4. Input P
Calculated P

ter 
rea 
e Formation 
e Formation 
ormation Por

ke the Minn
of 500 × 50

the model (t
heterogenei

ed in a time-
t a real-worl

ENCES 

cific Econom
ns in the reg
ect 06/2003, 

K.M., 2012
rated appro

Margin, an
medal, D., e
ciation of Pe

, mid, and lo

Parameters U
Pore Volume

Thickness 
Porosity 
re Volume 

nelusa model
00 meters to 
o allow the 
ity in the for
-efficient ma
d scenario.  

mic Coopera
gion of Chin
APEC#205-

2, Relation 
ach to unra
nd Lake Ce
eds., Lacust
etroleum Ge

ow pore volu

Used for Qi
e for the P1

S

l, the Qings
1250 × 125
dynamic sim
rmation. Up
anner, while

ation, 2005, 
na and sout
-RE-01.6, p.

of hydroca
aveling com
enter Strata
trine sandsto
ologists Mem

A-12 

 
ume case cro

ingshankou–
0, P50, and 

Symbol Un
At m
hg m
φtot 
VPV m

shankou–Yao
50 meters. T
mulations to

pscaling the m
 still retainin

CO2 storag
th east Asia
 232. 

arbon reserv
mplex genetic
a, in Baganz
one reservoi
moir 95, p. 1

oss sections t

–Yaojia Sys
P90 Qingsh

nit P10
m2 1.23E+
m 370

0.03
m3 7.42E+

ojia system 
This was to r
o be perform
model allow
ng confiden

ge prospectiv
a: APEC En

voir potenti
c relations 
z, O.W., B
irs and hydr
13–56. 

through the f

stem Model
hankou–Ya

P50
+11 1.23E

370
0.0

+11 1.29E

model was 
reduce the o

med), while s
wed several s
ce that the s

vity of selec
nergy Worki

ial to Lake–
among Fluv

Bartov, Y., B
rocarbon sy

facies prope

ling and the
aojia System

0 P
E+11 1.23
0 37
6 0.

E+12 1.81

upscaled fr
overall numb
still honorin
simulations 
simulation re

cted sedime
ing Group E

–Basin type
vial, Lake–P
Bohacs, K.,
stems: Ame

 

erty. 

e 
m 

90 
E+11 
70 
09 
E+12 

rom a 
ber of 
ng the 

to be 
esults 

entary 
EWG 

e—an 
Plain, 
, and 
erican 



 

A-13 

Enhanced Oil Recovery Institute, 2013, Data generation, compilation and analysis: 
www.uwyo.edu/eori/areas-of-focus/data_generation.html (accessed March, 2013). 

 
Foster, Donald L., 1958, Summary of the stratigraphy of the Minnelusa Formation, Powder River 

Basin, Wyoming Wyoming Geological Association Guidebook, p. 39–44. 
 
Fryberger, S.G., 1984, The Permian Upper Minnelusa Formation, Wyoming – Ancient example 

of an offshore-prograding eolian sand sea with geomorphic facies, and system boundary traps 
for petroleum: Wyoming Geological Association Annual Field Conference, 35th Guidebook, 
p. 241–271. 

 
Li, D., 1995, Hydrocarbon habitat in the Songliao rift basin, China, in Lambiase, J.J., eds., 

Hydrocarbon habitat in rift basins: Geological Society Special Publications, Geological 
Society of London 80, p. 317–329.  

 
Li, M., Taisheng, G., Xueping, Z., Taijun, Z., Rong, G., and Zhenrong, D., 1982, Oil basins and 

subtle traps in the eastern part of China, in Halbouty, M.T., ed., The deliberate search for the 
subtle trap: American Association of Petroleum G Memoir 32, p. 287–315. 

 
Near Zero Emissions Coal Project, 2007, Regional assessment of CO2 storage potential in the 

saline aquifers of the Songliao Basin—basin assessment of the Songliao Basin, Report of the 
Near Zero Emissions Coal (NZEC) Project, Work Package 4, Report to the Department of 
Energy and Climate Change.   

 
Ryder, R.T., Qiang, J., McCabe, P.J., Nuccio, V.F., and Persits, F., 2003, Qingshankou–

Putaohua/Shaertu and Jurassic coal–Denglouku/Nongan total petroleum systems in the 
Songliao Basin, China: U.S. Geological Survey Bulletin 2203–A, 41 p., 
http://pubs.usgs.gov/bul/b2203-a (accessed April 2013). 

