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Executive Summary:

This project concerned the Atlantic Meridional Overturning Circulation (AMOC), its stability, vari­
ability and sensitivity to atmospheric forcing, both mechanical (wind-stress) and thermodynamical 
(heat and freshwater surface fluxes). The focus of the study is the interhemispheric cell in the largely 
adiabatic regime, where the flow is characterized by a descending branch in the high latitudes of 
the North Atlantic and the upwelling branch in the Antarctic Circumpolar Current (ACC) region 
of the Southern Ocean. These two end points are connected by shared isopycnals along which the 
flow takes place.

The approach is to systematically study the amplitude and frequency of the AMOC’s response to 
localized buoyancy with an ocean-only model in both coarse and high-resolution configurations, 
analyzed with innovative diagnostics, focused on the “residual overturning circulation” (ROC), 
which is the proper measure of the transport of heat and other tracers.

Accomplishments:

1) Coarse and high resolution computations where succesfully compared to illustrate the sensitivity 
of the strength of the residual circulation to wind-stress in the ACC and buoyancy perturbations 
in the North Atlantic. A conceptual model was developed illustrating that the upper bound of the 
residual transport is set by the wind-stress in the ACC (cf. publication 1 and figure 1).

2) We have shown that the residual circulation can be accurately estimated in eddy-resolving general 
circulations models using a Statistical Transformed Eulerian Mean (STEM) evaluation of the eddy- 
fluxes of temperature and salinity. This technique can be readily applied using diagnostics that are 
routinely saved in GCM’s (cf. publication 2).

3) We have shown that freshwater feedbacks in the adiabatic AMOC increase the range of surface 
buoyancy values that are shared between the ACC region and the high latitudes of the Northern 
Hemisphere leading to a strengthening of the AMOC, compared to that obtained with thermal 
forcing only.

4) We have shown that freshwater feedbacks in the adiabatic AMOC can lead to multiple equilibria 
where the residual overturning is either reinforced or shut down. Self-sustained multidecadal oscil­
lations are observed with amplitudes which increase as the critical forcing for AMOC shutdown is 
approached. These oscillations mediate the transition between AMOC ”on” and ”off” states (cf. 
publication 7 and figure 2).

5) We have established that the presence of zonally varying topography in the ACC region increases 
the poleward heat transport by eddies leading to a shoaling of the stratification and a decrease of 
the zonal transport on the ACC. In addition, the sensitivity of the stratification and zonal transport
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of the ACC to the wind-stress forcing is greatly reduced by zonally varying topography.

6) We have analyzed the energetics of semi-enclosed seas with vertical exchange flow at the strait, 
and found a simple relation between the flux of (potential) energy into (or out of) the strait and 
the surface buoyancy flux. This relation allows to estimate the energy input due surface buoyancy 
forcing relative to the wind-work. We have found that the energy flux at the strait is into the basin 
for antiestuarine basins (such as the Mediterranean and the Red Seas) and out of the basin for estu­
arine basins (such as the Black and Baltic Seas). Using reanalysis products for the abovementioned 
four semi-enclosed seas, we find that, the energy flux at the strait due to surface buoyancy flux 
can be smaller, larger or of the same order as the wind-work. This allows a further classification of 
semi-enclosed seas as being primarily powered by wind or by buoyancy, or by both.

7) We have discovered that, in a configuration of the global ocean where the Atlantic sector differs 
from the Indo-Pacific sector only on basin width, with forcing and geometry otherwhise zonally 
symmetric, sinking is preferred in the narrow basin, i.e. the Atlantic sector. The preference for 
narrow-basin sinking is due to a combination of a deeper wind-driven circulation and a weaker 
meridional overturning velocity in a wider basin. The first property derives from a well-known 
result of theories the wind-driven circulation applied to advection of a tracer. The second property 
is due to the independence of the meridional overturning circulation on the width of the basin, a 
result proven in our latest submitted paper.
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Figure 1: The zonally averaged temperature (left) and residual overturning (right) in three configu­
rations: fully closed basin (top), reentrant ACC region in the southernmost eight of the domain but 
no isopycnals outcropping in both the ACC region and the Northern Hemisphere (middle), shared 
isopycnals outcropping in both the ACC region and the Northern Hemisphere (bottom). Notice 
the lack of stratification and AMOC in the top panel, and the lack of AMOC in the middle panel. 
Contour intervals for the left panels are in 1 °C (thick lines) and 0.25°C (thin lines). Contour 
intervals for the right panels are 0.2 Sverdrup.
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Figure 2: The upper panels give the residual streamfunction, middle panels the zonally averaged 
temperature, and the lower panels the zonally averaged salinity. The left panels are for the “on” state 
and the right panels are for the “off” state. Both states have the same fresh water flux symmetric 
around the equator, but the temperature flux differ slightly: the “on” state has AT = 4 °C while 
the “off” state has AT = 5 °C, where AT is the pole-to-pole temperature difference. The equator- 
to-pole temperature difference (from the south pole to the equator) is 20 °C . The diffusivity below 
the mixed layer is 3 x 10-6 m2 s-1. The thick contours in the upper panels give contours of the 
effective buoyancy field in units of 10-3ms-2; the thin contours are for the ROC and the contour 
interval is 0.5 Sv. The vertical dashed line denotes the northern edge of the reentrant channel. The 
contour intervals in the middle and bottom panels are 1 °C and 0.1 psu, respectively.
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