 
Wu, H., Shihong, Z., Jiang, G., and Huang, Q., 2009, The floating astronomical time scale for 

the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of northeast 
China and its stratigraphic and paleoclimate implications: Earth and Planetary Science 
Letters, v. 278, p. 308–323. 

 
Wyoming Oil and Gas Conservation Commission, 2013, http://wogcc.state.wy.us/ (accessed  

July 2013). 
 
Xin, R., and Wang, Y., 2004, Origin and evolution of west slope breaks of Qingshankou–Yaojia 

Formation in northern Songliao Basin: Earth Science Journal of China University 
Geosciences, v. 29, no.5, p. 621–624. 

 
Zou, C., 2012, Unconventional petroleum geology: Newnes, 384 p.  
 



 

 

APPENDIX B 
 

DYNAMIC SIMULATION SUMMARY AND 
RESULTS DEMONSTRATION 



 

B-1 

DYNAMIC SIMULATION SUMMARY AND RESULTS DEMONSTRATION 
 
 
MODEL SETTINGS 
 
 All of the dynamic simulations were performed by the Energy & Environmental Research 
Center (EERC) using Computer Modelling Group’s (CMG) software package (www.cmgl.ca/) 
on a 188-core high-performance parallel computing cluster. The grid size for both the upper 
Minnelusa Formation and the Qingshankou–Yaojia system were upscaled to 1250 ×  
1250 meters, which resulted in models containing 4.12 and 5.54 million cells, respectively. The 
simulation system includes brine and CO2 components in the fluids. The CO2 is allowed to 
dissolve into the brine as in an actual saline system during CO2 injection. The aqueous density 
and viscosity of the fluids were respectively correlated by using the methods from Rowe and 
Chou (1970) and Kestin and others (1981) with varying temperatures and pressures of the saline 
system over the location and depth. Henry’s Law constant was correlated by Harvey’s method to 
determine the solubility of CO2 in the brine (Harvey, 1996). The rock–fluid settings were based 
on the lithologies found in the static geologic model. Pitts and Surkalo (1995) and Barati (2011 
and 2012) reported relative permeability curves and capillary pressure based on the sedimentary 
lithologies, including the sandstone and dolomite, in the upper Minnelusa Formation. The 
relative permeability curves and capillary pressure for the Qingshankou–Yaojia system were 
used from published work (Zhao and Zhang, 2012; Zeng and others, 2010). The relative 
permeability and capillary pressure curves used for each system are shown in Figures B-1–B-6. 
The ratio of vertical permeability to horizontal permeability used was 0.1 for both case studies 
(Zhao and Zhang, 2012). Simulation parameters are listed in Tables B-1 and B-2 for the 
Minnelusa and Qingshankou–Yaojia systems, respectively. The compressibilities of pore used 
for the upper Minnelusa Formation and Qingshankou–Yaojia system are 5.58E-7 and  
3.85E-6 kPa-1, while the compressibilities of water are 4.13E-7 and 2.85E-6 kPa-1, respectively 
(Zhang and others, 2005, 2008; Esken and others, 2012; Brady and Lee, 1998; Pitts, 2005; Liu 
and Li, 2013). The CO2 density for the storage potential calculation is based on the current 
average pressure and temperature which is 33,646 and 15,050 kPa for both formations.      
 
 The injection wells for all simulation cases were generated and optimized by a python 
script to cover all of the study area where the depths are greater than 800 meters for a dense 
phase of CO2 (supercritical phase). If the cases included water extraction, all of the extractors 
were placed around the injectors using the same script by following a five-spot pattern. The total 
number of wells used for the simulations are summarized in Table B-3. The constraints of the 
injection were to first satisfy the bottomhole pressure (BHP) limitation, which was calculated 
based on the depth of the bottomhole multiplied by the pressure gradient, 13.6 kPa/m for both 
formations, then the injection rate was imposed which was determined based on the injection rate 
sensitivity analysis. 
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Table B-2. Simulation Parameters Used for Qingshankou–Yaojia System  
(Zhao and others, 2012; Zeng and others, 2010; Zhang and others, 2008; Yang and 
Zhang, 2010)* 

Parameters Values 
Vertical and Horizontal Permeability Ratio, Kv/Kh 0.1 
BHP of Injection Wells, kPa 13.6 kPa/m pressure 

gradient used for individual 
wells, the range for the 

wells is 12,100 to  
29,897 kPa 

Relative Permeability Set 
1 (reservoir) 

Residual water, Srw 0.35 
Residual gas, Srg 0.1 

Exponent for the curves, m 0.46 
Pore compressibility, beta (Pa-1) 4.50E-07 

Entry capillary pressure,  
alpha (MPa) 

0.01 

Relative Permeability Set 
2 (cap rock) 

Residual water, Srw 0.4 
Residual gas, Srg 0.15 

Exponent for the curves, m 0.46 
Pore compressibility, Beta 4.50E-07 
Entry capillary pressure,  

alpha (MPa) 
5 

 

* The end points, exponents, and coefficients in Relative Permeability Sets 1 and 2 were used to generate the  
    relative permeability curves. 
 
 
 

Table B-3. Wells (injection and production) Used for Each Simulation Case  
Upper Minnelusa Formation Qingshankou–Yaojia System 

Case Injection Wells Extraction Wells Injection Wells Extraction Wells 
1 462 NA 462 NA 
2 475 NA 475 NA 
3 492 NA 492 NA 
4 475 NA 475 NA 
5 475 NA 475 NA 
6 238 NA 238 NA 
7 238 237 238 237 
8 475 345 475 345 
9 475* NA 475* NA 
10 475* 345 475* 345 
11 475* 345* 475* 345* 
12 820 NA 820 NA 
* Indicates horizontal wells. 
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B-72. Case 10

B-73. Case 10

0: CO2 footp

0: pressure d

print (total ga

difference (k
i

B-40 

 
as per unit a

 
 
 

 
kPa) on the to
injection. 

 
 

area in meter

op layer of t

rs) after 50 y

the reservoir

 

years of injec

 

r after 50 yea

ction. 

ars of 



 

Figure 

Figure B

B-74. Case 

B-75. Case 11

10: pressure

1: CO2 footp

 difference (
pos

print (total ga

B-41 

 
(kPa) on the 
stinjection.

 
 
 

 
as per unit a

 
 

top layer of

area in meter

f the reservoi

rs) after 50 y

 

ir after 50 ye

 

years of injec

ears 

ction. 



 

Figure B

Figure 

B-76. Case 11

B-77. Case 

1: pressure d

11: pressure

difference (k
i

 difference (
pos

B-42 

 
kPa) on the to
injection. 

 
 
 

 
(kPa) on the 
stinjection.

 

op layer of t

top layer of

the reservoir

f the reservoi

 

r after 50 yea

 

ir after 50 ye

ars of 

ears 



 

Figure B

Figure B

B-78. Case 12

B-79. Case 12

2: CO2 footp

2: pressure d

print (total ga

difference (k
i

B-43 

 
as per unit a

 
 
 

 
kPa) on the to
injection. 

 

area in meter

op layer of t

rs) after 50 y

the reservoir

 

years of injec

 

r after 50 yea

ction. 

ars of 



 

Figure 

 
 

REFERE
 
Barati, R

EOR 
www
2011

 
Barati, R

Comm
www
_com

 
Brady, C

of fie
Prese
Oklah

 
Esken, A

captu
III: C

 
Garcia, R

Tensl

B-80. Case 

ENCES 

R., 2011, EO
Commissi

w.uwyo.edu/e
%20tab_rez

R., 2012, M
mission a

w.uwyo.edu/e
mmission_01

C.L., and Lee
eld operatio
ented at the
homa, April 

A., Höller, S.
ure and stora
Country study

R.G., 2005, 
leep Formati

12: pressure

ORI collabor
ion and T
eori/_files/er
a.pdf (acces

Minnelusa c
and Techn
eori/_files/eo
-31-2012_cl

e, S.K., 1998
ons in the a
e 1998 SPE
19–22, 199

., Vallentin,
age technolo
y China, rep

Reservoir s
ion, Teapot 

 difference (
pos

ration in sol
Technical A
roctab_july_
sed July 1, 2

core analysi
nical Adv
orc_tab_jan_
lean.pdf (acc

8, A compar
alpha unit p
E/DOE Imp
8. 

 D., and Vi
ogies (CCS) 
port, 214 p. 

simulation o
Dome field:

B-44 

 
(kPa) on the 
stinjection.

lving the ch
Advisory B
_2011/reza%
2013). 

is and eval
visory Bo
_2012/reza%
cessed July 1

rison of forec
polymer-aug
proved Oil 

ebahn, P., 2
in emerging

of CO2 sequ
 Master thes

top layer of

hallenges of 
Board Mee

%20-minelusa

luation proj
oard Meet
%20-%20cor
1, 2013). 

cast and actu
gmented wa

Recovery 

2012, CCS 
g economies

uestration an
sis, Texas A&

f the reservoi

Minnelusa: 
eting, Laram
apres%2007

ect: Present
ting, Den

re_project_ta

ual producti
aterflood: Pa
Symposium

global—pro
s: Final tech

nd enhanced
&M Univers

 

ir after 50 ye

Presented a
mie, Wyom

7-19-

ted at the 
nver Colo
ab 

on after a de
aper SPE-39

m held in T

ospects of ca
hnical report

d oil recove
sity. 

ears 

at the 
ming, 

EOR 
orado, 

ecade 
9614, 
Tulsa, 

arbon 
, Part 

ery in 



 

B-45 

Harvey, A.H., 1996, Semiempirical correlation for Henry’s constants over large temperature 
ranges: AIChE Journal, v. 42, p. 1491. 

 
Kestin, J., Khalifa, H.E., and Correia, R.J., 1981, Tables of dynamic and kinematic viscosity of 

aqueous NaCl solutions in the temperature range 20–150°C and the pressure range 0.1– 
35 MPa: Journal of Physical and Chemical Reference Data, v. 10, p. 71–87.  
 

Liu, D., and Li, W., 2013, Flue gas enhanced oil recovery (EOR) as a high efficient development 
technology for offshore heavy oil in China: Journal of Petroleum and Gas Engineering, 
doi:10.5897/JPGE2013.0155, v. 4, no. 5, p. 127–142.  

 
Pitts, M.J. and Surkalo, H., 1995, Detailed evaluation of the West Kiehl alkaline-surfactant-

polymer field project and its application to mature Minnelusa waterfloods: Final technical 
report, p. 138, www.netl.doe.gov/KMD/cds/disk44/C-Chemical%20Flooding/ 
BC14860_5.pdf (accessed July 1, 2013). 

 
Pitts, M., 2005, Coupling the alkaline-surfactant-polymer technology and the gelation technology 

to maximize oil production: doi:10.2172/887243. 
 
Rowe, A.M., and Chou, J.C.S., 1970, Pressure-volume-temperature-concentration relation of 

aqueous NaCl solutions: Journal of Chemical and Engineering Data, v. 15, no. 1, p. 61–66. 
 
Yang, X., and Zhang, D., 2010, Saturation calculation in volcanic reservoirs—a case study for 

Haer Jin in PetroChina Jilin Oilfield: Presented at the SPE Deep Gas Conference and 
Exhibition, Manama, Bahrain, January 24–26, 2010, SPE 130759-MS. 

 
Zhao, R., Cheng, J., and Zhang, K., 2012, CO2 plume evolution and pressure buildup of large-

scale CO2 injection into saline aquifers in Sanzhao Depression—Songliao Basin, China: 
Transport in Porous Media, v. 95, no. 2, p. 407–424. 

 
Zeng, J., Cheng, S., Kong, X., Guo, K., and Wang, H., 2010, Non-Darcy flow in oil 

accumulation (oil displacing water) and relative permeability and oil saturation 
characteristics of low-permeability sandstones: Petroleum Science, v. 7, no. 1, p. 20–30. 

 
Zhang, W., Li, Y., Xu, T., Cheng, H., Zeng, Y., and Xiong, P., 2009, Long-term variations of 

CO2 trapped in different mechanisms in deep saline formations—a case study of the Songliao 
Basin, China: Journal of Greenhouse Gas Control, v. 3, no. 2, p. 161–180. 

 
Zhang, H., Wen, D., Li, Y., Zhang, J., and Lu, J. (2005): Conditions for CO2 geological 

sequestration in China and some Suggestions. Geological Bulletin of China, v. 24, no. 12,  
p. 1107–1110. doi: CNKI:SUN:ZQYD.0.2005-12-004. 

 
 

 


